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A.0 Software Analysis 
This appendix provides a brief introduction to the context of the team’s study into possible 
software causes for unintended acceleration (UA) in Toyota vehicles. 

A.1  Organization  
The software study was one of several studies performed by the NESC under the direction of the 
National Highway and Transportation Authority (NHTSA) and the Department of Transportation 
(DOT). The software study concentrated on the potential triggers that could be hiding in the 
software. 

A.2  Scope 
The study focused on the 2005 Toyota Camry L4 (inline four cylinder) engine control module 
(ECM) software.  The selection of the make, model, year, and configuration was determined by 
the NASA. As noted in the DOT Test Plan: 
 

“The area of emphasis will be the 2005 Toyota Camry because this vehicle has a 
consistently high rate of reported 'UA events' over all Toyota models and all years, when 
normalized to the number of each model and year, according to NHTSA data.” 
 

Toyota provided several different versions of the ECM software including versions for 2007 and 
V6 engines; however, given the limited amount of available time, the study focused primarily on 
the 2005 Toyota Camry L4 (inline four cylinder) engine control module (ECM) software. 

The study started mid April 2010 and ran through mid August 2010.  Initially, the software study 
was supported by the Toyota facility in Torrance, California.  The effort expanded to two 
facilities; one in Torrance and a second facility at the legal offices of Bowman and Brooke’s Law 
Office in San Jose, California. This second facility became operational in June 2010. 

A.3  Facilities & Resources 
In order to support the confidentiality of the 2005 Camry source code, the two facilities were 
maintained within offices controlled by Toyota.  The software teams traveled to these offices 
from Ames and JPL for study of the source code and Toyota documentation. 

The Torrance facility was located on the 7th floor of a Toyota building located near the main 
campus of the Toyota US headquarters.  The San Jose facility was located within the Toyota 
supported legal offices, and had access to the conference rooms. 

As noted, the NASA engineers performed the study on Toyota premises within an access 
controlled area.  The NASA Software team/NHTSA/DOT had agreed not to remove Toyota  
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intellectual property from this location, most notably software source code and design 
documents.  Toyota provided all computational resources for this work, to the team’s 
specification.  For example, the resources that were provided at the Torrance facility Toyota 
provided four desktop workstations, in dual-boot configuration supporting the Windows XP and 
the Ubuntu/Linux operating systems, a backup system, and a large compute server with 32 
GBytes of main memory and 12 CPU cores, for the computationally more intensive model 
analyses.  Access to the Toyota source code was made possible through the workstations.  A 
similar setup was provided by Toyota at the San Jose facility, except for the multi-core system. 

The team was able to start work within a week of the initial proposal. Throughout this study, 
Toyota IT personnel were also made available to assist with any technical problems with the 
workstation setup.  

Software tools provided by Toyota included the Atlas translation software system for rough 
online translations from Japanese into English, and a version of the compiler suite that Toyota 
uses to compile their source code. The proximity of the work area to Toyota headquarters 
facilitated a direct interaction between the NASA software team and the Toyota engineers. The 
discussions took place in English and Japanese, with the help of an interpreter who provided 
two-way translations during all regularly scheduled and impromptu meetings and discussions. 

During the study, JPL, Caltech, and Ames intellectual property employed to analyze the Toyota 
software was protected.  This included encrypting tools and the data archives with the 
intermediate results.  This step was warranted given that the analysis was performed on Toyota 
premises using Toyota computational resources. 

The nominal work day started at 8am and concluded at 7 pm. Throughout the study, four 
regularly scheduled daily meetings were held with Toyota engineers. The meetings served to 
structure the team’s interactions with Toyota and facilitated the process of obtaining technical 
details where needed, on an ongoing basis.  
 

• A first meeting was held at 9am each day to summarize the day’s plans for both sides.  

• At 1 pm an ‘action item debrief’ meeting followed, to cover any action items provided by 
the team to Toyota that were ready to be closed with the delivery, by Toyota, of the 
corresponding response or documents.  This debriefing took from one to three hours.   

• At 4 pm a ‘new action item’ meeting was held wherein the NASA team could submit new 
actions to Toyota.   

• Finally at approximately 6pm, the Toyota engineers in Torrance held a teleconference 
with Toyota in Japan to relay the team’s new action items to Japan.  Because of the time  
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difference to Japan (+16 hours), this teleconference allowed the Japan-based engineers to 
work through the (Pacific Time Zone) night to address the team’s action items.  

Based on the team’s requests for technical data, Toyota flew domain experts on various topics to 
the Torrance and the San Jose offices to address the team’s questions in person and to respond to 
follow-up questions. Most of the Toyota experts stayed for one to two weeks, before being 
replaced by a new team.  In this way, the NASA team was able to have detailed interactions 
with, among others, Toyota throttle control system and software engineers, cruise control system 
engineers, transmission engineers, and brake system engineers.  Additionally, Toyota 
management representative from Japan were also on site to organize the responses.  Both Toyota 
engineers and DENSO engineers (the software contracting company employed by Toyota in the 
software development), were made available for this study. The US Toyota president and COO 
of Toyota, Jim Lentz, also visited the NASA team during this study on May 13. 

Toyota attempted to provide information as quickly as possible, including document translations. 
Questions about the provided information could always be resolved in follow-up conversations 
or by referring to documentation that was also provided.  Most questions were asked several 
times during the study to assure the teams understanding. 

As part of the study, the software team generated over 100 separate action items.  Each action 
item was discussed in the face to face meetings, as were the Toyota responses. All 
documentation responding to the action items was provided by Toyota on a secure file server on-
site.  The server also held copies of the Camry software source code (for multiple Camry years 
and versions), the design documentation, and a limited number of unit-test case source files. 
While on-site in Torrance and San Jose, access this server allowed for the review and use of all 
information provided. 

A.4  Technologies Applied 

A.4.1  Software Implementation Analysis Using Static Source Code Tools 
The initial focus in analyzing the Camry05 source code has been on a thorough static source 
code analysis of the ECM to find possible coding defects and potential vulnerabilities in the 
code. Toyota internally makes use of the QAC tool for static analysis. The team’s experience is 
that there is no single analysis technique today that can reliably intercept all vulnerabilities, but 
that it is strongly recommended to deploy a range of different leading tools. Each tool used can 
excel at a different aspect of static analysis, which results in remarkably little overlap in the set 
of warnings that is produced. The combination of different analyzers achieves the highest value 
in analysis results. Three different static source code analyzers were deployed in for the study, 
which made use of the respectable static analysis capability in modern compilers, such as the 
public domain standard gcc compiler suite, version 4. 
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Tools Used: 
• Coverity1

• 

 – is currently one of the leading static source code analysis tools on the market. 
It excels at finding common coding defects and suspicious coding patterns in large code 
bases, taking a relatively short amount of time. The tool also supports custom-written 
checkers that can verify compliance with user-defined additional coding rules. This 
capability is put to use by using a small set of such Extend checkers. Coverity aims to 
reduce the number of warnings it issues to a minimum, by a careful filtering process that 
seeks to identify the most relevant or critical issues. 

CodeSonar2

• 

 – is a second strong static source code analysis tool from Grammatech that 
uses a different technology for detailed inter-procedural source code analysis. Codesonar 
analysis typically takes longer to complete than comparable tools, but can reveal more 
subtle types of defects and suspect coding patterns, requiring deeper path analysis (which 
can be more time consuming). The version of Codesonar used was extended with 
checkers for JPL’s coding standard. In this study the software team separated results for 
the coding standard checks from the default results. 

Uno3

A.4.2  Software Logic Model Checking 

 - is a research tool for performing static source code analysis, originating at Bell 
Labs. It is designed to perform a simpler, fast analysis for intercepting primarily the three 
most common types of software defects in programs: the Use of uninitialized variables, 
Nil-pointer dereferences, and out-of-bounds array indexing. The tool can be extended 
with user-defined checks.  

Logic model checkers use efficient algorithms to explore all possible executions of a system in 
an attempt to locate those executions that violate user-defined logic properties.  The exploration 
is in principle exhaustive and thus if it completes without finding incorrect behavior then the 
system is proven correct.  Because the exploration is exhaustive, model checkers can excel in 
finding incorrect behavior in ‘corner cases’ which are exactly the types of errors that tend to 
occur infrequently and be overlooked in even rigorous standard software testing.  Key to a logic 
model is the formulation of the model’s behavior and its correctness.  

                                                 
 
1 http://coverity.com/  
2 http://grammatech.com/products/codesonar/overview.html  
3 http://spinroot.com/uno/  

http://coverity.com/�
http://grammatech.com/products/codesonar/overview.html�
http://spinroot.com/uno/�
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The tools used in the for logic model checking were: 
• Spin

•  

 - is an open-source software tool for the formal verification of distributed software 
systems. In April 2002 the tool was awarded the ACM System Software Award for 2001. 
It is possible to use this tool both for the exhaustive verification of high level design 
models of a system and for the detailed exploration of implementation level code in 
multi-tasking or multi-threaded systems. 

Swarm

The logic models developed focused on those modules within the Toyota throttle control 
software that were deemed, based on the team’s study, most likely to contribute to unintended 
acceleration.  The modules selected are related to: 

 – is a preprocessing system for Spin that can maximize use of available compute 
resources in large compute clouds or grids thereby allowing for a comprehensive analysis 
of large and complex software systems. 

• the conversion of the desired throttle position into a pulse width modulated set of H-
Bridge transistors signals; 

• the generic processing of the sensors inputs of any type; and 

• the specific processing of the accelerator pedal position sensor input. 

This set of logic models are involved with the input/output of the throttle control software.  
Possible errors in modules related to the output of the throttle plate angle are clearly suspects in 
unintended acceleration.  Such errors may be largely undetected in monitoring software given 
how late in the computation they occur.  Additionally, an error in the input, particularly the 
accelerator pedal sensor or throttle angle sensor inputs, could masquerade as a valid sensor input 
and confuse the throttle controller into unintended acceleration. Table A.9-1 gives a summary of 
the logic models developed. 

The logic model verifications identified a number of potential issues.  All of these issues 
involved unrealistic timing delays in the multiprocessing, asynchronous software control flow.  
Even if they were to occur, none of these potential issues could be tied to unintended 
acceleration. 

No cause for unintended acceleration was found from the logic model verification effort. 

A.4.3  Software Algorithm Design Analysis Using Matlab Models 
Model-Based Design (MBD) is a mathematical and visual method of addressing problems 
associated with designing complex control systems. It is used in motion control, industrial 
equipment, aerospace, and automotive applications. 

MBD provides an efficient approach for establishing a common framework for communication 
throughout the design process while supporting the development cycle ("V" diagram). In Model- 
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Based Design, development is manifested in these steps: modeling a system, analyzing and 
synthesizing a controller for the system, simulating the system, and integrating all these phases 
by implementing the system. The model-based design paradigm is significantly different from 
traditional design methodology. Rather than using complex structures and extensive software 
code, designers can use MBD to define models with advanced functional characteristics using 
continuous-time and discrete-time building blocks. These built models used with simulation tools 
can lead to rapid prototyping, software testing, and verification. Not only is the testing and 
verification process enhanced, but also, in some cases, hardware-in-the-loop simulation can be 
used with the new design paradigm to perform testing of dynamic effects on the system more 
quickly and much more efficiently than with traditional design methodology. 

For this study of the Toyota 2005 Camry software, model-based design techniques were applied 
to create high-fidelity models of the software functions and behaviors.  Toyota documentation 
and discussions with Toyota engineering experts initiated the process.  Source code analysis 
continued the process by increasing the accuracy of the models.  And testing upon the Camry 
simulators and actual Camry vehicles confirmed the accuracy of the models.  Efforts were made 
to incorporate as much actual source code into the models for further increased fidelity of the 
models. 

No code was generated, but the models were executable, and could be run in a software 
environment to study function and behavior. 

This MBD approach also supported the dissemination of the software functions and behaviors to 
the team as a whole.  Presentations of the software in this manner efficiently communicated the 
software within the 2005 Camry microcontrollers without exposing the native source code.   
 
Tools Used: 

• MATLAB – is a product family providing a high-level programming language, an 
interactive technical computing environment, and functions for algorithm development, 
data analysis and visualization, and numeric computation. 

• Simulink - is an environment for multi-domain simulation and MBD for dynamic and 
embedded systems. It provides an interactive graphical environment and a customizable 
set of block libraries that let you design, simulate, implement, and test systems. 

• Stateflow - extends Simulink with a design environment for developing state charts and 
flow diagrams. Stateflow software provides the language elements required to describe 
complex logic in a natural, readable, and understandable form. It is tightly integrated with 
MATLAB and Simulink products, providing an efficient environment for designing 
embedded systems that contain control, supervisory, and mode logic.  Models can be 
created of embedded software that combine logical behavior, such as fault management  
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and mode switching, with algorithmic behavior, such as feedback control and signal 
conditioning. 

• SystemTest – automated model testing of Simulink models as a black box.  Test values 
are provided to the proper model inputs; outputs of the model are tested against properties 
to obtain fail/pass results. 

• aiT from AbsInt - statically computes tight bounds for the worst-case execution time 
(WCET) of tasks in real-time systems. aiT directly analyzes binary executables and takes 
the intrinsic processor cache and pipeline behavior into account. 

A.5  Software Study 
The software team performed an analysis of the Camry model year 2005 ECU (engine control 
unit) software to investigate if there can be plausible triggers for sudden UA in the engine control 
software of Toyota vehicles. As part of this study, the team also analyzed the structure and 
implementation of this software, using a range of different metrics. The fishbone diagram in 
Figure A.5-1 provides the general context for this study. 

 
Figure A.5-1. Fishbone Diagram of Potential Software Causes for UA 
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The fishbone diagram groups potential software causes in four broad categories. In this report, 
the software team addressed each of these categories: 
 

1. Coding defects (implementation) 
2. Algorithm flaws (design logic) 

3. Task interference (race conditions, data corruption) 

4. Insufficient fault protection 

An overview of the basic operation of the control software used in the Camry05 is discussed in 
the following sections. 

A.6  ECM Software Implementation and Basic Architecture 
The ECM (engine control module) for the 2005 Camry uses a NEC V850 E1 processor. The 
software for the ECU is written in ISO/ANSI C4, and compiled for production use with the 
GreenHills5 compiler suite version A.4.0. The code relies on the use of the Greenhills compiler 
with pragma directives6

The ECM is designed to meet a range of real-time constraints for engine control. The real-time 
operating system used is based on the OSEK

 that is discussed below. 

7 standard for distributed control units in vehicles, 
which is supported by AUTOSAR8

The Camry 2005 code contains  Tasks that execute at fixed priority levels between 1   
   

 (Automotive Open System Architecture) of which Toyota is 
a core member. The operating system is based on the execution of tasks, each with a fixed and 
statically assigned priority. 

              
              

                 
                   

             
             

                
          

 
                                                 
 
4 http://en.wikipedia.org/wiki/ANSI C  
5 http://www.ghs.com/  
6 http://gcc.gnu.org/onlinedocs/cpp/Pragmas.html  
7 http://en.wikipedia.org/wiki/OSEK, http://portal.osek-vdx.org/files/pdf/specs/os223.pdf  
8 http://en.wikipedia.org/wiki/AUTOSAR  

http://en.wikipedia.org/wiki/ANSI_C�
http://www.ghs.com/�
http://gcc.gnu.org/onlinedocs/cpp/Pragmas.html�
http://en.wikipedia.org/wiki/OSEK�
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf�
http://en.wikipedia.org/wiki/AUTOSAR�
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A.6.1 The CAN Data Network 
Messages sent on the CAN-bus9 (Controller Area Network) carry identifiers of 11-bits, which 
means that it is compliant with the standard CAN 2.0 A base frame format. (The extended CAN 
2.0 B format supports identifiers of 29 bits.) The CAN 2.0 A protocol was published as a 
standard by the ISO 11898 in 1993,10

The arrival of a message is signaled by an interrupt, which causes an interrupt handler to copy 
the data from a DMA area into a ring-buffer of 7 slots that is read and emptied by the 1msec 
(highest priority) task. CAN message transfers are initiated at the 250 µsec mark of the 1 msec 
cycle. 

  and is today broadly used in the automobile industry. 

Signals/messages are repeated to protect against loss, but increasing the risk of network overload 
conditions. A node also retransmits on message transfer errors and on message collision. A 
babbling node, which could potentially flood the CAN network with messages, is cut-off within 
65 msec at the transmitter side through a power cycle. 

Occurrences of CAN data loss are recorded in SRAM, and remain available until the battery is 
disconnected. According to the Toyota Motor Corporation (TMC), 292 instances were reported 
of CAN data loss by dealers for cars brought in for any problem.     

        

Signals to the vehicle stability control (VSC) computer, an option on the 2005 Camry, travel 
over the CAN network – including on/off commands.  

A.6.2  Reboot/Reset Scenarios 
A watchdog control (WDC) subsystem, with separate CPU monitors the main engine control unit 
computer, and all the signals and events it is meant to respond to. Either the Main CPU will reset 
itself or the WDC subsystem will reset the ECM when abnormal conditions are detected. Some 
of those conditions are: 

• The CPU load is too high (the idle margin time is exceeded). 

• An illegal instruction is executed. 

• An undefined interrupt is generated. 

• An abnormal return value from a system call is detected. 
                                                 
 
9 http://en.wikipedia.org/wiki/Controller area network  
10 http://www.can-cia.de/index.php?id=161  

http://en.wikipedia.org/wiki/Controller_area_network�
http://www.can-cia.de/index.php?id=161�
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A system reboot takes about 94 ms for the Main CPU in the ECM, and 134 ms for the Sub-CPU 
in the WDC. This reboot time includes 30 ms for clearing RAM memory. This reboot time is fast 
enough that its occurrence is not noticeable when the car is in operation. The Main CPU and the 
sub CPU may also reboot independently, depending on the error condition that is encountered. 
Both the Main and the Sub-CPU generate a watchdog pulse and monitor each other’s health. The 
occurrence of a CPU reboot is not recorded in the event-data recorders and therefore not 
discoverable afterwards. Independently, the power supply sub-system also monitors the WDC 
and can issue reset commands to both the Main CPU and the Sub-CPU in the WDC. 

A.7  Software Implementation Study 
The software development process followed by Denso is based on a five step process. 

• Specification 

• Design 

• Implementation 

• Unit test 

• Integration test 
Note that there is no intermediate phase reserved for sub-system testing, e.g., of the cruise 
control sub-system completes unit test, and moves on to integration test, without an intermediate 
sub-system test. 

The system design and software specification is performed by TMC engineers. The detailed 
software design, implementation, and unit-tests are done by DENSO engineers. After delivery of 
the code to TMC, acceptance tests (the integration test) are performed on a special high-fidelity 
hardware testbed called MITY. 

A strict convention is used for naming variables, tables, functions, and files. The suffix _l_ 
indentifies a logic component, _c_ identifies constant data (e.g., as recorded in tables), and _x_ 
execution. A filename prefix is used to identify e_ engine control, w_ diagnostic code, g_ 
application platform code, ge_ engine control unit layer code, and gc_ cpu layer code. 

Every variable name carries a 3-letter prefix that identifies its scope and type. For instance, the 
prefix s2t_ identifies a signed variable (s) of two-bytes (2) with local scope (t). Similarly u4g_ 
identified an unsigned variable of four-bytes with global scope, and s2s_ stands for a signed two-
byte variable that is declared file-local (static). Variables can also have suffixes such as _map or 
_tbl. 
In addition to the MITY testbed mentioned above, Toyota reported the use of a number of tools 
and checks to assess the quality of their software. 
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• QAC, a tool from the British company Programming Research11

• CAST is an in-house TMC tool to verify type conversions and potential cases of value 
overflow and some common cases of coding defects. The tool checks compliance with 25 
specific rules (e.g., possible incorrect use of precedence rules in expressions with binary 
shift operations, or the potential loss of precision in an expression with mixed variable 
types). 

, is the primary tool used 
to catch common coding defects and to verify compliance with some commonly used 
coding rules. 

• Careless, another in-house TMC tool for verifying different coding patterns and coding 
style, perhaps compliance with naming conventions (not much else is know about this 
tool and the team was not able to obtain a manual with more information). 

• A Mode Transition checker, to verify correct transitions between normal and failure 
modes. 

• A Stack overflow checker. The system stack is limited to just 4096 bytes, it is therefore 
important to secure that no execution can exceed the stack limit. This type of check is 
normally simple to perform in the absence of recursive procedures, which is standard in 
safety critical embedded software. 

 A Task interference check, which is a mostly manual check, assisted by a tool-generated 
list of cases to be inspected. This is covered in greater detail in the Section A.8.2 Access 
to Shared Global Variables.  

Some basic statics on the source code are summarized in Table A.7-1. 
 
SLOC – Source Lines of Code are compiled into executable code. 
NCSL – Non-Commented Source Lines have no additional explanatory text. 
Source File – Source code file complied into executable code. 
Header File – Source code file used to describe source code interfaces. 
Comments – Explanatory text in addition to SLOC. 

A comment ratio (Comments/NCSL) near or above 1 can indicate unusually densely commented 
code.  It should be noted, the source lines were readable as C, and the comments were in 
Japanese. 

 

 

                                                 
 
11 http://www.programmingresearch.com/qac main html  

http://www.programmingresearch.com/qac_main.html�
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Table A.7-1. Basic Code Size Metrics Camry05 Software 
C code #Files SLOC NCSL Comments NCSL/

File 
SLOC/
NCSL 

Comments/N
CSL 

sources 1,761 463,473 256,647 241,683 145.7 1.8 0.9 
headers 1,067 100,423 39,564 67,064 37.1 2.5 1.6 

 
As part of this study, the team also analyzed the structure and implementation of this software, 
using a range of different metrics. 

The Toyota code was developed and implemented using coding rules and standards matching the 
Toyota coding rules and standards.  

A.7.1 TMC Coding Rules 
A specific set of coding rules was defined for the TMC/Denso ECU software development. The 
rules are described in a document titled: Power train system electronic control unit control 
software for 32 bits -- Coding rule.12

The larger part of the document concerns naming conventions and coding style. Most relevant 
for this study were the specific coding rules. Many of the rules that are articulated in the 
document are occasionally violated in the code. Examples of rules that were generally complied 
with include: 

 The full document has 81 pages and has ten main sections, 
as shown in Table A.7-2.  

• Do not use tab characters, limit lines to 80 characters, and indent lines in 2-space 
increments. 

• Do not use octal numbers. 

• Do not use the multiplication, division, or modulo operator, instead use library functions 
which are coded in assembly language for speed. 

• Do not use function calls in if conditionals (to avoid possible side-effects). 

• Split compound expressions across lines. 

• Place the opening curly brace of a block on same line as an if, while, or for statement. 

• Check bounds with multiple if-statements in series not with if/then/else sequences. 

• Use only one return statement per function. 

                                                 
 
12 As translated from Japanese to English by the Atlas tool that Toyota provided to us; 
http://www.fujitsu.com/global/services/software/translation/atlas/  

http://www.fujitsu.com/global/services/software/translation/atlas/�
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Table A.7-2. Structure of TMC Coding Rules Document 
Section Title 

1 Document version history 

2 Table of contents 

3 Introduction 

4 Data types 

5 Functions 

6 Header files 

7 Include files 

8 Commenting conventions 

9 File structure 

10 Coding Rules (p.53-81) 

 
The following Toyota rules in the Toyota document are frequently violated in the ECM code. A 
violation of these rules does not automatically imply risk, but it can affect code clarity, 
consistency, and maintainability. 

1. Use parentheses in expressions for disambiguation. 

2. Consistently use symbolic names for variables and constants. 

3. Use the sizeof function instead of a constant. 

4. Use parentheses around the body of a macro definition. 

5. Terminate each switch case with a break statement. (Many violations were noted, 
without comments indicating that the fall-thru to the next case statement is intended) 

6. Do not use ternary operations (i.e., statements of the form x?y:z) in the etcs module. 
(count was 211 uses of ternary operations in the code, but only one appears in the etcs 
module.) 

7. Do not use pre- or post-increment or decrement operators in assignments (e.g., x= 
y++). (Counted 61 violations of this rule in the code.) 

8. Limit variable names to 31 characters. (Counted 58 violations in the code. The 
longest names have 36 characters, e.g.: u2s_vpdccstdrnlrn_gnslpavcstdrnl_tbl. 
Possibly, the u2s_ type prefix and the _tbl suffix were added late in development.) 



 

NASA Engineering and Safety Center 
Technical Assessment Report 

Version: 
1.0 

Title: 
National Highway Traffic Safety Administration 
Toyota Unintended Acceleration Investigation - 

Appendix A 

Page #: 
23 of 134 

 

NESC Assessment #: TI-10-00618   
 

9. Switch statements must include a default. (Counted 343 switch keywords in the code, 
and 238 uses of the default keyword, which means at least 105 violations of this rule.) 

10. Terminate comments on the same line where they are started. (Counted 206 violations 
in the code, including typos like /* ... /* in multi-line comments.) 

11. Include directive must specify pathnames for include files starting with one of only 
three allowed prefixes: “./”, “../”, or “<”. (Counted 37 violations of this rule, 15 of 
which appear in the file os/kernel.h which was likely excluded from the TMC coding 
rules.) 

The rule about references to include files (the last entry in the list) is of special interest because 
the use of relative pathnames introduces a risk of accidentally referring to an incorrect file when 
a source file is moved within the file system hierarchy during development. 

Not phrased as an explicit rule, but complied within the code, is the absence of dynamic memory 
allocation.  In the TMS software, all memory and all data objects are statically allocated at 
system boot time. This practice reduces issues with the allocation/deallocation of memory and 
references to dynamic memory during execution. 

A.7.2 NASA Mission and Safety Critical Software Coding Rules 
There are a number of rules that are commonly applied to NASA mission and safety critical 
software but were not required in the TMC coding rules. 
 

• Union data structures. The use of union data structures is generally prohibited in safety 
critical code (e.g., in the MISRA13

156 separate uses of union data structures were counted in the Camry05 code, 
compared with 229 uses of the, generally safer, struct declarations. 

 coding guidelines), but the TMC coding rules 
document explicitly allows its use. 

• Excessively long functions. A common practice is to allow no functions longer than 60-75 
lines to enhance manual code inspections. 

200 functions longer than 75 lines in the code were counted, with the longest 
functions spanning several hundreds of lines. 
 

• Use of the #undef compiler directive, to override earlier macro definitions.  This allows 
definition to change within the source code. 

 
                                                 
 
13 http://www.misra.org.uk/  

http://www.misra.org.uk/�
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2,659 uses of #undef in the Camry05 software were counted.  

• Compiler pragmas. A compiler pragma can be used to leverage a non-language standard 
feature supported by a specific compiler, and thereby makes the code implementation 
dependent (or more precisely: compiler dependent). Pragmas can introduce errors when a 
different complier is used to compile the source code. 

2,339 uses of pragmas in C source file and 472 uses in C header files were 
counted. These uses are of 14 different types and are mostly used to link data 
structure names to specific areas of DMA memory.  

• Guaranteed loop bounds. Another rule absent from the coding rules document but 
generally present in coding standards for safety critical software is a precaution against 
unbounded loops. 

The software team performed additional, more detailed analysis of the code with the help of a 
range of static source code analyzers, which is discussed in the next section. 

A.8 Static Analysis Results 
This section summarizes the results of a static analysis of the Camry05 code with the following 
tools. 

• The standard gcc14

• Coverity

 compiler version 4, both in basic mode and in strict language 
compliance mode with all warnings enabled. 

15

• Codesonar 

 version 4.2, with a range of additional Extend checkers to verify compliance 
with commonly used coding rules to reduce risk. 

16

• Uno

version 3.6p1, a version that includes support for JPL Coding Rules used for 
mission critical flight software development. 

17

  

 version 2.12, for additional checks. 

                                                 
 
14 http://gcc.gnu.org/  
15 http://www.coverity.com/  
16 http://www.grammatech.com/products/codesonar/overview.html  
17 http://spinroot.com/uno/  

http://gcc.gnu.org/�
http://www.coverity.com/�
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A method for identifying potential problems involves analyzing compiler warnings when run in 
either basic or pedantic mode. 

Compiler Analysis 
The metric used here is the number of warnings issued per one thousand lines of code, after 
stripping comments and blank lines from the code (abbreviated as KNCSL). The few warnings 
issued for the Camry05 code can be attributed to minor differences in the parsers of the different 
compilers used: some compilers can be less forgiving for small ambiguities in the language 
definition (e.g., the placement of braces or the separation of tokens). The 142 warnings issued by 
gcc in strict mode, by warning category, are summarized in Table A.8-1. 

 

Table A.8-1. Gcc-strict Warning Categories 
Number of warnings Category 

52 Unused variable 

33 Use of /* within a comment 

21 Declared static but never defined 

19 Defined but not used 

9 Value computed not used 

2 Missing braces around initialize 

2 Function pointer cast to object pointer-type 

1 May be used uninitialized 

1 Suggest parentheses around && within || 

1 Overflow in implicit constant conversion 

1 Static declaration follows non-static 

 
The warning overflow of implicit constant conversion was generated for the assignment of the 
hexadecimal value 0xff (255 in decimal) to a variable of type signed character, which has a value 
range 0..128 and -1..-127. The suggested use of parentheses in an expression containing both 
logical and (&&) and logical or (||) operators is for a preprocessor directive of the following type 
“ #if X && Y && Z || A” which indeed requires careful familiarity with the precedence rules 
used by the C preprocessor to determine if its intent matches the actual interpretation. 
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Very few compiler warnings were generated by the MY2005 Camry source code.  No issues 
leading to a UA in the TMC system were found when these compiler warnings were reviewed 
and inspected in the source code. 

Static Analysis 
The next series of measurements was done with two state-of-the-art static source code analyzers. 
Consistent with the team’s experience, there is no significant overlap between the warnings 
issued by the two tools, which is a strong motivation for the use of more than one strong static 
source code analysis tool in software development. At the current state-of-the-art, the leading 
tools all have different strengths and should be combined for a thorough analysis. The software 
team intentionally applied analysis tools not used earlier on this code. (Internally TMC relies on 
the use of the QAC 18 tool, and the firm Exponent hired by TMC to perform additional analyses 
used the tool Polyspace,19

The company Coverity regularly performs a scan of public-domain software and makes the 
resulting metrics available to developers. For the gcc compiler (with 851,149 lines of code), the 
published metric is currently 0.219 Coverity warning per KLOC

 two other leading tools in this domain.) As can be seen in the reports, 
the Coverity tool tends to be more conservative in the generation of reports, while the Codesonar 
tool does a deeper (and generally slower) analysis, and generates more reports.  

20

The MY2005 Camry Coverity analysis indicated 1.41 warnings per thousand lines of code.  If 
measured per raw lines of code, the count for MY2005 Camry would become 0.74. Any count 
near or below one warning per one thousand lines of code generally indicates a well-managed 
software development process. 

. The measure KLOC –short 
for one thousand lines of code – may differ from the team’s metric KNCLS in that it is likely to 
be a raw line-count that includes comments and blank lines.  

The 418 warnings issued by Coverity, grouped by warning category, are summarized in Table 
A.8-2. A similar listing for the 2272 warnings issued by the Codesonar tool is summarized in 
Table A.8-3. 

 

 

 

                                                 
 
18 http://www.programmingresearch.com/qac main html  
19 http://www.mathworks.com/products/polyspace/  
20 http://scan.coverity.com/rungAll.html  
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Table A.8-2. Coverity Warning Categories 
Number of warnings Category 

209 checked return 

97 declared but not referenced 

39 Overrun static 

19 Integer overflow 

17 Potentially unbounded loop 

13 Uninitialized variable 

8 Dead code 

6 No effect 

5 Missing break statement 

5 include recursion 
 

Table A.8-3.Codesonar Warning Categories 
Number of 
warnings 

Category 

2272 Global variable declared with different types 

962 Buffer overrun 

333 Cast alters value 

142 Redundant condition 

99 Condition contains side-effect 

92 Code before #include 

64 Multiple declaration of a global 

63 Unreachable computation 

63 Useless assignment 

22 Uninitialized variable 

21 Unreachable call 



 

NASA Engineering and Safety Center 
Technical Assessment Report 

Version: 
1.0 

Title: 
National Highway Traffic Safety Administration 
Toyota Unintended Acceleration Investigation - 

Appendix A 

Page #: 
28 of 134 

 

NESC Assessment #: TI-10-00618   
 

Number of 
warnings 

Category 

16 Unused value 

14 Buffer underrun 

14 Empty if-statement 

12 Multiple statements on one line 

12 Unreachable data flow 

11 Type underrun 

6 Unreachable control flow 

2 Macro defined/undefined in function body 

 

No issues leading to a UA in the TMC system were found when these static code analysis 
warnings were reviewed and inspected in the source code. 

A.8.1 Additional NASA/JPL and MISRA Coding Rules 
The next metric the software team collected is related to a series of coding rules developed and 
used at NASA/JPL for flight software. These rules are inspired by in-flight anomalies and risk-
related defects in code. In this context the software team also looked at the compliance with a 
selection of the MISRA coding guidelines, which are recommended for use in automotive 
software. In discussions with TMC the software team learned that the MY2005 Camry coding 
rules used by Toyota predate the MISRA guidelines (the original MISRA coding guidelines date 
from 1998), but that an estimated 50% of the MISRA rules were being followed. 

The coding rules used by TMC and DENSO are described in more detail in the following section 
of this report. For the next measurements the software team looked at a subset of the rules that 
could be verified with an extended version of a preprocessing tool developed at NASA/JPL for 
this purpose. (This means that most of the rules checked with this tool are related to the 
conforming use of preprocessing directives and macro definitions.) 

The Toyota code was developed and implemented using coding rules and standards matching the 
Toyota coding rules and standards. As a result, the static analysis tools used in this study, 
configured for NASA/JPL use, produced more warning reports when used on the Toyota system. 
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The deviations reported in the MISRA rule check are categorized as follows. For each case, the 
software team provide the number of reports issued in the first column, followed by the MISRA 
rule number and a brief description of the rule itself. A total of 14 of the 35 rules the software 
team checked had reported deviations in the Camry05 code. 

Table A.8-4. Deviations from 35 MISRA coding rules 
Number of 
warnings 

Rule number Description 

2763 19.7 Use of a function-like macro instead of a C function 

2659 19.6 Use of the directive #undef 

1615 19.4 Possibly non-compliant macro format 

29 19.11 Evaluation of an undefined macro name 

19 2.3 Nested /* comment 

14 19.12 Use of more than one token-pasting operation (##) in a macro 

13 19.16 Use of a macro call with insufficient parameters 

7 18.4 Use of a union data structure 

4 14.5 Use of the keyword continue 

4 19.5 Use of a macro definition within block scope 

3 19.10 Formal macro parameter not enclosed in round braces 

2 19.4 Use of a semi-colon at the end of a macro body 

1 19.13 Use of token pasting operations (##) in a macro definition 

1 19.1 Include directive (#include) is preceded by code 

 
The software team also checked compliance with a small set of coding rules that was identified 
in NASA/JPL flight software development as strongly related to code safety. The warnings 
issued for compliance with these so-called “Power of 10” Rules21

                                                 
 
21 ''The Power of Ten -- Rules for Developing Safety Critical Code,'' IEEE Computer, June 2006, pp. 93-95. 

 can be grouped into the 
categories summarized in Table A.8-5. 

http://spinroot.com/p10/  

http://spinroot.com/p10/�
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Table A.8-5. Deviations from Power of 10 Rules 
Number of warnings Description 

6,971 Scope could be local static 

1,086 Scope could be file static 

502 Unchecked parameter dereference 

425 Parameter not checked before use as an index 

326 Parameter not checked before dereferencing 

200 Functions longer than 75 lines NCSL 

59 Potentially unbounded loop 

18 Pointer type inside typedef 

16 Potentially recursive macro 

 

The first two entries, with the largest number of reports, correspond to variable declarations that 
have larger scope than is necessary.  

The length of a function is generally limited to 60-75 lines of code, after stripping blank lines 
and comments. There are 200 functions in the Camry05 code that exceed this length. The longest 
function far exceeds this limit, at 740 lines NCSL.  

 
The reports for 16 potentially recursive macros flags the following type of macro use in the code. 

#define x(y) x[y] 
#define x(y) x_tmp(y) 
 #define x_tmp(y)  x##y() 

 
In the first example, a macro is used to provide an alternative syntax for an array index; allowing 
the programmer to write x(y) instead of x[y]. The use is less than optimal since it makes the code 
look as if a function call, or equivalent, is used, where in fact an array index operation is 
performed. 

In the second example a temporary macro name is used to provide a token-pasting operation that 
allows the programmer to write x(y) when in fact the code will execute xy().  The use of these 
patterns affect code clarity and readability. 
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Potentially unbounded loops are loops that have no maximum loop count or limit that guaranties 
the loop terminates. 

The warnings issued by the Uno tool are categorized in Table A.8-6. 

Table A.8-6. Uno Warning Categories 
Number of warnings Description 

453 Missing else 

89 Possibly uninitialized variable 

7 Array indexing error (in unexecutable part of conditional expressions) 

2 Array of 16 bytes initialized with 17 bytes 

 
The majority of the deviations detected by Uno (453 out of 551 reports) are cases where if-then-
else-if series of statements are not terminated by a final else clause. This rule is similar to the 
common coding rule (also included in the MISRA guidelines and in the TMC coding rules) that 
every switch statement must contain a default clause. Another Uno report flagged the 
initialization of an array of 16 bytes with 17 bytes of data, causing a one-byte overflow. The 
software team confirmed in the code the overshoot had no harmful effects on execution. For the 
risk-related rule set, low numbers are understandably preferred.  
 
In summation, the Toyota software development process uses an internal coding standard 
that does not contain all the comparable rules and guidelines contained in NASA/JPL and  
MISRA coding guidelines. 

A.8.2 Access to Shared Global Variables 
The Camry05 software code structure relies on the use of a single large memory space that is 
shared among all tasks, with unrestricted access. This is in contrast to system designs where each 
task is given strictly private memory that is not accessible to other tasks, and very limited 
amounts of memory are used for shared data22

 

. Strict access patterns (e.g., using interrupt masks, 
semaphores, or locks) are then used to secure the safety of access to shared data. In this code 
structure, the scope of all data object (the part of the code where the object is visible and 
accessible) is normally restricted to a minimum. The underlying principles used in such systems 
are based on firewalls and containment, limiting cross-coupling and inter-task dependencies to a  

                                                 
 
22 Following, for instance, the ARINC 653 standard http://en.wikipedia.org/wiki/ARINC 653 used in the airline 
industry. 

http://en.wikipedia.org/wiki/ARINC_653�
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minimum.  Reduction in variable scope allows implementation errors to be detected when the 
code is compiled, and when the code executes. 

In the Camry05 software these principles are not used, which requires more manual inspection 
and allows for less automated analysis of the correct protection and access to these variables 
during development. To get an impression of the scope of the task, the software team counted the 
number of externally visible global variables, as reported by the standard Unix tool nm, which 
examines the executable image of code. The nm tool reports the names of objects in eight 
different categories, e.g., depending on whether an object is initialized or uninitialized, is 
externally visible or file-local, was declared constant, or defines text.  From its output it can also 
be determined how many names for different objects (i.e., located at distinct addresses in 
memory) carry identical names (i.e., the use of name overloading for distinct objects declared in 
different scopes). The results of this analysis can be summarized as follows. 

31 names are defined multiple times in different scopes. The most frequently reused name is 
sts_flags1, which appears in 57 different scopes in uninitialized static (i.e., file-local) 
declarations.  The majority of names is declared in just a single scope, as summarized in Table 
A.8-7. 

Name aliasing is discussed in more detail below. 

The data objects can be grouped into standard categories, as shown in Table A.8-8.   

Table A.8-7. Variable Name Reuse 
Camry05 Flight Software 

Reference 
Description 

31 55 variable names defined multiple times in different 
scopes 

57 8 largest number of uses of a single variable name  

16,354 56,482 variable names declared in just one single scope and 
not reused 
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Table A.8-8. Variable Scope 
Camry05 Type Description 

1,872 b Uninitialized static (file-local) 

2,800 C Uninitialized common (extern) 

108 d Initialized static (file-local) 

6,473 D Initialized common (extern) 

5 r Read-only static (file-local) 

91 R Read-only common (extern) 

914 t Text, static (file-local) 

3,710 T Text, common (extern) 

 

In the Camry05 software a majority of all data objects (82%) is declared with unlimited scope, 
and accessible to all executing tasks. The relevant usage is illustrated in Table A.8-9. 

To determine the correct access to each of the shared data objects in the Camry05 code, the 
complete system of all tasks would need to be inspected. 

Table A.8-9. Use of Global Scope 
Camry05 Type Description 

9,273 C+D Externally visible variables 

1,980 b+d File-local variables 

 

The coding pattern recommended in the coding rules document is to store the value of a shared 
global variable into a (non-shared) local variable before using it in computations, and writing a 
new value back to its shared location just once, at the end of the computation. This rule is to be 
followed unless the global variable is accessed just once in the computation. 

Coding rule 651 of the TMC document describes in more detail what the recommended use of 
interrupt masks is. The rule states that interrupt masking should not be used when two tasks run 
at the same priority level, only to protect a lower priority task from interference by higher 
priority tasks. 

This rule is based on the fact that equal priority tasks cannot interrupt each other. Both can still 
be interrupted by a higher priority task. If because of this interruption the second task does not 
complete, and the first task restarts in the next time interval, it could still overwrite the result of 
the interrupted second task. 
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If two tasks running at different priority levels access the same data, then the lower priority task 
must use interrupt masking to protect against interference from the higher-priority task. 

This rule is not always followed in the code. In a few cases, the lower priority task merely sets a 
flag before entering its critical section and the higher priority task checks this flag before 
accessing the same data. 

There are cases in the code where tasks of different priority levels (e.g., levels 14, 12, and 4) 
access the same global variables without using interrupt masks (pattern: read, store local copy, 
update, write new value).  An example is the use of variable s2s_eafsfb_gaind, which is declared 
as a non-volatile static variable. This use would appear to be in violation of coding rule 651. 
All constant global variables though are consistently declared volatile, in compliance with the 
coding standard. Although a specific reason for the use of volatile for constant data is not given, 
it could be that the use of the volatile qualifier makes it possible to patch values in a running 
system (because the compiler can then not optimize away the variable references and inline the 
constant values). 

Despite the rigor in the use of the volatile qualifier on constant data, other shared global 
variables are not always declared volatile. The team counted 11,528 non-constant, shared global 
variables in the code. 

There are only 865 uses of interrupt masking in the code, in 194 different source files. This 
indicates that access to global variables is not always done under protection of interrupt masks. 

There are many cases of nested interrupt masking.  For example, gadsl_out() masks interrupts 
and calls gedsl_drive() which also masks and then re-enables interrupts. The team modeled the 
specific method for interrupt masking method that is used in a Spin model (di.pml), and verified 
that the protection with nested calls is correct. 
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Table A.8-12. Shared Global Data 
Number of shared 
variables 

Number of different Tasks 
accessing each variable 

909 2 

365 3 

104 4 

67 5 

3 6 

6 7 

1 8 

5 9 

2 10 

4 12 

7 13 

6 14 

 

The largest number of tasks accessing the same shared global variables consists of 14 tasks. The 
task T6, which executes at a relatively high priority level of 16, accesses a large number of 
global variables, and appears in 8 of the 12 groups of tasks in Table A.8-12. 
 
The six variables accessed by the largest number of tasks are: 
 

Access Variable Name 

W  u2g_gasram_read_u2 u1s_gasram_mirror 

R  u2g_gasram_read_u2 u1s_gasram_mirror 

R  u2g_gasram_read_u2 ptg_gasram_u2db_tbl 

R  u2g_gasram_read_u2 ptg_gasram_u2init_tbl 

R  u2g_gasram_read_u2 u2g_gasram_u2dbmax_tbl 

R  u2g_gasram_read_u2 u2s_gasram_keyword 
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The variable u2g_gasram_read_u2 u1s_gasram_mirror is the only variable in this group to 
appear both in update and in read access scenarios (by all 14 tasks). All other variables are read, 
but not updated, by these tasks. The group of tasks that share access to these six variables, and 
the priority levels at which they execute are: 

Task Priority 

T1_1msec 20 

T5 18 

T6 16 

T7 16 

T9 16 

T11 16 

T13 16 

T15 14 

T17 12 

T19_4msec 10 

T20  7 

T23   4 

T22_8msec   4 

T24_idle   1 

 
In a full analysis each variable access must be inspected and verified to be safe, taking into 
account possible use of interrupt masking, and a comparison against the rules stated in the coding 
standard document. Toyota confirmed to the team that this was done for the Camry05 code with 
a manual inspection process, with the results documented in an annotated list of verified access 
patterns. By the team’s estimate a thorough manual verification process could consume up to 17-
34 weeks (5-10 minutes per variable, with 9,273 shared global variables to consider). A 
significant manual inspection effort would be required to assure correct access to these shared 
global variables. 
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In this study, inspections were performed on a small number of randomly selected tests and 
found no discrepancies. There are several remedies that would be available to reduce the effort 
on verification of global variable access: 

• Reducing the amount of global data (the preferred method and consistent with improved 
code structure). 

• The development of a specialized tool that can reliably mechanize the analysis. 
There are many cases in the code of near duplicate copies of functions or parts of functions.  The 
software team also noted significant inconsistency in how, what are essentially the same, 
functions are coded in different parts of the code. In some cases entire files are near copies of 
each other (for instance the files gapa1gx_mat.c and gapa2gx_mat.c). Code duplication is a 
maintenance problem when changes must be applied and tracked across multiple copies of code. 
 
Small deviations were also noted in near-duplicate files. (For instance, as a single difference 
other than a replacement of all 1-suffixes with 2 suffixes, one file differs from its near-duplicate 
only in the use of variable name s4t_gavpaad instead of s4t_gapa2trn). The near-duplicate files 
are best generated from a single source, or the code could be merged and generalized. 

Ubiquitous use of global variables gives significant problems in limiting scope and performing 
analysis of sub-systems. In the pedal learning subsystem for instance (which consists of nine C 
source files) no less than 1,255 external global variables are referenced, including 130 tables of 
pointers to various types of global data. The unit-test for the main file has 35 arrays with 
sequencing data (indicating many potential dependencies with other parts of the code). 

A.8.4 Name overloading/aliasing 
The TMC coding standard defines a specific naming convention for variables.  However, many 
variables are renamed and referenced by a different name (aliasing) throughout the code.  Some 
macro names are defined in multiple (and different) ways in different source files (e.g., the name 
NOT_EXIST is sometimes defined to be 0 and sometimes 0xff). A reference to a single global 
variable can appear under many different names – sometimes a name is redefined via macros, 
sometimes it is redefined via several layers of indirection through pointers in tables. 

The frequent overloading and redefinition can make it difficult to trace which data object is 
being accessed. Example: 

 
The file src/pf/ecu/gesgm2drv_mng_mat.c contains calls to macros named 
enter_xxx_task(ON) and enter_xxx_task(OFF) with xxx equal to rcva, rcvb, com, dma-int, 
and 4msm. The macros are used to set and clear five different bit-fields, named 
sts_flags.b0 through sts_flags.b4. The same fields are also accessed under different  
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names via macro definitions in four different files that introduce the following name 
mappings (suggesting that different objects are accessed, but in fact all accessing the 
same shared object): 

enter_4msm  ::  bis_4msm 
 bis_4msm ::  (sts_flags.b0) 

sts_flags.b0 ::  bis_af_xinka 

sts_flags.b0 ::   bis_explsout_rev 

The last two names are also used independently of the enter_xxx_ macro to set or clear 
the bit-fields, making it extra difficult to track the access patterns. 

As a final check, the code defines four different copies of a data object named sts_flags 
(in files gedsl_mat.c and in gedclx_mat.c ). This means that the single name sts_flags, 
which can be accessed under several different aliases, does not always refer to the same 
object. 

The software team considered the potential for name confusion that can be caused by 
macro redefinition of the same name. In this evaluation 2,352 cases were counted where 
the right-hand side of a macro occurs in at least one other macro definition unchanged. 
Specifically, there are: 

659 cases where there are at least 4 different redefinitions of the same macro 

300 cases in these 659 cases which are non-trivial, (i.e., non constants) 

Among the last 300 cases the following examples are highlighted. 

1,002  uses of the name u2s_WMEMCNT_NO_EEPROM in different macro 
definitions as the (complete) right-hand side. This means that this one object or 
quantity is known under 1,002 different aliases. 

148  uses of the name u1g_vlsb_1degc_p(y) appears in different macro 
definitions as the right-hand side. 

101  uses of the name GCMAP_NONE appears in different macro definitions as 
the right-hand side. 

A frequently used name is also the structure name sts_flags1. Different fields in this 
structure make many distinct appearances as the right-hand side (the defining body) of 
macros: 

46 definitions of sts_flags1.b0. 

36 definitions of sts_flags1.b1. 
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32 definitions of sts_flags1.b2. 

25 definitions of sts_flags1.b3. 

13 definitions of sts_flags1.b4. 

10 definitions of sts_flags1.b5. 
6 definitions of sts_flags1.b6. 

3 definitions of sts_flags1.b7. 

The software team noted earlier that the name sts_flags1 itself also appears at 57 distinct 
addresses in the symbol table, referring to equally many distinct data objects. 

The frequent use of code duplication, name overloading, name aliasing, and redefinition can 
impact code clarity, maintenance, and analysis. 

The Toyota software makes extensive use of name overloading, indirection, and code 
duplication.  This affects code structure and code clarity, and can make problems hard to 
diagnose and fix. It can also hamper software analyses. 

A.8.5 Dead Code 
Dead code, i.e., code that is unexecutable in a particular version of the code (e.g., model year 
2005) can also make code maintenance and analysis more difficult than necessary. 
 
An example is the following fragment of code. 

File wmemcnt_mat.c:1009: 
s4t_rslt = (s4) ERROR;  # ERROR == -1 

if (s4t_rslt == (s4) OK) # OK == 0 

{       if (u1t_result == ...) 

In this fragment the value of a signed four-byte variable is first set to negative one. In the 
immediately following line the same variable is tested for equality to zero. Because the value 
cannot be zero at this point, the subsequence part of the code becomes unexecutable (dead code). 
The fragment of code contains a reference to a variable that in this version of the code remains 
uninitialized at this point, which triggers two separate static analyzer warnings: one for the 
inclusion of dead code and the second for the potential use of an uninitialized variable. Dead 
code is normally not allowed in the MISRA guidelines. 

Note, the unused code is compiled and exists in memory at execution.  The signed four-byte 
variable also exists in memory and could be altered during execution, in essence, enabling the 
code to execute. 
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A.8.6 Data Mirroring of Persistent Parameters 
A small set of critical parameters is saved in two separate places in SRAM storage, though 
possibly contiguously in the same memory bank or page. The two copies are mirrored to increase 
the level of protection that is obtained in this way. This means that all the bits in one of the two 
copies stored are inverted from the other copy.          
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A.9 Software Logic Model Checking  
Logic model checkers use efficient algorithms to explore all possible executions of a system in 
an attempt to locate those executions that violate user-defined logic properties.  The exploration 
is in principle exhaustive and thus if it completes without finding incorrect behavior then the 
system is proven correct.  Because the exploration is exhaustive, model checkers can excel in 
finding incorrect behavior in ‘corner cases’ which are exactly the types of errors that tend to 
occur infrequently and be overlooked in even rigorous standard software testing.  Key to a logic 
model is the formulation of the model’s behavior and its correctness. 

The ideal logic model for UA would be a model of the complete throttle control system.  Such a 
model would have ‘throttle plate angle’ as a single output, a variety of sensors values as input, 
and a core correctness claim relating the throttle plate output to the sensor inputs.  Notable inputs 
would be the sensed accelerator pedal position and the sensed throttle plate angle.  A specific 
correctness claim would be a kin to ‘the throttle angle should never be wide open unless the 
accelerator pedal is fully depressed.’  A violation of such a claim would be a strong candidate for 
UA. 

To construct a comprehensive model requires a faithful representation of an environment model 
that can capture and reproduce all relevant inputs to the software being analyzed. For a modern 
car, this can include a large array of input variables that can all influence the behavior of the 
vehicle, beyond the obviously relevant inputs of the accelerator and brake pedal positions. 
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Often this type of environment model is available from existing simulation tools that 
manufacturers of embedded systems commonly use to analyze complex software systems before 
deployment. No such simulation environment, though, was available for this study. Toyota 
colleagues stated that no simulation tests of this type were performed in the development and 
testing of the Camry05 software. The scope, size and complexity of the Toyota throttle control 
software and the limited duration of the study prevented the team from attempting to create a 
faithful environment model (such an effort can take a significant amount of time, if the 
information has to be constructed from scratch).   

The logic models developed focused on those modules within the Toyota throttle control 
software that were deemed, based on the team’s study, most likely to contribute to UA.  The 
modules selected are related to: 

• the conversion of the desired throttle position into a pulse width modulated set of H-
Bridge transistors signals; 

• the generic processing of the sensors inputs of any type; and 

• the specific processing of the accelerator pedal position sensor input. 
This set of logic models are involved with the input/output of the throttle control software.  
Possible errors in modules related to the output of the throttle plate angle are clearly suspects in 
UA.  Such errors may be largely undetected in monitoring software given how late in the 
computation they occur.  Additionally, an error in the input, particularly the accelerator pedal 
sensor or throttle angle sensor inputs, could masquerade as a valid sensor input and confuse the 
throttle controller into UA. 

In what follows, each of the logic models is described.  The description includes the purpose of 
the logic models, the correctness claims applicable to the model, the result of the model 
verification and the conclusions drawn from the model and its verification. 

Logic model checking follows the following steps.  A model of the software system, possibly 
including the actual source code of the system, is developed for model checking.  Specific claims 
are developed concerning the property or attribute to be checked.  The model and claim are input 
to the model checker.  The model checker determines every path through the software system, 
and checks the claim on every path.  The model checker reports the paths that exist where the 
claim is not met. 

The unique aspect of this form of model checking is the automated check of every path through 
the software system.  This form of analysis requires processing speed and increased memory 
space to perform the check on every path through the model of the software. 

The outcome for each model checking run can be: 
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Verified: The claim made upon the model being checked is not violated on any path 
checked in the model. 

Not verified: The claim made upon the model being checked is violated on at least one 
path checked in the model. 
Inconclusive: The model and claim could not be completely analyzed.   

Note that any model checking claims that indicated a possible influence upon a UA influenced 
the design of the tests performed on vehicle hardware. Table A.9-1 gives a summary of the logic 
models developed. 

Table A.9-1. Summary of logic models 
Model Type Conclusion 

Interrupt Enable/Disable Pairing Computation Verified 
Accelerator Pedal Learning Computation Inconclusive 
Sensor Input I/O Potential Issue 
Motor Drive IC Computation Verified 
Port Register Input I/O Verified 
PWM Functionality Computation Potential Issue 

A.9.1 Interrupt Masking Method 
Purpose: Verify that CPU interrupt enabling and disabling method used in the Camry05 code 
correctly protects access to shared global data, also when interrupt masking is used recursively. 

System: A region of software code that must execute atomically is known as a critical region or 
section.  Mechanisms to protect different tasks from interfering with each other’s computations, 
and possibly corrupting data, conventionally include the use of semaphores and mutual exclusion 
locks.  On a single processor CPU, a mutual exclusion lock can also be achieved by temporarily 
masking the interrupts.  By masking a clock interrupt, it can be assured that the currently 
executing task cannot be preempted by higher priority tasks. Clearly, these interrupt masking 
intervals should be as short as possible, to avoid jeopardizing real-time performance and 
responsiveness to external events. The method can carry low overhead and is therefore 
sometimes preferred in embedded systems code, but it carries a risk that the protection does not 
span sufficiently many operations. 

In the Toyota code it was noticed the use of recursively nested interrupt masking, which places 
additional requirements on its Implementation. It should, for instance, be impossible for a nested 
interrupt masking region to re-enable interrupts that the higher-level task, upon return from the 
nested call, assumes still to be in effect. Not all implementations provide guarantees for nested 
operation of interrupt masks. 
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Model Description: The software team developed logic model based on the implementation of 
the glint_ei() and glint_di() operations that are used in the Camry05 code for interrupt masking, 
shown in Figure A.9-1. 

The model contains seven macro definitions to capture the relevant part of the interrupt masking 
functionality used. The key operations are DI() (Disable Interrupts) and EI() (Enable Interrupts), 
which are invoked by the functions glint_di() and glint_ei(). The current state of the processor 
status word (PSW) is stored in a local variable, which is modeled here with the help of a macro 
token-pasting operation. 

The execution of two tasks of arbitrary priority levels is modeled with the help of a proctype 
specification task, instantiated twice with the help of the active prefix. Any other number than 
two can also be used, without a change in the outcome of this verification. The tasks are 
designed to recursively invoke the interrupt masking routine and count how many executing 
processes can simultaneously reach the inner-most point critical region in the code. A logical 
assertion then verifies that this number can never be greater than or smaller than one. At the end 
of the execution, when the interrupt mask is removed by both processes in both nested regions, a 
second assertion verifies that the count is zero and interrupts are correctly re-enabled.  

Claims w/ Results: The model checker verifies the correctness of this model in a fraction of a 
second, conclusively proving that the implementation is correct under all possible behaviors of 
the scheduler, and independent of task priorities. 

Result: Verified. The claim made upon the model being checked is not violated on any path 
checked in the model. 

The Toyota use of glint_ei() and glint_di() is sound for use in protecting critical regions, 
including the use in nested interrupt masking regions. This model rules out critical region race 
conditions as a possible source leading to UA, but only for those instances where interrupt 
masking is used. 

Result: The method used for masking of recursively enabled and disabled interrupts cannot lead 
to race conditions in critical sections. 
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Figure A.9-1. Spin Model of Recursive Interrupt Maski 
 
 
 

#define u4      int 

#define u4_V850_PSW_ID  32      /* PSW */ 

#define u4g_gcgetv850psw()      PSW 

#define DI()    atomic { PSW = PSW |  u4_V850_PSW_ID; INT = _pid } 

#define EI()    atomic { PSW = PSW & ~u4_V850_PSW_ID; INT = -1 } 

#define glint_di(scope)  {  u4 u4t_psw##scope;   \ 

                u4t_psw##scope = u4g_gcgetv850psw();   \ 

                DI() 

#define glint_ei(scope)  \ 

                if   \ 

                :: (u4t_psw##scope & u4_V850_PSW_ID) == 0 -> EI()  \ 

                :: else   \ 

                fi  } 

int PSW = 0, INT = -1,  cnt = 0; 

active [2] proctype task() provided (INT == -1 || INT == _pid) 

{        glint_di(1); 

                glint_di(2); 

                        cnt++; 

                        assert(cnt == 1); 

                        cnt--; 

                glint_ei(2); 

                assert(INT != -1); 

        glint_ei(1); 

        timeout -> 

        assert(cnt == 0 && INT == -1) 

} 
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A.9.2   Accelerator Pedal Position Learning 
Purpose: Verify correctness of the released accelerator pedal position learning algorithm and the 
computed pedal position offset. 

System: The pedal position module uses two sensors to compute a learned value for the released 
pedal position (i.e., with no pressure placed on the accelerator pedal).  The learned zero position 
is used to determine the offset for the pedal position when the accelerator pedal is pressed. This 
offset is one of the key inputs to the throttle control algorithm. 

 
Figure A.9-2. Pedal Position System Context 

 
Inputs: The primary inputs to the pedal position logic model are: 

1. The two sensor values for pedal position (VPA and VPA1). 

2. The vehicle speed (SPD). 

3. The state of the brake-light, indirectly indicating the depression of the brake pedal (ST1, 
STP). 

Outputs: The output of the pedal position logic model is the offset of the current accelerator 
pedal position from the learned value. 

Model Description: The key features modeled and verified are based on a description of the 
intended working of the pedal position learning algorithm provided by Toyota engineers, and 
tracked in the code.  
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The accelerator pedal position is tracked as a voltage that can range from approximately 0.8 
Volts (corresponding to an angle of 20 degrees) to 3.12 Volts (58 degrees). Three different 
ranges of pedal position changes are relevant to the learning algorithm. 

• A change in value of less than 0.0388 Volt (small). 

• A change in value between 0.0388 and 0.2 V (medium). 

• A change in value larger than 0.2 V (large). 

Similarly, three ranges of vehicle speed can influence the computation: 

• A vehicle speed greater than 15 km/h (fast). 

• A vehicle speed less than 3km/h (slow). 

• Stopped. 

The use of the brake pedal is modeled as the state of a Boolean variable, taking the value true or 
false. 

Separately, the software determines based on the duration of input signal variations, whether or 
not the current pedal position should be considered released (closed). 

The value of the released accelerator pedal position should change rarely, and only relatively 
small variations are anticipated. Causes for variation can be minor deformation of the pedal 
itself, the physical replacement of one pedal assembly for another by a mechanic, small 
variations in voltage output from sensors, etc. The most recently learned released accelerator 
pedal position is stored in SRAM. 

There are various constraints imposed on updates of the learned value of the released accelerator 
position. 

a. The learned value is updated only if the vehicle speed has been 15 km/h or more and the 
pedal sensor has reached 0.4 Volts or more, and the current vehicle speed is 3 km/h or 
less, the pedal sensor value is 0.2V or less, the brake switch light is on, and the pedal 
sensor reading has been stable for two seconds or more. 

b. If (under these circumstances) the pedal closed position change in value is less than 
0.0388 Volt (small), the learned value is updated, but each single update is restricted to a 
maximum of 0.01952 Volt (corresponding to a difference of 0.488 degrees). 
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c. If the change in value is larger than 0.0388 Volt, but less than 0.2 Volt (medium) then the 
learned value is not updated, and learning is suspended until the vehicle comes to a stop. 

d. If the change in value exceeds 0.2 Volt (which Toyota said should physically be 
impossible) then learning is suspended for the remainder of the trip (i.e., until the ignition 
is turned off). 

e. Variations of the value stored in SRAM are limited to a change of maximally 0.04 Volt 
per trip. 

When the constraints c or d take effect, no record of this limit is recorded in the event data 
recorder, so it is not discoverable afterwards, nor is it know how frequently these events may 
occur. 

One way in which the accelerator pedal released position could suddenly change is when a 
sensor spring that is used in the accelerator pedal assembly breaks. Toyota states that the 
maximum change in measured pedal position in this case will be less than 0.152 Volt (i.e., below 
the 0.2 Volt limit from constraint d above). 

One scenario of interest in the consideration of the accelerator pedal learning algorithm is one in 
which the released accelerator pedal position decreases by a value that is larger than 0.0388 Volt, 
e.g. by 0.2 Volt. A value of 0.2 Volt would normally correspond to a 5 degree change in pedal 
position. In a scenario when learning is suspended (by constraints c and/or d) the new value 
would not be used, even if it were the correct new released pedal position. This would mean that 
even with the pedal in the released position the software would cause a pedal angle of 5 degrees 
to be used in the computation throttle angle module. With the pedal depressed, similarly values 5 
degrees higher than correct would continue to be used. 

If the full range of the accelerator pedal position is 38 degrees (ranging from a stated 
minimum of 20 degrees and a maximum of 58 degrees) then a 5 degree anomaly 
corresponds to 13% of that range, which would indeed be noticeable to the driver. 

The software team constructed various logic models of the pedal learning algorithm. 

1. A first model is a direct representation of the pedal learning algorithm as document, and 
recorded in a PowerPoint summary provided by Toyota. 

2. A second model is based on a Simulink/Stateflow model built by colleagues from the 
NASA Ames Research Center, part of the software study team. 

3. A third model included the source code of the actual pedal learning algorithm, using the 
Spin model checker as a driver to exercise the code through relevant scenarios. 
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The first two models are limited in their value by being based on an interpretation of the working 
of the accelerator pedal learning algorithm as it was explained to the team by Toyota engineers 
and as documented in the PowerPoint summary provided. The details of the algorithm are 
sufficiently subtle that limited reliance on this indirectly obtained evidence can be placed. 

The third model has the potential to be the most accurate, since it includes the actual source code 
with all its intricacies and details represented. Here, though, the problem encountered is limited 
ability to model the relevant portion of the vehicle environment in sufficient detail.  The software 
team derived as much information as possible from the infrastructure used in unit-test files used 
by Toyota in the development of the code. In the unit tests time series of larger number of 
parameters (approximately 35) are used, significantly exceeding the primary input signals that 
feature in the high-level descriptions of the algorithm (accelerator pedal sensor readings, brake 
light switch, vehicle speed, etc.).  The pedal learning algorithm is designed to function over 
longer periods of time (e.g., to evaluate the stability of the sensor readings). The abstract 
representation used for these external influences impacted the validity of the results. This 
example vividly illustrates the importance of an accurate environment model for the vehicle, as it 
is often used in a sub-system testing or system simulation for complex systems. No such model 
was available to the software team, and the construction of an accurate environment model could 
have meant months of detailed interaction with domain experts, which the team did not consider 
to be feasible within the constraints of the work. Therefore, this study is limited to an 
approximate model of the relevant input parameters. 

Claims w/ Results: The software model correctness claim verified for each model was that it is 
impossible for the computed pedal position to be non-zero when the accelerator pedal is in the 
released position. Given the nature of the constraints on the pedal position learning algorithm, 
this claim can be shown to be violated.  The pedal position can be shown to indicate non-zero 
even when the pedal is released.  Result: Inconclusive. The model and claim could not be 
completely analyzed.   

This pedal position learning issue influenced the development of testing done on vehicle 
hardware.  

A.9.3 Sensor Input ADC (GCCSI2) 
Purpose: Confirm that the processing of 10-bit and 12-bit analog-to-digital conversions is 
handled correctly in the multiprocessing environment.  Accelerator pedal and throttle angle are 
input via the 10- and 12-bit ADC interfaces.  Would corruption of these values, even if 
temporarily, impact the subsequently computed new demanded throttle angle? 

System: Analog sensor data is feed to the Sub-CPU, is sampled and serialized in the Sub-CPU, 
passes over to the Main CPU via the serial interface, and is then distributed within a couple of  
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tasks to a variety of modules.  Tasks are initiated by interrupts and explicit OS activation.  
Delays in completion may cause ADC operations to overlap in time. 

 
Figure A.9-3. Sensor Input ADC System Context with Software Collaborations 

Figure A.9-3 shows an abstraction of the software collaboration among the ADC tasks.  None of 
the error handling is shown and the order of the collaborations, denoted with the message 
numbering, is idealized.  The logic model is designed to explore the overlap of operations on the 
GCCSI2 Registers owing to multiprocessing timing variations. 

Inputs: The inputs for the sensor input ADC that are relevant to the throttle control are: 

• Throttle Position A/B - The throttle position is sensed from two sensors at both a 10 and 
12 bit value. 

• Pedal Position A/B - The pedal position is measured by two sensors as two 10 bit values. 

• Cruise Control Switch - The cruise control switch signal is sensed as a 10 bit value. 

Within the logic model these specific inputs are abstracted to 10 bit input and 12 bit input.  That 
is, the logic model is only designed to look for 10 bit and 12 bit issues in the GCCSI2 Register 
commanding - not issues in the specifics of throttle position A or B, for example. 
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Outputs: The outputs from the sensed input ADC is state date written in software memory.  The 
state data is then accessed by a variety of other software modules.  In the logic model this output 
data is not relevant. 

Model Description: The logic model for the sensor input ADC consists of six Promela 
proctypes. The GCCSI2 peripheral IC computation is captured with a single prototype. The other 
five Promela proctypes are coordinated using a priority scheme that is analogous to the ADC-
related OSEK tasks in the Toyota code. These five proctypes are further coordinated using the 
Promela 'tasking' library which ensures that the periodic timing of the OSEK tasks, typically 
keyed off of a 2ms task, is faithfully represented in the logic model. The GCCSI2 peripheral IC 
proctype is fully asynchronous relative to these five other proctypes.  

A significant compilation parameter in the logic model is whether or not the proctypes have 
sufficient margin to complete within each and every cycle. When margin does not exist, any 
proctype could be delayed beyond a cycle and thus overlap with other proctypes that have started 
on that next cycle.  

The logic model contains Promela for two safety properties. One check ensures that the 
enable/disable logic for the GCCSI2 peripheral IC occurs in pairs. The other check ensures that 
12-bit data is read when in 12 bit mode and similarly for 10 bit data. These two safety properties 
implement the correctness claims for this Sensor Input ADC model. 

Claims w/ Results:  The claims are designed to expose overlaps in the commanding of the 
GCCSI2 registers. 

1. Confusion between 10 and 12 bit reads - The GCCSI2 is never read for 12 bit data when 
10-bit data is being supplied and analogously for reading 10 bit data. 

Result: Verified when there is margin. Fails when there is no margin. 

2. Enable/Disable skew - The GCCSI2 is never disabled or enabled twice in a row -- the 
correct behavior to an alternating sequence for enable and disable. 

Result: Verified when there is margin. Fails when there is no margin. 

This software model shows that when margin exists the 10 and 12 bit reads cannot overlap. 
However, if there is no margin, then there is possible overlap. The 'no margin' case was 
discussed at length with Toyota engineers. Toyota stated that 1) an overlap between the 10 and 
12 bit reads will have no negative consequences and 2) the delays that are required to produce an 
overlap are unrealistically large. 
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A.9.4 Motor Drive IC 
Purpose: Confirm that the MotorDriveIC internal logic drives the throttle motor’s H-Bridge 
transistors correctly.  One cause of UA is that the MotorDriveIC opens the throttle plate when 
the inputs do not demand an open throttle plate.  This logic model is designed to find this UA 
condition.  This model also checks for H-Bridge transistor configurations that lead to an 
electrical short when, like UA, those configurations are not warranted by the inputs. 

 
Figure A.9-4. Motor Drive IC System Context 

 
System:  The MotorDriveIC system context is illustrated in Figure A.9-4.  The MotorDriveIC 
outputs a set of binary signals that open or close high power transistors in the throttle motor’s H-
Bridge.  Combinations of transistors drive the throttle plate either opened or closed; some 
combinations, if they occur, can produce an electrical short.  Note that driving the throttle closed 
is required because the throttle plate’s un-actuated position is determined by counter balancing 
springs.  The neutral spring position produces an angle that is larger than required to idle the 
engine. 

The MotorDriveIC internal logic is Toyota IP.  The functionality is non-trivial in that there are 
feedback loops, time delays and internal memory (latches).  A logic model of this functionality 
will ascertain if the desired functionality is achieved in all cases, for all possible inputs. 

Inputs: The Main CPU ASIC produces binary signals as inputs to the MotorDriveIC.  The inputs 
to the MotorDriveIC are: 

• HIC (boolean) - The input driving the HC H-Bridge transistor. 
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• HIO (boolean) - The input driving the HO H-Bridge transistor. 

• LIO (boolean) - The input driving the LOO H-Bridge transistor. 

• LIC (boolean) - The input driving the LOC H-Bridge transistor. 

• MO (boolean) - The input driving the MO H-Bridge transistor. 

The logic model independently randomizes each of these inputs thereby exploring the entire 
input space.  Clearly many combinations of these inputs may not be produced by the Main CPU 
software but these combinations are valid when exploring the MotorDriveIC correct behaviors. 

Outputs: The outputs from the MotorDriveIC are binary signals that drive five H-Bridge 
transistors.  These outputs are the H-Bridge transistors labeled HC, LOO, LOC, HO and MO in 
Figure A.9-4A.9-4.  There are a number of important combinations of these outputs (assuming 
MO is ‘closed’): 

• HC+LOC open the throttle plate. 

• HO+LOO close the throttle plate. 

• HC+LOO or HO+LOC create an electrical short. 

The logic model checks each of these constraints. 

Model Description: The logic model for the Motor Drive IC is derived from the digital circuit 
schematic for this IC. The logic model uses two fully asynchronous Promela proctypes. One 
proctype models the binary input signals which can change independently of the IC logic. These 
inputs signals are fully randomized within this proctype. The other proctype models the IC logic 
and produces the IC outputs. This later proctype updates internal state, captures feedback in the 
IC and allows the outputs to settle. It also models over current and over temperature behaviors.  

This logic model has a single safety property to check if the SR-latch avoids the unstable state 
(S=1, R=1).  

This logic model has a number of never claims. A couple of the never claims are used to check 
the correctness of the model itself. Besides these claims, the primary claim checks that the 
throttle motor is never eventually always open unless the inputs warrant a wide open throttle. 
The logic model includes the logic that relates the pairs of outputs that open and that close the 
throttle. 

Claims w/ Results: For verification of the MotorDriveIC, correctness claims are formulated.  
These claims ensure that dangerous output combinations are avoided, that the outputs are  
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consistent with the inputs, and that various internal constraints are not violated.  The claims 
verified are: 

1. Verify that the throttle plate is never eventually always wide-open when the inputs are 
not always demanding wide open. 

Result: Verified. The claim made upon the model being checked is not violated on 
any path checked in the model. 

2. Verify that an electrical short never occurs unless the inputs demand that an electrical 
short be produced.  

Result: Verified. Note that this model does not include details of the Toyota IC 
that are designed to prevent an electrical short circuit, even if the inputs demand 
one. 

3. Verify the all SR-latches are never in their unstable state (S=1, R=1 simultaneously).  

Result: Not verified. When an SR-latch is unstable the output is undefined.  
Questions to Toyota engineers on this claim failure resulted in an explanation that 
the SR-latches from the design documentation are in fact S-latches which do not 
have an unstable state.  Thus this claim is extraneous. 

The MotorDrive IC was shown to satisfy claims 1 and 2. Claim 3 was shown to be unimportant. 
This model effectively rules out an error in the MotorDrive IC as a cause for UA. 

This software model indicates the Motor Drive IC outputs can only lead to a wide open throttle 
when the Motor Drive IC inputs warrant a wide open throttle. 

A.9.5  Port Register Inputs (GCPR) 
Purpose: Confirm that the processing of the port register inputs is faithful to the sensed input 
values.  This ‘GCPR’ functionality, from sensed input value to concluded state, involves a 
multiple asynchronous tasks.  This models checks if multiprocessing errors are avoided. 

System:  A number of inputs are provided through the port registers.  These inputs are read 
periodically by a recurring CPU software task, processed and then written to software state.  That 
state is then used in subsequent throttle computations. 
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Figure A.9-5. Port Register Inputs (GCPR) System Context 

The periodic task reads the port registers twice, nominally for ‘noise canceling.’  While these 
two reads occur on a single line of C source code, the multiprocessing nature of the throttle 
control software allows for the possibility that a significant delay can occur between the reads.  
Furthermore, because the port registers reflect the sensors in the environment, the values in the 
port registers can change asynchronously relative to the CPU software.  This leads to the 
possibility that the two reads produce different values. 

Inputs: The logic model uses two sensor values that are input through the port registers: 

1. Shift Position Switch Sensor (boolean) - Indicates if the transmission is in ‘drive’ 

2. Stop Lamp Switch Sensor (boolean) - Indicates if the stop lamp is on and thus, indirectly, 
if the brake pedal is depressed. 

Within the logic model these two inputs are independently randomized to explore the entire 
inputs space.  Note that there are no dependencies between these two variables, either in the 
GCPR code or in the logic model. 

Outputs: The outputs are the shift position state and the stop lamp state.  These are the states 
used in all subsequent throttle processing by the CPU software. 

Model Description: The logic model for the Port Register Inputs is a small model consisting of 
two Promela proctypes. The first proctype represents the asynchronous GCPR peripheral IC. 
This proctype simply randomizes the possible inputs. The second proctype represents the OSEK  
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task in the Toyota code and serves to sample the port register data. The data is read twice 
nominally for noise canceling purposes. The logic model checks for a race condition between 
this double read and the GCPR peripheral IC proctype.  

This logic model has a number of claims. Some of the never claims are used to check the 
correctness of the model itself. The primary claim ensures that the output and the input never 
“eventually always” differ. 

Claim w/ Results: For verification of the ‘Port Register Inputs,’ a correctness claim is 
formulated to ensure that the outputs are consistent with the inputs.  The computation of the 
outputs involves a handful of steps that may be susceptible to corruption owing to asynchronous 
task race conditions. 

1. The shift position state will never be eventually always ‘open’ unless the shift position 
switch sensor is always ‘open.’ Due to the symmetry in the GCPR code and this logic 
model, this claim also applies to the brake light switch. 

Result: Verified.  The claim made upon the model being checked is not violated on any 
path checked in the model. 

The claim was verified.  This effectively eliminates corruption of the Shift Position and Brake 
Light switch through the GCPR interface as a possible cause of UA.  

A.9.6 PWM Functionality (GCPLS) 
Purpose: Confirm that the PWM (Pulse Width Modulation) functionality reliably modulates the 
motor IC transistors based on the desired PWM duty cycle. 

System:  The PWM functionality is achieved with a number of software tasks that are activated 
based upon hardcoded delays.  Specifically the final output to the GPCLS registers is initiated 
after a ~800 microsecond phase offset within the 2 msec task.  Figure A.9-6 illustrates the PWM 
system. 
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Figure A.9-6. PWM Functionality System Context with CPU Tasks 

Data is shared between the ‘PID controller’, which produces the ‘duty cycle’ for the throttle 
motor, and PWM which smoothly handles the throttle motor motion using timed actuation of the 
H-Bridge transistors.  The logic model explores consequences of arbitrary delays in any of the 
periodic 2 msec task computations. 

Inputs: The PWM functionality is invoked as part of a periodic software task with inputs 
produced by the ‘PID Controller’ module.  The primary input is the desired PWM duty cycle and 
its direction (positive/open or negative/close).  The inputs to the PWM module that are used in 
the logic model are: 

• Activate (boolean) - Determines if the motor IC should be used or not. 

• Reset (boolean) - Determines if the motor IC should be reset. 

• Duty Cycle (enumeration) - Determines the fraction of 2 ms during which the throttle 
motor, though the MotorDriveIC, should be powered.  A fraction of +100% implies 
‘wide open throttle’ and a fraction of -100% implies a ‘fully closed throttle’.  Anything 
above approximately 88% is rounded up to %100. 

• Duty Cycle Direction (boolean) - Determines the direction of throttle motor rotation.  ‘1’ 
implies ‘open’ and ‘0’ implies ‘closed’. 

Outputs: The outputs from the ‘PWM Modes’ computation are binary signals that serve as 
inputs to the MotorDriveIC.  Thus, these PWM outputs are directly responsible for opening and 
closing the throttle motor.  These outputs are HIC, LIO, HIO and LIC and are shown in Figure  
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A.9-4. Because this PWM outputs drive the H-Bridge transistors there are valid and invalid 
combinations. 

Model Description: The logic model for the PWM Functionality consists of three Promela 
proctypes. One proctype represents the GCPLS timer peripheral IC and operates asynchronously 
to the other proctypes. Another proctype in this model represents an OSEK interrupt handler. 
The final proctype represents a periodic task that is possibly inhibited by the interrupt handler 
and which computes the desired PWM model.  

The proctype for the GCPLS timer peripheral IC sets binary values based on an 'on time' and an 
'off time'. This proctype uses the Promela 'task' library to define an alarm which runs repeatedly 
at each clock tick. When it runs the proctype compares the current tick with the 'on time' and the 
'off time' to determine if the binary value should be set. The binary values in this proctype 
represent the on/off state of the throttle motor transistors.  

The proctype for the interrupt handler uses the current PWM mode and duty cycle to compute 
the on and off times for the four H-Bridge transistors in the Motor Drive IC. This proctype then 
outputs the computed times to the GCPLS proctype. This computation closely mimics the Toyota 
code with the introduction of delays and with the handling of the PWM modes. This proctype 
nominally runs every   with a phase offset of  . However, the 
Promela scheduler can introduce arbitrary delays in this proctype's execution.  

The final proctype computes the PWM mode based on the duty cycle. This proctype fully 
randomizes its input, which is the duty cycle, and then derives the mode and related state. This 
proctype runs every   with a phase offset of   but, because of 
scheduling variations, it can run with an arbitrary delay even to the point of overlapping the 
interrupt handler.  

The safety property in this logic model represents an invalid combination of throttle motor 
transistors. The property ensures that only two transistors can be power at one time.  
The never claims in this logic model extend the safety property based on tighter constraints on 
the valid combination of transistors and the relationship to required PWM duty cycle. The 
primary claims ensures that the throttle is never eventually always wide open unless the 
requested duty cycle is at   

Claims w/ Results: For verification of the ‘PWM Modes’ the formulated correctness claims are 
based on valid and invalid combinations of outputs.  Valid combinations are those that lead to  

1. Three outputs are never simultaneously binary ‘1’ (read as ‘on’ or ‘closed’). 

Result: Not verified.  The claim made on the model being checked is violated on at least 
one path checked in the model. 
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2. Two outputs that lead to an H-Bridge electrical short are never simultaneously binary ‘1’.  
It is considered an error for a short to be commanded by the PWM module even though 
the MotorDriveIC may prevent an actual electrical short. 

Result: Not verified. The claim made upon the model being checked is violated on 
at least one path checked in the model. 

3. The outputs that open the throttle plate is never eventually always open (leading to a wide 
open throttle plate) unless the requested duty cycle is  

Result: Verified. The claim made upon the model being checked is not violated on 
any path checked in the model. 

The logic model failed to verify claim #2.  The failure occurs for the following conditions: 

1. The PWM mode is PWMPLS with a duty cycle near but less than . 

2. The   phased computation is delayed by  . 

3. The PWM mode becomes PWMMNS. 

These conditions were discussed with Toyota engineers with the   delay garnering the 
most attention.  At first Toyota did not consider any delay of the   phased computation as 
credible however, after undertaking numerous measurements, Toyota observed delays as large as 

 .  Subsequent to this recognition, Toyota computed an absolute worst case delay.  This 
worst case is based on all possible relevant delays conspiring and was computed to be  . 

Further analysis of the MotorDriveIC shows that a software-induced electrical short is prevented 
by the hardware.  Thus, even if claim #2 could occur, there would be no adverse effect on the 
vehicle.  The improper software command is filtered by the hardware until it subsides at which 
point a proper H-Bridge configuration is re-established to drive the motor open or closed. 

The Pulse Width Modulation (PWM) code will only lead to a wide open throttle when the 
requested duty cycle is +100%. 
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A.10 Software Algorithm Design Analysis Using Mathworks Models  

A.10.1 Modeling Effort Overview 
In the Toyota 2005 Camry, the critical control loops that are related to potential UA are 
implemented in software that executes in the electronic throttle control system (ETCS-i). In order 
to analyze the control loops and to support hardware testing scenario development, an in-depth 
understanding of Toyota's throttle control system as implemented in software is necessary.  
Matlab, Simulink, and Stateflow were used to model the control system at a level of abstraction 
suitable for control system insight and analysis. Using Toyota's source code and specifications, 
along with consultation of Toyota systems experts, executable models of the ETCS-i were 
constructed through an iterative process of reverse engineering. Toyota was very co-operative in 
this process, providing engineers with expertise in successive subsystems who stayed in 
Torrance or San Jose on average two weeks at a time. 

These models were provided to the entire NASA team and served as a common basis of analysis 
for both hardware and software teams. After each major subsystem was modeled, the software 
and hardware teams met face-to-face in order to share information and develop testing strategies. 
The software team made extensive use of both Mathwork’s test tools as well as NASA-
developed tools to generate and simulate test suites for a wide range of driving scenarios 
involving both nominal and off-nominal situations, such as sensor faults. Simulink provides a 
modeling environment for data-flow centric control, while Stateflow provides a modeling 
environment for  complex discreet logic.  Given the Mathworks’ tools position as leading 
mathematical computing software for engineers and scientists in the aerospace and automotive 
industry, these tools were well-situated to support the Toyota analysis. 

The goal of the modeling exercise was to develop an integrated system model of the ETCS-i.  To 
aid in the testing of the various subsystems it was decided to split the model into to an integrated 
portion, the Idle Speed Control (ISC), and the idle on fuel cut system.  The reason to split up the 
model was because of control feedback loops that required a plant model.  For instance, the ISC 
required a plant model of the engine to receive accurate feedback for control purposes.  The 
development of these plant models was outside of the scope of this investigation.  Table A.10-1 
describes statistics for 05 Camry L4 Matlab Modeling. 
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Table A.10-1. Model Statistics 
Model Functional 

Blocks 
Stateflow 
Blocks 

Transitions States NASA 
Man-Hrs  

Toyota 
Man-Hrs 

Integrated Model 
w/Cruise Control 

1038 17 1088 623 200 100 

Cruise Control 229 8 365 222 70 50 
Idle Speed Control 
(ISC) 

935 42 615 448 120 80 

Idle On Fuel Cut 76 4 51 26 4 2 
 
Based on a preliminary review of the software specifications and discussions with the Toyota 
engineers, it appears that the Vehicle Stability Control (VSC) and Transmission software doesn't 
increase the command to the throttle valve IC, therefore models of the VSC and the 
Transmission software were not developed. 

Considering the complex and interactive nature of the models that were developed, it was 
necessary to vary the fidelity of each of the models to match the testing needs and scenario 
development process.  The models were developed to three levels of fidelity that are described in 
the chart below. In addition, a software build in the native Greenhills compilation and 
microprocessor emulation environment was developed.  This environment reached sufficient 
maturity to map inputs leading to diagnostic codes. 

Note:  The following figures of the Camry MY2005 models illustrate the complexity and depth 
of the modeling effort.  They are not “readable” by intent to protect the details of the Toyota 
design. 

A.10.2 Model Development 
The models were developed in three phases. Each phase varied the level of fidelity.  Modeling in 
different phases allowed for efficient modeling, testing, and production of usable results for a 
highly complex integrated system.  
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Figure A.10-1. Model Development and Fidelity 

A.10.3 Phase 1 
These models are based on presentations or diagrams directly from the Toyota engineers as well 
as minimal use of specifications. These are relatively low fidelity models and produced results 
that yield a minimal understanding of the functions. Because the Phase 1 models are mostly used 
to develop an understanding these models do not always use the same variable names and are 
primarily concerned with getting the logic correct. These models were verified by comparison 
with expected results from the Toyota engineers. 

The following functions are of Phase 1 fidelity:  

A.10.3.1Safing Functions  
In the first phase the primary interest was the modules that increase the throttle angle. For this 
phase a simple model of the safing function block would suffice. A Stateflow model was 
developed from a Toyota provided list of diagnostic codes and resulting fail-safe responses. 
Developing a higher fidelity model would prove useful in providing a better understanding of the 
fail-safe actions and how and when they are performed. 
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Figure A.10-2. Safing Functions Model 

 

A.10.3.2Accelerator to Throttle Demand 
Toyota described the function of the following module as a lookup table and therefore it was 
determined that no further increase in fidelity was necessary.  

 
Figure A.10-3. Throttle Demand Model 
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A.10.4 Phase 2 
The models were primarily based on interpretations of the specification documents related for 
software functions provided by Toyota to Denso. These models are at a higher fidelity then the 
Phase 1 models, however, they still model the expected outcome and, if the specifications do not 
match the source code, then the Phase 2 model might contain discrepancies between the 
hardware and the model. 

The following functions are of Phase 2 fidelity:  

A.10.4.1 Cruise Control 
The cruise control is implemented through a single voltage input that is manipulated by the 
driver through a switch.  Depending on the input from the driver, the switch will select a 
resistance that is interpreted by the cruise control logic to set the state of the cruise control.  The 
input voltages are received by a module that interprets which position the switch is in.  The next 
module uses the position determination and other inputs to decide which state the cruise control 
system is in.  Depending on the determined state, a control module is used to complete the actual 
calculations required to send a command to the vehicle.  To accomplish these calculations there 
is a module within the cruise control that calculates the vehicle speed.  Various states and 
voltages within and outside the cruise control are monitored through diagnostics.  These 
diagnostic modules then feed into the control module to be used in the auto cancel operations. 

Note:  The following figures of the Camry MY2005 models illustrate the complexity and depth 
of the modeling effort.  They are not “readable” by intent to protect the details of the Toyota 
design. 
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A.10.4.2 Idle Speed Control (ISC) 
The ISC incorporates modules that provide throttle contribution to maintain idle and compensate 
for conditions like creep control, increases in oil temperature, variable valve timing, alternator 
loads, air conditioner loads, catalyst temperature, idle while moving, stall prevention, fuel cut, 
variations in the throttle valve assembly, purging, power steering, startup/ignition, and engine 
temperature.  Three modules are used to complete the learning algorithm calculations that 
compensate for manufacturing variances and throttle deposits that accumulate over time.  There 
are a series of modules that then take the outputs from all of the contributing blocks and add 
them together to calculate a final throttle angle demand from the ISC system. 
 
Note:  The following figures of the Camry MY2005 models illustrate the complexity and depth 
of the modeling effort.  They are not “readable” by intent to protect the details of the Toyota 
design. 
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A.10.4.3Idle On Fuel Cut 
As depicted below, the fuel cut function has a module that determines the rpm at which to return 
from fuel cut based on a set of inputs from other systems.  The next module makes a 
determination of whether to implement fuel cut return.  After the return determination is made, 
the next module calculates the rpm to execute fuel cut.  The final module makes a determination 
of whether to implement fuel cut based on the inputs from the rpm calculation and whether or 
not fuel cut return is being implemented. 
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Figure A.10-8.  DTC and Diagnostic Model 

 
PID - The PID manages the difference between the commanded throttle angle and the sensed 
throttle angle and determines what duty cycle command will minimize the difference between 
the two. 

Learning Functions - The learning functions calibrate the control software to accept and adjust to 
pedal and throttle sensor inputs which are only slightly off the nominal path. This function 
provides optimal driving performance that remains constant.  

The learning functions were of high interest to the NASA team, because of the learning 
function’s ability to mask failures and to change the performance of the vehicle as measured 
against absolute sensor values, by virtue of changing the zero bias. The learning function models 
evolved over the progression of the study and were a valuable tool in the testing process.  

Because of the proprietary nature of phase 2 type models, lower level diagrams cannot be shown. 
Below is a higher-level snapshot of the inputs and outputs of a phase 2 model of the learning 
algorithm.  
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A.10.5 Phase 3 
In order to provide the highest fidelity possible within a Mathworks simulation environment, the 
source code for the ECU used in the Toyota MY05 L4 Camry was compiled on the Linux 
environment.  This enabled engineers to generate S-functions that can be loaded into Matlab or 
Simulink blocks. Using the source code directly improves the accuracy of the simulations and 
help the engineers validate models based on schematics and descriptions.   Because the S-
functions are within the Simulink environment, they can be integrated into the same testing 
framework as the models in the previous phases replacing blocks designed on schematics. The 
compiled code also increased execution time allowing more exploration of the testing scenarios 
space. 

The Toyota source code is complex and has many dependencies that make full-scale simulation 
outside its native hardware environment difficult. Even within the Greenhills compilation and 
debug environment, the practice of Toyota and Denso has been to only use a software simulation 
environment for “one-shot” unit testing, i.e., one input vector yielding one output vector. Any 
further testing beyond the unit level was done by Toyota and Denso on hardware platforms with 
integrated software loads. 
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The compilation and linking into s-functions were finally successful. However, the full 
incorporation into the Mathworks simulation environment did not reach maturity in time for 
Phase 3 models to be incorporated into the current model used in testing.  This could be 
continued as forward work. 

A.11 Mathworks Model Scope and Functional Description 
The scope of the integrated model was to provide coverage on model three major contributors to 
the throttle control, Accelerator Pedal, Cruise Control, and the ISC. These three major 
contributors each have the potential to increase the throttle a significant amount. 

Figure A.11-1 shows an overall simplified functional view of the ETCS-i functions that have 
been incorporated in the integrated model.  Description, verification, analysis and testing, and 
results of the models of each of the functions are described in the following section. 
 

 
Figure A.11-1. Architecture of Modeled Throttle Control Functions 

A.11.1 Accelerator Pedal Control 
The pedal controls the throttle by measuring the pedal command angle and comparing it to the 
learned pedal released value. Using the command and the learned pedal release value, pedal 
diagnostics are performed. When a fail-safe flag is sent from the pedal diagnostic algorithms, 
certain fail-safe responses are executed to limit the throttle opening. The pedal command angle, 
after going through the diagnostic and fail-safe processing, is converted to a throttle commanded 
angle. The throttle command angle from the pedal input is compared to the throttle request from  
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the cruise control system. The greater value of pedal throttle command and cruise control request 
is then sent to the PID controller.  The PID then calculates a motor duty cycle command and this 
command is converted into ON-OFF commands to four transistors which control the flow of 
electricity to the throttle motor. 

A.11.1.1Processing of Pedal Input Functions and Learning Functions 
The pedal control’s primary input comes from two pedal sensors, VPA1 and VPA2. VPA1 is 
used for primary control and VPA2 is used to check the validity of VPA1. VPA1 and VPA2 have 
an input range between 0 and 5 V and are normally offset from each other by 0.8 V. The nominal 
range is shown below in Figure A.11-2. 
 

 
Figure A.11-2. Nominal Software Range for VPA1 and VPA2 

A.11.1.2. Learning Functions and Released Position 
To allow for recalibration of the zero bias during a trip, the pedal input goes through a 
preprocessing function, which recalibrates the pedal sensor input to allow for these input 
variations. The calibration process occurs anytime the pedal is determined to be released.  
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If there is a fail-safe condition detected after learning is completed, the learning value is reset to 
the default value, as shown in Figure A.11-5. 

A.11.1.3 Pedal Diagnostics 
Based on individual pedal sensor and sensor to sensor correlation, checks are performed to 
determine the validity of the sensor data entering the CPU. To effectively understand and 
evaluate the range/area of valid or invalid values, the team used the model to generate plots or 
“maps” of the two pedal position sensors.  The horizontal axis of these maps is VPA1 voltage, 
and the vertical axis is the VPA2 voltage.  A sweep through all possible voltage relationships 
was performed.  When a software diagnostic detected an invalid condition, it was noted on the 
map. 

From this map, the valid acceptable VPA1 and VPA2 voltages were identified, and all regions 
where the software would detect invalid inputs were identified. 

A second map was identified that allowed a wider range of valid values.  This map is only 
applied when battery power is reapplied.  After a valid fully released pedal position is learned, 
the map with the constrained or narrow range of valid values is applied.  
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The model’s diagnostic maps were compared with the actual source code within the Greenhills 
Multi Environment as well as Camry hardware to ensure validity. 

Six maps were generated for both the pedal diagnostics and pedal fail-safe detection. Three maps 
included the expanded valid range and three the narrow valid range. For both expanded and 
narrow threshold regions, a map was created for a ramp, step, and constant input sequence.   The 
ramp, step, and constant input sequences were necessary to allow timing and sequence logic to 
function within the diagnostic detection code. 

An example of two of the ramp sequences is illustrated below.  This sequence starts and holds 
VPA1 and VPA2 at their nominal voltages of 0.8V and 1.6V, respectively, for 3 seconds, and 
then, in 2 seconds, linearly moves to the new VPA1 and VPA2 value, which it holds for 2 
seconds. This sequence is performed for all new VPA1 and VPA2 values.  The diagnostic and 
fail-safe detection maps are shown below in Figures A.11-6 and A.11-7 for this 2 second ramp 
sequence. 

In Figure A.11-6, for every combination that produced a diagnostic code, it was marked with that 
diagnostic code.  An operational range of values is identified starting in the lower left and 
continuing to the upper right.  The lower left plots the pedal fully released voltages.  The upper 
right plots pedal fully pressed voltages. 

Figure A.11-7 is plotted in a similar manner. For every combination that produced a diagnostic 
code, it was marked with that diagnostic code.  An operational range of values is identified 
starting in the lower left and continuing to the upper right.  The lower left plots the pedal fully 
released voltages.  The upper right plots pedal fully pressed voltages.  The range of acceptable 
values not producing a diagnostic code is wider.  This range is the acceptable range of values 
after battery voltage is reapplied, such as after maintenance. 
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minimum fully released pedal value of 10 degrees and 30 degrees for VPA1 and VPA2, 
respectively. The combinations of values leading to a VPA1 of 10 degrees are shown below in 
Figure A.11-8. 
 

 
Figure A.11-8. VPA1 and VPA2 Combinations Leading to a Minimal Learned Value after 

Starting at Nominal 
 
These software model tests and the maps generated became the basis for much of the pedal tests 
done on the vehicle hardware. 

A.11.2 Throttle Control 
The throttle is controlled by the ETCS-i software in the form of four signals (HI, HO, LI, LO). 
These four signals open or close transistors in an H-Bridge IC. The 4 signals are based on 
conversion from a calculated duty cycle command coming from the PID control software. The 
duty cycle dictates the closing/opening rate which is controlled by changing the on and off times 
of four FETs. 
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Figure A.11-9. Duty Cycle Times. 80% Duty Example 

 
                    

                     
                  

                    
              

              
                 

                  
 

The input throttle command, which the PID controls to, is a combination of the throttle request 
from the pedal/cruise/VSC, the request from the Idle Speed Control, and the learned throttle 
spring position.  
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Figure A.11-10.  Throttle Command Components 

 
The base for the throttle command comes from the learned spring detent value. This value 
represents the position of the spring when it is not actively controlled. This spring detent value is 
not the fully closed position. The fully closed value is “learned” from 20 ms after ignition to 60 
ms after ignition, when power is not applied to the throttle valve and it is assumed to be held 
open by the spring only.              
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A.11.4  Cruise Control 
A.11.4.1 Cruise Control Switch 
The cruise control is implemented through a single voltage input that is manipulated by the 
driver through a switch.  Depending on the input from the driver, the switch will select a 
resistance that is interpreted by the cruise control logic to set the state of the cruise control.  Four 
resistors in parallel that may be combined together to represent the five cruise control switch 
states: Main, Resume, Set, Cancel, Off.  Input from the driver is sensed and considered valid if 
three consecutive input samples indicate the same state change.  The table below describes the 
conditions for setting of each of the cruise control switch states. 

Table A.11-1. Cruise Control Switch Voltage 
Cruise Control Switch Voltage Cruise Control Switch State 
CC voltage (CCV) <= (0.168 * Battery Voltage(BV)) Main On/Off 
(0.168 * BV) > CCV >= (0.3685 * BV) Resume On/Off 
(0.3685 * BV) > CCV >= (0.584 * BV) Set On/Off 
(0.584 * BV) > CCV >= (0.7934 * BV) Cancel On/Off 
(0.7934 * BV) > CCV Off 
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There are noise removal functions to smooth out signal irregularities.  Note there are no dead-
band voltage ranges between Cruise Control Switch States.  

The actual setting of a cruise control state requires one of the cruise control switch states to be 
registered followed by the “Off” state.  When the driver engages the cruise control switch, the 
switch is pushed in – this corresponds with Main, Resume, Set, or Cancel.  When the driver lets 
off of the switch, it returns to the normal position - this corresponds to the “Off” state.   

In addition to the cruise control states described above, there are time-sequence manipulations of 
the same cruise control switch that allow for other states that are described in the table below. 
 

Table A.11-2.  Cruise Control Activation 
Cruise Control 
State 

Activation Description 

Coast Set switch is engaged for 
longer than 0.6 seconds 

While engaged, coast will decrease the speed of the 
vehicle.  When disengaged the new vehicle speed becomes 
the set speed. 

Tap Down Set switch is engaged Each time the set switch is engaged the vehicle speed will 
decrease by 1.6 kph.  If the new vehicle speed is more than 
5 kph different than the set speed at disengagement, then it 
becomes the new set speed. 

Accel Resume switch is engaged 
for longer than 0.6 
seconds 

While engaged, accel will increase the speed of the 
vehicle.  When disengaged the new vehicle speed becomes 
the set speed. 

Tap Up Resume switch is engaged Each time the resume switch is engaged the vehicle speed 
increases by 1.6 kph.  The new vehicle speed does not get 
saved as the set speed. 

 
The cruise control operation may be manually canceled through four different inputs: 

1. Brake is depressed 
2. Shift from Drive 
3. Cancel switch is engaged 
4. Main is turned off 

 
A.11.4.2 Cruise Control Diagnostics 
There are four diagnostic codes that describe the cruise control failures.   
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Table A.11-3.  Cruise Control Diagnostics 
P0571 
Brake Switch Circuit 
Abnormal 

Checks coherency of the two brake switches. 

P0500 
Vehicle Speed Sensor 
Abnormal 

Checks whether a speed pulse is registered by the vehicle within 140 
seconds of ignition on. 

P0503 
Vehicle Speed Sensor 
Intermittent/Erratic/High 

Checks whether vehicle speed reading changes more than 25% from one 
reading to the next. 

P0607 
Cancellation Circuit 
Abnormal 

Checks various voltages, data mirrored in RAM, and brake switch state.  
Voltages checked include +B low voltage, ignition switch low voltage, WI 
low voltage, and STA low voltage. 

 
A.11.4.3 Auto Cancel Functions 
Auto cancel refers to the function of automatically canceling the cruise control set speed because 
of certain conditions or diagnostic output.  There are three subsets of auto cancel described in the 
Table A.11-4. 
 

Table A.11-4.  Cruise Control Auto Cancel 
C1 
Low Speed 

Cancels when the vehicle speed is less than 36 kph, or 16 kph below the set 
speed. 

C2 
Diagnostics(No code) 

Cancels when there is an abnormality detected in the electronic throttle or 
there is a contradiction in the two accelerator pedal position sensors or if 
there is an abnormality in the accelerator pedal position sensors, or there is 
an abnormality in the intake air mass flow valve or if the data mirrored in 
RAM is not nominal. 

C3 
Diagnostics(P0571, P0500, 
P0503, P0607) 

Cancels if any of the following diagnostic codes occur: (P0571, 
P0500, P0503, P0607). 

A.11.5  Idle Speed Control 
The Idle Speed Control (ISC) is a feed forward control system, working to mainly set the value 
for idle rpm. In addition the ISC controls functions to compensate for conditions like creep 
control, increases in oil temperature, variable valve timing, alternator loads, air conditioner 
loads, catalyst temperature, idle while moving, stall prevention, fuel cut, variations in the throttle 
valve assembly, purging, power steering, startup/ignition, and engine temperature to smooth the 
driving experience engine operation. The ISC throttle angle request is added to the throttle 
requests from the other control functions. ISC calculates in terms of the amount of air required, 
in Liters/second, and converts this value to a throttle angle request. Within the ISC function there 
is a conversion mapping, in the form of a look-up table, which converts the amount of air  
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requested to a throttle angle. The final throttle angle request includes a learning value to 
compensate for deposits in the throttle assembly. The ISC contribution is comprised of three 
main components: 1) The ISC learning compensation, 2) the ISC target rpm/actual rpm feedback 
control, and 3) engine loads.  The table below describes calculated maximum contributions from 
each of the ISC modules. 

 

There is a maximum ISC throttle angle contribution of 15.5 degrees. Testing of the model 
(258,048 iterations), showed a maximum contribution of 11.557 degrees assuming a base value 
concerning throttle valve deposits and manufacturing variances.  If deposits accumulate over 
time, the contribution may reach the maximum guard of 15.5 degrees. 
 
A.11.5.1 ISC water temperature measurement usage and fuel cut 
The ISC uses water temperature measurement, as an input to various software modules within 
the ISC to determine throttle angle contribution to maintain idle.  Many of these calculations are 
done based on the measured water temperature.  There are no redundant measurements 
referenced within these modules to provide verification of the water temperature.  If the  
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measurement is compromised, an increase in throttle angle can be demanded from ISC to the 
throttle motor. 
These findings from the software models influenced the development of tests performed on 
vehicle hardware. 
 
A.11.5.2 “Idle On” Fuel Cut Function 
Whenever the pedal is sensed to be released, the engine is commanded to idle.  This occurs when 
the vehicle is stopped or in motion. 

At the moment the pedal is released, the rpm is sensed.  If this rpm is above the fuel cut 
threshold, fuel is cut from the engine, and the engine rpm begins to decrease.  When the rpm 
decreases below the fuel cut return threshold, the fuel is returned to the engine to maintain proper 
idle speed. 

The fuel cut function will engage when the pedal is released and the rpm is above the fuel cut 
threshold.              

                   
         

 

       
           

     
     

 
                    
                   

                    

Once fuel cut is engaged, the rpm will drop until it reaches a fuel cut disengage limit.    
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A.11.5.3 ISC Learning Algorithm Description 
The Idle Speed Control (ISC) learning algorithm is designed to maintain smooth idling 
conditions.             
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model to correctly represent the behavior of the engine given the throttle angle demand.  During 
the process of this investigation no such engine model was made available.  There is a vehicle 
model that was developed by Toyota to support the testing of the cruise control that provides a 
limited amount of feedback that was used to test the ISC model.  Even the limited amount of 
feedback that the vehicle model provides is not appropriate for ISC testing for certain conditions.  
The vehicle model was developed for a vehicle that is in motion and being propelled through an 
engaged transmission.  The ISC behavior is most significantly observed during “idle-on” 
condition where there is no input to the throttle angle from commands initiated by the cruise 
control or the foot-pedal.  A fraction of “idle-on” condition may occur with the conditions 
represented by the vehicle model, but the majority of the ISC operation is tested at low speed 
conditions where the feedback from the partial plant would not be complete and may even 
provide incorrect feedback that would induce unexpected behavior through the model.  This was 
taken into consideration when testing occurred. 

The model inspection process was initiated with the identification of a Toyota software module 
of interest.  The identified software module was then exercised by varying the inputs across a 
range of values whereupon the output was inspected for correct behavior.  The Toyota ISC 
specialist, having insight into the system, was qualified to decide what the significant inputs to 
the software module were to verify functionality.  The outputs were observed as changes from a 
baseline behavior that was decided on at the beginning of testing.  This baseline behavior 
represented fairly benign operating conditions for the ISC with the majority of the throttle angle 
command contribution coming from EQG, which represents the learned value for throttle 
position.  The software modules were inspected individually at first and then combinations of 
modules were exercised.  The combinations were based on the identification of functional 
interactions between separate software modules. 

The testing process described was a good first step in verification of model behavior, but the 
behavior is only tested for a limited amount of inputs and interactions as compared to a 
comprehensive set of tests.  A complete set of tests would be physically impossible for 
inspection by engineers, but automatic testing can be implemented to gain more confidence in 
the model.  Matlab System Test was implemented to more fully exercise the model.  The tests 
were implemented by varying inputs that have significant effect on the throttle angle 
contribution. The relevant combinations that lead to a large throttle angle command from the ISC 
system were then identified.  While the tests themselves do not give evidence for verification of 
model behavior, any combination of inputs that lead to large throttle commands may be 
investigated in more detail to verify behavior. 

Verification by inspection and automatic testing provides a level of confidence in model 
behavior for hardware scenario test development, but another source of model verification is 
completed when the hardware tests of the ISC exhibit the same behavior predicted in the model. 
All ISC functions outside of the learning algorithm have been verified through inspection and  
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minimally tested through SystemTest. Future verification work could include a more 
comprehensive set of automatic software tests and hardware tests with the vehicle. 

A.12.2 ISC Learning Algorithm Verification 
Complete verification of the ISC learning algorithm functionality did not reach maturity.  While 
the verification exercises outline above provided a good measure of confidence in most of the 
software modules of the ISC, EQG(learned value), EQI(feedback value) and EQGRST(learning 
reset) provide unique challenges for verification.  The learning algorithms represented by these 
three modules are incredibly complex, requiring many inputs from inside and outside the ISC 
being utilized by multiple, interconnected calculations.  

A.13 Software Model Testing 
The objective of these tests was to use the MATLAB, SIMULINK and StateFlow models that 
have been developed from the Toyota software specifications to find scenarios that could lead to 
UA. If found, the scenarios would subsequently be tested on the Toyota source code within the 
Green Hills environment, as well as on the actual hardware to see if they could lead to an actual 
UA. 

There were three main sets of software tests conducted:  
 

1) varying pedal sensor input voltages, VPA1 and VPA2, to determine the effects of 
transient voltage changes and the resulting effect on the throttle. 

2) determining what conditions may cause cruise control to turn on unexpectedly as 
well as what conditions prevent the cancelling of cruise control. 

3) determining the maximum ISC contribution. 

The SystemTest tool from Mathworks was used to conduct these model tests. The tool 
encapsulates the model, its initial setup, test vectors used and the properties that are checked. The 
tool runs the model with thousands or even hundreds of thousands of test cases using a 
permutation of all the input test vectors.  The tool also generates a complete report of the test 
data used and the results obtained.  The results were then analyzed to come up with one or more 
UA scenarios for testing on the MY 2005 Camry. 
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A.13.1  Tests for Failures Resulting from Transient VPA Changes 
Test Objective 
The objective for this set of tests is to explore the possibility of throttle angle unexpectedly 
becoming and staying large (e.g., >20) at the end of a trip as a result of a sudden and transient 
change in the values of VPA 1 and 2 with no diagnostics being detected. 
Test Setup 
Figure A.13-1 shows the SIMULINK model that was used to conduct these tests. It extends the 
integrated Toyota system model, Integrated Model (Version 6), by adding: 

- The required in-ports to supply the test parameters, 

- Blocks used to control the sequence and timing of the input values, and 

- The required out-ports needed to channel the output of the application. 

The additions are shown in light blue. Another modification that was done to the original model 
was to remove any SIMULINK display blocks (e.g., Scopes and Displays) to speed up the 
running of the test. 

 
Figure A.13-1.  Integrated test model (Integrated_Model_V9_ST.mdl) 

The model has a simulation time period of 8 seconds with a time-step of 0.0001. 
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Input Name Phase 1 Phase 2 Phase 3 Phase 4 

 t<=4.01 4.01<t<=4.02 4.02<t<=4.03 t>4.03 

VPA1 0.8 0 to 2.4 in steps 
of 0.2 

0 to 2.4 in steps 
of 0.2 

0.8 

VPA2 1.6 0 to 5 in steps 
of 0.2 

0 to 5 in steps 
of 0.2 

1.6 

 
A SystemTest test file was created that references and initializes the test model, sets up the 
required test vectors and includes the property that is checked during the test. SystemTest runs 
the tests which in this case are 114,244 test cases representing all permutations of the parameters 
during trip Phases 2 and 3. 
Test Results 
A total of 114,244 test cases were run using a cluster of 32 processors that took 13 hours to 
complete. All the tests passed, i.e., for inputs expected to demand throttle angles less than 20 
degrees, none resulted in an increase in the throttle angle value greater than 20 degrees as a result 
of the transient VPA changes with no diagnostics being detected.  The maximum throttle 
increase observed in the model was around 17.2 degrees. 
Note that this set of tests did not explore the values of VPA1 and VPA2 out of the normal ranges 
(as shown in the vector table). 
Further tests 
In addition to the tests described above the software team also ran 10,000 tests that explored a 
wider range of values for VPA1 and VPA2. The software team used random values for these 
parameters (using a uniform distribution) ranging from -5 to 10. They also all succeeded and did 
not show any failures. 

A.13.2 Testing for Unexpected Cruise Control (CC) Turn-on Failures 
Test Objective 
The objective for this set of tests is to detect if the Cruise Control system can unexpectedly turn 
on. In these tests the aim is to generate the set of scenarios in which the user turns on the CC, 
sets CC speed and then turns CC off at the start of a trip but later on due to some combination of 
various parameter changes it turns on again unexpectedly. 
Test Model 
Figure A.13-3 shows the SIMULINK model that was used to conduct these tests. It extends the 
Cruise Control block/sub-system of the original Integrated Model (Version 6) with: 

 



 

NASA Engineering and Safety Center 
Technical Assessment Report 

Version: 
1.0 

Title: 
National Highway Traffic Safety Administration 
Toyota Unintended Acceleration Investigation - 

Appendix A 

Page #: 
109 of 134 

 

NESC Assessment #: TI-10-00618   
 

- The required in-ports to supply the test parameters 

- Blocks used to control the sequence and timing of the input values, and 

- The required out-ports needed to channel the output of the application. 

The additions are shown in light blue. Another modification that was done to the original model 
was to remove any SIMULINK display blocks (e.g., Scopes and Displays) to speed up the 
running of the test. 

 
Figure A.13-3.  Cruise Control Test Model (CruiseControl_V6_ST.mdl) 

 
The model has a simulation time period of 5 seconds with a time-step of 0.0001. 
 
Trip Plan  
The trip plan simulated by the test model consists of 2 main phases, as shown in Figure A.13-4: 

- 0<=t<=2: The initial phase in which Cruise Control is turned on, the CC speed is set and 
then the CC is turned off. 

- 2<t<=5: The second phase in which parameters are changed to see if they could violate 
the property. 
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Input Name Trip Phase 1 Trip 
Phase 2 

0<
t<

=0
.2

5 

0.
25

<t
<=

0.
5 

0.
5<

t<
0.

75
 

0.
75

<t
<=

1 

1<
t<

=1
.2

5 

1.
25

<t
<=

2 2<t<=5 

 
 

Vehicle Speed 

37 20,40 

Ignition Switch 1 1 

Engine Condition 
Flag23

0 
 

0,1 

Flag for system 
down due to 

abnormality in 
Electronic 

Throttle System 

0 0,1 

Ram mirror image 
consistency flag 

0 0,1 

+B low voltage 
flag 

0 0,1 

Ignition Switch 
Low Voltage Flag 

0 0,1 

STA Low Voltage 
Flag 

0 0,1 

WI Low Voltage 
Flag 

0 0,1 

Accelerator Pedal 
Position Sensor 
(VPA) 1 and 2 

consistency flag 

0 0,1 

                                                 
 
23 This is a flag that represents abnormality in the intake air mass flow valve.  This requires four conditions to be true: 
1) XCCACT = 1 
2) XCCSCAN = 0 (not under cancelation processing) 
3) degree of opening of the intake air mass flow valve is less than 30 degrees 
4) intake air mass flow valve sensor is normal, this checks whether the valve is less than 30 degrees or not. 
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Input Name Trip Phase 1 Trip 
Phase 2 

0<
t<

=0
.2

5 

0.
25

<t
<=

0.
5 

0.
5<

t<
0.

75
 

0.
75

<t
<=

1 

1<
t<

=1
.2

5 

1.
25

<t
<=

2 2<t<=5 

16 ms Counter 
from Ignition to 
Speed Impulse 

Reception  

0 0,1 

Flag for Detection 
of 

short/intermittent 
accelerator pedal 

position sensor 

0 0,1 

In Drive state flag 1 1 

 
The software team created a SystemTest test file that references and initializes the test model, 
sets up the required test vectors and includes the property that is checked during the test. 
SystemTest runs the tests which in this case are 16384 cases which are all the permutations of 
the values of the parameters during different phases of simulation. 
Test Results 
The software team ran 16384 test cases consisting of all the permutations of the input parameters 
during different phases of the simulation shown in Table A.13-1.  The test took about 1 hour to 
complete.  
All the tests succeeded, i.e., there were no failures of the property. 

A.13.3  Testing for Auto-Cancel Failures 
The objective for this set of tests is to detect if the cruise control system may fail to turn off as a 
result of an auto-cancel condition (e.g., braking). In these tests the aim is to find the set of 
scenarios in which the driver turns on cruise control and sets the cruise control speed at the start 
of a trip, but then either he/she performs some actions (e.g., like braking) or the state of the 
vehicle changes (e.g., some significant diagnostic flags are set) in such a way that should cause 
CC to automatically get cancelled, but fails to do so. 
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Note that there may be other auto-cancelling conditions that the software team has not covered in 
this study and they need to be checked in further tests. 
 
Test Vectors 
The following table shows the parameters that are either set directly in the model or supplied 
indirectly by SystemTest. 
 

Input Name Trip Phase 1 
(0<t<=2) 

Trip Phase 2 
(2<t<=5) 

Brake Switch 1 1 0,1 

Brake Switch 2 0 0,1 

Battery Supply Voltage 14 1,14 

Vehicle Speed 40 33,40,65 

Ignition Switch 1 1 

Engine Condition Flag 0 0,1 

Flag for system down 
due to abnormality in 

Electronic Throttle 
System 

0 0,1 

Ram mirror image 
consistency flag 

0 0,1 

+B low voltage flag 0 0,1 

Ignition Switch Low 
Voltage Flag  

0 0,1 

STA Low Voltage Flag 0 0,1 

WI Low Voltage Flag 0 0,1 

Accelerator Pedal 
Position Sensor (VPA) 

1 and 2 consistency flag 

0 0,1 

16 ms Counter from 
Ignition to Speed 

Impulse Reception  

0 0,1 
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Input Name Trip Phase 1 
(0<t<=2) 

Trip Phase 2 
(2<t<=5) 

 
Flag for Detection of 

short/intermittent 
accelerator pedal 

position sensor 

0 0,1 

In Drive state flag 1 1 

 
As before the software team created a SystemTest test file that references and initializes the test 
model, sets up the required test vectors and includes the property that is checked during the test 
(Figure TBD). SystemTest runs the tests which in this case are 24576 cases which are all the 
permutations of the values of the parameters during the second phase of simulation. 
Test Results 
The software team ran 24576 test cases consisting of all the permutations of the input parameters 
during the second phase of the simulation shown in table 2. The tests were run on a cluster of 32 
processors and it took about 1 hour and 45 min. to complete. No failures were detected. 
Analysis of the Test Results 
The tests described above do not cover all the auto-cancel conditions for the CCS, including 
auto-cancelation related to some of the diagnostics (P0607 – Cancellation Circuit Abnormal). 
The CCS model did not model and support other off-nominal cases that were outside of the 
scope of the modeling effort.  

A.13.4  ISC Maximum Output Test 
Test Objective 
The objective of this set of tests is to find the scenarios in which the ISC model output 
"ettaisc_ettaisc" reaches its maximum value and to determine what that value is. The set of 
parameters that result in large ISC output would provide good candidates for further 
investigation. 
Test Model 
Figure A.13-6 shows the SIMULINK model that was used to conduct these tests. It extends the 
original ISC model version 3 with: 

- The required in-ports to supply the parameters to the test model 

- The required out-ports needed to channel the output of the test model 

The additions are shown in light blue. 
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The model has a simulation time period of 4 seconds with a time-step of 0.0001. 
 
Test Vectors 
System test was set up to generate different permutations of the parameters shown in the 
following table.  
 

  Description Range of values 

 Catalytic Converter Warmup 
Control in Crank Angle  

[-20,-10,0] 

 Air temperature in degrees Celsius  [3,20,50,80,100] 

 Water temperature in degrees 
Celsius 

[-40,-20,-5,0,10,20,30,70,85] 

 Spark Timing Feedback Control [0,1] 

 
 

  



 

NASA Engineering and Safety Center 
Technical Assessment Report 

Version: 
1.0 

Title: 
National Highway Traffic Safety Administration 
Toyota Unintended Acceleration Investigation - 

Appendix A 

Page #: 
117 of 134 

 

NESC Assessment #: TI-10-00618   
 

  Description Range of values 

 Ambient Air Pressure in Kilopascals  [0.7,1] 

 Air Conditioner ON [0,1] 

 Electrical Load Judgment Flag [0,1] 

 Cooling Fan ON [0,1] 

 Neutral Switch [0,1] 

 Variable Valve Timing Fail Flag [0,1] 

 Power Steering Pressure Switch [0,1] 

 Brake Signal [0,1] 

 Idle Up Low Request when A/T Oil 
Temperature is High 

[0,1] 

 Idle Up High Request when A/T Oil 
Temperature is High 

[0,1] 

 
The software team created a SystemTest test file that references and initializes the test model, 
sets up the required test vectors and includes the property that is checked during the SystemTest 
executes. 
Test Property 
Although there is no strict pass or fail criteria in this case, in order to more easily detect the 
interesting cases the software team defined the following test property: 

"maximum output value (i.e., max_ettaisc_ettaisc) being greater than 10." 
Test cases in which this property is satisfied are marked as passed otherwise they are recorded as 
failures in the auto-generated report. This allows the team to quickly divide the interesting test 
results into two major categories. Failed cases can then be further analyzed to detect general 
patterns and groupings of input parameters that lead to the maximum output value. 
Test Results 
The software team ran 258048 test cases out of the total of 276480 test cases. The tests were run 
on a cluster of machines with 32 processors and took around 42 hours to complete. By default 
System Test saves the test data including the values of parameters used to test the model in a 
MATLAB ".mat" file. In addition it generates an HTML report which shows the test cases and 
some general information like the start and stop time of the test, summary pass/fail reports, etc.  
Analysis of the Results 
There were 183840 test cases (around 70%) that showed output values of less than 10 and 74208 
cases (around 30%) showed output values of greater than 10. The maximum output value  
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observed in the software model was 11.557. These test cases show that the maximum output 
value is correlated with the minimum water temperature sensor values. A closer examination of 
all the results may be necessary to detect any other relationship that might exist between the 
parameters in other test cases. 
2005MY Camry vehicle hardware tests were performed with water temperature sensor failures as 
a result of this software model test. 

A.13.5 Summary of System Test Results 

 

A.14 Analysis of Real-Time Software Behavior 

A.14.1 Introduction 
The Toyota ETCS-i is an example of a safety-critical hard real-time system. In a hard real-time 
system, the hard-deadline timeliness of the software is just as important as its correctness. The 
following sections present an analysis of the ETCS-i from this perspective. 

The ETCS-i is a complex system that consists of many components and thousands of lines of 
code. This section highlights some key characteristics of the system’s hardware and software. 
Although the details are presented here without discussion, their importance will become clear in 
subsequent sections. 



 

NASA Engineering and Safety Center 
Technical Assessment Report 

Version: 
1.0 

Title: 
National Highway Traffic Safety Administration 
Toyota Unintended Acceleration Investigation - 

Appendix A 

Page #: 
119 of 134 

 

NESC Assessment #: TI-10-00618   
 

 

A.14.2 Target Hardware 
Like most embedded systems, the hardware is divided into several chips that work together. 
There is a chip for collecting analog data signals, and another one for managing power. The main 
chip, on which the software runs, is based on the Renesas Electronics V850E1, a 32-bit RISC 
CPU running at 64 MHz. It is a proprietary package (part #µPD70F3152) with a unique memory 
and peripheral layout that is customized to Toyota’s specifications. 

A.14.3 Embedded Software 
The ETCS-i software is implemented in C with certain performance-critical sections in V850 
assembly. There are no floating-point operations, and dynamic memory allocation (malloc, free) 
is never used after system initialization. 

Task scheduling is handled by an underlying operating system compliant with the OSEK 
specification. Although OSEK offers real-time capabilities (priority ceiling protocol, rate 
monotonic scheduling, etc.), there is no explicit concept of task deadlines. Tasks are assigned a 
priority and run periodically (e.g., every four milliseconds) or in response to an event such as an 
interrupt. 

A.14.4 Toyota’s Software Performance Testing 
Toyota’s approach to software testing consists of unit testing and hardware-in-the-loop field 
testing. Functions are tested in isolation for correctness, and the integration and performance 
testing is performed empirically on the actual hardware.  All verification of timely behavior is 
accomplished with CPU load measurements and other measurement-based techniques. 

Toyota designed the software with a high margin of safety with respect to deadlines and 
timeliness. For example, a task with a one-millisecond period is intended to consume a small 
fraction of that time slice (around 100 microseconds). Toyota documented no formal verification 
that all tasks actually meet this deadline requirement. 

Documented tests have shown that the Main CPU has less than 20% idle time at a rpm of 5000 
or higher (see Homework #47). 

A.14.5 Statistical Analysis 
The first timing analysis performed in this study was based on a statistical model of CPU load. 
The goal was to determine the probability of the load exceeding the 100% threshold (0% idle 
time). Should such a condition occur, system-critical tasks would be starved for computational 
resources, possibly leading to spontaneous system resets. 
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A.14.6 Toyota’s Analysis 
Prior to the statistical analysis in this study, Toyota provided three types of data: 

• Mean percentage of time used by the idle task under different load conditions 
corresponding to 6000, 8000, and 9000 rpm 

• Minimum and maximum margin for the four-millisecond task sampled for ten seconds 

• An observation that no CPU reset had occurred during hardware-in-the loop testing 
However, none of this data provided sufficient confidence to extrapolate to the approximately 
billion hours that the Camry fleet averages each year.24

A.14.7 Empirical Analysis 

 Either the sample size was too small 
(e.g., ten seconds for minimum and maximum), or the summary statistic was too coarse (e.g., 
average idle task percentage). 

This study requested more data in order to extrapolate to probabilities on the order of a billion 
hours per year. Toyota ran the 2005 ECU configuration, with the diagnostic tool connected, on 
their MITY test stand in Japan, in the three rpm levels for an hour each. The actual margin for 
each sample of the four-millisecond task was recorded. This required the MITY facility because 
of the need to provide 250 samples per second for an hour (900,000 samples per hour), compared 
to the minimum and maximum statistic for ten seconds provided previously. The three 
configurations were 6000 rpm, 8000 rpm, and 9000 rpm. While 6000 rpm is the maximum 
engine rpm under normal circumstances before fuel ignition cutoff is engaged, higher rpm is 
enabled under laboratory conditions. The higher rpm configurations provide a stress test for 
crosschecking the 6000 rpm data. 

A.14.8 Analysis of 6000 RPM Data 
The 6000 rpm data contains 3,616,246 samples of margin times in microseconds. The samples 
were collected every millisecond, and hence there are repetitions for three, four, and five 
consecutive samples. The data was filtered to remove these repetitions, and the filtered data 
contained 880,571 samples. In this dataset, any task may have its lifecycle divided into three 
components: 
 

Waiting time in queue + Execution time + Margin time = four milliseconds 
 

                                                 
 
24 According to the US DOT Federal Highway Administration from 2007 US data, the average annual miles per vehicle is 12,334 per year. This 
is based on a total annual miles traveled (3,049,047 million) divided by the total number of vehicle registrations (247 million). From 1983 
through 2007 over ten million Camrys were sold worldwide. The ECU configuration for 2005 Camry was similar to those from 2002 onwards. 
From these figures, the rough order of magnitude of hours driven yearly on Camrys from 2002 to 2007 model yearly is one billion hours. 
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Waiting time refers to the time a task waits in the queue (either due to an interrupt or due to the 
CPU being used by a higher priority job); execution time is the time it takes the job to finish 
execution; and margin time is the time between the completion of one job and the invocation of 
the next. 
The data supplied by Toyota consisted of the margin times. The execution time was assumed to 
be the one with the highest margin time (assuming the task finished earliest), subtracted from 
four milliseconds. The approximate value of execution time is 121 microseconds.  The histogram 
plots below show the waiting times for the four-millisecond tasks, where the horizontal axis 
corresponds to time and the vertical axis to the frequency. From the plot, it is clear that most of 
the observations have a waiting time of less than 800 microseconds. 

This data is highly multi-modal. The first aim was to fit a mixture distribution to this data. 
However, a mixture of Gaussians had a bad fit (based on maximum likelihood approach) and so 
the software team focused solely on the samples that have waiting times greater than 800 
microseconds. 

The following histograms plot the waiting times for the four-millisecond tasks for 6000 rpm. 

The above histogram shows the waiting times (greater than 800 microseconds) of the tasks. This 
resembles a Gaussian distribution. 
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The following is a histogram plot of the waiting times for the four-millisecond tasks (only 
greater than 800 microseconds) for 6000 rpm 
 
Let X be the random variable that measures the waiting times. The goal was to find the 
probability that P(X>4 milliseconds). The approach taken here is statistical in the sense that a 
distribution was fitted to the data and then the probability was derived based on the fitted 
parameters of the distribution. 
 
The software team fitted two distributions to this truncated dataset: 

• Gaussian Distribution. The estimated mean and variance of this distribution are 982.6 
microseconds and 45.1 microseconds, respectively, with 95% confidence in the estimation 
according to MATLAB’s maximum likelihood operation. Then: 
P(X>4 microseconds) = 1 – P(X<4000 microseconds) = 0 (by MATLAB) 
Using the natural logarithm scale (where z is the standard normal variation): 
P(z) = 1/sqrt(2pi) * exp(-z2/2) ==> ln(P(z)) = ln(1/sqrt(2pi)) - z2/2 
For us, z ~= 67. 
Thus: 
ln(P(67)) = -2.2454*103 
And hence: 
P(X=4000) = exp(-2.2454*103) 

• Generalized Extreme Value Distribution. GEV distributions are used to model extreme 
values. GEV combines three distributions (Gumbel, Frechet, and Weibull) into one. It has 
three parameters: shape, location and scale. MATLAB’s statistics toolbox was used to fit a  
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• GEV to the truncated dataset. The estimated parameters were: -0.1645 (shape), 964.29 
(location) and 45.6141 (scale). Based on the value of the shape parameter, it can be 
inferred that it is a Weibull distribution. Plugging these values into the expression for the 
cumulative distribution function of GEV, the probability of P(X>4000) = 1- 
exp(1.1620*106) is obtained. 

A.14.9 Analysis of 8000 RPM Data 
As before, the following histograms show the waiting times for the jobs. The number of events is 
much higher than the 6000 rpm case. Also, the tail of the distribution spreads more towards the 
four-millisecond region. 
 

The following histogram plots of the waiting times for the four-millisecond tasks for 8000 rpm. 

 
The following histogram plots of the waiting times for the four-millisecond tasks (only greater 
than 800 microseconds) for 8000 rpm. 
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Both Gaussian and GEV distributions were fitted to this data. For the normal distribution, the 
estimated parameters were 1026 (mean) and 73.5793 (variance), which means: 
P(X>4000) =  exp(-817.7658) 
For the GEV, the parameters were -0.0536 (shape), 995.43 (location) and 59.85 (scale). For this 
distribution: 
P(X>4 milliseconds) = 1 – exp(1.8007*104) 
A two-component Gaussian mixture model was also fitted to this data. In that case: 
P(X>4000) = exp(-1.2563*103) + exp(-1.2563*103)  

A.14.10 Analysis of 9000 RPM Data 
In this case, there are two peaks after the 800 microsecond waiting time. Therefore, fitting a 
single distribution to this dataset is incorrect. As before, a two-component Gaussian mixture 
model was fitted and the parameters were estimated using Expectation Maximization. In this 
case also, the value of: 

P(X>4 milliseconds) = exp(-1.2814*103) + exp(-1.1473*103) 
The following histogram plots of the waiting times for the four-millisecond tasks for 9000 rpm. 
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The following histogram plots of the waiting times for the four-millisecond tasks (only greater 
than 800 microseconds) for 9000 rpm. 

 

A.15 Worst-Case Execution Time (WCET) Analysis 
To complement the statistical analysis, a static analysis was performed on the source code itself. 
This approach to CPU load verification, which involves no runtime measurement of any kind, is 
known as worst-case execution time analysis, or simply WCET analysis. It is a rigorous  
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approach that places a hard upper bound on the execution time of a given software task. The idea 
is to make timeliness a property that can be formally analyzed. 

A.15.1 Static Analysis with aiT 
The purpose of this analysis, therefore, is to verify temporal behavior by means of the WCET 
approach. The WCET tool can provide evidence that a function may not meet its timing 
requirement during some worst case execution time. 

To perform this analysis, the WCET tool needed to simulate the computer hardware and compute 
the execution of the software on the hardware.  The Toyota software executed on a variant of the 
V850 processor. 

aiT from AbsInt supported V850-compatible analyzers and was selected for this study. It was 
configured, with assistance from Toyota, according to the specifics of the ETCS-i, including 
stack address, peripheral areas, memory wait states, and other attributes of the hardware. In 
theory, the tool should then be ready to begin its analysis. The user simply provides an 
executable containing V850 code, selects the entry point of a task in the executable, and then 
clicks a button to compute the WCET of the task (see Figure A.15-1). In practice, of course, 
there are significant limitations. 

 

 

http://www.absint.com/ait/�
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Figure A.15-1. Screenshot of aiT computing the WCET of an ETCS-i function 

 
First, because the ETCS-i has a proprietary CPU, the exact details of which are considered by 
Toyota to be a trade secret, aiT’s model of the CPU is inaccurate. Specifically, aiT’s knowledge 
of the processor pipeline and memory latencies do not match the ETCS-i processor precisely. 

As an alternative, aiT provides models of several of the standard V850 variants, and the closest 
match of these was selected for the WCET analysis. Using this “close” model of the processor 
meant that the analysis results would not be exact; however, the variation is unlikely to be 
greater than 20% (in either direction). This variation is accounted for in the analysis results, as 
discussed in the following section. 

Second, there are restrictions on the kind of code that aiT is able to analyze. For example, aiT 
cannot handle: 

• Multitasking 
• Interrupts 
• DMA routines 
• Assembly code 
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The limitation on multitasking is of particular importance because of the highly multitasking 
nature of the ETCS-i. If, for instance, a function has a 100-microsecond WCET and runs in a 
one-millisecond periodic task, there is no danger of overrun, but if ten such functions execute in 
the same period, then suddenly there is a very real possibility of missed deadlines. aiT is not 
capable of detecting this vulnerability. 

It should be noted, however, that all WCET analyzers, including the most advanced research 
prototypes, share similar limitations. Overall, aiT is adequate for single-task analysis and is 
arguably the best in its class given the current state-of-the-art. 

A.15.2 Analysis Results 
Even with a perfect WCET analysis tool, there remains the task of locating time-critical 
functions in the ETCS-i code, and also pairing these functions with a predicted time bound (i.e., 
a deadline as defined by Toyota’s specification). This proved more difficult and time-consuming 
than expected. The scheduling of tasks in the ETCS-i is essentially dynamic, and there are no 
explicit declarations of deadlines. 

The design of the ETCS-i software does have implied deadlines, however, as tasks are scheduled 
periodically. Therefore, a task scheduled for a one-millisecond period naturally has an implicit 
one-millisecond deadline. 

With this guideline in mind, a sample of periodic tasks was chosen. The entry points (functions) 
of these tasks were then loaded into aiT for WCET analysis. However, not one of the functions 
among this selection could be analyzed automatically. Each required special assistance from the 
user to complete the analysis. For example: 
 

• gesgm2drv_2msh (two-millisecond period) has a busy-wait loop whose bound is 
determined by a timer value. The WCET of this type of loop cannot be derived 
automatically, and therefore a manual annotation had to be inserted to inform aiT that the 
loop’s WCET was five microseconds. 

• etaest_2msh (two-millisecond period) invokes assembly code that contains a loop. 
Because assembly has no fixed code patterns, aiT is unable to positively recognize its 
structure and thus cannot determine the loop’s bound. According to Toyota engineers, 
however, the loop should iterate no more than 20 times, and this fact was expressed to 
aiT as an annotation, allowing the analysis to complete. 

• gehdlp_req_1ms (one-millisecond period) contains indirect recursion in its call path. 
Like most static analysis tools, aiT cannot handle this type of recursion without manual 
annotations. The exact parameters for these annotations could not be derived from the  
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Toyota specification (see section “Recursion”) and as a result, this function was left 
unanalyzed. 

For every instance in which aiT was able to find the WCET, it was consistently a small fraction 
(always less than 10%) of its corresponding period. For instance, the function 
gesgm2drv_2msh (two-millisecond period) had a WCET of 49 microseconds. Even when 
taking into account the fact that aiT is employing a different CPU model for its analysis, a 20% 
higher WCET would still lie well within the required parameters. 

To be clear, not all of the periodic functions were analyzed. Having to assist the tool with manual 
annotations on every function placed a limit on the amount of work that could be done. However, 
the set of functions that were successfully analyzed are likely a representative sample of the 
whole. 

A.15.3 Recursion 
During the WCET analysis effort, the discovery of recursion presented a problem, as mentioned 
in the above description of the gehdlp_req_1ms function. 

Recursion occurs when a function calls itself, either directly or indirectly. The direct case is far 
more common and is typically known as self-recursion. Certain well-known algorithms, such as 
finding Fibonacci numbers, can be expressed elegantly using self-recursion. 

The indirect case occurs when, for example, function A calls function B, B calls C, and C calls 
A. This type of recursion is exceedingly rare, for the following reasons: 
 

• The abort condition of the recursive ring usually cannot be detected automatically, and 
therefore automated analysis tools (such as aiT) are unable to handle them. This prohibits 
the kind of verification and validation that is necessary for safety-critical and hard real-
time systems like the ETCS-i. 

• Given that the call structure of indirect recursion is too complex for automated tools to 
handle, it is typically too complex for human programmers to fully comprehend, as well. 
This complexity makes a manual analysis ineffective. 

• Deeply nested recursion could exhaust the stack space, leading to memory corruption and 
run-time failures that may be difficult to detect in testing. 

• Recursion is essentially a loop, and like any loop, there is a danger of non-termination. 
An infinite loop could lead to deadlock that results in a system reset. 

The question, then, is how to verify that the indirect recursion present in the ETCS-i does in fact 
terminate (i.e., has no infinite recursion) and does not cause a stack overflow. 
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A.15.3.1 Toyota’s Recursion Analysis 
Toyota’s response to this question is that a manual code review, followed by extensive field 
testing, has not shown any evidence of software quality problems related to the recursion. If, for 
example, an infinite loop had occurred, the watchdog timer would initiate a system reset, but a 
reset never occurred during testing. 

For the case of stack overflow, the CPU in the ETCS-i does not have protected memory, and 
therefore a stack overflow condition cannot be detected precisely. It is likely, however, that 
overflow would cause some form of memory corruption, which would in turn cause some bad 
behavior that would then cause a watchdog timer reset. Toyota relies on this assumption to claim 
that stack overflow does not occur because no reset occurred during testing. 

Toyota used a tool called gstack from Green Hills Software to determine maximum stack size 
requirements. The tool gstack is a static analyzer that computes an upper bound on the stack size 
required by a given executable. For the ETCS-i, it reported the maximum possible stack size as 
1688 bytes. This result comes with a caveat, however: gstack cannot account for recursion, as 
stated in its user manual: 

gstack cannot work if there are potential direct or indirect recursive calls in the program 
because it cannot predict how many times the recursion can occur. gstack prints a 
warning message if it detects a possible recursion in the call graph. 

 
Faced with this limitation, Toyota added an extra margin of safety to the predicted bound by 
allocating 4096 bytes for the ETCS-i stack—more than double the original prediction. 

As to why recursion was present in the ETCS-i software, Toyota reported that it was a deliberate 
design choice in order to simplify the quality assurance process and reduce the total size of the 
executable. The recursion made this possible by allowing part of a newly implemented state 
machine to be linked to a state machine that was already present in the code. (The 
gehdlp_req_1ms function is just one of three sites where recursion is present.) This linkage 
allowed existing code to be reused, unmodified, and therefore did not require additional testing 
nor contribute to an increase in code size. 

A.15.3.2 Recursion Analysis 
Toyota re-examined the state machine code where the recursion occurred. The company 
emphasized a high degree of confidence in its analysis, stating that the recursion is bounded and 
contains no infinite loops, no dead-end states, and no stack overflow conditions. In particular, the 
company reported that a recursion can occur no more than once for any given code path. 
It should be noted that the ETCS-i state machines were implemented by hand, not generated 
from a model, and therefore a manual code review was the only analysis option available to 
Toyota’s engineers.  
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Moreover, a fully automated analysis is not possible, given that the presence of recursion defeats 
stack usage tools such as gstack and the AbsInt StackAnalyzer. To support the analysis, a 
partially automated, tool-assisted approach was therefore taken. It involved a C code analyzer 
called ncc, which can pinpoint recursion sites and produce accurate call graphs of the ETCS-i 
code, as shown in Figure A.15-2. 

Figure A.15-2 shows a portion of the gehdlp_req_1ms call graph, pruned of all nodes that do 
not participate in the recursion. (All function names have been obfuscated, without loss of 
structure, to protect Toyota’s intellectual property.) 

 

Figure A.15-2.  Portion of the gehdlp_req_1ms Call Graph 
 

http://www.absint.com/stackanalyzer/�
http://students.ceid.upatras.gr/~sxanth/ncc/�
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One immediate observation from this figure is the sheer number of possible paths the graph 
contains, even after eliminating all non-looping nodes. (In fact, there is an infinite number of 
possible paths due to the presence of cycles, thus demonstrating why analysis of recursive code 
is so problematic.) A complete manual analysis would be impossible, although the visual aid can 
make a partial analysis somewhat simpler. 

By referring to the call graph, it is possible to trace the flow of the state machine implementation, 
which is essentially a table lookup to determine the next state. A manual (static) analysis cannot, 
in general, determine what this state will be at run-time, but in the special case of 
gehdlp_req_1ms, the state machine tables happen to be composed in a way that the program 
flow is deterministic. For example, at some points in the program flow, the next state is always a 
constant, regardless of the current state. 

Based on this knowledge, the exact program flow for gehdlp_req_1ms can be determined. It 
is indicated by the thick purple lines in Figure A.15.-2. The flow reveals that the function is 
actually doubly recursive: It flows from gehdlp_req_1ms to function2, recurses back to 
function2, and then recurses again back to gehdlp_req_1ms. 
Toyota engineers confirmed this software recursion. 

It is not clear what impact recursion has with respect to the larger UA problem. Whether one 
recursive loop or two, there are other sites of recursion in the ETCS-i that remain unanalyzed.  

A.15.3.3 Recursion and System Reset 
The WCET analysis and recursion analysis involve two distinctly different problems, but they 
have one thing in common: Both of their failure modes would result in a CPU reset. In the 
WCET case, there is nothing in the design of the ETCS-i that would necessarily prevent a 
deadline overrun from occurring. But if such a problem does occur, and the event queue fills up, 
the operating system will detect this problem and kill the watchdog timer, which will in turn 
cause a system reset. Likewise, an infinite loop due to bad recursion would also cause a 
watchdog-generated reset, and possibly a stack overflow (unconfirmed). 

These potential malfunctions, and many others such as concurrency deadlocks and CPU 
starvation, would eventually manifest as a spontaneous system reset. 

A.15.3.4 Timing Analysis Results 
The timing analysis identified no timing influencing the onset of any UA event. It is highly likely 
that a starvation- or recursion-related malfunction would lead to a system reset.   
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A.15.3.5 Timing Analysis Forward Work 
Concluding the full analysis would require the following work: 

• Statistical Analysis. The statistical model shows a low probability of CPU reset due to 
computational starvation based on an expected billion hours of driving per annum of the 
relevant Camry fleet. This analysis is as detailed as time permitted. Future work would 
involve a more detailed analysis that combines WCET analysis with a statistical 
modeling of worst-case task interleaving.  

• WCET. A more accurate hardware model, as well as performing WCET analysis on a 
larger sample of software functions, would provide further evidence for system 
performance. This could be combined with a statistical model of worst-case task 
interleaving to place an upper bound on total CPU load. 

• Recursion. To perform automated analysis of the hard real-time behavior, complete 
removal of recursion from the software would be required. 

• System Reset. Homework #116 contains data from a single test Toyota performed. This 
study has not conducted sufficient hardware-in-the-loop testing to determine the behavior 
of the system under spontaneous reset conditions. Additional field testing to observe the 
acceleration behavior of the system during resets could be conducted. The purpose would 
be twofold: Demonstrate benign behavior of all control functions under both single-reset 
and multiple-reset (cascading) conditions. (Alternatively, the latter could be 
accomplished through fault tree analysis instead of testing.) 

A.16 Green-Hills Executable based Testing 
Developmental build of the entire Toyota code base (denoted as the Green-Hills Executable), on 
the Green Hills RTOS development environment (MULTI) began relatively late in the study 
(mid July) and therefore, due to the size of the code base, can only provide intermediate results. 
The advantage of the Green-Hills Executable approach is its capability of executing the entire 
real Toyota/Denso code, such as the entire Main CPU block, a large body of code, consisting of 
more than 1700 modules. This is a complex code base that performs workflow all the way from 
pedal and throttles inputs, through pedal and throttle learning, damping, idle speed control, cruise 
control throttle decisions, and various other components. The workflow ends with the output 
throttle command sent to the throttle motor. 

The purpose of this Green-Hills executable approach allows the discovery of pure software bugs, 
including those that emerge only in conjunction with simulated hardware faults, all while using 
high throughput automatic test generation and automatic computer aided property checking. 
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A.16.1 Technical Approach 
The Green-Hills executable build was performed using the same object files used by 
Toyota/Denso on the actual 2005 L4 Camry vehicle. The only exception is that the object files 
were not linked with the OSEK RTOS. Because critical Main CPU tasks are invoked from a 4ms 
A/D interrupt handler using a fixed schedule, a fixed scheduler was implemented. This 
implementation eliminated the need to incorporate OSEK into the Green-Hills executable build. 
Most task are 4ms tasks, with a small number of other tasks being invoked on a 8ms or slower 
time schedule.  The software team used simulation time, in the form of counters, similar to 
Toyota’s implementation on the vehicle, to invoke the tasks. 

A.16.2 Current Status 
The Main CPU build of the Green-Hills executable was completed. However, several sanity tests 
using data provided by Denso to assure that it is executing properly were needed. The existing 
Green-Hills executable was used to generate pedal and throttle diagnostic maps for the purpose 
of assuring the accuracy of the team’s Matlab models. This testing used the Toyota source code 
to verify the model accuracy.  The source code generated diagnostic maps matched the model 
generated diagnostic maps point by point. 

A.16.3 Verification Issues 
The Toyota software testing approach consists of unit tests, where units are individual modules, 
which in turn correspond to tasks, many of which being periodic tasks.  From discussions with 
Toyota engineers, it was understood that a software test harness for the entire code does not 
exist.   Absent an overall software test framework prevents the use of high volume computer 
aided verification techniques, such as automatic test generation. 




