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Abstract: High-quality limited-angle computed tomography (CT) reconstruction is in high demand
in the medical field. Being unlimited by the pairing of sinogram and the reconstructed image,
unsupervised methods have attracted wide attention from researchers. The reconstruction limit of
the existing unsupervised reconstruction methods, however, is to use [0◦, 120◦] of projection data,
and the quality of the reconstruction still has room for improvement. In this paper, we propose a
limited-angle CT reconstruction generative adversarial network based on sinogram inpainting and
unsupervised artifact removal to further reduce the angle range limit and to improve the image
quality. We collected a large number of CT lung and head images and Radon transformed them
into missing sinograms. Sinogram inpainting network is developed to complete missing sinograms,
based on which the filtered back projection algorithm can output images with most artifacts removed;
then, these images are mapped to artifact-free images by using artifact removal network. Finally,
we generated reconstruction results sized 512× 512 that are comparable to full-scan reconstruction
using only [0◦, 90◦] of limited sinogram projection data. Compared with the current unsupervised
methods, the proposed method can reconstruct images of higher quality.

Keywords: sinogram inpainting; generative adversarial network; limited-angle CT reconstruction;
image reconstruction; artificial intelligence; machine learning

1. Introduction

Limited-angle computed tomography (CT) reconstruction is now widely used in such
situation as C-arm CT scan [1,2], digital breast tomosynthesis [3,4] and dental tomogra-
phy [5]. The data of limited-angle CT are incomplete and cannot meet the requirements of
Nyquist sampling theorem [6]. As a result, the image reconstructed by the filtered back
projection (FBP) algorithm has serious artifacts [7,8], which can affect the detection of the
diagnosis of diseases.

Many researchers have conducted in-depth studies on this problem. Iterative recon-
struction algorithm [9–12] was the first to be applied in limited-angle CT reconstruction.
For example, Sidky et al. proposed the total variation regularization and projection on
convex sets algorithm [13] and the adaptive steepest descent and project onto convex set
algorithm [14]. CAI et al. [15] introduced an edge detection strategy into total variation
regularization and proposed an edge-guided total variation minimum reconstruction algo-
rithm, and further improved the reconstruction quality through optimization by alternating
the direction multipliers. Although the regularization methods have shown some initial
success, but they still cannot provide satisfactory results in limited-angle CT reconstruction
when a large range of scan angles are missing. At the same time, these solutions also suffer
from high computational overhead and slow operation speed.

Along with the development of machine learning technology in recent years, many
researchers have applied the supervised convolutional neural network method to the field
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of CT image reconstruction [16–18]. Zhang et al. [19] discovered that the similar striped
artifacts between the reconstructed images by the FBP algorithm in limited-angle sinogram
reconstruction, so they proposed a neural network feature fitting framework based on the
image domain to learn the mapping between images with artifact and artifact-free images.
Inspired by research on image restoration in machine vision, Jin et al. [20] believed that
performing image completion and predicting missing information in the projection domain
is also a viable approach. They used a context encoder to complete the limited-angle
sinogram, and then combined it with an iterative algorithm for the reconstruction. The
result proved that a sinogram completion method based on context encoder can effectively
improve the efficiency and quality of iterative reconstruction. Given that the above methods
are performed in a single image domain or projection domain, Zhang et al. [21] proposed
hybrid-domain convolutional neural network method, which combined projection domain
completion and image domain artifact suppression, but in order to limit the generation of
misinformation, supervised constraints from pairs of real sinogram-reconstructed image
are necessary [22].

When the amount of training data is sufficient and the network is well trained, the
supervised deep learning method can obtain good reconstruction results. In limited-angle
CT reconstruction, however, it is difficult to obtain a large number of paired data for
supervised training. For this reason, Zhao [23] first proposed the Sinogram Inpainting
Network (SIN) method to train the network in an unsupervised manner. SIN consists of
two parts: The first part is a U-net-based Generative Adversarial Network, which is used to
complete the sinograms; The second part is a U-net Generative Adversarial Network of the
same structure to learn the mapping from artifact images to artifact-free images. These two
parts are connected by differentiable Radon and inverse Radon transform networks. SIN
takes a sinogram of size 256× 256 as input and generates a reconstructed image of the same
size. The experimental results show that, when the limited angle range is [0◦, 120◦], the
performance is better than that of the latest simultaneous algebraic reconstruction technique
with Total Variation Regularization (SART-TV) [24] in both qualitative and quantitative
aspects. Zhou et al. [25] proposed another unsupervised tomography reconstruction
adversarial network (Tomo-GAN) based on hybrid-domain optimization. It also consists of
two parts: the first part is the Cycle-Consistent Generative Adversarial Networks, which
is responsible for mapping the simulation domain sinogram to the real domain sinogram.
The second part is the multi-scale conditional GAN, which is developed using both the
real-domain sinogram and the corresponding initial FBP reconstruction map as network
input. It also introduces a Long–Short-Term Memory to extract features from a sequence of
projections from different angles to improve the quality of the reconstruction results. With
the above methods, Tomo-GAN successfully enlarged the size of the reconstructed image
to 512× 512 and significantly reduced the reconstruction time. However, the first part
of the network of Tomo-GAN learns the mapping from the simulation domain sinogram
to the real domain sinogram in the projection domain and does not restore the missing
information of the sinogram, so it does not improve the quality of image reconstruction.
Similarly, the minimum range of the scan angle supported by the algorithm remains at
[0◦, 120◦], and the method will break down when the range is smaller than that. To address
the limitations of the methods proposed by Zhao and Zhou, we propose in this paper
a generative adversarial network (GAN) sinogram inpainting and unsupervised artifact
removal network called SIAR-GAN, which further reduces the angle range limit on the
basis of ensuring image quality and image size.

2. Materials and Methods

The SIAR-GAN includes two networks: sinogram inpainting generative adversarial
network (SI-GAN) and artifact removal generative adversarial network (AR-GAN). The SI-
GAN network is inspired by SIN, and the backbone network also adopts the U-net network
structure, and the following improvements are made. Firstly, we designed the size of the
input sinogram, so that the area of the network to be completed is not increased as much as
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possible while increasing the resolution of the sinogram, and the network structure was
redesigned to ensure that the designed sinogram can be input into the network normally.
The sinogram size design is explained in detail in Section 2.4. Secondly, the SI-GAN network
also introduces a cross-layer attention mechanism between the encoders. By calculating
the degree of region matching between the patches inside and outside the blank region
of missing angles, the feature information is transferred from the outside to the inside of
the region, and the performance of the network can be further improved. This part of
the content is described in detail in Section 2.1. The AR-GAN network is an improved
version of the Cycle-Consistent Generative Adversarial Network (Cycle-GAN), which
maps the generative domain CT image to the artifact-free image domain to achieve artifact
removal. The training data comes from the unpaired real CT image and the generative
domain CT image, and the generative domain CT image is reconstructed from the output
of the SI-GAN network with the FBP algorithm. The SI-GAN is introduced to obtain more
accurate completed sinogram, based on which FBP algorithm can achieve images with
most artifacts removed. AR-GAN can further map images with most artifacts removed to
the artifact-free image. The flow chart of the SIAR-GAN algorithm is shown in Figure 1.
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Figure 1. The flowchart of SIAR-GAN algorithm.

2.1. Sinogram Inpainting Generative Adversarial Network (SI-GAN)

SI-GAN framework is shown in Figure 2. The network encoder module (a) is mainly
used to extract the feature information of the limited-angle sinogram, to down-sample the
lower-level mask and images layer by layer, and to learn a high-level compact latent feature.

In order to overcome the limitation that encoder module (a) convolves layer by layer
and cannot observe image features in the distance effectively, we added the attention
module (b). By repeated use of attention network between adjacent layers of encoders and
by learning the contents of the high-level semantic feature layer to fill the missing areas
of the low-level feature layer, this cross-layer attention filling mechanism can achieve the
mapping of high-level semantic features to low-level features, realize a higher resolution,
and ensure the content consistency of the missing area. The method of this module drewn
on the research of Yu et al. [26] and the implementation details are shown in Figure 2 ATN.
By calculating the area matching degree between the (3× 3) patch inside and outside the
missing hole area, the external feature information is transferred to the inside of the area.
The calculation of the matching degree is gauged by cosine similarity:

sk
i,o =

〈
qk

o,n

‖qk
o,n‖

,
qk

i,m

‖qk
i,m‖

〉
(1)
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where sk
i,o represents cosine similarity, qk

o,n denotes the n-th patch extracted outside the
hole of the k-th high-level feature map, and qk

i,m represents the m-th patch extracted from
the inside of the hole of the k-th high-level feature map. The similarity scores are then
processed with SoftMax to obtain the attention score, which is then weighted with the
adjacent low-level feature map to fill the hole area:

qk−1
i,m =

N

∑
n=1

αk
i,oqk−1

o,n (2)

where αk
i,o represents the attention score calculated through the k-layer high-level feature

map, qk−1
o,n represents the n-th patch outside the hole of the k-1st low-level feature map, and

qk−1
i,m represents the m-th patch inside the hole of the low-level feature map of the k-1st layer.

The same operation is performed on all patches of adjacent feature layers to obtain the
attention-complemented low-level feature map. Finally, the transfer of the attention from
the high-level feature map to the low-level feature map is accomplished.
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Figure 2. A diagram of the SI-GAN network framework. The network consists of 5 modules:
(a) encoder module, (b) attention module, (c) decoder module, (d) multi-scale decoding module, and
D discriminator module.

Decoder module (c) simultaneously receives feature images from encoder (a) and
attention module (b) in a cross-layer connection. The output feature map of the previous
layer of decoder and the output feature map of the corresponding layer of attention module
are stacked back and forth, and then input to the next layer of decoder. This is continued
recursively to complete filling the missing hole and to form a complete the whole sinogram.
The multi-scale decoding module (d) generates images of different scales by convolving



Appl. Sci. 2022, 12, 6268 5 of 15

with the feature maps of different layers of the decoder and establishes a more rigorous
multi-scale loss, so that the model achieves better results.

Unlike many GANs, the discriminator network (D) in this article will output an
59× 19 image block instead of a single value. Each pixel value in the image block represents
the true probability of the image within the corresponding receptive field in the original
image. This regionally aware discriminator can improve the texture and semantic similarity
between the generated image and the original image, so that the generated image can have
a higher resolution and greater detail.

The loss function plays a key role in the quality of the result of the model and is a
basic element in machine learning. In the SI-GAN network, the loss function has three
parts: generation adversarial loss, hole loss, and multi-scale L1 loss. The expression of the
generation adversarial loss function is:

LGAN(G, D) = Ey∼Pdata(y)[log D(y)] +Ex∼Pdata(x)[log(1− D(G(x)))] (3)

where G is the generator network that strives to learn the mapping of G(x)→ y and
to generate through x as realistic images as possible that conform to y distribution, x
represents the missing projection data, and y denotes the real non-missing projection data.
The purpose of discriminator D is to determine as much as possible whether the input
image is real or generated by the generator, and Pdata represents the data distribution.

In order to make the generator generate data that are as real as possible in the missing
area of the image, we introduced a hole loss to constrain the optimization results:

Lhole(G) = Ex∼Pdata(x)[‖(y�m)− (G(x)�m)‖1] (4)

where m is the mask manually set according to the missing sinogram of the input. The
value of the missing portion of the projection data (for example, in [91◦, 180◦]) is set as 1,
and the value of the rest of the projection data (for example, in [0◦, 90◦] and [181◦, 192◦]) is
set as 0, � represents a dot multiplication of matrices, and ‖ ‖1 represents the L1 norm. The
multi-scale L1 loss limits the output results of each layer of the decoder, so that the output
results of each layer are as similar as possible to the original image of the same scale. The
loss constraints of different scales can further improve the model performance:

Lms =
5

∑
p=1
‖yp − f (φp)‖1 (5)

where φp is the output of the p-th layer of the decoder, and the function f encodes the input
image into a grayscale image with the same size and a channel number of 1. yp represents
the original image with the same size as φp. Finally, we defined the complete loss function
as follows:

LSI = λ1LGAN(G, D) + λ2Lhole(G) + λ3Lms (6)

In this article, the values of the hyperparameters λ1, λ2 and λ3 were, respectively, 0.05,
6, and 0.5.

2.2. Artifact Removal Generative Adversarial Network (AR-GAN)

The AR-GAN is constructed on the basis of Cycle-Consistent Generative Adversarial
Networks [27], and the generator and discriminator use the same network parameters as
the original text. As shown in the AR-GAN framework diagram of Figure 3, the AR-GAN
is composed of two generators and two discriminators. The generator Gx2y maps the
generation domain CT image r_x to the f _y domain through the loss of Lcycle, Lide, Lerr,
and the LGAN loss constraint generated by the discriminator D_y. The generator Gy2x
is similar.
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different colored lines represent different loss paths, and the squares represent the image domain.

The loss path of LGAN loss is shown by the red lines in Figure 3. The mathematical
expression can be expressed as:

LGAN(Gx2y, D_y, r_x, r_y) = Ey∼Pdata(r_y)[log D_y(y)] +Ex∼Pdata(r_x)[log(1− D_y(Gx2y(x)))] (7)

LGAN(Gy2x, D_x, r_x, r_y) = Ex∼Pdata(r_x)[log D_x(x)] +Ey∼Pdata(r_y)[log(1− D_x(Gy2x(y)))] (8)

The loss of Lcycle and Lide can further strengthen the ability of generators Gx2y and
Gy2x to generate images of the corresponding domain. Lcycle loss path is shown by the
blue lines and Lide loss path is shown by the green lines in Figure 3.

Lcycle(Gx2y, Gy2x, r_x, r_y) = Ex∼Pdata(r_x)
[‖Gy2x(Gx2y(x))− x‖1] +Ey∼Pdata(r_y)

[‖Gx2y(Gy2x(y))− y‖1] (9)

Lide(Gx2y, Gy2x, r_x, r_y) = Ex∼Pdata(r_x)
[‖Gy2x(x)− x‖1] +Ey∼Pdata(r_y)

[‖Gx2y(y)− y‖1] (10)

When f _x obeys the Pdata(r_x) distribution and f _y obeys the Pdata(r_y) distribution,
the difference distribution between r_x and f _x and the difference distribution between
r_y and f _y should be very similar. Therefore, we used Lerr loss to limit the difference of
artifacts. Lerr loss path is shown by the gray lines in Figure 3. The mathematical expression
is as follows:

Lerr(Gx2y, Gy2x, r_x, r_y) = Ex∼Pdata(r_x),y∼Pdata(r_y)
[‖(Gx2y(x)− y)− (Gy2x(y)− x)‖1] (11)

We defined the complete loss function as follows, and the parameters α1, α2, α3, and
α4 were, respectively, 1, 8, 4, and 2:

LAR = α1LGAN + α2Lcycle + α3Lide + α4Lerr (12)

2.3. Comparison Methods and Evaluation Indicators

In order to evaluate the advantages of the method proposed in this paper, it was
compared to four other methods, namely, the classical filtered back projection (FBP), SART-
TV [24], SIN, and Tomo-GAN. Three indicators were chosen to evaluate the reconstruction
performance of the network: root-mean-square error (RMSE), peak signal to noise ratio
(PSNR), and structural similarity (SSIM).
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2.4. Data and Settings

In order to verify the effectiveness of the SIAR-GAN method proposed in this paper,
we collected 13,120 CT lung images of patients from the well-known open source clinical
medical image database DeepLesion [28] and 3400 CT head images from the LDCT and
Projection data of the Cancer Archives [29]. We expanded the head dataset to 13,600 by
data augmentation with direct copy. To facilitate the completion of the information near
the 180◦ edge of the sinogram, CT image was transformed to sinogram with the size of
512× 192 using Radon transform during training phase, and the sampling interval of
the projected data was 1◦. Remove part view of the projected data to simulate limited-
angle sinograms. This generated missing projection data of [90◦, 180◦], [120◦, 180◦], and
[150◦, 180◦], together with sinograms of full projection data, forming a training sample
dataset to train SI-GAN. During the application phase, the [0◦, 12◦] projection data of the
sinogram were duplicated before the mirror and 180◦ rotation operations were performed,
and then the results were used as the projection data corresponding to [180◦, 192◦] of the
sinogram. In the lung CT dataset and head CT dataset, 9000 images were used for training
and the remaining images were used for testing. We extracted the [0◦, 180◦] sinogram image
from the output of SI-GAN network test set for FBP reconstruction. The reconstruction
results and the collected original CT images of patients were used as AR-GAN unpaired
datasets. The learning rate of the SI-GAN network was set to 0.0001, the number of epoch
was 200, and the batch size was 16. The learning rate of the AR-GAN was 0.0002, the
number of epoch was 200, and the batch size was 1. The training time of SI-GAN was 33 h,
and the training time of AR-GAN was 95 h. To visualize the convergence of the network,
we calculated the PSNR, SSIM, and RMSE Indicator values of the test set after each epoch.
Figure 4 shows the averaged PSNR, SSIM, and RMSE Indicator values versus the number
of epochs for SI-GAN and AR-GAN. For the sake of fairness to the SIN algorithm and
the Tomo-GAN method, we used the same data set and the same epoch as AR-GAN and
maintained the training strategy and parameters consistent with original text. The FBP
algorithm selects Ram-Lak as the filter function and nearest neighbor interpolation as the
interpolation function. Since the literature has not come to a consensus on the data-driven
parameters of the setting method, we tuned the SART-TV hyperparameters manually to
obtain the best average performance. We finally set 15 iterations for each image, and in
each epoch, we took 15 steps of TV with the factors α = 0.06 and αs = 0.997, where α
denotes the maximum step size for the steepest descent of TV minimization, and αs is the
decreasing proportion of α after each calculation.
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3. Results

Two examples were used to illustrate the role of SI-GAN and AR-GAN in the proposed
network of Section 3.1 and to evaluate the proposed network and baselines qualitatively
and quantitatively. Qualitative and quantitative results are included in Sections 3.2–3.4.

3.1. Comparison with Different Architecture

First, we demonstrated the role of SI-GAN using 90◦ limited-angle projection data,
as shown in Figure 5. Obvious artifacts exist in FBP reconstruction for 90◦ sinogram. The
SI-GAN network has effectively completed the missing sinogram, based on which the FBP
algorithm can produce images with most of the artifacts removed.
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We then displayed the artifact-removed results of AR-GAN in Figure 6. This helps to
demonstrate the contribution of AR-GAN. Figure 6a,c shows that AR-GAN can effectively
remove the artifacts, but strong inconsistencies are present, as can be seen from the red
outline and red arrow in Figure 6c. As expected, the AR-GAN network exhibited excellent
performance in eliminating artifacts when the FBP reconstruction of the output of SI-GAN
is used as the input. This can be concluded from the comparison of Figure 6d,e.

3.2. Qualitative Experimental Results for Lung Data

The full experimental results of lung CT data reconstruction are shown in Figure 7.
The reconstruction results of SART-TV and FBP methods become significantly worse as
the projection data decreases, especially in the upper left and lower right corners, where
the structure and texture have become completely blurred for the [0◦, 90◦] projection
data. Both Tomo-GAN and SIN are methods based on unsupervised deep learning hybrid-
domain artifact removal. Compared with SART-TV and FBP methods, the reconstruction
results are significantly improved, but when the projection angle is only [0◦, 90◦]; they too
cannot effectively suppress artifacts and textures, and cannot effectively restore the profile
information, as shown in the area corresponding to the red arrows in Figure 7. In contrast,
the method proposed in this paper, through joint optimization of projection domain and
image domain, played a significant role in suppressing artifacts, and the important structure
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and texture information of the area corresponding to the red arrows is effectively restored
and preserved.
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Figure 6. Artifact-removed results of AR-GAN. (a) FBP reconstruction for 90◦ limited-angle data;
(b) FBP reconstruction for the output of SI-GAN; (c) Output of AR-GAN with (a) as input; (d) Output
of AR-GAN with (b) as input; (e) Ground truth of reconstruction image. The red line is a hand-drawn
outer profile of (e). (Best viewed with zoom-in).
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Figure 7. Experimental results on lung CT data. The first, second, and third rows are the results
of reconstruction from [0◦, 150◦], [0◦, 120◦], and [0◦, 90◦] projection data. The first column is the
full-angle reconstructed reference image, and the images in the subsequent columns are SIAR-GAN,
Tomo-GAN, SIN, SART-TV and FBP reconstruction results. (Best viewed with zoom-in).

The absolute difference image can further compare the reconstruction results of each
method. The results are shown in Figure 8. The smaller difference corresponds to a better
reconstruction. The results of these three cases of projection angles all show that the recon-
struction quality of the method in this paper works better. Comparing the reconstruction
results of [0◦, 150◦] and [0◦, 90◦], it can be found that the reconstruction quality degrades
when less projection data are used.
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Figure 8. The absolute difference between the experimental results of each method and the reference
results. The pixel range of the images is [0, 255]. (Best viewed with zoom-in).

In order to compare the texture and structural details of the reconstruction results of
each method more clearly, we selected the red framed area in Figure 7 to zoom in, as shown
in Figure 9. Consistent with the results of the above analysis, the SART-TV and FBP methods
exhibited a considerable number of artifacts and only the outline can be distinguished,
while the textural details were completely blurred. In the area indicated by the red arrow
in Figure 9, part of the structure and contours were not restored correctly, and the textural
details were also lost when Tomo-GAN and SIN methods had only a limited angle of
[0◦, 90◦]. In contrast, the SIAR-GAN method not only restored the complete structure, but
also retained more textural details. Although there are still some imperfections compared
with the reference image, SIAR-GAN produced high quality images that are superior to
the other methods according to quantitative evaluation results by the RMSE, PSNR, and
SSIM indicators.

3.3. Quantitative Experimental Results for Lung Data

We re-assessed the reconstruction results quantitatively using the entire test dataset
and calculated the standard deviation to assess fluctuations in reconstructed image quality.
The reconstructed images were obtained using the proposed method and the resultant
images were quantitatively analyzed with the three indicators of RMSE, PSNR, and SSIM to
obtain an average value; higher PSNR and SSIM values and lower RMSE values correspond
to a better reconstruction. The higher quality of sinogram reconstruction from limited
angles using our unsupervised deep learning method; Tables 1–3 show the result of this
analysis. The best results are shown in bold.

3.4. Qualitative and Quantitative Experimental Results of Head Data

The reconstruction results of head CT data from 90◦ projection data are shown in
Figure 10. The average PNSR, SSIM, and RMSE results for the reconstruction results of the
head CT data from 90◦ projection data are shown in Table 4.
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Figure 9. A partial enlarged comparison of different methods using partially enlarged image from
the red box area in Figure 7. The layout is consistent with Figure 7.

Table 1. Average PSNR results (mean ± standard deviation).

Angle FBP SART-TV SIN Tomo-GAN SIAR-GAN

[0◦, 150◦] 16.3457 ± 1.6106 19.2531 ± 0.5965 26.7125 ± 1.7880 28.9774 ± 1.6971 31.1028 ± 1.5224
[0◦, 120◦] 15.7783 ± 0.9374 18.1774 ± 0.4456 25.3332 ± 1.5566 27.5112 ± 1.6104 30.2231 ± 1.3819
[0◦, 90◦] 13.0208 ± 0.5416 16.7119 ± 0.3335 23.2377 ± 1.1701 25.6884 ± 1.6570 29. 2011 ± 1.3703

Table 2. Average SSIM results (mean ± standard deviation).

Angle FBP SART-TV SIN Tomo-GAN SIAR-GAN

[0◦, 150◦] 0.5065 ± 0.0521 0.5321 ± 0.0332 0.8611 ± 0.0356 0.9077 ± 0.0327 0.9390 ± 0.0277
[0◦, 120◦] 0.4503 ± 0.0423 0.4697 ± 0.0271 0.8153 ± 0.0423 0.8803 ± 0.0327 0.9255 ± 0.0304
[0◦, 90◦] 0.3093 ± 0.0316 0.3501 ± 0.0194 0.7013 ± 0.0272 0.8102 ± 0.0524 0.9102 ± 0.0240

Table 3. Average RMSE results (mean ± standard deviation).

Angle FBP SART-TV SIN Tomo-GAN SIAR-GAN

[0◦, 150◦] 39.4962 ± 5.0869 28.2127 ± 0.9706 13.0721 ± 2.1081 11.0954 ± 2.6180 7.3066 ± 1.4727
[0◦, 120◦] 41.6998 ± 4.4619 31.7996 ± 1.6256 15.8862 ± 2.3972 13.7782 ± 2.6471 7.9773 ± 1.4524
[0◦, 90◦] 57.0615 ± 3.5469 37.0192 ± 1.4280 19.5390 ± 1.8999 15.5744 ± 3.0219 8.8614 ± 1.6025



Appl. Sci. 2022, 12, 6268 12 of 15Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 16 
 

 

Figure 10. Reconstruction results of the head CT data from the 90  projection data. The first, third, 

and fifth rows of images are the reconstruction results of each method. The image in the first column 

in each of these rows is the reference image reconstructed by the standard FBP algorithm using the 

full scan. The subsequent columns show the images reconstructed by SIAR-GAN (2nd column), 

Tomo-GAN (3rd column), SIN (4th column), SART-TV (5th column), and FBP (6th column) algo-

rithms. Below each reconstruction result, the residual image obtained by subtracting the corre-

sponding reconstructed image from the reference image is shown. The pixel range of the residual 

images is [0, 255]. (Best viewed with zoom-in). 

Table 4. Average PNSR, SSIM, and RMSE results for the reconstruction results of the head CT data 

from the 90  projection data (mean   standard deviation). 

Indicator FBP SART-TV SIN Tomo-GAN SIAR-GAN 

PSNR 
10.1629 ± 

0.6996 

14.7071 ± 

0.6204 

23.1279 ± 

1.6591 

25.7152 ± 

2.4894 

28.7140 ± 

1.5467 

SSIM 0.2812 ± 0.0339 0.2973 ± 0.0348 0.7249 ± 0.0548 0.7886 ± 0.0597 0.8814 ± 0.0496 

RMSE 
79.3923 ± 

6.2318 

47.0200 ± 

2.3155 

18.1147 ± 

3.4723 

13.8080 ± 

4.5798 
9.4966 ± 1.9533 

  

Reference Tomo-GANSIAR-GAN SART+TV FBPSIN

Figure 10. Reconstruction results of the head CT data from the 90◦ projection data. The first, third,
and fifth rows of images are the reconstruction results of each method. The image in the first column
in each of these rows is the reference image reconstructed by the standard FBP algorithm using the full
scan. The subsequent columns show the images reconstructed by SIAR-GAN (2nd column), Tomo-
GAN (3rd column), SIN (4th column), SART-TV (5th column), and FBP (6th column) algorithms.
Below each reconstruction result, the residual image obtained by subtracting the corresponding
reconstructed image from the reference image is shown. The pixel range of the residual images is
[0, 255]. (Best viewed with zoom-in).

Table 4. Average PNSR, SSIM, and RMSE results for the reconstruction results of the head CT data
from the 90◦ projection data (mean ± standard deviation).

Indicator FBP SART-TV SIN Tomo-GAN SIAR-GAN

PSNR 10.1629 ± 0.6996 14.7071 ± 0.6204 23.1279 ± 1.6591 25.7152 ± 2.4894 28.7140 ± 1.5467
SSIM 0.2812 ± 0.0339 0.2973 ± 0.0348 0.7249 ± 0.0548 0.7886 ± 0.0597 0.8814 ± 0.0496
RMSE 79.3923 ± 6.2318 47.0200 ± 2.3155 18.1147 ± 3.4723 13.8080 ± 4.5798 9.4966 ± 1.9533

Although the reconstruction results of SART-TV are intuitively better than those of
FBP, neither of them achieved satisfactory reconstruction results. The main problem of
SIN reconstruction results is that there is a certain degree of ambiguity. Both SI-GAN and
Tomo-GAN methods obtained reconstruction results similar to the reference, but, from the
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residual images, the reconstruction results of SI-GAN have less errors. The data in Table 4
demonstrate the above analysis, with the best performing results given in bold.

4. Discussion and Conclusions

It is well known that the amount of training data is a crucial factor that affects the
performance of the neural network and the results of limited-angle reconstruction; how-
ever, it is often difficult to acquire a large number of sinogram reconstruction data pairs.
Moreover, the degree of difficulty in producing reconstruction results of acceptable quality
increases with a decreasing amount of angular data in practice. The SIAR-GAN proposed in
this paper can be effectively trained without having paired sinogram reconstructed image
data. Using an unsupervised method, we generated reconstruction results comparable to
full-scan reconstruction with only [0◦, 90◦] of limited sinogram projection data on the basis
of maintaining a large image size. Compared to other existing unsupervised methods, the
proposed method produced images of higher quality according to the evaluation of image
quality indicators.

Although the proposed method performed better than other methods in comparison,
there are still some limitations. For example, the data distribution of the sinogram dataset
has a significant impact on the performance of SI-GAN. Therefore, in practical training and
clinical applications, the collected data should come from a certain area of the body that is
as small as possible. Moreover, in order to improve the centrality of the data distribution,
the sinogram should be guaranteed to have the same scanning starting point. AR-GAN has
a huge network structure, which will be limited by computer hardware. To make such a
network work well, a GPU with at least 16G memory is required. In addition, the value
of the batch size of AR-GAN is 1, which makes training AR-GAN somewhat difficult. For
the network to achieve a good performance, it requires a certain amount of experience.
An alternative approach, of course, is to increase the batch size, but this would result in
an even larger number of GPUs being required. As the experimental results show, the
lungs and heads reconstructed by our method have a satisfactory image quality, so our
algorithm is expected to work well for a wide scope of clinical applications. However, it
is worth noting that the reconstruction results of this method produce some reasonable
organizations that do not exist in the reference image; these results are caused by the
characteristics of the generative adversarial network. In the future, some structural and
profile restrictions should be added to the network to constrain the output of the network
to solve such problems. Therefore, manual image quality assessment should be performed
prior to clinical deployment to ensure that the SIAR-GAN reconstructed images are of
sufficient quality for a given clinical application.

To summarize, our proposed framework model for a limited-angle CT reconstruction
network does not rely on the actual sinogram reconstruction image pair. Compared with
current unsupervised deep learning hybrid-domain processing methods, our proposed method
further reduced the range of the limited angle and generated images of higher quality. In future
work, we will impose some structural and profile restrictions on the output of the network
to avoid the local feature errors mentioned above. Moreover, we will also conduct network
performance tests on projection data that have a lower range than [0◦, 90◦] to further explore
the limiting effects of the missing data in unsupervised reconstruction.
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