
A F U N C T I O N D E F I N I T I O N O P E R A T O R

Kenneth E. Iverson
Peter K. Wooster

I.P. Sharp Associates Limited
145 King St W.

Toronto, Canada M 5 H 1J8
(416) 364-5361

This paper proposes two related extensions to APL: the exten-
sion of assignment to allow a name F to be assigned to a derived
function by an expression of the form E+-+. x, and the introduc-
tion of a dyadic operator V to apply to character arrays D and
M so that DVM produces an ambivalent function in which the
dyadic case is defined by D and the monadic case by M.

Before presenting the formal definition of the operator V, we
will discuss a number of examples that illustrate the main points.
Thus:

ROOT~'w*÷a'7'~*÷2'

ROOT2÷'~*÷a'V'2A~'

FAC÷,,7,wxA~-iOii)-*.w=O,

FAC2÷''7'A÷i+B÷o ~ A~AxB÷B+i ~ ~O,wpl'

FAC3÷''7'A÷i+B~-oO)B(>L:A÷AxB+B+i(>+O,wpL'

FAC4÷''7,~I+w=OK~oxA~-I~lO t

F~"7'A~wOB÷w*2AOKOAxBO'

As in the direct definition on which it is based [1], ct and w
denote the left and right arguments. Moreover, Lx refers to the
function being defined, allowing the use of one case in defining
the other (as in ROOT2), and allowing self-reference in reeursive
definition (as in FAC). Thus , FAC is the factorial function, and
ROOT and ROOT2 are equivalent functions such that N ROOT X
yields the Nth root of X, and ROOT X yields the square root of
X.

The diamond is a delimiter which breaks the vector into seg-
ments SO, $ 1 , etc., referred to by indices beginning with 0.
Execution consists of applying i to certain of these segments, the
explicit result of the function being the result of the last segment
which yielded a result (in the sense that Z÷iS would not have
produced a value error).

The sequence of execution is determined by a sequence con-
trol vector, which is enclosed [2] to form the first element of
the line counter [3.t.ZT. It is initially set to L, iL (where L is the
index of the last segment and where 0-origin is assumed in the
use of l); it is reset to the argument of any branch. T h u s in
executing FAC2 3 it is initially set to 2 0 1 and is immediately
reset to 0 1 1 1, causing one execution of segment 0 and three

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice !s given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
¢~1981 ACM 0-89791-035-4/81/1000-0142 $00.75

of segment 1. FAC2 is therefore an iterative definition equivalent
to the recursive definition used in FAC.

A segment beginning with a right parenthesis is a scope con-
trol segment; the name or names it contains are exempted from
the localization otherwise applied to any name appearing imme-
diately to the left of the assignment arrow in any of the remain-
ing no rma l segments of the particular case (monadic or dyadic).
Thus , FAC2 and FAC3 differ only in that B is global in the lat-
ter. The indexing of the normal segments is not affected by the
insertion of scope control segments.

The examples FAC4 and F illustrate how a final diamond
(which introduces a final empty segment) effectively causes exe-
cution to begin with the leading segment; FAC4 is therefore
equivalent to FAC, and F is similar to the familiar use of dia-
monds. A final segment L:~d~iL would cause the remaining seg-
ments to be executed from right to left.

F O R M A L D E F I N I T I O N OF 7

The dyadic operator 7 applies to character vectors or scalars
to produce an ambivalent function; the dyadic case is determined
by the left argument and the monadic ease by the right. The
representation used in the arguments of 7 is defined as follows:

1. The symbols a and oJ denote the left and right arguments
respectively; they are given full status as names, but cannot be
used to form longer names such as Bct or w2. Thus aABCw is
equivalent to ct ABC w. The symbol/x refers to the function being
defined.

2. Segments of the representation are delimited by diamonds not
in quotes. Any segment whose first non-space character is) is
a scope control segment; the remaining normal segments are
referred to by indices beginning with zero.

A label in a normal segment becomes a local constant assigned
the value of the associated index, but an error occurs if the label
has already been localized (as another label, as an argument, or
because of assignment). A comment may occur in any segment.

3. Normal segments are executed in a sequence determined by
a sequence control vector (which enclosed forms the first ele-
ment of [3LC); it is initially set to L, lL (where L is the index
of the last normal segment and 0-origin is assumed for L) and
is reset to the argument of any branch statement executed. Exe-
cution terminates when the sequence control vector is exhausted
or when an invalid index is encountered. A non-integer argument
of ~ produces an error.

4. The explicit result of the function (if any) is the explicit result
of the last segment executed which produced one (in the sense
that Z÷IS is valid). T h u s the dyadic case of the function
, , 7 ' oo' has no explicit result.

A Function Definition Operator 142 K.E. Iverson, P. K. Wooster

5. Localization of names is determined independently for the
monadic and dyadic cases. Any name (not in quotes) which
(except for possible intervening spaces) occurs immediately to the
left of an assignment arrow in any one of the normal segments
is localized unless it occurs among the names in one of the scope
control segments. The names a , ~ , and A are always localized.

6. Any suspension of the function F÷ATB produces the display
F [. 5] , followed by A or B (according to the ease in execution),
with an inferior caret to mark the point of suspensns'ton. A weak
interrupt causes interruption only at the eomple-tion of a segment,
and the caret then appears just to the right of the segment next
to be executed. A branch during suspension behaves like a
branch in a segment.

7. If Fw-AVB, then []CR 'E' yields a vector of three enclosed
vectors, namely, (<A), (<B) , (< ' F '). In any implementation
which does not permit an enclosed vector as an element of
~LC, it will be necessary to introduce another system function
(perhaps named ~LCI) such that ~LCI yields the (theoretical)
value of >~LC[VIIO], and to assign to ~LC[~IO] the actual value
.5 . This fractional value will prevent unintended use of-~[]LC
in resuming execution, and agrees with the display defined in
item 6 above.

C O M P A R I S O N W I T H C A N O N I C A L D E F I N I T I O N

The major points of comparison between the proposed opera-
tor V and the existing function definition primitive []FX may be
stated as follows:

1. []FX produces a named function, the name being embedded in
the argument of []FX. On the contrary, 7 produces an unnamed
function which may be applied without assigning it a name, or
may be given an arbitrary name by simple assignment. The
operator V therefore poses less problems of name conflicts in
establishing functions.

2. The operator provides for truly independent definitions of the
two cases of the function, including independent localization of
names. The facilities for localization are otherwise equivalent,
although the conventions for specifying it differ. The automatic
localization of names assigned values is extremely convenient.

3. Both modes provide essentially the same facilities for iteration
control, except that the operator allows statements to be repeated
any specified number of times without repeated tests and branch-
es (as illustrated in the function FAC2),

4. The operator provides particularly convenient recursive defini-

tion. Moreover, it can be implemented such that many recursions
(i.e., those in which the function being defined occurs only as
the root or las t -executed function in the expression defining it)
can actually be realized as more efficient iterative functions.

5. The use of 0 as the segment delimiter does not conflict with
its use in immediate execution or in canonical definition, but does
preclude its use in direct definition. This prevents the occurrence
within segments of a sequence of parts which is similar to, but
subtly different from, the sequence among segments.

The so-called 7 form of definition is equivalent to []FX except
that it provides editing facilities as well. Functions for editing
the arguments of the 7 operator can be easily written (using the
functions QFX and QCR of the working model shown in a later
section) For example:

REVISE+'O OpQFXw,Opm[a]~<EDIT>(m~-QCR~)[a~-OIO
+l=a]'V'2A~lAwO'

EDIT÷ ' ' 7 ' A ((K+A~ ' ' / ' ') IK+m), (1 +K~A), (K+'+IA\A
=' ' , ' ') +aKN~K>-~O:pAK-[~], Op[]~-o~ '

REVISE 'ROOT'
~O*÷(Z

,+i
~O*÷C~+i

o0*,'-2
/ , 3

m*÷3

ROOT 64

1 REVISE 'ROOT'
o~*÷3

/ ,2
~*÷2

Editing and display functions can also be written to display
or edit the successive segments on separate lines. In particular,
if M is a matrix of expressions suitable as segments defining a
monadic function, then ''V(,M, '0') defines the function.

A W O R K I N G M O D E L

The functions and variables shown below define a workspace
which permits one to define functions by simply entering expres-
sions of the form F-'-ATB as illustrated by the examples shown
at the outset. They are written for SHARP APL [3] and use
facilities (such as trap and enclosed arrays) which may not be
available on all systems. However, they should be rather easily
adapted to any APL system:

[]TRA_~÷'A2 E []ER ~ []ER[i+~IO;]'

F~DY DEL MON

F~'~',('21',DY ON MON) ~ F

~÷(' '*,~)/,~

Z*'(O*[]NC"a")~[~ ~'",~,''"

CR~-QCR N;I
I÷i+pCR~'OCR N
~((5>I)v(I+'~(~',Ip'A')v.=,(I,1)~CR)pO
CR÷(<2~CR[DIO+3;]),(<2¢CR[DIO+4;]),<,N

N÷N QEX CB;_B
-~(OEpC~) pLI
-~((~~D<>_B ÷' 'DCE) ,ox[3/VC '~') /L i ,LO
[÷>C_~[~IO+ 2]
~0 :CB÷~ IS(>CR[DIO]) DEL>CR[i+DIO]
-~0
L i :_~+CIFX CL3
E÷c~ a oo
(O~[]NC 'a') RUN SELE
~oJ
_S_L~-,w 0 OSIGNAL 999

K. E. Iverson, P. K. Wooster 143 A Function Def in i t ion Operator

R÷~[ZLD A;G;L;Y;~IO;U;T
o(2=ppR÷A)p0
R÷ i 0 p~lO+o
~((0~pA)v' 'A.=,A)p0
L ~ R÷>''pY~EXPS 'oB' IN A
G~ 0 i ¢~2_0M ' ~ ~ ~ ~ ' , , ' ' ,>Y[2]
Y~(T÷Yv.x' ') /Y÷>Y[I]
U ~ , ' ; ' , Y ~ L LESS Y ON G
U~-U,,'O',Y,'÷',v((pT),i)pT~T/~pT
R÷((U~' ')/U) .~ R
~_~÷ERRD~j~;~IO
~(.~/L.E,' VALUE ERROR') Q~ ~./~[I 2 +~I0"-0;]

S~EXPS S;T;I;J;M;G
Y~(S ~ '0~') EEfO~IS÷'O',S,' '
S~ 0 i ¢('~'~T[;~IO])/T
M~-FII~+I*v\¢S HA~ ' : '
S÷(I-M)~S,((pI),M)p' '
G~ 0 1 +(J~')'=T[;O])/T~(+/^\' '=S)~S
S~(<(~J)/(O,M)+S),(<(~J)/S[;-I¢~M]),<G

A FIX
E*(E //AS. ,÷v') R.Z_.~IOME~, '.E
~((, ÷7,^.= 3 I ¢E)A3=I¢pE)¢0
~ (~ N_DO O) IS(~I¢E 1.20 I) DEL~I¢E Ni20 2

R~A ~ W
R~(AEW)A=k''''xA
A~A ~ W
A~(,(W HAS l¢A)o.~4¢l)/,W,(~3,pW)p1@' ' , 1 4 A

A÷[~,CZL~ A ; I
A'~-'¢~ -1 1 +(A HAS ' ÷ ') ~_V_~ZQJl A ÷ , ' O ' , A
A ~ (+ / ^ \ ' '=A)¢A
I~^\Ae64¢B6¢[3AV
A÷(pA)pI\(I÷,v\(~I)AAE54¢86¢[3AV)/,A+4~A
A÷(Av.~' ')/(+/^\A=' ')~A

L÷L LESS G;I
o(0E(pL),oG)p0
I÷(' ',[14V)&L+G Q~i L
G~{3IO+''O 2¢l,pG
L÷L[((I~G)AI,V/L[I¢I;]~L[-I¢I;])/I;]

R÷A lY.20 B;OIO
R÷A[B+~IO÷O;]

R÷R QE B; I
R÷(2¢ i i ,pR)pR
B+(2* I i ,pB)pB
I÷o,-I*(pB)FpR
R~((IFpR)¢R),[~IO](IFpB)¢B

R~B PVTOM VEC;T;V
~(0~[3NC 'B')pL0
B+VECEI¢,VEC
LO:R+((xR),R÷×/pVEC)pVEC
~(OE(pB),pVEC)pO
V+(I¢T)--I*T~(i,(I¢(p,VEC)pB),I)/iI+p,VEC
T÷Vo.~(~F/V)+~~IO
R÷(oT)p(,T)\VEC

8EE ~;RUNi
~Q_Xo nBUILD AND FIX ~_~i
~UNI nRUNi DOES LOCALIZATION
~RUN2 RUNS VECTOR (DIRECT) DEFNS

B.C~o ;_S ;DIO
[]IO+O
£~Z÷ 5 i +~CR ~_N
FN÷ o i +((i+_D)=~,' ',Z~Z[;~i])/Z~
_S÷FN[O ;] ~ ' 0 '
S÷(' L~ i ',S_¢FN[O;]) ~ 'O',_S*FN[O;]
S_+OFX _S ON 'B_~_N_2'

B_~Z2 ;0TRAP;[3ER;~L ;S_L0
S~÷-I¢-I++\(i*pZE~ i o +EE)oi
RES:[]TRAP~-'76 C oERR7999 C -h~_~'
CQ.,_.T~ : ~ ((0 E pS_~) v v / ~ ([3 . , 4 V) p 0
4 ((~ . ~ 0 < 0) V (_S~0÷' ' p~)->ifp,k.~Z) p0

2i÷~,.EE 0../20 ~/~0
-K20~2
ERR:-~('liUJZ2[6] ' v . = 8 p 1 0 ¢[]ER)/.~.2~2
-~CQ3Zff
,,~..,~2 : SA,/,d_./~.2*~,~,.,~9,0 p[~-ERRD []ER
,,E29 :

I T E R A T I V E E Q U I V A L E N T S OF R E C U R S I O N

If in the monadic definition of a function F the last element
of the argument of a branch is I , and if segment I is of the form
A a 04 then the recursive use of F invoked by the self-reference
A can be replaced by executing ~ oJ followed by *.,7..~C N,
where Z$_~÷' '7'-1C~-1++\oJpl ' , and ,LS_C N is the normal ini-
tial value of the sequence control vector for the function ? con-
sisting of N segments.

The essential point is that A occurs as the root function (last
to be executed) in the last segment to be executed in F. Similar
remarks apply to the dyadic case.

We will treat the monadic case further by showing how any
definition can be modified (largely by appending segments of the
form NR w-'-G ~, where the function NR is defined by
NR÷' ' 7 ' ' and prevents the formation of new explicit results due
to the execution of these segments) to produce an equivalent
definition that uses iteration instead of recursion wherever possi-
ble.

Briefly, a branch of the form oB is replaced by the expression
oRS R / B, where

2.~'o~(-1¢~),a[0;I],,[.~C lpaO o(- l *pa)> l÷a[l+
DIO~-0;]~ 1¢ 1,~-~-~x 1 -~1pa '7 ' '

and where RS is a matrix whose second row lists the indices of
those eligible segments for which iterative substitution is possible
(i.e., those of the form A G w), and whose first row lists the
indices of the corresponding new segments N__HR w.'-G ~. For exam-
pie, if

F ~ , , V ' A ~ - l ~ - 2 0 - , . ? 2 0 A ~ - 3 0 , + ? 4 '

then the eligible segments are 0 3, the corresponding added seg-
ments are 5 6, and the value of RS would be 2
2 0 5 6 0 3. The corresponding equivalent function G is there-
fore given by:

G÷''V'A~-1~.,~-2<>-~2~.$_ ~ 72OA~-30-~__~_ ~ ?4 <>~
~ - I <>~.~-~-3 <>-~'~__~C Ip~_$~2 2p5 6 0 3'

The final segment of G (which is invoked first) establishes the
appropriate value of RS and then sets the sequence control vect6r
to the initial value appropriate to F, that is, to the initial part
of G.

A Function Defini t ion Operator 144 K.E. Iverson, P. K. Wooster

A compile function which can be used in the form
'G' COMPILE 'F' to define G as the iterative form of F, and
in the form COMPILE 'P ' to reassign to F its iterative form, may
be defined (using as subfunctions some of those used in the model
given earlier for the operator 7) as follows:

ALGN
(a-M)¢~,((pa),Mw-r/a)p' '

BLK1
(~(l~I)^I÷~IA~.' ')/~

BRFIX
(~ , (+ IB)p '~ .

~//~kq.'~')l~p~]
') [~(~pw) , (B÷6x('~ '~ l¢~)^ l÷

CDY
~BLKI(BRFIX~),S EXTRAD TO~'.ocOT~(S~o)[(S÷

TAILS T)ALGN T~>''pEXPS

CMON
(oOBLKI(BRFIXw),S EXTRAMT<>-~,.ocOT÷(S÷'A'=T[;

[3IO])[T÷>''pEXPS

COMPILE
aQFX(<CDY>~[O]),<CMON>(~w-QCR~)[I+[]IO+O]

DYIT
((S,15)p'~Zllww->(10)p¢(<a÷'),((S,F/a)+~),(((

S~l+p~),S)p'),<'),((O,l+F/a)¢~) , '0 '

ESG
'~/-$_.(:Z lPB.$. ~2 ' , (V+/w), 'p ' ,V((pw)+1+/w),w/xpw

EXTRAD
'O',(,(F/a)DYIT ~),ESG a~O

EXTRAM
'O' ,(,(((l¢p~),4)ptl~_2~0~'<- ') ,0 I*~,'O'),ESG a

PAREN
(xw)xl+o~-+/A\O~+\(-Ix~ HAS ') ')+m HAS ' ('

TAILS
R ÷ ((p S) , 2) * (S * P A R E N ~)¢~ 0 Sx(R[;O]:'A')A~R

[;I]e5~¢86¢[]AVO

/L2C
- l ¢ - l + + \ w p l

U./~÷"V"

/U
~ (- 1 * ~) ,a[O ;I],,~_C lpeO-,- (- lI" p a) >Iw-a [1+[]I0+

0;]~ i¢ l,~,~-oJx-l*o~->ipa

One simplifying assumption is made in this model, namely,
that the left argument of A in the dyadic case is always enclosed
in (possibly redundant) parentheses.

It is interesting to note that the function FAC does not permit
compilation into iterative form but that, because the root function
x is associative, one can define an equivalent function that does.
Thus:

F*'(axw)A~-1~aO.+~=O'V'IA~'

The function G resulting from 'G' COMPILE 'F' is defined by:

x~)) ,<~- I O--~,,~..(~ Ip~,~_+2 I p 3 0 ' 7 ' i A ~ '

ACKNOWLEDGMENTS

We are pleased to acknowledge the helpful criticism and ad-
vice of our colleagues at I.P. Sharp Associates, particularly Bob
Bernecky, Roland Pesch, Doug Forkes, Arthur Whitney, and
Jerry Cudeck.

REFERENCES

1. Iverson, K.E., Elementary Analysis, APL Press, 1976.

2. Bernecky, Bob and Iverson, K.E., Operators and Enclosed
Arrays, APL Users Meeting, I.P. Sharp Associates, 1980.

3. Berry, P.C., Sharp APL Reference Manual, I.P. Sharp Asso-
ciates, 1979.

K, E, Iverson, P, K, Wooster 145 A Function Def in i t ion Operator

