

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
2 of 134

NESC Assessment #: TI-10-00618

Table of Contents

A.0 Software Analysis ... 7
A.1 Organization ... 7
A.2 Scope .. 7
A.3 Facilities & Resources .. 7
A.4 Technologies Applied ... 9
A.4.1 Software Implementation Analysis Using Static Source Code Tools .. 9
A.4.2 Software Logic Model Checking .. 10
A.4.3 Software Algorithm Design Analysis Using Matlab Models ... 11
A.5 Software Study ... 13
A.6 ECM Software Implementation and Basic Architecture .. 14
A.6.1 The CAN Data Network ... 18
A.6.2 Reboot/Reset Scenarios .. 18
A.7 Software Implementation Study ... 19
A.7.1 TMC Coding Rules ... 21
A.7.2 NASA Mission and Safety Critical Software Coding Rules .. 23
A.8 Static Analysis Results ... 24
A.8.1 Additional NASA/JPL and MISRA Coding Rules ... 28
A.8.2 Access to Shared Global Variables ... 31
A.8.3 Task Interference .. 34
A.8.4 Name Overloading/Aliasing ... 38
A.8.5 Dead Code .. 40
A.8.6 Data Mirroring of Persistent Parameters .. 41
A.9 Software Logic Model Checking .. 42
A.9.1 Interrupt Masking Method .. 44
A.9.2 Accelerator Pedal Position Learning .. 47
A.9.3 Sensor Input ADC (GCCSI2) ... 50
A.9.4 Motor Drive IC ... 53
A.9.5 Port Register Inputs (GCPR) .. 55
A.9.6 PWM Functionality (GCPLS) .. 57
A.10 Software Algorithm Design Analysis Using Mathworks Models .. 61
A.10.1 Modeling Effort Overview ... 61
A.10.2 Model Development ... 62
A.10.3 Phase 1 .. 63
A.10.3.1 Safing Functions ... 63
A.10.3.2 Accelerator to Throttle Demand ... 64
A.10.4 Phase 2 .. 65
A.10.4.1 Cruise Control ... 65
A.10.4.2 Idle Speed Control (ISC) .. 66
A.10.4.3 Idle On Fuel Cut ... 67
A.10.4.4 Diagnostics ... 68

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
3 of 134

NESC Assessment #: TI-10-00618

A.10.5 Phase 3 .. 70
A.11 Mathworks Model Scope and Functional Description ... 71
A.11.1 Accelerator Pedal Control... 71
A.11.1.1 Processing of Pedal Input Functions and Learning Functions .. 72
A.11.1.2. Learning Functions and Released Position ... 72
A.11.1.2.1Pedal Learning Algorithm .. 73
A.11.1.3 Pedal Diagnostics ... 76
A.11.1.4 Sequence to Increase Throttle ... 79
A.11.2 Throttle Control .. 80
A.11.3 Electronic Throttle Valve Model .. 86
A.11.3.1 DC Motor .. 87
A.11.3.2 Throttle Gear/Valve .. 87
A.11.3.3 Throttle Sensor ... 87
A.11.3.4 Controller Description .. 87
A.11.3.4.1 Lead Filter ... 88
A.11.3.4.2 Proportional Gain Lookup ... 90
A.11.3.4.3 Integral Gain Lookup .. 90
A.11.3.4.4 Integral Hold ... 91
A.11.3.4.5 Integral Offset ... 92
A.11.3.4.6 Integral .. 92
A.11.3.4.7 Non-Linear Gain Treatment .. 93
A.11.3.4.8 Duty-Cycle Conversion ... 93
A.11.3.4.9 Output Saturation .. 93
A.11.3.5 PID Analysis ... 93
A.11.3.5.1 Integral Windup .. 93
A.11.4 Cruise Control ... 95
A.11.5 Idle Speed Control .. 97
A.12 Model Verification ... 103
A.12.1 Idle Speed Control (ISC) Model Completeness ... 103
A.12.2 ISC Learning Algorithm Verification ... 105
A.13 Software Model Testing ... 105
A.13.1 Tests for Failures Resulting from Transient VPA Changes ... 106
A.13.2 Testing for Unexpected Cruise Control (CC) Turn-on Failures ... 108
A.13.3 Testing for Auto-Cancel Failures ... 112
A.13.4 ISC Maximum Output Test .. 115
A.13.5 Summary of System Test Results ... 118
A.14 Analysis of Real-Time Software Behavior ... 118
A.14.1 Introduction .. 118
A.14.2 Target Hardware ... 119
A.14.3 Embedded Software .. 119
A.14.4 Toyota’s Software Performance Testing .. 119
A.14.5 Statistical Analysis ... 119

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
4 of 134

NESC Assessment #: TI-10-00618

A.14.6 Toyota’s Analysis ... 120
A.14.7 Empirical Analysis ... 120
A.14.8 Analysis of 6000 RPM Data ... 120
A.14.9 Analysis of 8000 RPM Data ... 123
A.14.10 Analysis of 9000 RPM Data ... 124
A.15 Worst-Case Execution Time (WCET) Analysis ... 125
A.15.1 Static Analysis with aiT .. 126
A.15.2 Analysis Results ... 128
A.15.3 Recursion .. 129
A.15.3.1 Toyota’s Recursion Analysis .. 130
A.15.3.2 Recursion Analysis ... 130
A.15.3.3 Recursion and System Reset ... 132
A.15.3.4 Timing Analysis Results ... 132
A.15.3.5 Timing Analysis Forward Work ... 133
A.16 Green-Hills Executable based Testing .. 133
A.16.1 Technical Approach .. 134
A.16.2 Current Status ... 134
A.16.3 Verification Issues .. 134

List of Figures

Figure A.5-1. Fishbone Diagram of Potential Software Causes for UA .. 13
Figure A.9-1. Spin Model of recursive Interrupt Masking ... 46
Figure A.9-2. Pedal Position System Context .. 47
Figure A.9-3. Sensor Input ADC System Context with Software Collaborations 51
Figure A.9-4. Motor Drive IC System Context .. 53
Figure A.9-5. Port Register Inputs (GCPR) System Context ... 56
Figure A.9-6. PWM Functionality System Context With CPU Tasks ... 58
Figure A.10-1. Model Development and Fidelity .. 63
Figure A.10-2. Safing Functions Model ... 64
Figure A.10-3. Throttle Demand Model .. 64
Figure A.10-4. High-level Cruise Control Model .. 65
Figure A.10-5. Detailed Cruise Control Model .. 66
Figure A.10-6. Idle Speed Control Model .. 67
Figure A.10-7. Idle On Fuel Cut .. 68
Figure A.10-8. DTC and Diagnostic Model ... 69
Figure A.10-9. Pedal and Throttle Learning Model ... 70
Figure A.11-1. Architecture of Modeled Throttle Control Functions .. 71
Figure A.11-2. Nominal Software Range for VPA1 and VPA2 .. 72
Figure A.11-3. Pedal Learning – Typical Case After Battery Clear .. 74
Figure A.11-4. Pedal Learning – Learning a Lower Value .. 75
Figure A.11-5. Pedal Learning – Learning Value Reset .. 76
Figure A.11-6. Pedal Diagnostic Map for 2 second Ramp Sequence (Nominal) 78

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
5 of 134

NESC Assessment #: TI-10-00618

Figure A.11-7. Pedal Diagnostic Map for 2 second Ramp Sequence(Battery Voltage Applied) 79
Figure A.11-8. VPA1 and VPA2 Combinations Leading to a Minimal Learned Value after Starting

at Nominal ... 80
Figure A.11-9. Duty Cycle Times. 80% Duty Example .. 81
Figure A.11-10. Throttle Command Components ... 82
Figure A.11-11. Throttle learning Example ... 83
Figure A.11-12. Throttle Diagnostic Ramp Sequence Software Test .. 84
Figure A.11-13. Throttle Diagnostic Step Sequence Software Test .. 85
Figure A.11-14. Throttle Diagnostic Start and Hold Software Test .. 86
Figure A.11-15. Block Diagram of the PID Throttle Controller .. 87
Figure A.11-16. Bode Plot of Lead Filter Response .. 89
Figure A.11-17. Block Diagram of Lead Filter .. 89
Figure A.11-18. Block Diagram of Proportional Gain Lookup ... 90
Figure A.11-19. Block Diagram of Integral Gain Lookup ... 91
Figure A.11-20. Block Diagram of Integral Hold .. 92
Figure A.11-21. Block Diagram of Integral Offset Lookup ... 92
Figure A.11-22. Block Diagram of Integration .. 93
Figure A.11-23. Tracking Performance for Saturation Signal Pulse ... 94
Figure A.11-24. Tracking Performance for saturation Signal Pulse with a Ramp Onset......................... 95
Figure A.11-25. Start of ISC Feedback .. 101
Figure A.11-26. ISC Learning Process .. 102
Figure A.11-27. ISC Learning Reset .. 103
Figure A.13-1. Integrated Test Model (Integrated_Model_V9_ST.mdl) ... 106
Figure A.13-2. Trip Plan .. 107
Figure A.13-3. Cruise Control test Model (CruiseControl_V6_ST.mdl) ... 109
Figure A.13-4. Trip Plan .. 110
Figure A.13-5. Testing for Auto-Cancel Failure .. 113
Figure A.13-6. ISC Model (ISC_V3_ST.mdl) .. 116
Figure A.15-1. Screenshot of aiT Computing the WCET of an ETCS-i Function 127
Figure A.15-2. Portion of the gehdlp_req_1ms Call Graph ... 131

List of Tables

Table A.6-1. Overview of Tasks and Priority Levels .. 15
Table A.6-2. Tasks Activated by Higher Priority Tasks .. 16
Table A.6-3. Tasks Activated by Lower Priority Tasks .. 17
Table A.7-1. Basic Code Size Metrics Camry05 Software ... 21
Table A.7-2. Structure of TMC Coding Rules Document ... 22
Table A.8-1. Gcc-strict Warning Categories ... 25
Table A.8-2. Coverity Warning Categories ... 27
Table A.8-3. Codesonar Warning Categories .. 27
Table A.8-4. Deviations from 35 MISRA coding rules ... 29
Table A.8-5. Deviations from Power of 10 Rules ... 30

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
6 of 134

NESC Assessment #: TI-10-00618

Table A.8-6. Uno Warning Categories .. 31
Table A.8-7. Variable Name Reuse ... 32
Table A.8-8. Variable Scope ... 33
Table A.8-9. Use of Global Scope ... 33
Table A.8-10. Access Patterns Verified for Task Interference by TMC ... 35
Table A.8-11. Alternate Access Patterns for Task Interference .. 35
Table A.8-12. Shared Global Data... 36
Table A.9-1. Summary of logic models ... 44
Table A.10-1. Model Statistics .. 62
Table A.11-1. Cruise Control Switch Voltage ... 95
Table A.11-2. Cruise Control Activation ... 96
Table A.11-3. Cruise Control Diagnostics ... 97
Table A.11-4. Cruise Control Auto Cancel ... 97
Table A.11-5. Contributions to ISC ... 98
Table A.11-6. Fuel Cut Engaged RPM .. 99
Table A.11-7. Fuel Cut Disengaged RPM ... 99
Table A.13-1. Trip Phases ... 110

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
7 of 134

NESC Assessment #: TI-10-00618

A.0 Software Analysis
This appendix provides a brief introduction to the context of the team’s study into possible
software causes for unintended acceleration (UA) in Toyota vehicles.

A.1 Organization
The software study was one of several studies performed by the NESC under the direction of the
National Highway and Transportation Authority (NHTSA) and the Department of Transportation
(DOT). The software study concentrated on the potential triggers that could be hiding in the
software.

A.2 Scope
The study focused on the 2005 Toyota Camry L4 (inline four cylinder) engine control module
(ECM) software. The selection of the make, model, year, and configuration was determined by
the NASA. As noted in the DOT Test Plan:

“The area of emphasis will be the 2005 Toyota Camry because this vehicle has a
consistently high rate of reported 'UA events' over all Toyota models and all years, when
normalized to the number of each model and year, according to NHTSA data.”

Toyota provided several different versions of the ECM software including versions for 2007 and
V6 engines; however, given the limited amount of available time, the study focused primarily on
the 2005 Toyota Camry L4 (inline four cylinder) engine control module (ECM) software.

The study started mid April 2010 and ran through mid August 2010. Initially, the software study
was supported by the Toyota facility in Torrance, California. The effort expanded to two
facilities; one in Torrance and a second facility at the legal offices of Bowman and Brooke’s Law
Office in San Jose, California. This second facility became operational in June 2010.

A.3 Facilities & Resources
In order to support the confidentiality of the 2005 Camry source code, the two facilities were
maintained within offices controlled by Toyota. The software teams traveled to these offices
from Ames and JPL for study of the source code and Toyota documentation.

The Torrance facility was located on the 7th floor of a Toyota building located near the main
campus of the Toyota US headquarters. The San Jose facility was located within the Toyota
supported legal offices, and had access to the conference rooms.

As noted, the NASA engineers performed the study on Toyota premises within an access
controlled area. The NASA Software team/NHTSA/DOT had agreed not to remove Toyota

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
8 of 134

NESC Assessment #: TI-10-00618

intellectual property from this location, most notably software source code and design
documents. Toyota provided all computational resources for this work, to the team’s
specification. For example, the resources that were provided at the Torrance facility Toyota
provided four desktop workstations, in dual-boot configuration supporting the Windows XP and
the Ubuntu/Linux operating systems, a backup system, and a large compute server with 32
GBytes of main memory and 12 CPU cores, for the computationally more intensive model
analyses. Access to the Toyota source code was made possible through the workstations. A
similar setup was provided by Toyota at the San Jose facility, except for the multi-core system.

The team was able to start work within a week of the initial proposal. Throughout this study,
Toyota IT personnel were also made available to assist with any technical problems with the
workstation setup.

Software tools provided by Toyota included the Atlas translation software system for rough
online translations from Japanese into English, and a version of the compiler suite that Toyota
uses to compile their source code. The proximity of the work area to Toyota headquarters
facilitated a direct interaction between the NASA software team and the Toyota engineers. The
discussions took place in English and Japanese, with the help of an interpreter who provided
two-way translations during all regularly scheduled and impromptu meetings and discussions.

During the study, JPL, Caltech, and Ames intellectual property employed to analyze the Toyota
software was protected. This included encrypting tools and the data archives with the
intermediate results. This step was warranted given that the analysis was performed on Toyota
premises using Toyota computational resources.

The nominal work day started at 8am and concluded at 7 pm. Throughout the study, four
regularly scheduled daily meetings were held with Toyota engineers. The meetings served to
structure the team’s interactions with Toyota and facilitated the process of obtaining technical
details where needed, on an ongoing basis.

• A first meeting was held at 9am each day to summarize the day’s plans for both sides.

• At 1 pm an ‘action item debrief’ meeting followed, to cover any action items provided by
the team to Toyota that were ready to be closed with the delivery, by Toyota, of the
corresponding response or documents. This debriefing took from one to three hours.

• At 4 pm a ‘new action item’ meeting was held wherein the NASA team could submit new
actions to Toyota.

• Finally at approximately 6pm, the Toyota engineers in Torrance held a teleconference
with Toyota in Japan to relay the team’s new action items to Japan. Because of the time

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
9 of 134

NESC Assessment #: TI-10-00618

difference to Japan (+16 hours), this teleconference allowed the Japan-based engineers to
work through the (Pacific Time Zone) night to address the team’s action items.

Based on the team’s requests for technical data, Toyota flew domain experts on various topics to
the Torrance and the San Jose offices to address the team’s questions in person and to respond to
follow-up questions. Most of the Toyota experts stayed for one to two weeks, before being
replaced by a new team. In this way, the NASA team was able to have detailed interactions
with, among others, Toyota throttle control system and software engineers, cruise control system
engineers, transmission engineers, and brake system engineers. Additionally, Toyota
management representative from Japan were also on site to organize the responses. Both Toyota
engineers and DENSO engineers (the software contracting company employed by Toyota in the
software development), were made available for this study. The US Toyota president and COO
of Toyota, Jim Lentz, also visited the NASA team during this study on May 13.

Toyota attempted to provide information as quickly as possible, including document translations.
Questions about the provided information could always be resolved in follow-up conversations
or by referring to documentation that was also provided. Most questions were asked several
times during the study to assure the teams understanding.

As part of the study, the software team generated over 100 separate action items. Each action
item was discussed in the face to face meetings, as were the Toyota responses. All
documentation responding to the action items was provided by Toyota on a secure file server on-
site. The server also held copies of the Camry software source code (for multiple Camry years
and versions), the design documentation, and a limited number of unit-test case source files.
While on-site in Torrance and San Jose, access this server allowed for the review and use of all
information provided.

A.4 Technologies Applied

A.4.1 Software Implementation Analysis Using Static Source Code Tools
The initial focus in analyzing the Camry05 source code has been on a thorough static source
code analysis of the ECM to find possible coding defects and potential vulnerabilities in the
code. Toyota internally makes use of the QAC tool for static analysis. The team’s experience is
that there is no single analysis technique today that can reliably intercept all vulnerabilities, but
that it is strongly recommended to deploy a range of different leading tools. Each tool used can
excel at a different aspect of static analysis, which results in remarkably little overlap in the set
of warnings that is produced. The combination of different analyzers achieves the highest value
in analysis results. Three different static source code analyzers were deployed in for the study,
which made use of the respectable static analysis capability in modern compilers, such as the
public domain standard gcc compiler suite, version 4.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
10 of 134

NESC Assessment #: TI-10-00618

Tools Used:
• Coverity1

•

 – is currently one of the leading static source code analysis tools on the market.
It excels at finding common coding defects and suspicious coding patterns in large code
bases, taking a relatively short amount of time. The tool also supports custom-written
checkers that can verify compliance with user-defined additional coding rules. This
capability is put to use by using a small set of such Extend checkers. Coverity aims to
reduce the number of warnings it issues to a minimum, by a careful filtering process that
seeks to identify the most relevant or critical issues.

CodeSonar2

•

 – is a second strong static source code analysis tool from Grammatech that
uses a different technology for detailed inter-procedural source code analysis. Codesonar
analysis typically takes longer to complete than comparable tools, but can reveal more
subtle types of defects and suspect coding patterns, requiring deeper path analysis (which
can be more time consuming). The version of Codesonar used was extended with
checkers for JPL’s coding standard. In this study the software team separated results for
the coding standard checks from the default results.

Uno3

A.4.2 Software Logic Model Checking

 - is a research tool for performing static source code analysis, originating at Bell
Labs. It is designed to perform a simpler, fast analysis for intercepting primarily the three
most common types of software defects in programs: the Use of uninitialized variables,
Nil-pointer dereferences, and out-of-bounds array indexing. The tool can be extended
with user-defined checks.

Logic model checkers use efficient algorithms to explore all possible executions of a system in
an attempt to locate those executions that violate user-defined logic properties. The exploration
is in principle exhaustive and thus if it completes without finding incorrect behavior then the
system is proven correct. Because the exploration is exhaustive, model checkers can excel in
finding incorrect behavior in ‘corner cases’ which are exactly the types of errors that tend to
occur infrequently and be overlooked in even rigorous standard software testing. Key to a logic
model is the formulation of the model’s behavior and its correctness.

1 http://coverity.com/
2 http://grammatech.com/products/codesonar/overview.html
3 http://spinroot.com/uno/

http://coverity.com/�
http://grammatech.com/products/codesonar/overview.html�
http://spinroot.com/uno/�

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
11 of 134

NESC Assessment #: TI-10-00618

The tools used in the for logic model checking were:
• Spin

•

 - is an open-source software tool for the formal verification of distributed software
systems. In April 2002 the tool was awarded the ACM System Software Award for 2001.
It is possible to use this tool both for the exhaustive verification of high level design
models of a system and for the detailed exploration of implementation level code in
multi-tasking or multi-threaded systems.

Swarm

The logic models developed focused on those modules within the Toyota throttle control
software that were deemed, based on the team’s study, most likely to contribute to unintended
acceleration. The modules selected are related to:

 – is a preprocessing system for Spin that can maximize use of available compute
resources in large compute clouds or grids thereby allowing for a comprehensive analysis
of large and complex software systems.

• the conversion of the desired throttle position into a pulse width modulated set of H-
Bridge transistors signals;

• the generic processing of the sensors inputs of any type; and

• the specific processing of the accelerator pedal position sensor input.

This set of logic models are involved with the input/output of the throttle control software.
Possible errors in modules related to the output of the throttle plate angle are clearly suspects in
unintended acceleration. Such errors may be largely undetected in monitoring software given
how late in the computation they occur. Additionally, an error in the input, particularly the
accelerator pedal sensor or throttle angle sensor inputs, could masquerade as a valid sensor input
and confuse the throttle controller into unintended acceleration. Table A.9-1 gives a summary of
the logic models developed.

The logic model verifications identified a number of potential issues. All of these issues
involved unrealistic timing delays in the multiprocessing, asynchronous software control flow.
Even if they were to occur, none of these potential issues could be tied to unintended
acceleration.

No cause for unintended acceleration was found from the logic model verification effort.

A.4.3 Software Algorithm Design Analysis Using Matlab Models
Model-Based Design (MBD) is a mathematical and visual method of addressing problems
associated with designing complex control systems. It is used in motion control, industrial
equipment, aerospace, and automotive applications.

MBD provides an efficient approach for establishing a common framework for communication
throughout the design process while supporting the development cycle ("V" diagram). In Model-

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
12 of 134

NESC Assessment #: TI-10-00618

Based Design, development is manifested in these steps: modeling a system, analyzing and
synthesizing a controller for the system, simulating the system, and integrating all these phases
by implementing the system. The model-based design paradigm is significantly different from
traditional design methodology. Rather than using complex structures and extensive software
code, designers can use MBD to define models with advanced functional characteristics using
continuous-time and discrete-time building blocks. These built models used with simulation tools
can lead to rapid prototyping, software testing, and verification. Not only is the testing and
verification process enhanced, but also, in some cases, hardware-in-the-loop simulation can be
used with the new design paradigm to perform testing of dynamic effects on the system more
quickly and much more efficiently than with traditional design methodology.

For this study of the Toyota 2005 Camry software, model-based design techniques were applied
to create high-fidelity models of the software functions and behaviors. Toyota documentation
and discussions with Toyota engineering experts initiated the process. Source code analysis
continued the process by increasing the accuracy of the models. And testing upon the Camry
simulators and actual Camry vehicles confirmed the accuracy of the models. Efforts were made
to incorporate as much actual source code into the models for further increased fidelity of the
models.

No code was generated, but the models were executable, and could be run in a software
environment to study function and behavior.

This MBD approach also supported the dissemination of the software functions and behaviors to
the team as a whole. Presentations of the software in this manner efficiently communicated the
software within the 2005 Camry microcontrollers without exposing the native source code.

Tools Used:

• MATLAB – is a product family providing a high-level programming language, an
interactive technical computing environment, and functions for algorithm development,
data analysis and visualization, and numeric computation.

• Simulink - is an environment for multi-domain simulation and MBD for dynamic and
embedded systems. It provides an interactive graphical environment and a customizable
set of block libraries that let you design, simulate, implement, and test systems.

• Stateflow - extends Simulink with a design environment for developing state charts and
flow diagrams. Stateflow software provides the language elements required to describe
complex logic in a natural, readable, and understandable form. It is tightly integrated with
MATLAB and Simulink products, providing an efficient environment for designing
embedded systems that contain control, supervisory, and mode logic. Models can be
created of embedded software that combine logical behavior, such as fault management

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
13 of 134

NESC Assessment #: TI-10-00618

and mode switching, with algorithmic behavior, such as feedback control and signal
conditioning.

• SystemTest – automated model testing of Simulink models as a black box. Test values
are provided to the proper model inputs; outputs of the model are tested against properties
to obtain fail/pass results.

• aiT from AbsInt - statically computes tight bounds for the worst-case execution time
(WCET) of tasks in real-time systems. aiT directly analyzes binary executables and takes
the intrinsic processor cache and pipeline behavior into account.

A.5 Software Study
The software team performed an analysis of the Camry model year 2005 ECU (engine control
unit) software to investigate if there can be plausible triggers for sudden UA in the engine control
software of Toyota vehicles. As part of this study, the team also analyzed the structure and
implementation of this software, using a range of different metrics. The fishbone diagram in
Figure A.5-1 provides the general context for this study.

Figure A.5-1. Fishbone Diagram of Potential Software Causes for UA

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
14 of 134

NESC Assessment #: TI-10-00618

The fishbone diagram groups potential software causes in four broad categories. In this report,
the software team addressed each of these categories:

1. Coding defects (implementation)
2. Algorithm flaws (design logic)

3. Task interference (race conditions, data corruption)

4. Insufficient fault protection

An overview of the basic operation of the control software used in the Camry05 is discussed in
the following sections.

A.6 ECM Software Implementation and Basic Architecture
The ECM (engine control module) for the 2005 Camry uses a NEC V850 E1 processor. The
software for the ECU is written in ISO/ANSI C4, and compiled for production use with the
GreenHills5 compiler suite version A.4.0. The code relies on the use of the Greenhills compiler
with pragma directives6

The ECM is designed to meet a range of real-time constraints for engine control. The real-time
operating system used is based on the OSEK

 that is discussed below.

7 standard for distributed control units in vehicles,
which is supported by AUTOSAR8

The Camry 2005 code contains Tasks that execute at fixed priority levels between 1

 (Automotive Open System Architecture) of which Toyota is
a core member. The operating system is based on the execution of tasks, each with a fixed and
statically assigned priority.

4 http://en.wikipedia.org/wiki/ANSI C
5 http://www.ghs.com/
6 http://gcc.gnu.org/onlinedocs/cpp/Pragmas.html
7 http://en.wikipedia.org/wiki/OSEK, http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
8 http://en.wikipedia.org/wiki/AUTOSAR

http://en.wikipedia.org/wiki/ANSI_C�
http://www.ghs.com/�
http://gcc.gnu.org/onlinedocs/cpp/Pragmas.html�
http://en.wikipedia.org/wiki/OSEK�
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf�
http://en.wikipedia.org/wiki/AUTOSAR�

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
18 of 134

NESC Assessment #: TI-10-00618

A.6.1 The CAN Data Network
Messages sent on the CAN-bus9 (Controller Area Network) carry identifiers of 11-bits, which
means that it is compliant with the standard CAN 2.0 A base frame format. (The extended CAN
2.0 B format supports identifiers of 29 bits.) The CAN 2.0 A protocol was published as a
standard by the ISO 11898 in 1993,10

The arrival of a message is signaled by an interrupt, which causes an interrupt handler to copy
the data from a DMA area into a ring-buffer of 7 slots that is read and emptied by the 1msec
(highest priority) task. CAN message transfers are initiated at the 250 µsec mark of the 1 msec
cycle.

 and is today broadly used in the automobile industry.

Signals/messages are repeated to protect against loss, but increasing the risk of network overload
conditions. A node also retransmits on message transfer errors and on message collision. A
babbling node, which could potentially flood the CAN network with messages, is cut-off within
65 msec at the transmitter side through a power cycle.

Occurrences of CAN data loss are recorded in SRAM, and remain available until the battery is
disconnected. According to the Toyota Motor Corporation (TMC), 292 instances were reported
of CAN data loss by dealers for cars brought in for any problem.

Signals to the vehicle stability control (VSC) computer, an option on the 2005 Camry, travel
over the CAN network – including on/off commands.

A.6.2 Reboot/Reset Scenarios
A watchdog control (WDC) subsystem, with separate CPU monitors the main engine control unit
computer, and all the signals and events it is meant to respond to. Either the Main CPU will reset
itself or the WDC subsystem will reset the ECM when abnormal conditions are detected. Some
of those conditions are:

• The CPU load is too high (the idle margin time is exceeded).

• An illegal instruction is executed.

• An undefined interrupt is generated.

• An abnormal return value from a system call is detected.

9 http://en.wikipedia.org/wiki/Controller area network
10 http://www.can-cia.de/index.php?id=161

http://en.wikipedia.org/wiki/Controller_area_network�
http://www.can-cia.de/index.php?id=161�

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
19 of 134

NESC Assessment #: TI-10-00618

A system reboot takes about 94 ms for the Main CPU in the ECM, and 134 ms for the Sub-CPU
in the WDC. This reboot time includes 30 ms for clearing RAM memory. This reboot time is fast
enough that its occurrence is not noticeable when the car is in operation. The Main CPU and the
sub CPU may also reboot independently, depending on the error condition that is encountered.
Both the Main and the Sub-CPU generate a watchdog pulse and monitor each other’s health. The
occurrence of a CPU reboot is not recorded in the event-data recorders and therefore not
discoverable afterwards. Independently, the power supply sub-system also monitors the WDC
and can issue reset commands to both the Main CPU and the Sub-CPU in the WDC.

A.7 Software Implementation Study
The software development process followed by Denso is based on a five step process.

• Specification

• Design

• Implementation

• Unit test

• Integration test
Note that there is no intermediate phase reserved for sub-system testing, e.g., of the cruise
control sub-system completes unit test, and moves on to integration test, without an intermediate
sub-system test.

The system design and software specification is performed by TMC engineers. The detailed
software design, implementation, and unit-tests are done by DENSO engineers. After delivery of
the code to TMC, acceptance tests (the integration test) are performed on a special high-fidelity
hardware testbed called MITY.

A strict convention is used for naming variables, tables, functions, and files. The suffix _l_
indentifies a logic component, _c_ identifies constant data (e.g., as recorded in tables), and _x_
execution. A filename prefix is used to identify e_ engine control, w_ diagnostic code, g_
application platform code, ge_ engine control unit layer code, and gc_ cpu layer code.

Every variable name carries a 3-letter prefix that identifies its scope and type. For instance, the
prefix s2t_ identifies a signed variable (s) of two-bytes (2) with local scope (t). Similarly u4g_
identified an unsigned variable of four-bytes with global scope, and s2s_ stands for a signed two-
byte variable that is declared file-local (static). Variables can also have suffixes such as _map or
_tbl.
In addition to the MITY testbed mentioned above, Toyota reported the use of a number of tools
and checks to assess the quality of their software.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
20 of 134

NESC Assessment #: TI-10-00618

• QAC, a tool from the British company Programming Research11

• CAST is an in-house TMC tool to verify type conversions and potential cases of value
overflow and some common cases of coding defects. The tool checks compliance with 25
specific rules (e.g., possible incorrect use of precedence rules in expressions with binary
shift operations, or the potential loss of precision in an expression with mixed variable
types).

, is the primary tool used
to catch common coding defects and to verify compliance with some commonly used
coding rules.

• Careless, another in-house TMC tool for verifying different coding patterns and coding
style, perhaps compliance with naming conventions (not much else is know about this
tool and the team was not able to obtain a manual with more information).

• A Mode Transition checker, to verify correct transitions between normal and failure
modes.

• A Stack overflow checker. The system stack is limited to just 4096 bytes, it is therefore
important to secure that no execution can exceed the stack limit. This type of check is
normally simple to perform in the absence of recursive procedures, which is standard in
safety critical embedded software.

 A Task interference check, which is a mostly manual check, assisted by a tool-generated
list of cases to be inspected. This is covered in greater detail in the Section A.8.2 Access
to Shared Global Variables.

Some basic statics on the source code are summarized in Table A.7-1.

SLOC – Source Lines of Code are compiled into executable code.
NCSL – Non-Commented Source Lines have no additional explanatory text.
Source File – Source code file complied into executable code.
Header File – Source code file used to describe source code interfaces.
Comments – Explanatory text in addition to SLOC.

A comment ratio (Comments/NCSL) near or above 1 can indicate unusually densely commented
code. It should be noted, the source lines were readable as C, and the comments were in
Japanese.

11 http://www.programmingresearch.com/qac main html

http://www.programmingresearch.com/qac_main.html�

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
21 of 134

NESC Assessment #: TI-10-00618

Table A.7-1. Basic Code Size Metrics Camry05 Software
C code #Files SLOC NCSL Comments NCSL/

File
SLOC/
NCSL

Comments/N
CSL

sources 1,761 463,473 256,647 241,683 145.7 1.8 0.9
headers 1,067 100,423 39,564 67,064 37.1 2.5 1.6

As part of this study, the team also analyzed the structure and implementation of this software,
using a range of different metrics.

The Toyota code was developed and implemented using coding rules and standards matching the
Toyota coding rules and standards.

A.7.1 TMC Coding Rules
A specific set of coding rules was defined for the TMC/Denso ECU software development. The
rules are described in a document titled: Power train system electronic control unit control
software for 32 bits -- Coding rule.12

The larger part of the document concerns naming conventions and coding style. Most relevant
for this study were the specific coding rules. Many of the rules that are articulated in the
document are occasionally violated in the code. Examples of rules that were generally complied
with include:

 The full document has 81 pages and has ten main sections,
as shown in Table A.7-2.

• Do not use tab characters, limit lines to 80 characters, and indent lines in 2-space
increments.

• Do not use octal numbers.

• Do not use the multiplication, division, or modulo operator, instead use library functions
which are coded in assembly language for speed.

• Do not use function calls in if conditionals (to avoid possible side-effects).

• Split compound expressions across lines.

• Place the opening curly brace of a block on same line as an if, while, or for statement.

• Check bounds with multiple if-statements in series not with if/then/else sequences.

• Use only one return statement per function.

12 As translated from Japanese to English by the Atlas tool that Toyota provided to us;
http://www.fujitsu.com/global/services/software/translation/atlas/

http://www.fujitsu.com/global/services/software/translation/atlas/�

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
22 of 134

NESC Assessment #: TI-10-00618

Table A.7-2. Structure of TMC Coding Rules Document
Section Title

1 Document version history

2 Table of contents

3 Introduction

4 Data types

5 Functions

6 Header files

7 Include files

8 Commenting conventions

9 File structure

10 Coding Rules (p.53-81)

The following Toyota rules in the Toyota document are frequently violated in the ECM code. A
violation of these rules does not automatically imply risk, but it can affect code clarity,
consistency, and maintainability.

1. Use parentheses in expressions for disambiguation.

2. Consistently use symbolic names for variables and constants.

3. Use the sizeof function instead of a constant.

4. Use parentheses around the body of a macro definition.

5. Terminate each switch case with a break statement. (Many violations were noted,
without comments indicating that the fall-thru to the next case statement is intended)

6. Do not use ternary operations (i.e., statements of the form x?y:z) in the etcs module.
(count was 211 uses of ternary operations in the code, but only one appears in the etcs
module.)

7. Do not use pre- or post-increment or decrement operators in assignments (e.g., x=
y++). (Counted 61 violations of this rule in the code.)

8. Limit variable names to 31 characters. (Counted 58 violations in the code. The
longest names have 36 characters, e.g.: u2s_vpdccstdrnlrn_gnslpavcstdrnl_tbl.
Possibly, the u2s_ type prefix and the _tbl suffix were added late in development.)

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
23 of 134

NESC Assessment #: TI-10-00618

9. Switch statements must include a default. (Counted 343 switch keywords in the code,
and 238 uses of the default keyword, which means at least 105 violations of this rule.)

10. Terminate comments on the same line where they are started. (Counted 206 violations
in the code, including typos like /* ... /* in multi-line comments.)

11. Include directive must specify pathnames for include files starting with one of only
three allowed prefixes: “./”, “../”, or “<”. (Counted 37 violations of this rule, 15 of
which appear in the file os/kernel.h which was likely excluded from the TMC coding
rules.)

The rule about references to include files (the last entry in the list) is of special interest because
the use of relative pathnames introduces a risk of accidentally referring to an incorrect file when
a source file is moved within the file system hierarchy during development.

Not phrased as an explicit rule, but complied within the code, is the absence of dynamic memory
allocation. In the TMS software, all memory and all data objects are statically allocated at
system boot time. This practice reduces issues with the allocation/deallocation of memory and
references to dynamic memory during execution.

A.7.2 NASA Mission and Safety Critical Software Coding Rules
There are a number of rules that are commonly applied to NASA mission and safety critical
software but were not required in the TMC coding rules.

• Union data structures. The use of union data structures is generally prohibited in safety
critical code (e.g., in the MISRA13

156 separate uses of union data structures were counted in the Camry05 code,
compared with 229 uses of the, generally safer, struct declarations.

 coding guidelines), but the TMC coding rules
document explicitly allows its use.

• Excessively long functions. A common practice is to allow no functions longer than 60-75
lines to enhance manual code inspections.

200 functions longer than 75 lines in the code were counted, with the longest
functions spanning several hundreds of lines.

• Use of the #undef compiler directive, to override earlier macro definitions. This allows
definition to change within the source code.

13 http://www.misra.org.uk/

http://www.misra.org.uk/�

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
24 of 134

NESC Assessment #: TI-10-00618

2,659 uses of #undef in the Camry05 software were counted.

• Compiler pragmas. A compiler pragma can be used to leverage a non-language standard
feature supported by a specific compiler, and thereby makes the code implementation
dependent (or more precisely: compiler dependent). Pragmas can introduce errors when a
different complier is used to compile the source code.

2,339 uses of pragmas in C source file and 472 uses in C header files were
counted. These uses are of 14 different types and are mostly used to link data
structure names to specific areas of DMA memory.

• Guaranteed loop bounds. Another rule absent from the coding rules document but
generally present in coding standards for safety critical software is a precaution against
unbounded loops.

The software team performed additional, more detailed analysis of the code with the help of a
range of static source code analyzers, which is discussed in the next section.

A.8 Static Analysis Results
This section summarizes the results of a static analysis of the Camry05 code with the following
tools.

• The standard gcc14

• Coverity

 compiler version 4, both in basic mode and in strict language
compliance mode with all warnings enabled.

15

• Codesonar

 version 4.2, with a range of additional Extend checkers to verify compliance
with commonly used coding rules to reduce risk.

16

• Uno

version 3.6p1, a version that includes support for JPL Coding Rules used for
mission critical flight software development.

17

 version 2.12, for additional checks.

14 http://gcc.gnu.org/
15 http://www.coverity.com/
16 http://www.grammatech.com/products/codesonar/overview.html
17 http://spinroot.com/uno/

http://gcc.gnu.org/�
http://www.coverity.com/�
http://www.grammatech.com/products/codesonar/overview.html�
http://spinroot.com/uno/�

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
25 of 134

NESC Assessment #: TI-10-00618

A method for identifying potential problems involves analyzing compiler warnings when run in
either basic or pedantic mode.

Compiler Analysis
The metric used here is the number of warnings issued per one thousand lines of code, after
stripping comments and blank lines from the code (abbreviated as KNCSL). The few warnings
issued for the Camry05 code can be attributed to minor differences in the parsers of the different
compilers used: some compilers can be less forgiving for small ambiguities in the language
definition (e.g., the placement of braces or the separation of tokens). The 142 warnings issued by
gcc in strict mode, by warning category, are summarized in Table A.8-1.

Table A.8-1. Gcc-strict Warning Categories
Number of warnings Category

52 Unused variable

33 Use of /* within a comment

21 Declared static but never defined

19 Defined but not used

9 Value computed not used

2 Missing braces around initialize

2 Function pointer cast to object pointer-type

1 May be used uninitialized

1 Suggest parentheses around && within ||

1 Overflow in implicit constant conversion

1 Static declaration follows non-static

The warning overflow of implicit constant conversion was generated for the assignment of the
hexadecimal value 0xff (255 in decimal) to a variable of type signed character, which has a value
range 0..128 and -1..-127. The suggested use of parentheses in an expression containing both
logical and (&&) and logical or (||) operators is for a preprocessor directive of the following type
“ #if X && Y && Z || A” which indeed requires careful familiarity with the precedence rules
used by the C preprocessor to determine if its intent matches the actual interpretation.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
26 of 134

NESC Assessment #: TI-10-00618

Very few compiler warnings were generated by the MY2005 Camry source code. No issues
leading to a UA in the TMC system were found when these compiler warnings were reviewed
and inspected in the source code.

Static Analysis
The next series of measurements was done with two state-of-the-art static source code analyzers.
Consistent with the team’s experience, there is no significant overlap between the warnings
issued by the two tools, which is a strong motivation for the use of more than one strong static
source code analysis tool in software development. At the current state-of-the-art, the leading
tools all have different strengths and should be combined for a thorough analysis. The software
team intentionally applied analysis tools not used earlier on this code. (Internally TMC relies on
the use of the QAC 18 tool, and the firm Exponent hired by TMC to perform additional analyses
used the tool Polyspace,19

The company Coverity regularly performs a scan of public-domain software and makes the
resulting metrics available to developers. For the gcc compiler (with 851,149 lines of code), the
published metric is currently 0.219 Coverity warning per KLOC

 two other leading tools in this domain.) As can be seen in the reports,
the Coverity tool tends to be more conservative in the generation of reports, while the Codesonar
tool does a deeper (and generally slower) analysis, and generates more reports.

20

The MY2005 Camry Coverity analysis indicated 1.41 warnings per thousand lines of code. If
measured per raw lines of code, the count for MY2005 Camry would become 0.74. Any count
near or below one warning per one thousand lines of code generally indicates a well-managed
software development process.

. The measure KLOC –short
for one thousand lines of code – may differ from the team’s metric KNCLS in that it is likely to
be a raw line-count that includes comments and blank lines.

The 418 warnings issued by Coverity, grouped by warning category, are summarized in Table
A.8-2. A similar listing for the 2272 warnings issued by the Codesonar tool is summarized in
Table A.8-3.

18 http://www.programmingresearch.com/qac main html
19 http://www.mathworks.com/products/polyspace/
20 http://scan.coverity.com/rungAll.html

http://www.programmingresearch.com/qac_main.html�
http://www.mathworks.com/products/polyspace/�
http://scan.coverity.com/rungAll.html�

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
27 of 134

NESC Assessment #: TI-10-00618

Table A.8-2. Coverity Warning Categories
Number of warnings Category

209 checked return

97 declared but not referenced

39 Overrun static

19 Integer overflow

17 Potentially unbounded loop

13 Uninitialized variable

8 Dead code

6 No effect

5 Missing break statement

5 include recursion

Table A.8-3.Codesonar Warning Categories
Number of
warnings

Category

2272 Global variable declared with different types

962 Buffer overrun

333 Cast alters value

142 Redundant condition

99 Condition contains side-effect

92 Code before #include

64 Multiple declaration of a global

63 Unreachable computation

63 Useless assignment

22 Uninitialized variable

21 Unreachable call

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
28 of 134

NESC Assessment #: TI-10-00618

Number of
warnings

Category

16 Unused value

14 Buffer underrun

14 Empty if-statement

12 Multiple statements on one line

12 Unreachable data flow

11 Type underrun

6 Unreachable control flow

2 Macro defined/undefined in function body

No issues leading to a UA in the TMC system were found when these static code analysis
warnings were reviewed and inspected in the source code.

A.8.1 Additional NASA/JPL and MISRA Coding Rules
The next metric the software team collected is related to a series of coding rules developed and
used at NASA/JPL for flight software. These rules are inspired by in-flight anomalies and risk-
related defects in code. In this context the software team also looked at the compliance with a
selection of the MISRA coding guidelines, which are recommended for use in automotive
software. In discussions with TMC the software team learned that the MY2005 Camry coding
rules used by Toyota predate the MISRA guidelines (the original MISRA coding guidelines date
from 1998), but that an estimated 50% of the MISRA rules were being followed.

The coding rules used by TMC and DENSO are described in more detail in the following section
of this report. For the next measurements the software team looked at a subset of the rules that
could be verified with an extended version of a preprocessing tool developed at NASA/JPL for
this purpose. (This means that most of the rules checked with this tool are related to the
conforming use of preprocessing directives and macro definitions.)

The Toyota code was developed and implemented using coding rules and standards matching the
Toyota coding rules and standards. As a result, the static analysis tools used in this study,
configured for NASA/JPL use, produced more warning reports when used on the Toyota system.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
29 of 134

NESC Assessment #: TI-10-00618

The deviations reported in the MISRA rule check are categorized as follows. For each case, the
software team provide the number of reports issued in the first column, followed by the MISRA
rule number and a brief description of the rule itself. A total of 14 of the 35 rules the software
team checked had reported deviations in the Camry05 code.

Table A.8-4. Deviations from 35 MISRA coding rules
Number of
warnings

Rule number Description

2763 19.7 Use of a function-like macro instead of a C function

2659 19.6 Use of the directive #undef

1615 19.4 Possibly non-compliant macro format

29 19.11 Evaluation of an undefined macro name

19 2.3 Nested /* comment

14 19.12 Use of more than one token-pasting operation (##) in a macro

13 19.16 Use of a macro call with insufficient parameters

7 18.4 Use of a union data structure

4 14.5 Use of the keyword continue

4 19.5 Use of a macro definition within block scope

3 19.10 Formal macro parameter not enclosed in round braces

2 19.4 Use of a semi-colon at the end of a macro body

1 19.13 Use of token pasting operations (##) in a macro definition

1 19.1 Include directive (#include) is preceded by code

The software team also checked compliance with a small set of coding rules that was identified
in NASA/JPL flight software development as strongly related to code safety. The warnings
issued for compliance with these so-called “Power of 10” Rules21

21 ''The Power of Ten -- Rules for Developing Safety Critical Code,'' IEEE Computer, June 2006, pp. 93-95.

 can be grouped into the
categories summarized in Table A.8-5.

http://spinroot.com/p10/

http://spinroot.com/p10/�

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
30 of 134

NESC Assessment #: TI-10-00618

Table A.8-5. Deviations from Power of 10 Rules
Number of warnings Description

6,971 Scope could be local static

1,086 Scope could be file static

502 Unchecked parameter dereference

425 Parameter not checked before use as an index

326 Parameter not checked before dereferencing

200 Functions longer than 75 lines NCSL

59 Potentially unbounded loop

18 Pointer type inside typedef

16 Potentially recursive macro

The first two entries, with the largest number of reports, correspond to variable declarations that
have larger scope than is necessary.

The length of a function is generally limited to 60-75 lines of code, after stripping blank lines
and comments. There are 200 functions in the Camry05 code that exceed this length. The longest
function far exceeds this limit, at 740 lines NCSL.

The reports for 16 potentially recursive macros flags the following type of macro use in the code.

#define x(y) x[y]
#define x(y) x_tmp(y)
 #define x_tmp(y) x##y()

In the first example, a macro is used to provide an alternative syntax for an array index; allowing
the programmer to write x(y) instead of x[y]. The use is less than optimal since it makes the code
look as if a function call, or equivalent, is used, where in fact an array index operation is
performed.

In the second example a temporary macro name is used to provide a token-pasting operation that
allows the programmer to write x(y) when in fact the code will execute xy(). The use of these
patterns affect code clarity and readability.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
31 of 134

NESC Assessment #: TI-10-00618

Potentially unbounded loops are loops that have no maximum loop count or limit that guaranties
the loop terminates.

The warnings issued by the Uno tool are categorized in Table A.8-6.

Table A.8-6. Uno Warning Categories
Number of warnings Description

453 Missing else

89 Possibly uninitialized variable

7 Array indexing error (in unexecutable part of conditional expressions)

2 Array of 16 bytes initialized with 17 bytes

The majority of the deviations detected by Uno (453 out of 551 reports) are cases where if-then-
else-if series of statements are not terminated by a final else clause. This rule is similar to the
common coding rule (also included in the MISRA guidelines and in the TMC coding rules) that
every switch statement must contain a default clause. Another Uno report flagged the
initialization of an array of 16 bytes with 17 bytes of data, causing a one-byte overflow. The
software team confirmed in the code the overshoot had no harmful effects on execution. For the
risk-related rule set, low numbers are understandably preferred.

In summation, the Toyota software development process uses an internal coding standard
that does not contain all the comparable rules and guidelines contained in NASA/JPL and
MISRA coding guidelines.

A.8.2 Access to Shared Global Variables
The Camry05 software code structure relies on the use of a single large memory space that is
shared among all tasks, with unrestricted access. This is in contrast to system designs where each
task is given strictly private memory that is not accessible to other tasks, and very limited
amounts of memory are used for shared data22

. Strict access patterns (e.g., using interrupt masks,
semaphores, or locks) are then used to secure the safety of access to shared data. In this code
structure, the scope of all data object (the part of the code where the object is visible and
accessible) is normally restricted to a minimum. The underlying principles used in such systems
are based on firewalls and containment, limiting cross-coupling and inter-task dependencies to a

22 Following, for instance, the ARINC 653 standard http://en.wikipedia.org/wiki/ARINC 653 used in the airline
industry.

http://en.wikipedia.org/wiki/ARINC_653�

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
32 of 134

NESC Assessment #: TI-10-00618

minimum. Reduction in variable scope allows implementation errors to be detected when the
code is compiled, and when the code executes.

In the Camry05 software these principles are not used, which requires more manual inspection
and allows for less automated analysis of the correct protection and access to these variables
during development. To get an impression of the scope of the task, the software team counted the
number of externally visible global variables, as reported by the standard Unix tool nm, which
examines the executable image of code. The nm tool reports the names of objects in eight
different categories, e.g., depending on whether an object is initialized or uninitialized, is
externally visible or file-local, was declared constant, or defines text. From its output it can also
be determined how many names for different objects (i.e., located at distinct addresses in
memory) carry identical names (i.e., the use of name overloading for distinct objects declared in
different scopes). The results of this analysis can be summarized as follows.

31 names are defined multiple times in different scopes. The most frequently reused name is
sts_flags1, which appears in 57 different scopes in uninitialized static (i.e., file-local)
declarations. The majority of names is declared in just a single scope, as summarized in Table
A.8-7.

Name aliasing is discussed in more detail below.

The data objects can be grouped into standard categories, as shown in Table A.8-8.

Table A.8-7. Variable Name Reuse
Camry05 Flight Software

Reference
Description

31 55 variable names defined multiple times in different
scopes

57 8 largest number of uses of a single variable name

16,354 56,482 variable names declared in just one single scope and
not reused

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
33 of 134

NESC Assessment #: TI-10-00618

Table A.8-8. Variable Scope
Camry05 Type Description

1,872 b Uninitialized static (file-local)

2,800 C Uninitialized common (extern)

108 d Initialized static (file-local)

6,473 D Initialized common (extern)

5 r Read-only static (file-local)

91 R Read-only common (extern)

914 t Text, static (file-local)

3,710 T Text, common (extern)

In the Camry05 software a majority of all data objects (82%) is declared with unlimited scope,
and accessible to all executing tasks. The relevant usage is illustrated in Table A.8-9.

To determine the correct access to each of the shared data objects in the Camry05 code, the
complete system of all tasks would need to be inspected.

Table A.8-9. Use of Global Scope
Camry05 Type Description

9,273 C+D Externally visible variables

1,980 b+d File-local variables

The coding pattern recommended in the coding rules document is to store the value of a shared
global variable into a (non-shared) local variable before using it in computations, and writing a
new value back to its shared location just once, at the end of the computation. This rule is to be
followed unless the global variable is accessed just once in the computation.

Coding rule 651 of the TMC document describes in more detail what the recommended use of
interrupt masks is. The rule states that interrupt masking should not be used when two tasks run
at the same priority level, only to protect a lower priority task from interference by higher
priority tasks.

This rule is based on the fact that equal priority tasks cannot interrupt each other. Both can still
be interrupted by a higher priority task. If because of this interruption the second task does not
complete, and the first task restarts in the next time interval, it could still overwrite the result of
the interrupted second task.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
34 of 134

NESC Assessment #: TI-10-00618

If two tasks running at different priority levels access the same data, then the lower priority task
must use interrupt masking to protect against interference from the higher-priority task.

This rule is not always followed in the code. In a few cases, the lower priority task merely sets a
flag before entering its critical section and the higher priority task checks this flag before
accessing the same data.

There are cases in the code where tasks of different priority levels (e.g., levels 14, 12, and 4)
access the same global variables without using interrupt masks (pattern: read, store local copy,
update, write new value). An example is the use of variable s2s_eafsfb_gaind, which is declared
as a non-volatile static variable. This use would appear to be in violation of coding rule 651.
All constant global variables though are consistently declared volatile, in compliance with the
coding standard. Although a specific reason for the use of volatile for constant data is not given,
it could be that the use of the volatile qualifier makes it possible to patch values in a running
system (because the compiler can then not optimize away the variable references and inline the
constant values).

Despite the rigor in the use of the volatile qualifier on constant data, other shared global
variables are not always declared volatile. The team counted 11,528 non-constant, shared global
variables in the code.

There are only 865 uses of interrupt masking in the code, in 194 different source files. This
indicates that access to global variables is not always done under protection of interrupt masks.

There are many cases of nested interrupt masking. For example, gadsl_out() masks interrupts
and calls gedsl_drive() which also masks and then re-enables interrupts. The team modeled the
specific method for interrupt masking method that is used in a Spin model (di.pml), and verified
that the protection with nested calls is correct.

 .

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
36 of 134

NESC Assessment #: TI-10-00618

Table A.8-12. Shared Global Data
Number of shared
variables

Number of different Tasks
accessing each variable

909 2

365 3

104 4

67 5

3 6

6 7

1 8

5 9

2 10

4 12

7 13

6 14

The largest number of tasks accessing the same shared global variables consists of 14 tasks. The
task T6, which executes at a relatively high priority level of 16, accesses a large number of
global variables, and appears in 8 of the 12 groups of tasks in Table A.8-12.

The six variables accessed by the largest number of tasks are:

Access Variable Name

W u2g_gasram_read_u2 u1s_gasram_mirror

R u2g_gasram_read_u2 u1s_gasram_mirror

R u2g_gasram_read_u2 ptg_gasram_u2db_tbl

R u2g_gasram_read_u2 ptg_gasram_u2init_tbl

R u2g_gasram_read_u2 u2g_gasram_u2dbmax_tbl

R u2g_gasram_read_u2 u2s_gasram_keyword

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
37 of 134

NESC Assessment #: TI-10-00618

The variable u2g_gasram_read_u2 u1s_gasram_mirror is the only variable in this group to
appear both in update and in read access scenarios (by all 14 tasks). All other variables are read,
but not updated, by these tasks. The group of tasks that share access to these six variables, and
the priority levels at which they execute are:

Task Priority

T1_1msec 20

T5 18

T6 16

T7 16

T9 16

T11 16

T13 16

T15 14

T17 12

T19_4msec 10

T20 7

T23 4

T22_8msec 4

T24_idle 1

In a full analysis each variable access must be inspected and verified to be safe, taking into
account possible use of interrupt masking, and a comparison against the rules stated in the coding
standard document. Toyota confirmed to the team that this was done for the Camry05 code with
a manual inspection process, with the results documented in an annotated list of verified access
patterns. By the team’s estimate a thorough manual verification process could consume up to 17-
34 weeks (5-10 minutes per variable, with 9,273 shared global variables to consider). A
significant manual inspection effort would be required to assure correct access to these shared
global variables.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
38 of 134

NESC Assessment #: TI-10-00618

In this study, inspections were performed on a small number of randomly selected tests and
found no discrepancies. There are several remedies that would be available to reduce the effort
on verification of global variable access:

• Reducing the amount of global data (the preferred method and consistent with improved
code structure).

• The development of a specialized tool that can reliably mechanize the analysis.
There are many cases in the code of near duplicate copies of functions or parts of functions. The
software team also noted significant inconsistency in how, what are essentially the same,
functions are coded in different parts of the code. In some cases entire files are near copies of
each other (for instance the files gapa1gx_mat.c and gapa2gx_mat.c). Code duplication is a
maintenance problem when changes must be applied and tracked across multiple copies of code.

Small deviations were also noted in near-duplicate files. (For instance, as a single difference
other than a replacement of all 1-suffixes with 2 suffixes, one file differs from its near-duplicate
only in the use of variable name s4t_gavpaad instead of s4t_gapa2trn). The near-duplicate files
are best generated from a single source, or the code could be merged and generalized.

Ubiquitous use of global variables gives significant problems in limiting scope and performing
analysis of sub-systems. In the pedal learning subsystem for instance (which consists of nine C
source files) no less than 1,255 external global variables are referenced, including 130 tables of
pointers to various types of global data. The unit-test for the main file has 35 arrays with
sequencing data (indicating many potential dependencies with other parts of the code).

A.8.4 Name overloading/aliasing
The TMC coding standard defines a specific naming convention for variables. However, many
variables are renamed and referenced by a different name (aliasing) throughout the code. Some
macro names are defined in multiple (and different) ways in different source files (e.g., the name
NOT_EXIST is sometimes defined to be 0 and sometimes 0xff). A reference to a single global
variable can appear under many different names – sometimes a name is redefined via macros,
sometimes it is redefined via several layers of indirection through pointers in tables.

The frequent overloading and redefinition can make it difficult to trace which data object is
being accessed. Example:

The file src/pf/ecu/gesgm2drv_mng_mat.c contains calls to macros named
enter_xxx_task(ON) and enter_xxx_task(OFF) with xxx equal to rcva, rcvb, com, dma-int,
and 4msm. The macros are used to set and clear five different bit-fields, named
sts_flags.b0 through sts_flags.b4. The same fields are also accessed under different

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
39 of 134

NESC Assessment #: TI-10-00618

names via macro definitions in four different files that introduce the following name
mappings (suggesting that different objects are accessed, but in fact all accessing the
same shared object):

enter_4msm :: bis_4msm
 bis_4msm :: (sts_flags.b0)

sts_flags.b0 :: bis_af_xinka

sts_flags.b0 :: bis_explsout_rev

The last two names are also used independently of the enter_xxx_ macro to set or clear
the bit-fields, making it extra difficult to track the access patterns.

As a final check, the code defines four different copies of a data object named sts_flags
(in files gedsl_mat.c and in gedclx_mat.c). This means that the single name sts_flags,
which can be accessed under several different aliases, does not always refer to the same
object.

The software team considered the potential for name confusion that can be caused by
macro redefinition of the same name. In this evaluation 2,352 cases were counted where
the right-hand side of a macro occurs in at least one other macro definition unchanged.
Specifically, there are:

659 cases where there are at least 4 different redefinitions of the same macro

300 cases in these 659 cases which are non-trivial, (i.e., non constants)

Among the last 300 cases the following examples are highlighted.

1,002 uses of the name u2s_WMEMCNT_NO_EEPROM in different macro
definitions as the (complete) right-hand side. This means that this one object or
quantity is known under 1,002 different aliases.

148 uses of the name u1g_vlsb_1degc_p(y) appears in different macro
definitions as the right-hand side.

101 uses of the name GCMAP_NONE appears in different macro definitions as
the right-hand side.

A frequently used name is also the structure name sts_flags1. Different fields in this
structure make many distinct appearances as the right-hand side (the defining body) of
macros:

46 definitions of sts_flags1.b0.

36 definitions of sts_flags1.b1.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
40 of 134

NESC Assessment #: TI-10-00618

32 definitions of sts_flags1.b2.

25 definitions of sts_flags1.b3.

13 definitions of sts_flags1.b4.

10 definitions of sts_flags1.b5.
6 definitions of sts_flags1.b6.

3 definitions of sts_flags1.b7.

The software team noted earlier that the name sts_flags1 itself also appears at 57 distinct
addresses in the symbol table, referring to equally many distinct data objects.

The frequent use of code duplication, name overloading, name aliasing, and redefinition can
impact code clarity, maintenance, and analysis.

The Toyota software makes extensive use of name overloading, indirection, and code
duplication. This affects code structure and code clarity, and can make problems hard to
diagnose and fix. It can also hamper software analyses.

A.8.5 Dead Code
Dead code, i.e., code that is unexecutable in a particular version of the code (e.g., model year
2005) can also make code maintenance and analysis more difficult than necessary.

An example is the following fragment of code.

File wmemcnt_mat.c:1009:
s4t_rslt = (s4) ERROR; # ERROR == -1

if (s4t_rslt == (s4) OK) # OK == 0

{ if (u1t_result == ...)

In this fragment the value of a signed four-byte variable is first set to negative one. In the
immediately following line the same variable is tested for equality to zero. Because the value
cannot be zero at this point, the subsequence part of the code becomes unexecutable (dead code).
The fragment of code contains a reference to a variable that in this version of the code remains
uninitialized at this point, which triggers two separate static analyzer warnings: one for the
inclusion of dead code and the second for the potential use of an uninitialized variable. Dead
code is normally not allowed in the MISRA guidelines.

Note, the unused code is compiled and exists in memory at execution. The signed four-byte
variable also exists in memory and could be altered during execution, in essence, enabling the
code to execute.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
41 of 134

NESC Assessment #: TI-10-00618

A.8.6 Data Mirroring of Persistent Parameters
A small set of critical parameters is saved in two separate places in SRAM storage, though
possibly contiguously in the same memory bank or page. The two copies are mirrored to increase
the level of protection that is obtained in this way. This means that all the bits in one of the two
copies stored are inverted from the other copy.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
42 of 134

NESC Assessment #: TI-10-00618

A.9 Software Logic Model Checking
Logic model checkers use efficient algorithms to explore all possible executions of a system in
an attempt to locate those executions that violate user-defined logic properties. The exploration
is in principle exhaustive and thus if it completes without finding incorrect behavior then the
system is proven correct. Because the exploration is exhaustive, model checkers can excel in
finding incorrect behavior in ‘corner cases’ which are exactly the types of errors that tend to
occur infrequently and be overlooked in even rigorous standard software testing. Key to a logic
model is the formulation of the model’s behavior and its correctness.

The ideal logic model for UA would be a model of the complete throttle control system. Such a
model would have ‘throttle plate angle’ as a single output, a variety of sensors values as input,
and a core correctness claim relating the throttle plate output to the sensor inputs. Notable inputs
would be the sensed accelerator pedal position and the sensed throttle plate angle. A specific
correctness claim would be a kin to ‘the throttle angle should never be wide open unless the
accelerator pedal is fully depressed.’ A violation of such a claim would be a strong candidate for
UA.

To construct a comprehensive model requires a faithful representation of an environment model
that can capture and reproduce all relevant inputs to the software being analyzed. For a modern
car, this can include a large array of input variables that can all influence the behavior of the
vehicle, beyond the obviously relevant inputs of the accelerator and brake pedal positions.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
43 of 134

NESC Assessment #: TI-10-00618

Often this type of environment model is available from existing simulation tools that
manufacturers of embedded systems commonly use to analyze complex software systems before
deployment. No such simulation environment, though, was available for this study. Toyota
colleagues stated that no simulation tests of this type were performed in the development and
testing of the Camry05 software. The scope, size and complexity of the Toyota throttle control
software and the limited duration of the study prevented the team from attempting to create a
faithful environment model (such an effort can take a significant amount of time, if the
information has to be constructed from scratch).

The logic models developed focused on those modules within the Toyota throttle control
software that were deemed, based on the team’s study, most likely to contribute to UA. The
modules selected are related to:

• the conversion of the desired throttle position into a pulse width modulated set of H-
Bridge transistors signals;

• the generic processing of the sensors inputs of any type; and

• the specific processing of the accelerator pedal position sensor input.
This set of logic models are involved with the input/output of the throttle control software.
Possible errors in modules related to the output of the throttle plate angle are clearly suspects in
UA. Such errors may be largely undetected in monitoring software given how late in the
computation they occur. Additionally, an error in the input, particularly the accelerator pedal
sensor or throttle angle sensor inputs, could masquerade as a valid sensor input and confuse the
throttle controller into UA.

In what follows, each of the logic models is described. The description includes the purpose of
the logic models, the correctness claims applicable to the model, the result of the model
verification and the conclusions drawn from the model and its verification.

Logic model checking follows the following steps. A model of the software system, possibly
including the actual source code of the system, is developed for model checking. Specific claims
are developed concerning the property or attribute to be checked. The model and claim are input
to the model checker. The model checker determines every path through the software system,
and checks the claim on every path. The model checker reports the paths that exist where the
claim is not met.

The unique aspect of this form of model checking is the automated check of every path through
the software system. This form of analysis requires processing speed and increased memory
space to perform the check on every path through the model of the software.

The outcome for each model checking run can be:

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
44 of 134

NESC Assessment #: TI-10-00618

Verified: The claim made upon the model being checked is not violated on any path
checked in the model.

Not verified: The claim made upon the model being checked is violated on at least one
path checked in the model.
Inconclusive: The model and claim could not be completely analyzed.

Note that any model checking claims that indicated a possible influence upon a UA influenced
the design of the tests performed on vehicle hardware. Table A.9-1 gives a summary of the logic
models developed.

Table A.9-1. Summary of logic models
Model Type Conclusion

Interrupt Enable/Disable Pairing Computation Verified
Accelerator Pedal Learning Computation Inconclusive
Sensor Input I/O Potential Issue
Motor Drive IC Computation Verified
Port Register Input I/O Verified
PWM Functionality Computation Potential Issue

A.9.1 Interrupt Masking Method
Purpose: Verify that CPU interrupt enabling and disabling method used in the Camry05 code
correctly protects access to shared global data, also when interrupt masking is used recursively.

System: A region of software code that must execute atomically is known as a critical region or
section. Mechanisms to protect different tasks from interfering with each other’s computations,
and possibly corrupting data, conventionally include the use of semaphores and mutual exclusion
locks. On a single processor CPU, a mutual exclusion lock can also be achieved by temporarily
masking the interrupts. By masking a clock interrupt, it can be assured that the currently
executing task cannot be preempted by higher priority tasks. Clearly, these interrupt masking
intervals should be as short as possible, to avoid jeopardizing real-time performance and
responsiveness to external events. The method can carry low overhead and is therefore
sometimes preferred in embedded systems code, but it carries a risk that the protection does not
span sufficiently many operations.

In the Toyota code it was noticed the use of recursively nested interrupt masking, which places
additional requirements on its Implementation. It should, for instance, be impossible for a nested
interrupt masking region to re-enable interrupts that the higher-level task, upon return from the
nested call, assumes still to be in effect. Not all implementations provide guarantees for nested
operation of interrupt masks.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
45 of 134

NESC Assessment #: TI-10-00618

Model Description: The software team developed logic model based on the implementation of
the glint_ei() and glint_di() operations that are used in the Camry05 code for interrupt masking,
shown in Figure A.9-1.

The model contains seven macro definitions to capture the relevant part of the interrupt masking
functionality used. The key operations are DI() (Disable Interrupts) and EI() (Enable Interrupts),
which are invoked by the functions glint_di() and glint_ei(). The current state of the processor
status word (PSW) is stored in a local variable, which is modeled here with the help of a macro
token-pasting operation.

The execution of two tasks of arbitrary priority levels is modeled with the help of a proctype
specification task, instantiated twice with the help of the active prefix. Any other number than
two can also be used, without a change in the outcome of this verification. The tasks are
designed to recursively invoke the interrupt masking routine and count how many executing
processes can simultaneously reach the inner-most point critical region in the code. A logical
assertion then verifies that this number can never be greater than or smaller than one. At the end
of the execution, when the interrupt mask is removed by both processes in both nested regions, a
second assertion verifies that the count is zero and interrupts are correctly re-enabled.

Claims w/ Results: The model checker verifies the correctness of this model in a fraction of a
second, conclusively proving that the implementation is correct under all possible behaviors of
the scheduler, and independent of task priorities.

Result: Verified. The claim made upon the model being checked is not violated on any path
checked in the model.

The Toyota use of glint_ei() and glint_di() is sound for use in protecting critical regions,
including the use in nested interrupt masking regions. This model rules out critical region race
conditions as a possible source leading to UA, but only for those instances where interrupt
masking is used.

Result: The method used for masking of recursively enabled and disabled interrupts cannot lead
to race conditions in critical sections.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
46 of 134

NESC Assessment #: TI-10-00618

Figure A.9-1. Spin Model of Recursive Interrupt Maski

#define u4 int

#define u4_V850_PSW_ID 32 /* PSW */

#define u4g_gcgetv850psw() PSW

#define DI() atomic { PSW = PSW | u4_V850_PSW_ID; INT = _pid }

#define EI() atomic { PSW = PSW & ~u4_V850_PSW_ID; INT = -1 }

#define glint_di(scope) { u4 u4t_psw##scope; \

 u4t_psw##scope = u4g_gcgetv850psw(); \

 DI()

#define glint_ei(scope) \

 if \

 :: (u4t_psw##scope & u4_V850_PSW_ID) == 0 -> EI() \

 :: else \

 fi }

int PSW = 0, INT = -1, cnt = 0;

active [2] proctype task() provided (INT == -1 || INT == _pid)

{ glint_di(1);

 glint_di(2);

 cnt++;

 assert(cnt == 1);

 cnt--;

 glint_ei(2);

 assert(INT != -1);

 glint_ei(1);

 timeout ->

 assert(cnt == 0 && INT == -1)

}

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
47 of 134

NESC Assessment #: TI-10-00618

A.9.2 Accelerator Pedal Position Learning
Purpose: Verify correctness of the released accelerator pedal position learning algorithm and the
computed pedal position offset.

System: The pedal position module uses two sensors to compute a learned value for the released
pedal position (i.e., with no pressure placed on the accelerator pedal). The learned zero position
is used to determine the offset for the pedal position when the accelerator pedal is pressed. This
offset is one of the key inputs to the throttle control algorithm.

Figure A.9-2. Pedal Position System Context

Inputs: The primary inputs to the pedal position logic model are:

1. The two sensor values for pedal position (VPA and VPA1).

2. The vehicle speed (SPD).

3. The state of the brake-light, indirectly indicating the depression of the brake pedal (ST1,
STP).

Outputs: The output of the pedal position logic model is the offset of the current accelerator
pedal position from the learned value.

Model Description: The key features modeled and verified are based on a description of the
intended working of the pedal position learning algorithm provided by Toyota engineers, and
tracked in the code.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
48 of 134

NESC Assessment #: TI-10-00618

The accelerator pedal position is tracked as a voltage that can range from approximately 0.8
Volts (corresponding to an angle of 20 degrees) to 3.12 Volts (58 degrees). Three different
ranges of pedal position changes are relevant to the learning algorithm.

• A change in value of less than 0.0388 Volt (small).

• A change in value between 0.0388 and 0.2 V (medium).

• A change in value larger than 0.2 V (large).

Similarly, three ranges of vehicle speed can influence the computation:

• A vehicle speed greater than 15 km/h (fast).

• A vehicle speed less than 3km/h (slow).

• Stopped.

The use of the brake pedal is modeled as the state of a Boolean variable, taking the value true or
false.

Separately, the software determines based on the duration of input signal variations, whether or
not the current pedal position should be considered released (closed).

The value of the released accelerator pedal position should change rarely, and only relatively
small variations are anticipated. Causes for variation can be minor deformation of the pedal
itself, the physical replacement of one pedal assembly for another by a mechanic, small
variations in voltage output from sensors, etc. The most recently learned released accelerator
pedal position is stored in SRAM.

There are various constraints imposed on updates of the learned value of the released accelerator
position.

a. The learned value is updated only if the vehicle speed has been 15 km/h or more and the
pedal sensor has reached 0.4 Volts or more, and the current vehicle speed is 3 km/h or
less, the pedal sensor value is 0.2V or less, the brake switch light is on, and the pedal
sensor reading has been stable for two seconds or more.

b. If (under these circumstances) the pedal closed position change in value is less than
0.0388 Volt (small), the learned value is updated, but each single update is restricted to a
maximum of 0.01952 Volt (corresponding to a difference of 0.488 degrees).

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
49 of 134

NESC Assessment #: TI-10-00618

c. If the change in value is larger than 0.0388 Volt, but less than 0.2 Volt (medium) then the
learned value is not updated, and learning is suspended until the vehicle comes to a stop.

d. If the change in value exceeds 0.2 Volt (which Toyota said should physically be
impossible) then learning is suspended for the remainder of the trip (i.e., until the ignition
is turned off).

e. Variations of the value stored in SRAM are limited to a change of maximally 0.04 Volt
per trip.

When the constraints c or d take effect, no record of this limit is recorded in the event data
recorder, so it is not discoverable afterwards, nor is it know how frequently these events may
occur.

One way in which the accelerator pedal released position could suddenly change is when a
sensor spring that is used in the accelerator pedal assembly breaks. Toyota states that the
maximum change in measured pedal position in this case will be less than 0.152 Volt (i.e., below
the 0.2 Volt limit from constraint d above).

One scenario of interest in the consideration of the accelerator pedal learning algorithm is one in
which the released accelerator pedal position decreases by a value that is larger than 0.0388 Volt,
e.g. by 0.2 Volt. A value of 0.2 Volt would normally correspond to a 5 degree change in pedal
position. In a scenario when learning is suspended (by constraints c and/or d) the new value
would not be used, even if it were the correct new released pedal position. This would mean that
even with the pedal in the released position the software would cause a pedal angle of 5 degrees
to be used in the computation throttle angle module. With the pedal depressed, similarly values 5
degrees higher than correct would continue to be used.

If the full range of the accelerator pedal position is 38 degrees (ranging from a stated
minimum of 20 degrees and a maximum of 58 degrees) then a 5 degree anomaly
corresponds to 13% of that range, which would indeed be noticeable to the driver.

The software team constructed various logic models of the pedal learning algorithm.

1. A first model is a direct representation of the pedal learning algorithm as document, and
recorded in a PowerPoint summary provided by Toyota.

2. A second model is based on a Simulink/Stateflow model built by colleagues from the
NASA Ames Research Center, part of the software study team.

3. A third model included the source code of the actual pedal learning algorithm, using the
Spin model checker as a driver to exercise the code through relevant scenarios.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
50 of 134

NESC Assessment #: TI-10-00618

The first two models are limited in their value by being based on an interpretation of the working
of the accelerator pedal learning algorithm as it was explained to the team by Toyota engineers
and as documented in the PowerPoint summary provided. The details of the algorithm are
sufficiently subtle that limited reliance on this indirectly obtained evidence can be placed.

The third model has the potential to be the most accurate, since it includes the actual source code
with all its intricacies and details represented. Here, though, the problem encountered is limited
ability to model the relevant portion of the vehicle environment in sufficient detail. The software
team derived as much information as possible from the infrastructure used in unit-test files used
by Toyota in the development of the code. In the unit tests time series of larger number of
parameters (approximately 35) are used, significantly exceeding the primary input signals that
feature in the high-level descriptions of the algorithm (accelerator pedal sensor readings, brake
light switch, vehicle speed, etc.). The pedal learning algorithm is designed to function over
longer periods of time (e.g., to evaluate the stability of the sensor readings). The abstract
representation used for these external influences impacted the validity of the results. This
example vividly illustrates the importance of an accurate environment model for the vehicle, as it
is often used in a sub-system testing or system simulation for complex systems. No such model
was available to the software team, and the construction of an accurate environment model could
have meant months of detailed interaction with domain experts, which the team did not consider
to be feasible within the constraints of the work. Therefore, this study is limited to an
approximate model of the relevant input parameters.

Claims w/ Results: The software model correctness claim verified for each model was that it is
impossible for the computed pedal position to be non-zero when the accelerator pedal is in the
released position. Given the nature of the constraints on the pedal position learning algorithm,
this claim can be shown to be violated. The pedal position can be shown to indicate non-zero
even when the pedal is released. Result: Inconclusive. The model and claim could not be
completely analyzed.

This pedal position learning issue influenced the development of testing done on vehicle
hardware.

A.9.3 Sensor Input ADC (GCCSI2)
Purpose: Confirm that the processing of 10-bit and 12-bit analog-to-digital conversions is
handled correctly in the multiprocessing environment. Accelerator pedal and throttle angle are
input via the 10- and 12-bit ADC interfaces. Would corruption of these values, even if
temporarily, impact the subsequently computed new demanded throttle angle?

System: Analog sensor data is feed to the Sub-CPU, is sampled and serialized in the Sub-CPU,
passes over to the Main CPU via the serial interface, and is then distributed within a couple of

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
51 of 134

NESC Assessment #: TI-10-00618

tasks to a variety of modules. Tasks are initiated by interrupts and explicit OS activation.
Delays in completion may cause ADC operations to overlap in time.

Figure A.9-3. Sensor Input ADC System Context with Software Collaborations

Figure A.9-3 shows an abstraction of the software collaboration among the ADC tasks. None of
the error handling is shown and the order of the collaborations, denoted with the message
numbering, is idealized. The logic model is designed to explore the overlap of operations on the
GCCSI2 Registers owing to multiprocessing timing variations.

Inputs: The inputs for the sensor input ADC that are relevant to the throttle control are:

• Throttle Position A/B - The throttle position is sensed from two sensors at both a 10 and
12 bit value.

• Pedal Position A/B - The pedal position is measured by two sensors as two 10 bit values.

• Cruise Control Switch - The cruise control switch signal is sensed as a 10 bit value.

Within the logic model these specific inputs are abstracted to 10 bit input and 12 bit input. That
is, the logic model is only designed to look for 10 bit and 12 bit issues in the GCCSI2 Register
commanding - not issues in the specifics of throttle position A or B, for example.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
52 of 134

NESC Assessment #: TI-10-00618

Outputs: The outputs from the sensed input ADC is state date written in software memory. The
state data is then accessed by a variety of other software modules. In the logic model this output
data is not relevant.

Model Description: The logic model for the sensor input ADC consists of six Promela
proctypes. The GCCSI2 peripheral IC computation is captured with a single prototype. The other
five Promela proctypes are coordinated using a priority scheme that is analogous to the ADC-
related OSEK tasks in the Toyota code. These five proctypes are further coordinated using the
Promela 'tasking' library which ensures that the periodic timing of the OSEK tasks, typically
keyed off of a 2ms task, is faithfully represented in the logic model. The GCCSI2 peripheral IC
proctype is fully asynchronous relative to these five other proctypes.

A significant compilation parameter in the logic model is whether or not the proctypes have
sufficient margin to complete within each and every cycle. When margin does not exist, any
proctype could be delayed beyond a cycle and thus overlap with other proctypes that have started
on that next cycle.

The logic model contains Promela for two safety properties. One check ensures that the
enable/disable logic for the GCCSI2 peripheral IC occurs in pairs. The other check ensures that
12-bit data is read when in 12 bit mode and similarly for 10 bit data. These two safety properties
implement the correctness claims for this Sensor Input ADC model.

Claims w/ Results: The claims are designed to expose overlaps in the commanding of the
GCCSI2 registers.

1. Confusion between 10 and 12 bit reads - The GCCSI2 is never read for 12 bit data when
10-bit data is being supplied and analogously for reading 10 bit data.

Result: Verified when there is margin. Fails when there is no margin.

2. Enable/Disable skew - The GCCSI2 is never disabled or enabled twice in a row -- the
correct behavior to an alternating sequence for enable and disable.

Result: Verified when there is margin. Fails when there is no margin.

This software model shows that when margin exists the 10 and 12 bit reads cannot overlap.
However, if there is no margin, then there is possible overlap. The 'no margin' case was
discussed at length with Toyota engineers. Toyota stated that 1) an overlap between the 10 and
12 bit reads will have no negative consequences and 2) the delays that are required to produce an
overlap are unrealistically large.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
53 of 134

NESC Assessment #: TI-10-00618

A.9.4 Motor Drive IC
Purpose: Confirm that the MotorDriveIC internal logic drives the throttle motor’s H-Bridge
transistors correctly. One cause of UA is that the MotorDriveIC opens the throttle plate when
the inputs do not demand an open throttle plate. This logic model is designed to find this UA
condition. This model also checks for H-Bridge transistor configurations that lead to an
electrical short when, like UA, those configurations are not warranted by the inputs.

Figure A.9-4. Motor Drive IC System Context

System: The MotorDriveIC system context is illustrated in Figure A.9-4. The MotorDriveIC
outputs a set of binary signals that open or close high power transistors in the throttle motor’s H-
Bridge. Combinations of transistors drive the throttle plate either opened or closed; some
combinations, if they occur, can produce an electrical short. Note that driving the throttle closed
is required because the throttle plate’s un-actuated position is determined by counter balancing
springs. The neutral spring position produces an angle that is larger than required to idle the
engine.

The MotorDriveIC internal logic is Toyota IP. The functionality is non-trivial in that there are
feedback loops, time delays and internal memory (latches). A logic model of this functionality
will ascertain if the desired functionality is achieved in all cases, for all possible inputs.

Inputs: The Main CPU ASIC produces binary signals as inputs to the MotorDriveIC. The inputs
to the MotorDriveIC are:

• HIC (boolean) - The input driving the HC H-Bridge transistor.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
54 of 134

NESC Assessment #: TI-10-00618

• HIO (boolean) - The input driving the HO H-Bridge transistor.

• LIO (boolean) - The input driving the LOO H-Bridge transistor.

• LIC (boolean) - The input driving the LOC H-Bridge transistor.

• MO (boolean) - The input driving the MO H-Bridge transistor.

The logic model independently randomizes each of these inputs thereby exploring the entire
input space. Clearly many combinations of these inputs may not be produced by the Main CPU
software but these combinations are valid when exploring the MotorDriveIC correct behaviors.

Outputs: The outputs from the MotorDriveIC are binary signals that drive five H-Bridge
transistors. These outputs are the H-Bridge transistors labeled HC, LOO, LOC, HO and MO in
Figure A.9-4A.9-4. There are a number of important combinations of these outputs (assuming
MO is ‘closed’):

• HC+LOC open the throttle plate.

• HO+LOO close the throttle plate.

• HC+LOO or HO+LOC create an electrical short.

The logic model checks each of these constraints.

Model Description: The logic model for the Motor Drive IC is derived from the digital circuit
schematic for this IC. The logic model uses two fully asynchronous Promela proctypes. One
proctype models the binary input signals which can change independently of the IC logic. These
inputs signals are fully randomized within this proctype. The other proctype models the IC logic
and produces the IC outputs. This later proctype updates internal state, captures feedback in the
IC and allows the outputs to settle. It also models over current and over temperature behaviors.

This logic model has a single safety property to check if the SR-latch avoids the unstable state
(S=1, R=1).

This logic model has a number of never claims. A couple of the never claims are used to check
the correctness of the model itself. Besides these claims, the primary claim checks that the
throttle motor is never eventually always open unless the inputs warrant a wide open throttle.
The logic model includes the logic that relates the pairs of outputs that open and that close the
throttle.

Claims w/ Results: For verification of the MotorDriveIC, correctness claims are formulated.
These claims ensure that dangerous output combinations are avoided, that the outputs are

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
55 of 134

NESC Assessment #: TI-10-00618

consistent with the inputs, and that various internal constraints are not violated. The claims
verified are:

1. Verify that the throttle plate is never eventually always wide-open when the inputs are
not always demanding wide open.

Result: Verified. The claim made upon the model being checked is not violated on
any path checked in the model.

2. Verify that an electrical short never occurs unless the inputs demand that an electrical
short be produced.

Result: Verified. Note that this model does not include details of the Toyota IC
that are designed to prevent an electrical short circuit, even if the inputs demand
one.

3. Verify the all SR-latches are never in their unstable state (S=1, R=1 simultaneously).

Result: Not verified. When an SR-latch is unstable the output is undefined.
Questions to Toyota engineers on this claim failure resulted in an explanation that
the SR-latches from the design documentation are in fact S-latches which do not
have an unstable state. Thus this claim is extraneous.

The MotorDrive IC was shown to satisfy claims 1 and 2. Claim 3 was shown to be unimportant.
This model effectively rules out an error in the MotorDrive IC as a cause for UA.

This software model indicates the Motor Drive IC outputs can only lead to a wide open throttle
when the Motor Drive IC inputs warrant a wide open throttle.

A.9.5 Port Register Inputs (GCPR)
Purpose: Confirm that the processing of the port register inputs is faithful to the sensed input
values. This ‘GCPR’ functionality, from sensed input value to concluded state, involves a
multiple asynchronous tasks. This models checks if multiprocessing errors are avoided.

System: A number of inputs are provided through the port registers. These inputs are read
periodically by a recurring CPU software task, processed and then written to software state. That
state is then used in subsequent throttle computations.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
56 of 134

NESC Assessment #: TI-10-00618

Figure A.9-5. Port Register Inputs (GCPR) System Context

The periodic task reads the port registers twice, nominally for ‘noise canceling.’ While these
two reads occur on a single line of C source code, the multiprocessing nature of the throttle
control software allows for the possibility that a significant delay can occur between the reads.
Furthermore, because the port registers reflect the sensors in the environment, the values in the
port registers can change asynchronously relative to the CPU software. This leads to the
possibility that the two reads produce different values.

Inputs: The logic model uses two sensor values that are input through the port registers:

1. Shift Position Switch Sensor (boolean) - Indicates if the transmission is in ‘drive’

2. Stop Lamp Switch Sensor (boolean) - Indicates if the stop lamp is on and thus, indirectly,
if the brake pedal is depressed.

Within the logic model these two inputs are independently randomized to explore the entire
inputs space. Note that there are no dependencies between these two variables, either in the
GCPR code or in the logic model.

Outputs: The outputs are the shift position state and the stop lamp state. These are the states
used in all subsequent throttle processing by the CPU software.

Model Description: The logic model for the Port Register Inputs is a small model consisting of
two Promela proctypes. The first proctype represents the asynchronous GCPR peripheral IC.
This proctype simply randomizes the possible inputs. The second proctype represents the OSEK

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
57 of 134

NESC Assessment #: TI-10-00618

task in the Toyota code and serves to sample the port register data. The data is read twice
nominally for noise canceling purposes. The logic model checks for a race condition between
this double read and the GCPR peripheral IC proctype.

This logic model has a number of claims. Some of the never claims are used to check the
correctness of the model itself. The primary claim ensures that the output and the input never
“eventually always” differ.

Claim w/ Results: For verification of the ‘Port Register Inputs,’ a correctness claim is
formulated to ensure that the outputs are consistent with the inputs. The computation of the
outputs involves a handful of steps that may be susceptible to corruption owing to asynchronous
task race conditions.

1. The shift position state will never be eventually always ‘open’ unless the shift position
switch sensor is always ‘open.’ Due to the symmetry in the GCPR code and this logic
model, this claim also applies to the brake light switch.

Result: Verified. The claim made upon the model being checked is not violated on any
path checked in the model.

The claim was verified. This effectively eliminates corruption of the Shift Position and Brake
Light switch through the GCPR interface as a possible cause of UA.

A.9.6 PWM Functionality (GCPLS)
Purpose: Confirm that the PWM (Pulse Width Modulation) functionality reliably modulates the
motor IC transistors based on the desired PWM duty cycle.

System: The PWM functionality is achieved with a number of software tasks that are activated
based upon hardcoded delays. Specifically the final output to the GPCLS registers is initiated
after a ~800 microsecond phase offset within the 2 msec task. Figure A.9-6 illustrates the PWM
system.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
58 of 134

NESC Assessment #: TI-10-00618

Figure A.9-6. PWM Functionality System Context with CPU Tasks

Data is shared between the ‘PID controller’, which produces the ‘duty cycle’ for the throttle
motor, and PWM which smoothly handles the throttle motor motion using timed actuation of the
H-Bridge transistors. The logic model explores consequences of arbitrary delays in any of the
periodic 2 msec task computations.

Inputs: The PWM functionality is invoked as part of a periodic software task with inputs
produced by the ‘PID Controller’ module. The primary input is the desired PWM duty cycle and
its direction (positive/open or negative/close). The inputs to the PWM module that are used in
the logic model are:

• Activate (boolean) - Determines if the motor IC should be used or not.

• Reset (boolean) - Determines if the motor IC should be reset.

• Duty Cycle (enumeration) - Determines the fraction of 2 ms during which the throttle
motor, though the MotorDriveIC, should be powered. A fraction of +100% implies
‘wide open throttle’ and a fraction of -100% implies a ‘fully closed throttle’. Anything
above approximately 88% is rounded up to %100.

• Duty Cycle Direction (boolean) - Determines the direction of throttle motor rotation. ‘1’
implies ‘open’ and ‘0’ implies ‘closed’.

Outputs: The outputs from the ‘PWM Modes’ computation are binary signals that serve as
inputs to the MotorDriveIC. Thus, these PWM outputs are directly responsible for opening and
closing the throttle motor. These outputs are HIC, LIO, HIO and LIC and are shown in Figure

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
59 of 134

NESC Assessment #: TI-10-00618

A.9-4. Because this PWM outputs drive the H-Bridge transistors there are valid and invalid
combinations.

Model Description: The logic model for the PWM Functionality consists of three Promela
proctypes. One proctype represents the GCPLS timer peripheral IC and operates asynchronously
to the other proctypes. Another proctype in this model represents an OSEK interrupt handler.
The final proctype represents a periodic task that is possibly inhibited by the interrupt handler
and which computes the desired PWM model.

The proctype for the GCPLS timer peripheral IC sets binary values based on an 'on time' and an
'off time'. This proctype uses the Promela 'task' library to define an alarm which runs repeatedly
at each clock tick. When it runs the proctype compares the current tick with the 'on time' and the
'off time' to determine if the binary value should be set. The binary values in this proctype
represent the on/off state of the throttle motor transistors.

The proctype for the interrupt handler uses the current PWM mode and duty cycle to compute
the on and off times for the four H-Bridge transistors in the Motor Drive IC. This proctype then
outputs the computed times to the GCPLS proctype. This computation closely mimics the Toyota
code with the introduction of delays and with the handling of the PWM modes. This proctype
nominally runs every with a phase offset of . However, the
Promela scheduler can introduce arbitrary delays in this proctype's execution.

The final proctype computes the PWM mode based on the duty cycle. This proctype fully
randomizes its input, which is the duty cycle, and then derives the mode and related state. This
proctype runs every with a phase offset of but, because of
scheduling variations, it can run with an arbitrary delay even to the point of overlapping the
interrupt handler.

The safety property in this logic model represents an invalid combination of throttle motor
transistors. The property ensures that only two transistors can be power at one time.
The never claims in this logic model extend the safety property based on tighter constraints on
the valid combination of transistors and the relationship to required PWM duty cycle. The
primary claims ensures that the throttle is never eventually always wide open unless the
requested duty cycle is at

Claims w/ Results: For verification of the ‘PWM Modes’ the formulated correctness claims are
based on valid and invalid combinations of outputs. Valid combinations are those that lead to

1. Three outputs are never simultaneously binary ‘1’ (read as ‘on’ or ‘closed’).

Result: Not verified. The claim made on the model being checked is violated on at least
one path checked in the model.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
60 of 134

NESC Assessment #: TI-10-00618

2. Two outputs that lead to an H-Bridge electrical short are never simultaneously binary ‘1’.
It is considered an error for a short to be commanded by the PWM module even though
the MotorDriveIC may prevent an actual electrical short.

Result: Not verified. The claim made upon the model being checked is violated on
at least one path checked in the model.

3. The outputs that open the throttle plate is never eventually always open (leading to a wide
open throttle plate) unless the requested duty cycle is

Result: Verified. The claim made upon the model being checked is not violated on
any path checked in the model.

The logic model failed to verify claim #2. The failure occurs for the following conditions:

1. The PWM mode is PWMPLS with a duty cycle near but less than .

2. The phased computation is delayed by .

3. The PWM mode becomes PWMMNS.

These conditions were discussed with Toyota engineers with the delay garnering the
most attention. At first Toyota did not consider any delay of the phased computation as
credible however, after undertaking numerous measurements, Toyota observed delays as large as

 . Subsequent to this recognition, Toyota computed an absolute worst case delay. This
worst case is based on all possible relevant delays conspiring and was computed to be .

Further analysis of the MotorDriveIC shows that a software-induced electrical short is prevented
by the hardware. Thus, even if claim #2 could occur, there would be no adverse effect on the
vehicle. The improper software command is filtered by the hardware until it subsides at which
point a proper H-Bridge configuration is re-established to drive the motor open or closed.

The Pulse Width Modulation (PWM) code will only lead to a wide open throttle when the
requested duty cycle is +100%.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
61 of 134

NESC Assessment #: TI-10-00618

A.10 Software Algorithm Design Analysis Using Mathworks Models

A.10.1 Modeling Effort Overview
In the Toyota 2005 Camry, the critical control loops that are related to potential UA are
implemented in software that executes in the electronic throttle control system (ETCS-i). In order
to analyze the control loops and to support hardware testing scenario development, an in-depth
understanding of Toyota's throttle control system as implemented in software is necessary.
Matlab, Simulink, and Stateflow were used to model the control system at a level of abstraction
suitable for control system insight and analysis. Using Toyota's source code and specifications,
along with consultation of Toyota systems experts, executable models of the ETCS-i were
constructed through an iterative process of reverse engineering. Toyota was very co-operative in
this process, providing engineers with expertise in successive subsystems who stayed in
Torrance or San Jose on average two weeks at a time.

These models were provided to the entire NASA team and served as a common basis of analysis
for both hardware and software teams. After each major subsystem was modeled, the software
and hardware teams met face-to-face in order to share information and develop testing strategies.
The software team made extensive use of both Mathwork’s test tools as well as NASA-
developed tools to generate and simulate test suites for a wide range of driving scenarios
involving both nominal and off-nominal situations, such as sensor faults. Simulink provides a
modeling environment for data-flow centric control, while Stateflow provides a modeling
environment for complex discreet logic. Given the Mathworks’ tools position as leading
mathematical computing software for engineers and scientists in the aerospace and automotive
industry, these tools were well-situated to support the Toyota analysis.

The goal of the modeling exercise was to develop an integrated system model of the ETCS-i. To
aid in the testing of the various subsystems it was decided to split the model into to an integrated
portion, the Idle Speed Control (ISC), and the idle on fuel cut system. The reason to split up the
model was because of control feedback loops that required a plant model. For instance, the ISC
required a plant model of the engine to receive accurate feedback for control purposes. The
development of these plant models was outside of the scope of this investigation. Table A.10-1
describes statistics for 05 Camry L4 Matlab Modeling.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
62 of 134

NESC Assessment #: TI-10-00618

Table A.10-1. Model Statistics
Model Functional

Blocks
Stateflow
Blocks

Transitions States NASA
Man-Hrs

Toyota
Man-Hrs

Integrated Model
w/Cruise Control

1038 17 1088 623 200 100

Cruise Control 229 8 365 222 70 50
Idle Speed Control
(ISC)

935 42 615 448 120 80

Idle On Fuel Cut 76 4 51 26 4 2

Based on a preliminary review of the software specifications and discussions with the Toyota
engineers, it appears that the Vehicle Stability Control (VSC) and Transmission software doesn't
increase the command to the throttle valve IC, therefore models of the VSC and the
Transmission software were not developed.

Considering the complex and interactive nature of the models that were developed, it was
necessary to vary the fidelity of each of the models to match the testing needs and scenario
development process. The models were developed to three levels of fidelity that are described in
the chart below. In addition, a software build in the native Greenhills compilation and
microprocessor emulation environment was developed. This environment reached sufficient
maturity to map inputs leading to diagnostic codes.

Note: The following figures of the Camry MY2005 models illustrate the complexity and depth
of the modeling effort. They are not “readable” by intent to protect the details of the Toyota
design.

A.10.2 Model Development
The models were developed in three phases. Each phase varied the level of fidelity. Modeling in
different phases allowed for efficient modeling, testing, and production of usable results for a
highly complex integrated system.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
63 of 134

NESC Assessment #: TI-10-00618

Figure A.10-1. Model Development and Fidelity

A.10.3 Phase 1
These models are based on presentations or diagrams directly from the Toyota engineers as well
as minimal use of specifications. These are relatively low fidelity models and produced results
that yield a minimal understanding of the functions. Because the Phase 1 models are mostly used
to develop an understanding these models do not always use the same variable names and are
primarily concerned with getting the logic correct. These models were verified by comparison
with expected results from the Toyota engineers.

The following functions are of Phase 1 fidelity:

A.10.3.1Safing Functions
In the first phase the primary interest was the modules that increase the throttle angle. For this
phase a simple model of the safing function block would suffice. A Stateflow model was
developed from a Toyota provided list of diagnostic codes and resulting fail-safe responses.
Developing a higher fidelity model would prove useful in providing a better understanding of the
fail-safe actions and how and when they are performed.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
64 of 134

NESC Assessment #: TI-10-00618

Figure A.10-2. Safing Functions Model

A.10.3.2Accelerator to Throttle Demand
Toyota described the function of the following module as a lookup table and therefore it was
determined that no further increase in fidelity was necessary.

Figure A.10-3. Throttle Demand Model

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
65 of 134

NESC Assessment #: TI-10-00618

A.10.4 Phase 2
The models were primarily based on interpretations of the specification documents related for
software functions provided by Toyota to Denso. These models are at a higher fidelity then the
Phase 1 models, however, they still model the expected outcome and, if the specifications do not
match the source code, then the Phase 2 model might contain discrepancies between the
hardware and the model.

The following functions are of Phase 2 fidelity:

A.10.4.1 Cruise Control
The cruise control is implemented through a single voltage input that is manipulated by the
driver through a switch. Depending on the input from the driver, the switch will select a
resistance that is interpreted by the cruise control logic to set the state of the cruise control. The
input voltages are received by a module that interprets which position the switch is in. The next
module uses the position determination and other inputs to decide which state the cruise control
system is in. Depending on the determined state, a control module is used to complete the actual
calculations required to send a command to the vehicle. To accomplish these calculations there
is a module within the cruise control that calculates the vehicle speed. Various states and
voltages within and outside the cruise control are monitored through diagnostics. These
diagnostic modules then feed into the control module to be used in the auto cancel operations.

Note: The following figures of the Camry MY2005 models illustrate the complexity and depth
of the modeling effort. They are not “readable” by intent to protect the details of the Toyota
design.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
66 of 134

NESC Assessment #: TI-10-00618

A.10.4.2 Idle Speed Control (ISC)
The ISC incorporates modules that provide throttle contribution to maintain idle and compensate
for conditions like creep control, increases in oil temperature, variable valve timing, alternator
loads, air conditioner loads, catalyst temperature, idle while moving, stall prevention, fuel cut,
variations in the throttle valve assembly, purging, power steering, startup/ignition, and engine
temperature. Three modules are used to complete the learning algorithm calculations that
compensate for manufacturing variances and throttle deposits that accumulate over time. There
are a series of modules that then take the outputs from all of the contributing blocks and add
them together to calculate a final throttle angle demand from the ISC system.

Note: The following figures of the Camry MY2005 models illustrate the complexity and depth
of the modeling effort. They are not “readable” by intent to protect the details of the Toyota
design.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
67 of 134

NESC Assessment #: TI-10-00618

A.10.4.3Idle On Fuel Cut
As depicted below, the fuel cut function has a module that determines the rpm at which to return
from fuel cut based on a set of inputs from other systems. The next module makes a
determination of whether to implement fuel cut return. After the return determination is made,
the next module calculates the rpm to execute fuel cut. The final module makes a determination
of whether to implement fuel cut based on the inputs from the rpm calculation and whether or
not fuel cut return is being implemented.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
69 of 134

NESC Assessment #: TI-10-00618

Figure A.10-8. DTC and Diagnostic Model

PID - The PID manages the difference between the commanded throttle angle and the sensed
throttle angle and determines what duty cycle command will minimize the difference between
the two.

Learning Functions - The learning functions calibrate the control software to accept and adjust to
pedal and throttle sensor inputs which are only slightly off the nominal path. This function
provides optimal driving performance that remains constant.

The learning functions were of high interest to the NASA team, because of the learning
function’s ability to mask failures and to change the performance of the vehicle as measured
against absolute sensor values, by virtue of changing the zero bias. The learning function models
evolved over the progression of the study and were a valuable tool in the testing process.

Because of the proprietary nature of phase 2 type models, lower level diagrams cannot be shown.
Below is a higher-level snapshot of the inputs and outputs of a phase 2 model of the learning
algorithm.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
70 of 134

NESC Assessment #: TI-10-00618

A.10.5 Phase 3
In order to provide the highest fidelity possible within a Mathworks simulation environment, the
source code for the ECU used in the Toyota MY05 L4 Camry was compiled on the Linux
environment. This enabled engineers to generate S-functions that can be loaded into Matlab or
Simulink blocks. Using the source code directly improves the accuracy of the simulations and
help the engineers validate models based on schematics and descriptions. Because the S-
functions are within the Simulink environment, they can be integrated into the same testing
framework as the models in the previous phases replacing blocks designed on schematics. The
compiled code also increased execution time allowing more exploration of the testing scenarios
space.

The Toyota source code is complex and has many dependencies that make full-scale simulation
outside its native hardware environment difficult. Even within the Greenhills compilation and
debug environment, the practice of Toyota and Denso has been to only use a software simulation
environment for “one-shot” unit testing, i.e., one input vector yielding one output vector. Any
further testing beyond the unit level was done by Toyota and Denso on hardware platforms with
integrated software loads.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
71 of 134

NESC Assessment #: TI-10-00618

The compilation and linking into s-functions were finally successful. However, the full
incorporation into the Mathworks simulation environment did not reach maturity in time for
Phase 3 models to be incorporated into the current model used in testing. This could be
continued as forward work.

A.11 Mathworks Model Scope and Functional Description
The scope of the integrated model was to provide coverage on model three major contributors to
the throttle control, Accelerator Pedal, Cruise Control, and the ISC. These three major
contributors each have the potential to increase the throttle a significant amount.

Figure A.11-1 shows an overall simplified functional view of the ETCS-i functions that have
been incorporated in the integrated model. Description, verification, analysis and testing, and
results of the models of each of the functions are described in the following section.

Figure A.11-1. Architecture of Modeled Throttle Control Functions

A.11.1 Accelerator Pedal Control
The pedal controls the throttle by measuring the pedal command angle and comparing it to the
learned pedal released value. Using the command and the learned pedal release value, pedal
diagnostics are performed. When a fail-safe flag is sent from the pedal diagnostic algorithms,
certain fail-safe responses are executed to limit the throttle opening. The pedal command angle,
after going through the diagnostic and fail-safe processing, is converted to a throttle commanded
angle. The throttle command angle from the pedal input is compared to the throttle request from

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
72 of 134

NESC Assessment #: TI-10-00618

the cruise control system. The greater value of pedal throttle command and cruise control request
is then sent to the PID controller. The PID then calculates a motor duty cycle command and this
command is converted into ON-OFF commands to four transistors which control the flow of
electricity to the throttle motor.

A.11.1.1Processing of Pedal Input Functions and Learning Functions
The pedal control’s primary input comes from two pedal sensors, VPA1 and VPA2. VPA1 is
used for primary control and VPA2 is used to check the validity of VPA1. VPA1 and VPA2 have
an input range between 0 and 5 V and are normally offset from each other by 0.8 V. The nominal
range is shown below in Figure A.11-2.

Figure A.11-2. Nominal Software Range for VPA1 and VPA2

A.11.1.2. Learning Functions and Released Position
To allow for recalibration of the zero bias during a trip, the pedal input goes through a
preprocessing function, which recalibrates the pedal sensor input to allow for these input
variations. The calibration process occurs anytime the pedal is determined to be released.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
74 of 134

NESC Assessment #: TI-10-00618

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
75 of 134

NESC Assessment #: TI-10-00618

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
76 of 134

NESC Assessment #: TI-10-00618

If there is a fail-safe condition detected after learning is completed, the learning value is reset to
the default value, as shown in Figure A.11-5.

A.11.1.3 Pedal Diagnostics
Based on individual pedal sensor and sensor to sensor correlation, checks are performed to
determine the validity of the sensor data entering the CPU. To effectively understand and
evaluate the range/area of valid or invalid values, the team used the model to generate plots or
“maps” of the two pedal position sensors. The horizontal axis of these maps is VPA1 voltage,
and the vertical axis is the VPA2 voltage. A sweep through all possible voltage relationships
was performed. When a software diagnostic detected an invalid condition, it was noted on the
map.

From this map, the valid acceptable VPA1 and VPA2 voltages were identified, and all regions
where the software would detect invalid inputs were identified.

A second map was identified that allowed a wider range of valid values. This map is only
applied when battery power is reapplied. After a valid fully released pedal position is learned,
the map with the constrained or narrow range of valid values is applied.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
77 of 134

NESC Assessment #: TI-10-00618

The model’s diagnostic maps were compared with the actual source code within the Greenhills
Multi Environment as well as Camry hardware to ensure validity.

Six maps were generated for both the pedal diagnostics and pedal fail-safe detection. Three maps
included the expanded valid range and three the narrow valid range. For both expanded and
narrow threshold regions, a map was created for a ramp, step, and constant input sequence. The
ramp, step, and constant input sequences were necessary to allow timing and sequence logic to
function within the diagnostic detection code.

An example of two of the ramp sequences is illustrated below. This sequence starts and holds
VPA1 and VPA2 at their nominal voltages of 0.8V and 1.6V, respectively, for 3 seconds, and
then, in 2 seconds, linearly moves to the new VPA1 and VPA2 value, which it holds for 2
seconds. This sequence is performed for all new VPA1 and VPA2 values. The diagnostic and
fail-safe detection maps are shown below in Figures A.11-6 and A.11-7 for this 2 second ramp
sequence.

In Figure A.11-6, for every combination that produced a diagnostic code, it was marked with that
diagnostic code. An operational range of values is identified starting in the lower left and
continuing to the upper right. The lower left plots the pedal fully released voltages. The upper
right plots pedal fully pressed voltages.

Figure A.11-7 is plotted in a similar manner. For every combination that produced a diagnostic
code, it was marked with that diagnostic code. An operational range of values is identified
starting in the lower left and continuing to the upper right. The lower left plots the pedal fully
released voltages. The upper right plots pedal fully pressed voltages. The range of acceptable
values not producing a diagnostic code is wider. This range is the acceptable range of values
after battery voltage is reapplied, such as after maintenance.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
80 of 134

NESC Assessment #: TI-10-00618

minimum fully released pedal value of 10 degrees and 30 degrees for VPA1 and VPA2,
respectively. The combinations of values leading to a VPA1 of 10 degrees are shown below in
Figure A.11-8.

Figure A.11-8. VPA1 and VPA2 Combinations Leading to a Minimal Learned Value after

Starting at Nominal

These software model tests and the maps generated became the basis for much of the pedal tests
done on the vehicle hardware.

A.11.2 Throttle Control
The throttle is controlled by the ETCS-i software in the form of four signals (HI, HO, LI, LO).
These four signals open or close transistors in an H-Bridge IC. The 4 signals are based on
conversion from a calculated duty cycle command coming from the PID control software. The
duty cycle dictates the closing/opening rate which is controlled by changing the on and off times
of four FETs.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
81 of 134

NESC Assessment #: TI-10-00618

Figure A.11-9. Duty Cycle Times. 80% Duty Example

The input throttle command, which the PID controls to, is a combination of the throttle request
from the pedal/cruise/VSC, the request from the Idle Speed Control, and the learned throttle
spring position.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
82 of 134

NESC Assessment #: TI-10-00618

Figure A.11-10. Throttle Command Components

The base for the throttle command comes from the learned spring detent value. This value
represents the position of the spring when it is not actively controlled. This spring detent value is
not the fully closed position. The fully closed value is “learned” from 20 ms after ignition to 60
ms after ignition, when power is not applied to the throttle valve and it is assumed to be held
open by the spring only.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
94 of 134

NESC Assessment #: TI-10-00618

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
95 of 134

NESC Assessment #: TI-10-00618

A.11.4 Cruise Control
A.11.4.1 Cruise Control Switch
The cruise control is implemented through a single voltage input that is manipulated by the
driver through a switch. Depending on the input from the driver, the switch will select a
resistance that is interpreted by the cruise control logic to set the state of the cruise control. Four
resistors in parallel that may be combined together to represent the five cruise control switch
states: Main, Resume, Set, Cancel, Off. Input from the driver is sensed and considered valid if
three consecutive input samples indicate the same state change. The table below describes the
conditions for setting of each of the cruise control switch states.

Table A.11-1. Cruise Control Switch Voltage
Cruise Control Switch Voltage Cruise Control Switch State
CC voltage (CCV) <= (0.168 * Battery Voltage(BV)) Main On/Off
(0.168 * BV) > CCV >= (0.3685 * BV) Resume On/Off
(0.3685 * BV) > CCV >= (0.584 * BV) Set On/Off
(0.584 * BV) > CCV >= (0.7934 * BV) Cancel On/Off
(0.7934 * BV) > CCV Off

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
96 of 134

NESC Assessment #: TI-10-00618

There are noise removal functions to smooth out signal irregularities. Note there are no dead-
band voltage ranges between Cruise Control Switch States.

The actual setting of a cruise control state requires one of the cruise control switch states to be
registered followed by the “Off” state. When the driver engages the cruise control switch, the
switch is pushed in – this corresponds with Main, Resume, Set, or Cancel. When the driver lets
off of the switch, it returns to the normal position - this corresponds to the “Off” state.

In addition to the cruise control states described above, there are time-sequence manipulations of
the same cruise control switch that allow for other states that are described in the table below.

Table A.11-2. Cruise Control Activation
Cruise Control
State

Activation Description

Coast Set switch is engaged for
longer than 0.6 seconds

While engaged, coast will decrease the speed of the
vehicle. When disengaged the new vehicle speed becomes
the set speed.

Tap Down Set switch is engaged Each time the set switch is engaged the vehicle speed will
decrease by 1.6 kph. If the new vehicle speed is more than
5 kph different than the set speed at disengagement, then it
becomes the new set speed.

Accel Resume switch is engaged
for longer than 0.6
seconds

While engaged, accel will increase the speed of the
vehicle. When disengaged the new vehicle speed becomes
the set speed.

Tap Up Resume switch is engaged Each time the resume switch is engaged the vehicle speed
increases by 1.6 kph. The new vehicle speed does not get
saved as the set speed.

The cruise control operation may be manually canceled through four different inputs:

1. Brake is depressed
2. Shift from Drive
3. Cancel switch is engaged
4. Main is turned off

A.11.4.2 Cruise Control Diagnostics
There are four diagnostic codes that describe the cruise control failures.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
97 of 134

NESC Assessment #: TI-10-00618

Table A.11-3. Cruise Control Diagnostics
P0571
Brake Switch Circuit
Abnormal

Checks coherency of the two brake switches.

P0500
Vehicle Speed Sensor
Abnormal

Checks whether a speed pulse is registered by the vehicle within 140
seconds of ignition on.

P0503
Vehicle Speed Sensor
Intermittent/Erratic/High

Checks whether vehicle speed reading changes more than 25% from one
reading to the next.

P0607
Cancellation Circuit
Abnormal

Checks various voltages, data mirrored in RAM, and brake switch state.
Voltages checked include +B low voltage, ignition switch low voltage, WI
low voltage, and STA low voltage.

A.11.4.3 Auto Cancel Functions
Auto cancel refers to the function of automatically canceling the cruise control set speed because
of certain conditions or diagnostic output. There are three subsets of auto cancel described in the
Table A.11-4.

Table A.11-4. Cruise Control Auto Cancel
C1
Low Speed

Cancels when the vehicle speed is less than 36 kph, or 16 kph below the set
speed.

C2
Diagnostics(No code)

Cancels when there is an abnormality detected in the electronic throttle or
there is a contradiction in the two accelerator pedal position sensors or if
there is an abnormality in the accelerator pedal position sensors, or there is
an abnormality in the intake air mass flow valve or if the data mirrored in
RAM is not nominal.

C3
Diagnostics(P0571, P0500,
P0503, P0607)

Cancels if any of the following diagnostic codes occur: (P0571,
P0500, P0503, P0607).

A.11.5 Idle Speed Control
The Idle Speed Control (ISC) is a feed forward control system, working to mainly set the value
for idle rpm. In addition the ISC controls functions to compensate for conditions like creep
control, increases in oil temperature, variable valve timing, alternator loads, air conditioner
loads, catalyst temperature, idle while moving, stall prevention, fuel cut, variations in the throttle
valve assembly, purging, power steering, startup/ignition, and engine temperature to smooth the
driving experience engine operation. The ISC throttle angle request is added to the throttle
requests from the other control functions. ISC calculates in terms of the amount of air required,
in Liters/second, and converts this value to a throttle angle request. Within the ISC function there
is a conversion mapping, in the form of a look-up table, which converts the amount of air

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
98 of 134

NESC Assessment #: TI-10-00618

requested to a throttle angle. The final throttle angle request includes a learning value to
compensate for deposits in the throttle assembly. The ISC contribution is comprised of three
main components: 1) The ISC learning compensation, 2) the ISC target rpm/actual rpm feedback
control, and 3) engine loads. The table below describes calculated maximum contributions from
each of the ISC modules.

There is a maximum ISC throttle angle contribution of 15.5 degrees. Testing of the model
(258,048 iterations), showed a maximum contribution of 11.557 degrees assuming a base value
concerning throttle valve deposits and manufacturing variances. If deposits accumulate over
time, the contribution may reach the maximum guard of 15.5 degrees.

A.11.5.1 ISC water temperature measurement usage and fuel cut
The ISC uses water temperature measurement, as an input to various software modules within
the ISC to determine throttle angle contribution to maintain idle. Many of these calculations are
done based on the measured water temperature. There are no redundant measurements
referenced within these modules to provide verification of the water temperature. If the

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
99 of 134

NESC Assessment #: TI-10-00618

measurement is compromised, an increase in throttle angle can be demanded from ISC to the
throttle motor.
These findings from the software models influenced the development of tests performed on
vehicle hardware.

A.11.5.2 “Idle On” Fuel Cut Function
Whenever the pedal is sensed to be released, the engine is commanded to idle. This occurs when
the vehicle is stopped or in motion.

At the moment the pedal is released, the rpm is sensed. If this rpm is above the fuel cut
threshold, fuel is cut from the engine, and the engine rpm begins to decrease. When the rpm
decreases below the fuel cut return threshold, the fuel is returned to the engine to maintain proper
idle speed.

The fuel cut function will engage when the pedal is released and the rpm is above the fuel cut
threshold.

Once fuel cut is engaged, the rpm will drop until it reaches a fuel cut disengage limit.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
100 of 134

NESC Assessment #: TI-10-00618

A.11.5.3 ISC Learning Algorithm Description
The Idle Speed Control (ISC) learning algorithm is designed to maintain smooth idling
conditions.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
101 of 134

NESC Assessment #: TI-10-00618

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
102 of 134

NESC Assessment #: TI-10-00618

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
104 of 134

NESC Assessment #: TI-10-00618

model to correctly represent the behavior of the engine given the throttle angle demand. During
the process of this investigation no such engine model was made available. There is a vehicle
model that was developed by Toyota to support the testing of the cruise control that provides a
limited amount of feedback that was used to test the ISC model. Even the limited amount of
feedback that the vehicle model provides is not appropriate for ISC testing for certain conditions.
The vehicle model was developed for a vehicle that is in motion and being propelled through an
engaged transmission. The ISC behavior is most significantly observed during “idle-on”
condition where there is no input to the throttle angle from commands initiated by the cruise
control or the foot-pedal. A fraction of “idle-on” condition may occur with the conditions
represented by the vehicle model, but the majority of the ISC operation is tested at low speed
conditions where the feedback from the partial plant would not be complete and may even
provide incorrect feedback that would induce unexpected behavior through the model. This was
taken into consideration when testing occurred.

The model inspection process was initiated with the identification of a Toyota software module
of interest. The identified software module was then exercised by varying the inputs across a
range of values whereupon the output was inspected for correct behavior. The Toyota ISC
specialist, having insight into the system, was qualified to decide what the significant inputs to
the software module were to verify functionality. The outputs were observed as changes from a
baseline behavior that was decided on at the beginning of testing. This baseline behavior
represented fairly benign operating conditions for the ISC with the majority of the throttle angle
command contribution coming from EQG, which represents the learned value for throttle
position. The software modules were inspected individually at first and then combinations of
modules were exercised. The combinations were based on the identification of functional
interactions between separate software modules.

The testing process described was a good first step in verification of model behavior, but the
behavior is only tested for a limited amount of inputs and interactions as compared to a
comprehensive set of tests. A complete set of tests would be physically impossible for
inspection by engineers, but automatic testing can be implemented to gain more confidence in
the model. Matlab System Test was implemented to more fully exercise the model. The tests
were implemented by varying inputs that have significant effect on the throttle angle
contribution. The relevant combinations that lead to a large throttle angle command from the ISC
system were then identified. While the tests themselves do not give evidence for verification of
model behavior, any combination of inputs that lead to large throttle commands may be
investigated in more detail to verify behavior.

Verification by inspection and automatic testing provides a level of confidence in model
behavior for hardware scenario test development, but another source of model verification is
completed when the hardware tests of the ISC exhibit the same behavior predicted in the model.
All ISC functions outside of the learning algorithm have been verified through inspection and

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
105 of 134

NESC Assessment #: TI-10-00618

minimally tested through SystemTest. Future verification work could include a more
comprehensive set of automatic software tests and hardware tests with the vehicle.

A.12.2 ISC Learning Algorithm Verification
Complete verification of the ISC learning algorithm functionality did not reach maturity. While
the verification exercises outline above provided a good measure of confidence in most of the
software modules of the ISC, EQG(learned value), EQI(feedback value) and EQGRST(learning
reset) provide unique challenges for verification. The learning algorithms represented by these
three modules are incredibly complex, requiring many inputs from inside and outside the ISC
being utilized by multiple, interconnected calculations.

A.13 Software Model Testing
The objective of these tests was to use the MATLAB, SIMULINK and StateFlow models that
have been developed from the Toyota software specifications to find scenarios that could lead to
UA. If found, the scenarios would subsequently be tested on the Toyota source code within the
Green Hills environment, as well as on the actual hardware to see if they could lead to an actual
UA.

There were three main sets of software tests conducted:

1) varying pedal sensor input voltages, VPA1 and VPA2, to determine the effects of
transient voltage changes and the resulting effect on the throttle.

2) determining what conditions may cause cruise control to turn on unexpectedly as
well as what conditions prevent the cancelling of cruise control.

3) determining the maximum ISC contribution.

The SystemTest tool from Mathworks was used to conduct these model tests. The tool
encapsulates the model, its initial setup, test vectors used and the properties that are checked. The
tool runs the model with thousands or even hundreds of thousands of test cases using a
permutation of all the input test vectors. The tool also generates a complete report of the test
data used and the results obtained. The results were then analyzed to come up with one or more
UA scenarios for testing on the MY 2005 Camry.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
106 of 134

NESC Assessment #: TI-10-00618

A.13.1 Tests for Failures Resulting from Transient VPA Changes
Test Objective
The objective for this set of tests is to explore the possibility of throttle angle unexpectedly
becoming and staying large (e.g., >20) at the end of a trip as a result of a sudden and transient
change in the values of VPA 1 and 2 with no diagnostics being detected.
Test Setup
Figure A.13-1 shows the SIMULINK model that was used to conduct these tests. It extends the
integrated Toyota system model, Integrated Model (Version 6), by adding:

- The required in-ports to supply the test parameters,

- Blocks used to control the sequence and timing of the input values, and

- The required out-ports needed to channel the output of the application.

The additions are shown in light blue. Another modification that was done to the original model
was to remove any SIMULINK display blocks (e.g., Scopes and Displays) to speed up the
running of the test.

Figure A.13-1. Integrated test model (Integrated_Model_V9_ST.mdl)

The model has a simulation time period of 8 seconds with a time-step of 0.0001.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
108 of 134

NESC Assessment #: TI-10-00618

Input Name Phase 1 Phase 2 Phase 3 Phase 4

 t<=4.01 4.01<t<=4.02 4.02<t<=4.03 t>4.03

VPA1 0.8 0 to 2.4 in steps
of 0.2

0 to 2.4 in steps
of 0.2

0.8

VPA2 1.6 0 to 5 in steps
of 0.2

0 to 5 in steps
of 0.2

1.6

A SystemTest test file was created that references and initializes the test model, sets up the
required test vectors and includes the property that is checked during the test. SystemTest runs
the tests which in this case are 114,244 test cases representing all permutations of the parameters
during trip Phases 2 and 3.
Test Results
A total of 114,244 test cases were run using a cluster of 32 processors that took 13 hours to
complete. All the tests passed, i.e., for inputs expected to demand throttle angles less than 20
degrees, none resulted in an increase in the throttle angle value greater than 20 degrees as a result
of the transient VPA changes with no diagnostics being detected. The maximum throttle
increase observed in the model was around 17.2 degrees.
Note that this set of tests did not explore the values of VPA1 and VPA2 out of the normal ranges
(as shown in the vector table).
Further tests
In addition to the tests described above the software team also ran 10,000 tests that explored a
wider range of values for VPA1 and VPA2. The software team used random values for these
parameters (using a uniform distribution) ranging from -5 to 10. They also all succeeded and did
not show any failures.

A.13.2 Testing for Unexpected Cruise Control (CC) Turn-on Failures
Test Objective
The objective for this set of tests is to detect if the Cruise Control system can unexpectedly turn
on. In these tests the aim is to generate the set of scenarios in which the user turns on the CC,
sets CC speed and then turns CC off at the start of a trip but later on due to some combination of
various parameter changes it turns on again unexpectedly.
Test Model
Figure A.13-3 shows the SIMULINK model that was used to conduct these tests. It extends the
Cruise Control block/sub-system of the original Integrated Model (Version 6) with:

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
109 of 134

NESC Assessment #: TI-10-00618

- The required in-ports to supply the test parameters

- Blocks used to control the sequence and timing of the input values, and

- The required out-ports needed to channel the output of the application.

The additions are shown in light blue. Another modification that was done to the original model
was to remove any SIMULINK display blocks (e.g., Scopes and Displays) to speed up the
running of the test.

Figure A.13-3. Cruise Control Test Model (CruiseControl_V6_ST.mdl)

The model has a simulation time period of 5 seconds with a time-step of 0.0001.

Trip Plan
The trip plan simulated by the test model consists of 2 main phases, as shown in Figure A.13-4:

- 0<=t<=2: The initial phase in which Cruise Control is turned on, the CC speed is set and
then the CC is turned off.

- 2<t<=5: The second phase in which parameters are changed to see if they could violate
the property.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
111 of 134

NESC Assessment #: TI-10-00618

Input Name Trip Phase 1 Trip
Phase 2

0<
t<

=0
.2

5

0.
25

<t
<=

0.
5

0.
5<

t<
0.

75

0.
75

<t
<=

1

1<
t<

=1
.2

5

1.
25

<t
<=

2 2<t<=5

Vehicle Speed

37 20,40

Ignition Switch 1 1

Engine Condition
Flag23

0

0,1

Flag for system
down due to

abnormality in
Electronic

Throttle System

0 0,1

Ram mirror image
consistency flag

0 0,1

+B low voltage
flag

0 0,1

Ignition Switch
Low Voltage Flag

0 0,1

STA Low Voltage
Flag

0 0,1

WI Low Voltage
Flag

0 0,1

Accelerator Pedal
Position Sensor
(VPA) 1 and 2

consistency flag

0 0,1

23 This is a flag that represents abnormality in the intake air mass flow valve. This requires four conditions to be true:
1) XCCACT = 1
2) XCCSCAN = 0 (not under cancelation processing)
3) degree of opening of the intake air mass flow valve is less than 30 degrees
4) intake air mass flow valve sensor is normal, this checks whether the valve is less than 30 degrees or not.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
112 of 134

NESC Assessment #: TI-10-00618

Input Name Trip Phase 1 Trip
Phase 2

0<
t<

=0
.2

5

0.
25

<t
<=

0.
5

0.
5<

t<
0.

75

0.
75

<t
<=

1

1<
t<

=1
.2

5

1.
25

<t
<=

2 2<t<=5

16 ms Counter
from Ignition to
Speed Impulse

Reception

0 0,1

Flag for Detection
of

short/intermittent
accelerator pedal

position sensor

0 0,1

In Drive state flag 1 1

The software team created a SystemTest test file that references and initializes the test model,
sets up the required test vectors and includes the property that is checked during the test.
SystemTest runs the tests which in this case are 16384 cases which are all the permutations of
the values of the parameters during different phases of simulation.
Test Results
The software team ran 16384 test cases consisting of all the permutations of the input parameters
during different phases of the simulation shown in Table A.13-1. The test took about 1 hour to
complete.
All the tests succeeded, i.e., there were no failures of the property.

A.13.3 Testing for Auto-Cancel Failures
The objective for this set of tests is to detect if the cruise control system may fail to turn off as a
result of an auto-cancel condition (e.g., braking). In these tests the aim is to find the set of
scenarios in which the driver turns on cruise control and sets the cruise control speed at the start
of a trip, but then either he/she performs some actions (e.g., like braking) or the state of the
vehicle changes (e.g., some significant diagnostic flags are set) in such a way that should cause
CC to automatically get cancelled, but fails to do so.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
114 of 134

NESC Assessment #: TI-10-00618

Note that there may be other auto-cancelling conditions that the software team has not covered in
this study and they need to be checked in further tests.

Test Vectors
The following table shows the parameters that are either set directly in the model or supplied
indirectly by SystemTest.

Input Name Trip Phase 1
(0<t<=2)

Trip Phase 2
(2<t<=5)

Brake Switch 1 1 0,1

Brake Switch 2 0 0,1

Battery Supply Voltage 14 1,14

Vehicle Speed 40 33,40,65

Ignition Switch 1 1

Engine Condition Flag 0 0,1

Flag for system down
due to abnormality in

Electronic Throttle
System

0 0,1

Ram mirror image
consistency flag

0 0,1

+B low voltage flag 0 0,1

Ignition Switch Low
Voltage Flag

0 0,1

STA Low Voltage Flag 0 0,1

WI Low Voltage Flag 0 0,1

Accelerator Pedal
Position Sensor (VPA)

1 and 2 consistency flag

0 0,1

16 ms Counter from
Ignition to Speed

Impulse Reception

0 0,1

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
115 of 134

NESC Assessment #: TI-10-00618

Input Name Trip Phase 1
(0<t<=2)

Trip Phase 2
(2<t<=5)

Flag for Detection of

short/intermittent
accelerator pedal

position sensor

0 0,1

In Drive state flag 1 1

As before the software team created a SystemTest test file that references and initializes the test
model, sets up the required test vectors and includes the property that is checked during the test
(Figure TBD). SystemTest runs the tests which in this case are 24576 cases which are all the
permutations of the values of the parameters during the second phase of simulation.
Test Results
The software team ran 24576 test cases consisting of all the permutations of the input parameters
during the second phase of the simulation shown in table 2. The tests were run on a cluster of 32
processors and it took about 1 hour and 45 min. to complete. No failures were detected.
Analysis of the Test Results
The tests described above do not cover all the auto-cancel conditions for the CCS, including
auto-cancelation related to some of the diagnostics (P0607 – Cancellation Circuit Abnormal).
The CCS model did not model and support other off-nominal cases that were outside of the
scope of the modeling effort.

A.13.4 ISC Maximum Output Test
Test Objective
The objective of this set of tests is to find the scenarios in which the ISC model output
"ettaisc_ettaisc" reaches its maximum value and to determine what that value is. The set of
parameters that result in large ISC output would provide good candidates for further
investigation.
Test Model
Figure A.13-6 shows the SIMULINK model that was used to conduct these tests. It extends the
original ISC model version 3 with:

- The required in-ports to supply the parameters to the test model

- The required out-ports needed to channel the output of the test model

The additions are shown in light blue.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
116 of 134

NESC Assessment #: TI-10-00618

The model has a simulation time period of 4 seconds with a time-step of 0.0001.

Test Vectors
System test was set up to generate different permutations of the parameters shown in the
following table.

 Description Range of values

 Catalytic Converter Warmup
Control in Crank Angle

[-20,-10,0]

 Air temperature in degrees Celsius [3,20,50,80,100]

 Water temperature in degrees
Celsius

[-40,-20,-5,0,10,20,30,70,85]

 Spark Timing Feedback Control [0,1]

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
117 of 134

NESC Assessment #: TI-10-00618

 Description Range of values

 Ambient Air Pressure in Kilopascals [0.7,1]

 Air Conditioner ON [0,1]

 Electrical Load Judgment Flag [0,1]

 Cooling Fan ON [0,1]

 Neutral Switch [0,1]

 Variable Valve Timing Fail Flag [0,1]

 Power Steering Pressure Switch [0,1]

 Brake Signal [0,1]

 Idle Up Low Request when A/T Oil
Temperature is High

[0,1]

 Idle Up High Request when A/T Oil
Temperature is High

[0,1]

The software team created a SystemTest test file that references and initializes the test model,
sets up the required test vectors and includes the property that is checked during the SystemTest
executes.
Test Property
Although there is no strict pass or fail criteria in this case, in order to more easily detect the
interesting cases the software team defined the following test property:

"maximum output value (i.e., max_ettaisc_ettaisc) being greater than 10."
Test cases in which this property is satisfied are marked as passed otherwise they are recorded as
failures in the auto-generated report. This allows the team to quickly divide the interesting test
results into two major categories. Failed cases can then be further analyzed to detect general
patterns and groupings of input parameters that lead to the maximum output value.
Test Results
The software team ran 258048 test cases out of the total of 276480 test cases. The tests were run
on a cluster of machines with 32 processors and took around 42 hours to complete. By default
System Test saves the test data including the values of parameters used to test the model in a
MATLAB ".mat" file. In addition it generates an HTML report which shows the test cases and
some general information like the start and stop time of the test, summary pass/fail reports, etc.
Analysis of the Results
There were 183840 test cases (around 70%) that showed output values of less than 10 and 74208
cases (around 30%) showed output values of greater than 10. The maximum output value

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
118 of 134

NESC Assessment #: TI-10-00618

observed in the software model was 11.557. These test cases show that the maximum output
value is correlated with the minimum water temperature sensor values. A closer examination of
all the results may be necessary to detect any other relationship that might exist between the
parameters in other test cases.
2005MY Camry vehicle hardware tests were performed with water temperature sensor failures as
a result of this software model test.

A.13.5 Summary of System Test Results

A.14 Analysis of Real-Time Software Behavior

A.14.1 Introduction
The Toyota ETCS-i is an example of a safety-critical hard real-time system. In a hard real-time
system, the hard-deadline timeliness of the software is just as important as its correctness. The
following sections present an analysis of the ETCS-i from this perspective.

The ETCS-i is a complex system that consists of many components and thousands of lines of
code. This section highlights some key characteristics of the system’s hardware and software.
Although the details are presented here without discussion, their importance will become clear in
subsequent sections.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
119 of 134

NESC Assessment #: TI-10-00618

A.14.2 Target Hardware
Like most embedded systems, the hardware is divided into several chips that work together.
There is a chip for collecting analog data signals, and another one for managing power. The main
chip, on which the software runs, is based on the Renesas Electronics V850E1, a 32-bit RISC
CPU running at 64 MHz. It is a proprietary package (part #µPD70F3152) with a unique memory
and peripheral layout that is customized to Toyota’s specifications.

A.14.3 Embedded Software
The ETCS-i software is implemented in C with certain performance-critical sections in V850
assembly. There are no floating-point operations, and dynamic memory allocation (malloc, free)
is never used after system initialization.

Task scheduling is handled by an underlying operating system compliant with the OSEK
specification. Although OSEK offers real-time capabilities (priority ceiling protocol, rate
monotonic scheduling, etc.), there is no explicit concept of task deadlines. Tasks are assigned a
priority and run periodically (e.g., every four milliseconds) or in response to an event such as an
interrupt.

A.14.4 Toyota’s Software Performance Testing
Toyota’s approach to software testing consists of unit testing and hardware-in-the-loop field
testing. Functions are tested in isolation for correctness, and the integration and performance
testing is performed empirically on the actual hardware. All verification of timely behavior is
accomplished with CPU load measurements and other measurement-based techniques.

Toyota designed the software with a high margin of safety with respect to deadlines and
timeliness. For example, a task with a one-millisecond period is intended to consume a small
fraction of that time slice (around 100 microseconds). Toyota documented no formal verification
that all tasks actually meet this deadline requirement.

Documented tests have shown that the Main CPU has less than 20% idle time at a rpm of 5000
or higher (see Homework #47).

A.14.5 Statistical Analysis
The first timing analysis performed in this study was based on a statistical model of CPU load.
The goal was to determine the probability of the load exceeding the 100% threshold (0% idle
time). Should such a condition occur, system-critical tasks would be starved for computational
resources, possibly leading to spontaneous system resets.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
120 of 134

NESC Assessment #: TI-10-00618

A.14.6 Toyota’s Analysis
Prior to the statistical analysis in this study, Toyota provided three types of data:

• Mean percentage of time used by the idle task under different load conditions
corresponding to 6000, 8000, and 9000 rpm

• Minimum and maximum margin for the four-millisecond task sampled for ten seconds

• An observation that no CPU reset had occurred during hardware-in-the loop testing
However, none of this data provided sufficient confidence to extrapolate to the approximately
billion hours that the Camry fleet averages each year.24

A.14.7 Empirical Analysis

 Either the sample size was too small
(e.g., ten seconds for minimum and maximum), or the summary statistic was too coarse (e.g.,
average idle task percentage).

This study requested more data in order to extrapolate to probabilities on the order of a billion
hours per year. Toyota ran the 2005 ECU configuration, with the diagnostic tool connected, on
their MITY test stand in Japan, in the three rpm levels for an hour each. The actual margin for
each sample of the four-millisecond task was recorded. This required the MITY facility because
of the need to provide 250 samples per second for an hour (900,000 samples per hour), compared
to the minimum and maximum statistic for ten seconds provided previously. The three
configurations were 6000 rpm, 8000 rpm, and 9000 rpm. While 6000 rpm is the maximum
engine rpm under normal circumstances before fuel ignition cutoff is engaged, higher rpm is
enabled under laboratory conditions. The higher rpm configurations provide a stress test for
crosschecking the 6000 rpm data.

A.14.8 Analysis of 6000 RPM Data
The 6000 rpm data contains 3,616,246 samples of margin times in microseconds. The samples
were collected every millisecond, and hence there are repetitions for three, four, and five
consecutive samples. The data was filtered to remove these repetitions, and the filtered data
contained 880,571 samples. In this dataset, any task may have its lifecycle divided into three
components:

Waiting time in queue + Execution time + Margin time = four milliseconds

24 According to the US DOT Federal Highway Administration from 2007 US data, the average annual miles per vehicle is 12,334 per year. This
is based on a total annual miles traveled (3,049,047 million) divided by the total number of vehicle registrations (247 million). From 1983
through 2007 over ten million Camrys were sold worldwide. The ECU configuration for 2005 Camry was similar to those from 2002 onwards.
From these figures, the rough order of magnitude of hours driven yearly on Camrys from 2002 to 2007 model yearly is one billion hours.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
121 of 134

NESC Assessment #: TI-10-00618

Waiting time refers to the time a task waits in the queue (either due to an interrupt or due to the
CPU being used by a higher priority job); execution time is the time it takes the job to finish
execution; and margin time is the time between the completion of one job and the invocation of
the next.
The data supplied by Toyota consisted of the margin times. The execution time was assumed to
be the one with the highest margin time (assuming the task finished earliest), subtracted from
four milliseconds. The approximate value of execution time is 121 microseconds. The histogram
plots below show the waiting times for the four-millisecond tasks, where the horizontal axis
corresponds to time and the vertical axis to the frequency. From the plot, it is clear that most of
the observations have a waiting time of less than 800 microseconds.

This data is highly multi-modal. The first aim was to fit a mixture distribution to this data.
However, a mixture of Gaussians had a bad fit (based on maximum likelihood approach) and so
the software team focused solely on the samples that have waiting times greater than 800
microseconds.

The following histograms plot the waiting times for the four-millisecond tasks for 6000 rpm.

The above histogram shows the waiting times (greater than 800 microseconds) of the tasks. This
resembles a Gaussian distribution.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
122 of 134

NESC Assessment #: TI-10-00618

The following is a histogram plot of the waiting times for the four-millisecond tasks (only
greater than 800 microseconds) for 6000 rpm

Let X be the random variable that measures the waiting times. The goal was to find the
probability that P(X>4 milliseconds). The approach taken here is statistical in the sense that a
distribution was fitted to the data and then the probability was derived based on the fitted
parameters of the distribution.

The software team fitted two distributions to this truncated dataset:

• Gaussian Distribution. The estimated mean and variance of this distribution are 982.6
microseconds and 45.1 microseconds, respectively, with 95% confidence in the estimation
according to MATLAB’s maximum likelihood operation. Then:
P(X>4 microseconds) = 1 – P(X<4000 microseconds) = 0 (by MATLAB)
Using the natural logarithm scale (where z is the standard normal variation):
P(z) = 1/sqrt(2pi) * exp(-z2/2) ==> ln(P(z)) = ln(1/sqrt(2pi)) - z2/2
For us, z ~= 67.
Thus:
ln(P(67)) = -2.2454*103
And hence:
P(X=4000) = exp(-2.2454*103)

• Generalized Extreme Value Distribution. GEV distributions are used to model extreme
values. GEV combines three distributions (Gumbel, Frechet, and Weibull) into one. It has
three parameters: shape, location and scale. MATLAB’s statistics toolbox was used to fit a

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
123 of 134

NESC Assessment #: TI-10-00618

• GEV to the truncated dataset. The estimated parameters were: -0.1645 (shape), 964.29
(location) and 45.6141 (scale). Based on the value of the shape parameter, it can be
inferred that it is a Weibull distribution. Plugging these values into the expression for the
cumulative distribution function of GEV, the probability of P(X>4000) = 1-
exp(1.1620*106) is obtained.

A.14.9 Analysis of 8000 RPM Data
As before, the following histograms show the waiting times for the jobs. The number of events is
much higher than the 6000 rpm case. Also, the tail of the distribution spreads more towards the
four-millisecond region.

The following histogram plots of the waiting times for the four-millisecond tasks for 8000 rpm.

The following histogram plots of the waiting times for the four-millisecond tasks (only greater
than 800 microseconds) for 8000 rpm.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
124 of 134

NESC Assessment #: TI-10-00618

Both Gaussian and GEV distributions were fitted to this data. For the normal distribution, the
estimated parameters were 1026 (mean) and 73.5793 (variance), which means:
P(X>4000) = exp(-817.7658)
For the GEV, the parameters were -0.0536 (shape), 995.43 (location) and 59.85 (scale). For this
distribution:
P(X>4 milliseconds) = 1 – exp(1.8007*104)
A two-component Gaussian mixture model was also fitted to this data. In that case:
P(X>4000) = exp(-1.2563*103) + exp(-1.2563*103)

A.14.10 Analysis of 9000 RPM Data
In this case, there are two peaks after the 800 microsecond waiting time. Therefore, fitting a
single distribution to this dataset is incorrect. As before, a two-component Gaussian mixture
model was fitted and the parameters were estimated using Expectation Maximization. In this
case also, the value of:

P(X>4 milliseconds) = exp(-1.2814*103) + exp(-1.1473*103)
The following histogram plots of the waiting times for the four-millisecond tasks for 9000 rpm.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
125 of 134

NESC Assessment #: TI-10-00618

The following histogram plots of the waiting times for the four-millisecond tasks (only greater
than 800 microseconds) for 9000 rpm.

A.15 Worst-Case Execution Time (WCET) Analysis
To complement the statistical analysis, a static analysis was performed on the source code itself.
This approach to CPU load verification, which involves no runtime measurement of any kind, is
known as worst-case execution time analysis, or simply WCET analysis. It is a rigorous

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
126 of 134

NESC Assessment #: TI-10-00618

approach that places a hard upper bound on the execution time of a given software task. The idea
is to make timeliness a property that can be formally analyzed.

A.15.1 Static Analysis with aiT
The purpose of this analysis, therefore, is to verify temporal behavior by means of the WCET
approach. The WCET tool can provide evidence that a function may not meet its timing
requirement during some worst case execution time.

To perform this analysis, the WCET tool needed to simulate the computer hardware and compute
the execution of the software on the hardware. The Toyota software executed on a variant of the
V850 processor.

aiT from AbsInt supported V850-compatible analyzers and was selected for this study. It was
configured, with assistance from Toyota, according to the specifics of the ETCS-i, including
stack address, peripheral areas, memory wait states, and other attributes of the hardware. In
theory, the tool should then be ready to begin its analysis. The user simply provides an
executable containing V850 code, selects the entry point of a task in the executable, and then
clicks a button to compute the WCET of the task (see Figure A.15-1). In practice, of course,
there are significant limitations.

http://www.absint.com/ait/�

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
127 of 134

NESC Assessment #: TI-10-00618

Figure A.15-1. Screenshot of aiT computing the WCET of an ETCS-i function

First, because the ETCS-i has a proprietary CPU, the exact details of which are considered by
Toyota to be a trade secret, aiT’s model of the CPU is inaccurate. Specifically, aiT’s knowledge
of the processor pipeline and memory latencies do not match the ETCS-i processor precisely.

As an alternative, aiT provides models of several of the standard V850 variants, and the closest
match of these was selected for the WCET analysis. Using this “close” model of the processor
meant that the analysis results would not be exact; however, the variation is unlikely to be
greater than 20% (in either direction). This variation is accounted for in the analysis results, as
discussed in the following section.

Second, there are restrictions on the kind of code that aiT is able to analyze. For example, aiT
cannot handle:

• Multitasking
• Interrupts
• DMA routines
• Assembly code

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
128 of 134

NESC Assessment #: TI-10-00618

The limitation on multitasking is of particular importance because of the highly multitasking
nature of the ETCS-i. If, for instance, a function has a 100-microsecond WCET and runs in a
one-millisecond periodic task, there is no danger of overrun, but if ten such functions execute in
the same period, then suddenly there is a very real possibility of missed deadlines. aiT is not
capable of detecting this vulnerability.

It should be noted, however, that all WCET analyzers, including the most advanced research
prototypes, share similar limitations. Overall, aiT is adequate for single-task analysis and is
arguably the best in its class given the current state-of-the-art.

A.15.2 Analysis Results
Even with a perfect WCET analysis tool, there remains the task of locating time-critical
functions in the ETCS-i code, and also pairing these functions with a predicted time bound (i.e.,
a deadline as defined by Toyota’s specification). This proved more difficult and time-consuming
than expected. The scheduling of tasks in the ETCS-i is essentially dynamic, and there are no
explicit declarations of deadlines.

The design of the ETCS-i software does have implied deadlines, however, as tasks are scheduled
periodically. Therefore, a task scheduled for a one-millisecond period naturally has an implicit
one-millisecond deadline.

With this guideline in mind, a sample of periodic tasks was chosen. The entry points (functions)
of these tasks were then loaded into aiT for WCET analysis. However, not one of the functions
among this selection could be analyzed automatically. Each required special assistance from the
user to complete the analysis. For example:

• gesgm2drv_2msh (two-millisecond period) has a busy-wait loop whose bound is
determined by a timer value. The WCET of this type of loop cannot be derived
automatically, and therefore a manual annotation had to be inserted to inform aiT that the
loop’s WCET was five microseconds.

• etaest_2msh (two-millisecond period) invokes assembly code that contains a loop.
Because assembly has no fixed code patterns, aiT is unable to positively recognize its
structure and thus cannot determine the loop’s bound. According to Toyota engineers,
however, the loop should iterate no more than 20 times, and this fact was expressed to
aiT as an annotation, allowing the analysis to complete.

• gehdlp_req_1ms (one-millisecond period) contains indirect recursion in its call path.
Like most static analysis tools, aiT cannot handle this type of recursion without manual
annotations. The exact parameters for these annotations could not be derived from the

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
129 of 134

NESC Assessment #: TI-10-00618

Toyota specification (see section “Recursion”) and as a result, this function was left
unanalyzed.

For every instance in which aiT was able to find the WCET, it was consistently a small fraction
(always less than 10%) of its corresponding period. For instance, the function
gesgm2drv_2msh (two-millisecond period) had a WCET of 49 microseconds. Even when
taking into account the fact that aiT is employing a different CPU model for its analysis, a 20%
higher WCET would still lie well within the required parameters.

To be clear, not all of the periodic functions were analyzed. Having to assist the tool with manual
annotations on every function placed a limit on the amount of work that could be done. However,
the set of functions that were successfully analyzed are likely a representative sample of the
whole.

A.15.3 Recursion
During the WCET analysis effort, the discovery of recursion presented a problem, as mentioned
in the above description of the gehdlp_req_1ms function.

Recursion occurs when a function calls itself, either directly or indirectly. The direct case is far
more common and is typically known as self-recursion. Certain well-known algorithms, such as
finding Fibonacci numbers, can be expressed elegantly using self-recursion.

The indirect case occurs when, for example, function A calls function B, B calls C, and C calls
A. This type of recursion is exceedingly rare, for the following reasons:

• The abort condition of the recursive ring usually cannot be detected automatically, and
therefore automated analysis tools (such as aiT) are unable to handle them. This prohibits
the kind of verification and validation that is necessary for safety-critical and hard real-
time systems like the ETCS-i.

• Given that the call structure of indirect recursion is too complex for automated tools to
handle, it is typically too complex for human programmers to fully comprehend, as well.
This complexity makes a manual analysis ineffective.

• Deeply nested recursion could exhaust the stack space, leading to memory corruption and
run-time failures that may be difficult to detect in testing.

• Recursion is essentially a loop, and like any loop, there is a danger of non-termination.
An infinite loop could lead to deadlock that results in a system reset.

The question, then, is how to verify that the indirect recursion present in the ETCS-i does in fact
terminate (i.e., has no infinite recursion) and does not cause a stack overflow.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
130 of 134

NESC Assessment #: TI-10-00618

A.15.3.1 Toyota’s Recursion Analysis
Toyota’s response to this question is that a manual code review, followed by extensive field
testing, has not shown any evidence of software quality problems related to the recursion. If, for
example, an infinite loop had occurred, the watchdog timer would initiate a system reset, but a
reset never occurred during testing.

For the case of stack overflow, the CPU in the ETCS-i does not have protected memory, and
therefore a stack overflow condition cannot be detected precisely. It is likely, however, that
overflow would cause some form of memory corruption, which would in turn cause some bad
behavior that would then cause a watchdog timer reset. Toyota relies on this assumption to claim
that stack overflow does not occur because no reset occurred during testing.

Toyota used a tool called gstack from Green Hills Software to determine maximum stack size
requirements. The tool gstack is a static analyzer that computes an upper bound on the stack size
required by a given executable. For the ETCS-i, it reported the maximum possible stack size as
1688 bytes. This result comes with a caveat, however: gstack cannot account for recursion, as
stated in its user manual:

gstack cannot work if there are potential direct or indirect recursive calls in the program
because it cannot predict how many times the recursion can occur. gstack prints a
warning message if it detects a possible recursion in the call graph.

Faced with this limitation, Toyota added an extra margin of safety to the predicted bound by
allocating 4096 bytes for the ETCS-i stack—more than double the original prediction.

As to why recursion was present in the ETCS-i software, Toyota reported that it was a deliberate
design choice in order to simplify the quality assurance process and reduce the total size of the
executable. The recursion made this possible by allowing part of a newly implemented state
machine to be linked to a state machine that was already present in the code. (The
gehdlp_req_1ms function is just one of three sites where recursion is present.) This linkage
allowed existing code to be reused, unmodified, and therefore did not require additional testing
nor contribute to an increase in code size.

A.15.3.2 Recursion Analysis
Toyota re-examined the state machine code where the recursion occurred. The company
emphasized a high degree of confidence in its analysis, stating that the recursion is bounded and
contains no infinite loops, no dead-end states, and no stack overflow conditions. In particular, the
company reported that a recursion can occur no more than once for any given code path.
It should be noted that the ETCS-i state machines were implemented by hand, not generated
from a model, and therefore a manual code review was the only analysis option available to
Toyota’s engineers.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
131 of 134

NESC Assessment #: TI-10-00618

Moreover, a fully automated analysis is not possible, given that the presence of recursion defeats
stack usage tools such as gstack and the AbsInt StackAnalyzer. To support the analysis, a
partially automated, tool-assisted approach was therefore taken. It involved a C code analyzer
called ncc, which can pinpoint recursion sites and produce accurate call graphs of the ETCS-i
code, as shown in Figure A.15-2.

Figure A.15-2 shows a portion of the gehdlp_req_1ms call graph, pruned of all nodes that do
not participate in the recursion. (All function names have been obfuscated, without loss of
structure, to protect Toyota’s intellectual property.)

Figure A.15-2. Portion of the gehdlp_req_1ms Call Graph

http://www.absint.com/stackanalyzer/�
http://students.ceid.upatras.gr/~sxanth/ncc/�

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
132 of 134

NESC Assessment #: TI-10-00618

One immediate observation from this figure is the sheer number of possible paths the graph
contains, even after eliminating all non-looping nodes. (In fact, there is an infinite number of
possible paths due to the presence of cycles, thus demonstrating why analysis of recursive code
is so problematic.) A complete manual analysis would be impossible, although the visual aid can
make a partial analysis somewhat simpler.

By referring to the call graph, it is possible to trace the flow of the state machine implementation,
which is essentially a table lookup to determine the next state. A manual (static) analysis cannot,
in general, determine what this state will be at run-time, but in the special case of
gehdlp_req_1ms, the state machine tables happen to be composed in a way that the program
flow is deterministic. For example, at some points in the program flow, the next state is always a
constant, regardless of the current state.

Based on this knowledge, the exact program flow for gehdlp_req_1ms can be determined. It
is indicated by the thick purple lines in Figure A.15.-2. The flow reveals that the function is
actually doubly recursive: It flows from gehdlp_req_1ms to function2, recurses back to
function2, and then recurses again back to gehdlp_req_1ms.
Toyota engineers confirmed this software recursion.

It is not clear what impact recursion has with respect to the larger UA problem. Whether one
recursive loop or two, there are other sites of recursion in the ETCS-i that remain unanalyzed.

A.15.3.3 Recursion and System Reset
The WCET analysis and recursion analysis involve two distinctly different problems, but they
have one thing in common: Both of their failure modes would result in a CPU reset. In the
WCET case, there is nothing in the design of the ETCS-i that would necessarily prevent a
deadline overrun from occurring. But if such a problem does occur, and the event queue fills up,
the operating system will detect this problem and kill the watchdog timer, which will in turn
cause a system reset. Likewise, an infinite loop due to bad recursion would also cause a
watchdog-generated reset, and possibly a stack overflow (unconfirmed).

These potential malfunctions, and many others such as concurrency deadlocks and CPU
starvation, would eventually manifest as a spontaneous system reset.

A.15.3.4 Timing Analysis Results
The timing analysis identified no timing influencing the onset of any UA event. It is highly likely
that a starvation- or recursion-related malfunction would lead to a system reset.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
133 of 134

NESC Assessment #: TI-10-00618

A.15.3.5 Timing Analysis Forward Work
Concluding the full analysis would require the following work:

• Statistical Analysis. The statistical model shows a low probability of CPU reset due to
computational starvation based on an expected billion hours of driving per annum of the
relevant Camry fleet. This analysis is as detailed as time permitted. Future work would
involve a more detailed analysis that combines WCET analysis with a statistical
modeling of worst-case task interleaving.

• WCET. A more accurate hardware model, as well as performing WCET analysis on a
larger sample of software functions, would provide further evidence for system
performance. This could be combined with a statistical model of worst-case task
interleaving to place an upper bound on total CPU load.

• Recursion. To perform automated analysis of the hard real-time behavior, complete
removal of recursion from the software would be required.

• System Reset. Homework #116 contains data from a single test Toyota performed. This
study has not conducted sufficient hardware-in-the-loop testing to determine the behavior
of the system under spontaneous reset conditions. Additional field testing to observe the
acceleration behavior of the system during resets could be conducted. The purpose would
be twofold: Demonstrate benign behavior of all control functions under both single-reset
and multiple-reset (cascading) conditions. (Alternatively, the latter could be
accomplished through fault tree analysis instead of testing.)

A.16 Green-Hills Executable based Testing
Developmental build of the entire Toyota code base (denoted as the Green-Hills Executable), on
the Green Hills RTOS development environment (MULTI) began relatively late in the study
(mid July) and therefore, due to the size of the code base, can only provide intermediate results.
The advantage of the Green-Hills Executable approach is its capability of executing the entire
real Toyota/Denso code, such as the entire Main CPU block, a large body of code, consisting of
more than 1700 modules. This is a complex code base that performs workflow all the way from
pedal and throttles inputs, through pedal and throttle learning, damping, idle speed control, cruise
control throttle decisions, and various other components. The workflow ends with the output
throttle command sent to the throttle motor.

The purpose of this Green-Hills executable approach allows the discovery of pure software bugs,
including those that emerge only in conjunction with simulated hardware faults, all while using
high throughput automatic test generation and automatic computer aided property checking.

NASA Engineering and Safety Center
Technical Assessment Report

Version:
1.0

Title:
National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -

Appendix A

Page #:
134 of 134

NESC Assessment #: TI-10-00618

A.16.1 Technical Approach
The Green-Hills executable build was performed using the same object files used by
Toyota/Denso on the actual 2005 L4 Camry vehicle. The only exception is that the object files
were not linked with the OSEK RTOS. Because critical Main CPU tasks are invoked from a 4ms
A/D interrupt handler using a fixed schedule, a fixed scheduler was implemented. This
implementation eliminated the need to incorporate OSEK into the Green-Hills executable build.
Most task are 4ms tasks, with a small number of other tasks being invoked on a 8ms or slower
time schedule. The software team used simulation time, in the form of counters, similar to
Toyota’s implementation on the vehicle, to invoke the tasks.

A.16.2 Current Status
The Main CPU build of the Green-Hills executable was completed. However, several sanity tests
using data provided by Denso to assure that it is executing properly were needed. The existing
Green-Hills executable was used to generate pedal and throttle diagnostic maps for the purpose
of assuring the accuracy of the team’s Matlab models. This testing used the Toyota source code
to verify the model accuracy. The source code generated diagnostic maps matched the model
generated diagnostic maps point by point.

A.16.3 Verification Issues
The Toyota software testing approach consists of unit tests, where units are individual modules,
which in turn correspond to tasks, many of which being periodic tasks. From discussions with
Toyota engineers, it was understood that a software test harness for the entire code does not
exist. Absent an overall software test framework prevents the use of high volume computer
aided verification techniques, such as automatic test generation.

