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ABSTRACT
This work discusses a hardware architectural support for accelerator-
rich CMPs (ARC). First, we present a hardware resource manage-
ment scheme for accelerator sharing. This scheme supports shar-
ing and arbitration of multiple cores for a common set of accelera-
tors, and it uses a hardware-based arbitration mechanism to provide
feedback to cores to indicate the wait time before a particular re-
source becomes available. Second, we propose a light-weight inter-
rupt system to reduce the OS overhead of handling interrupts which
occur frequently in an accelerator-rich platform. Third, we propose
architectural support that allows us to compose a larger virtual ac-
celerator out of multiple smaller accelerators. We have also im-
plemented a complete simulation tool-chain to verify our ARC ar-
chitecture. Experimental results show significant performance (on
average 51X) and energy improvement (on average 17X) compared
to approaches using OS-based accelerator management.

Categories and Subject Descriptors
C.1 [PROCESSOR ARCHITECTURES]: C.1.3—Heterogeneous
systems

General Terms
Design

Keywords
Chip multiprocessor, Hardware Accelerators, Accelerator Virtual-
ization, Accelerator Sharing

1. INTRODUCTION
Power-efficiency has become one of the primary design goals

in the many-core era. While ASIC/FPGA designs can provide or-
ders of magnitude improvement in power-efficiency over general-
purpose processors, they lack reusability across different applica-
tion domains, and significantly increase the overall design time and
cost [24]. On the other hand, general-purpose designs can amor-
tize their cost over many application domains, but can be 1,000 to
1,000,000 times less efficient in terms of performance/power ratio
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in some cases [24]. A recent industry trend to address this is the
use of on-chip accelerators in many-core designs [16][25][17]. Ac-
cording to an ITRS prediction [2], this trend is expected to continue
as accelerators become more common and present in greater num-
bers (close to 1500 by 2022). On-chip accelerators are application-
specific implementations that provide power-efficient implementa-
tions of a particular functionality, and can range from simple tasks
(i.e., a multiply accumulate operation) to tasks of more moderate
complexity (i.e., an FFT or DCT) to even more complex tasks (i.e.,
complex encryption/decryption or video encoding/decoding algo-
rithms). We believe that future computing servers will improve
their performance and power efficiency via extensive use of accel-
erators.

Accelerator-rich architectures also offer a good solution to over-
come the utilization wall as articulated in the recent study reported
in [28]. It demonstrated that a 45nm chip filled with 64-bit oper-
ators would only have around 6.5% utilization (assuming a power
budget of 80W). The remaining un-utilizable transistors are ideal
candidates for accelerator implementations, as we do not expect all
the accelerators to be used all the time.

We classify on-chip accelerators into two classes: 1) tightly cou-
pled accelerators where the accelerator is a functional unit that is
attached to a particular core (e.g., [17][15]); and 2) loosely coupled
accelerators (e.g., [3]) where the accelerator is a distinct entity at-
tached to the network-on-chip (NoC), which can be shared among
multiple cores. This paper focuses on the efficient use of loosely
coupled accelerators, which have been studied much less. These
accelerators are not tied to any particular core, and can potentially
be shared among all cores on-chip – but this does require some
form of arbitration and scheduling.

In order to increase the utilization of accelerators, and allow ap-
plication developers to take advantage of the performance and en-
ergy consumption benefits they offer, it is necessary to reduce the
overhead involved in their use. This overhead currently comes in
the form of interacting with the operating system (OS) that is re-
sponsible for managing accelerator resources. Another key issue in
such accelerator-rich architectures is efficient management for shar-
ing of accelerators among different cores and across different appli-
cations. Additionally, an application author who targets a platform
featuring accelerators produces code that is bound to that platform,
because accelerators are potentially unique to a given platform. We
aim to develop an efficient architectural framework and an associ-
ated set of algorithms that minimize the overhead associated with
both using accelerators and targeting a platform that extends accel-
erators to an application.

With these goals in mind, we propose an accelerator-rich CMP



architecture framework, named ARC, with a low-overhead resource
management scheme that (i) allows accelerators to be shared and
virtualized in flexible ways, (ii) is minimally invasive to core de-
signs, and (iii) is friendly for application programs to use. Our
paper provides the following contributions:

• An accelerator allocation protocol to avoid OS overhead in
scheduling tasks to shared, loosely coupled accelerators
• An approach to accelerator composability that allows multi-

ple accelerators to work collaboratively as a single complex
virtual accelerator that is transparent to program authors
• A fully automated simulation tool-chain to support accelera-

tor generation and management

An early version of this work without virtualization, light-weight
interrupt and visual-navigation study was presented in [9]. The rest
of the paper is organized as follows. Section 2 reviews some re-
lated work. The architectural support for our proposed method is
reviewed in Section 3. Section 3 also discusses the algorithms we
have developed to efficiently share and virtualize accelerators. Sec-
tion 4 discuss our experimental results which support our proposed
methods.

2. RELATED WORK
There is a large amount of work that implements an application-

specific coprocessor or accelerator through either ASIC or FPGA [4] [7].
These works mostly consider a single accelerator dedicated to a sin-
gle application. Convey [1] and Nallatech [3], target reconfigurable
computing in which customized accelerators are off-chip from the
processors, unlike our work which target CMP architectures with
on-chip accelerators. Some previous work considered on-chip in-
tegration of accelerators. Garp [14], UltraSPARC T2 [17], Intel’s
Larrabee [25] and IBM’s WSP processor [16] are examples of this.
Most of these platforms (except WSP) are tightly coupled with
processor cores (or core-clusters). Our paper focuses on loosely
coupled accelerators in a way where accelerators can be shared
between multiple cores. OS support for accelerator sharing and
scheduling is presented in [13]. In contrast, we focus on hardware
support for accelerator management. To the best of our knowledge,
this is the first work to address this issue.

There have also been a number of recent designs of heteroge-
neous architectures, like EXOCHI [29], SARC [23], and HiPPAI [26].
Similar to our work, EXOCHI’s focus is on a heterogeneous non-
uniform ISA. HiPPAI, like our work, eliminates system overhead
involved in accessing accelerators, only it does so using a soft-
ware layer (portable accelerator interface). SARC also has a core
and accelerator architecture similar to our work, yet it also lacks
a hardware management scheme. Unlike these works that focus
on software-based methodologies, our approach fully advocates the
use of hardware for managing and interfacing with accelerators.

There are some related work in accelerator virtualization, namely
VEAL [6] and PPA [21]. VEAL [6] uses an architecture template
for a loop accelerator and proposes a hybrid static-dynamic ap-
proach to map a given loop on that architecture. The difference
between our virtualization technique and theirs is that their work
limits to nested loops, while in our approach we seek any accel-
erator such that its composition can be described by some set of
rules. PPA [21] uses an array of PEs which can be reconfigured
and programmed. PPA, uses a technique called virtualized mod-
ulo scheduling which expands a given static schedule on available
hardware resources. Again in this work the input is a nested loop,
where in our approach this is not a limitation.

3. ARCHITECTURE SUPPORT OF ARC

In an accelerator-rich platform, one main issue is how to in-
crease the utilization of accelerators and also how to make them
reusable between multiple applications. Our approach uses several
techniques, namely accelerator sharing and accelerator virtualiza-
tion. In the following subsections we first discuss the motivation
for our work and then show how we efficiently implement these
techniques.

3.1 Motivation
In a typical heterogeneous system which uses accelerators, when

a core wants to access an accelerator, it does that by using an ac-
celerator driver (OS call) [13] [27]. Using the Simics/GEMS sim-
ulation [19] [20] platform to model a system consisting of Ultra-
SPARC III-i processors running Solaris 10, we measured the delay
for different system call operations. These results are shown in
Table 1 (ioctl is the system call for device-specific operations). In
an accelerator-rich platform, this simplistic approach becomes very
inefficient, both in terms of energy and performance. The first mo-
tivation for our work (efficient sharing) is to minimize this overhead
when there are many accelerators. The second motivation for our
work is to increase the utilization of these accelerators by creating
new or larger accelerators through composition and chaining.

Table 1: OS overhead to access accelerators(cycles)
Operation 1 Core 2 Cores 4 Cores 8 Cores 16 Cores
Open driver 214,413 256,401 266,133 308,434 316,161
ioctl (average) 703 725 781 837 885
Interrupt latency 16,383 20,361 24,022 26,572 28,572

3.2 Microarchitecture of ARC
Figure 1 shows the overall architecture of ARC which is com-

posed of cores, accelerators, the Global Accelerator Manager (GAM),
shared L2 cache banks and shared NoC routers between multiple
accelerators. All of the mentioned components are connected by
the NoC. Accelerator nodes include a dedicated DMA-controller
(DMA-C) and scratch-pad memory (SPM) for local storage and a
small translation look-aside buffer (TLB) for virtual to physical ad-
dress translation. GAM is introduced to handle accelerator sharing
and arbitration.

In order to interact with accelerators more efficiently, we have
introduced an extension to the instruction set consisting of four in-
structions used specifically for interacting with accelerators. These
instructions are briefly described in Table 2. A processor uses
lcacc-req to request information about accelerator availability, con-
sisting of pairs of accelerator identifiers and predicted wait times
for each available accelerator. A processor will then use lcacc-rsv
to request use of a specific accelerator. lcacc-cmd is used for in-
teracting directly with an accelerator. When a job is completed,
lcacc-free is used to release an accelerator to be used by another
cpu. These instructions are accessible directly from user code, and
do not require OS interaction. Communication with accelerators
is done with the use of virtual addresses, accessing resources that
are already accessible from user code. Execution of each of these
instructions results in a message being sent to a device on the net-
work, either the GAM or an accelerator. Attached to each of these
messages is the thread ID of the executing thread that can be used to
track requesting threads in an environment where context switches
are possible.

Figure 2 shows the communication between a core, the GAM,
an accelerator and the shared memory detailing the use of an ac-
celerator by a core. The numbers on the arrows in Figure 2 show
the steps taken when a core uses a single accelerator. They are
described below.

1. The core requests an enumeration of all accelerators it may
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Table 2: Instructions used to interact with accelerators.

lcacc-req x Request information from GAM about availability of
accelerators implementing functionality x

lcacc-rsv x y Reserve the accelerator with ID x for a predicted duration y
lcacc-cmd accl cmd Send a command cmd to an accelerator accl with parameters
addr x y z x, y, and z. Performs an address translation on addr,

sending both logical and physical address.
lcacc-free accl Sends a message to GAM releasing accelerator accl.

potentially need from the GAM (lcacc-req). The GAM re-
sponds with a list of accelerator IDs and associated estimated
wait times.

2. The core sends a sequences of reservations (lcacc-rsv) for
specific accelerators to the GAM. The core waits for the GAM
to give it permission to use these accelerators. The GAM also
configures the reserved accelerators for use by the core.

3. The core writes a task description detailing the computation
to be performed to the shared memory. It then sends a com-
mand to the accelerator (lcacc-cmd) identifying the memory
address of the task description. The accelerator loads this
task description, and begins working.

4. When the accelerator finishes working, it notifies the core.
The core then sends a message to the GAM freeing the ac-
celerator (lcacc-free).

3.3 Light-weight interrupt support
A platform that features accelerators requires a mechanism for

a processor to be notified of the progress of an accelerator. In the
ARC platform, we handle this issue with the use of light-weight
interrupts. ARC light-weight interrupts are interrupts handled en-
tirely as user code, and do not involve OS interaction, as this inter-
action can be a major source of inefficiency. Table 1 shows the cost
in cycles of interacting with accelerators through a device driver
and the overhead associated with OS interrupts.

There are three main sources of interrupts associated with accel-
erator interaction: 1) GAM responses 2) TLB misses 3) notification
that the accelerator has finished working. GAM responses come ei-
ther because a core sent a request or a reserve message. TLB misses
occur when an accelerator fails to perform address translation with
the use of its own private TLB, and requires a core’s assistance in
performing the lookup. Interrupts notifying the completion of work
arrive when an accelerator has completed all work given to it.

Figure 3 shows the microarchitecture components added to the
cores in ARC in order to support the light-weight interrupt. An in-
terrupt is sent via an interrupt packet (shown in Figure 3-a) through
the NoC to the core requested accelerator. Each interrupt packet
includes the thread ID which identifies the thread which this in-

Table 3: Instructions to handle light-weight interrupts.
lwi-reg x y z Register service routine y to service interrupts arriving

from accelerator x. LWI message packet will be written to z
lwi-ret Return from an interrupt service routine.

terrupt belongs to, and a set of interrupt-specific information. The
main microarchitecture components added to support light-weight
interrupt are listed below:

1. Interrupt controller located at the core’s network interface.
This is responsible for receiving the interrupt packets and
queuing them until being serviced by the core.

2. Light-weight interrupt interface in the core. This is respon-
sible for: 1) receiving the interrupt from the interrupt con-
troller, 2) providing a software interface to setup the infor-
mation needed to service the interrupt.

The interrupt controller has a queue for buffering the received in-
terrupt packets, so they don’t get lost if the core is busy handling
other interrupts. Without loss of generality we assume that for each
thread we can only have one level nest for interrupt. This means
no other light-weight interrupt will be serviced, while servicing an-
other light-weight interrupt. If an interrupt arrives for a thread that
is currently scheduled, it is executed immediately. If the thread is
not scheduled, a normal OS-based interrupt occurs.

In order to support light-weight user-level interrupts, we intro-
duce a set of instructions to enable user code to handle interrupts.
These instructions are described in Table 3. lwi-reg registers the in-
terrupt handlers. lwi-ret returns from an interrupt handler routine.
A program segment using accelerators is then designed as a series
of interrupt service routines.

3.4 Invoking accelerators
In this work, we assume an accelerator will be used to process

a relatively large amount of data. The initial overhead associated
with acquiring permissions to use an accelerator is large enough
that it should be amortized over a large amount of work. To that
end, we introduce two accelerator features that explicitly deal with
efficiently processing large amounts of data: (1) task descriptions
to limit communication between accelerators and the controlling
core, and (2) methods to handle TLB misses.

To communicate with an accelerator, a program would first write
to a region of shared memory a description of the work to be per-
formed. This description includes location of arguments, data lay-
out, which accelerators are involved in the computation, the compu-
tation to be performed, and the order in which to perform necessary
operations. This detail is included to allow accelerators to be both
general, and to allow coordination of accelerators in groups to per-
form more complex tasks through virtualization(described in Sec-



tion 3.6). Evaluating the task description yields a series of steps to
be performed in order, with each step consisting of a set of memory
transfers and computations that can be executed concurrently. This
allows accelerators to overlap computation with memory transfer
within a given step. When all computations and memory transfers
of a given step are completed, the accelerator moves onto the next
step. In this work, we refer to these individual steps as tasks, and
the structure detailing a sequence of tasks as a task description.

To further decouple the accelerator from the controlling core,
each accelerator contains a small local TLB. This is required be-
cause the accelerator operates within the same virtual address space
as the software thread that is using the accelerator. The accelerator
relies on the controlling core to service any detected TLB misses.
It does this by sending a light-weight interrupt to the controlling
core when a TLB miss occurs with the address that caused the TLB
miss. Handling this interrupt would involve the core executing the
same TLB miss handler that is executed when the core normally
encounters a miss in its own TLB. Because this is an OS action,
and involves trapping to an OS handler regardless, it is not actually
necessary that the original software thread that is using the accel-
erator be currently scheduled. If it is scheduled, the lightweight
interrupt interface can be used to limit overhead associated with in-
terrupt handling. Otherwise, the OS can be notified directly (e.g.
by invoking a software interrupt or real hardware interrupt) with-
out having to wait for or force a context switch to reschedule the
controlling thread. The resolved address is then sent back to the
accelerator that had encountered the TLB miss.

3.5 Sharing accelerators
When accelerators are shared among all the on-chip cores, it is

possible for there to be several cores competing for the same ac-
celerator. Even in architectures with large numbers of accelerators,
there may be a limited number of one particular type of accelerator
that is suddenly in high demand. In this situation, some of these
cores may choose to eschew the use of the accelerator and sim-
ply execute the task to be offloaded using their own core resources.
While the core is certainly less power efficient in executing this
task, it may make sense for it to do so in situations where the wait
time for an accelerator will eliminate any potential gains. In this
paper we propose a sharing and management scheme which can
dynamically determine whether the core should wait to use an ac-
celerator or should instead choose a software path, based on an esti-
mated waiting time. This proposed sharing and management strat-
egy is performed by the GAM. The GAM tracks: 1) the types of
available accelerators; 2) the number of accelerators of each type;
3) the jobs currently running or waiting to run on accelerators, their
starting time and estimated execution time (Section 3.5.1); 4) the
waiting list for each accelerator and the estimated run time for each
job in the waiting list (Section 3.5.2).

3.5.1 Accelerator run-time estimation (by the core)
The execution time of a certain job on an accelerator is data-

dependent. For most of our examples, we found that a low order
polynomial regression model was sufficient to estimate execution
time. The regression model is provided by the accelerator applica-
tion programming interface (more info in [11]).

3.5.2 Wait-time estimation algorithm (by the GAM)
After receiving the reserve request message from the core, the

GAM will add the requesting core’s ID to the tail of the waiting
list for that accelerator. The estimated waiting time can be simply
derived by summing the expected execution time of all jobs in the
waiting list for an accelerator. These tasks are issued in a first-
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Figure 4: An example of accelerator composition

come-first-serve (FCFS) order. This is simple, and is practical for
a hardware implementation.

3.6 Accelerator virtualization
A key contribution of our work is to increase the utilization of

the available accelerators by either composing different accelerator
types to create new types of accelerators or to compose the same
type of accelerators to create a larger accelerator. In the next two
sections we discuss these two techniques.

3.6.1 Accelerator chaining
In an accelerator-rich platform, there are many cases when the

output of one accelerator feeds the input of another accelerator (like
many streaming applications). In a traditional system, these two
accelerators communicate through system memory, i.e., the con-
trolling core reads the output of the first accelerator from its SPM,
stores it to shared memory, and writes it to the second accelerator’s
SPM. To remove this inefficiency, two DMA-controllers can com-
municate and the source DMA-controller can send the content of
its SPM to another DMA-controller to be written in its SPM.

3.6.2 Accelerator composition
For many types of problems, it is not practical to provide an

accelerator to directly solve each possible problem instance. Ad-
ditionally, it is not practical to demand that an application author
target a single architecture. For this reason, we provide a set of vir-
tual accelerators to decouple hardware design and software devel-
opment. A virtual accelerator is an accelerator that is implemented
as a series of calls to other physical accelerators, available in hard-
ware (Figure 4(a)). A large library of virtual accelerators can be
provided to the application author as if they were implemented in
hardware. These accelerators would actually be implemented as
a series of decomposition rules that break down a large problem
into a number of smaller problems (Figure 4(b)), similar in style to
the approach presented in [22]. These small problems would then
be solved directly by hardware. These rules describe two things:
1) computation that must be performed by accelerators capable of
solving sub-problem instances, and 2) how data is communicated
to, from, and between these various smaller accelerators. Rules
would be applied recursively to express an implementation for each
virtual accelerator in terms of calls to physical accelerators.

These statically determined decomposition rules can thus be ap-
plied at run-time. Figure 5 describes the process of invoking a
virtual accelerator from within the application binary. When an
accelerator is called, a lcacc-req message is sent to the GAM for
wait times for all functional units that may be required by the de-
composition result. While waiting on this request, the requesting
core either begins calculating the decomposition or begins fetching
the data structures associated with the statically computed solution.
Once the GAM responds and the requesting core has a fully decom-
posed problem available, the core calculates the wait time for the
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Figure 5: Accelerator composition steps

entire computation. It does this by adding the delay calculated with
the use of the regression model to the largest of the delays provided
by GAM. The core then executes a series of lcacc-rsv instructions
for each required accelerator, specifying the wait time for the entire
operation as the estimated duration of use of each accelerator re-
served. GAM will not assign any accelerators until it can assign all
accelerators requested. The core releases accelerators in the same
way as it normally would. With these mechanisms, an application
author can use a simple API to invoke virtual accelerators, and a
hardware developer can implement accelerators based on need and
available resources.

We will show more details on programming interface in ARC
in Supplemental Section 8.1. More info on accelerator extraction
methodology can be found in [11].

4. EXPERIMENTAL RESULTS
To illustrate the effectiveness of our ARC platform, we evalu-

ate a number of compute intensive benchmarks, primarily from the
medical imaging(MI) and computer vision and navigation(VN) do-
mains. More information on our benchmark can be found in [11]
and Supplemental Section 8.2.2. Our experiments were conducted
using a heavily modified version of the Simics and GEMS [19] [20]
simulation platform. More information about our simulation plat-
form can be found in Supplemental Section 8.2. Additional exper-
imental results not presented here can also be found in [11].

We used the following schemes for ARC evaluation:

• Original benchmark (SW-only): The baseline for the ex-
periments is the execution of these multithreaded benchmarks
on a multiprocessor (one thread per processor).
• Accelerators + OS management (OS+Acc): This is a sys-

tem which has accelerators managed by OS drivers.

• Accelerators + HW management (ARC): This is a system
which features all enhancements discussed thus far, includ-
ing hardware resource arbitration managed by the GAM.

We show the simulation configuration using Cc-Tt-Aa-Dd mnemonic.
Here "C" is the number of cores, "T" is the number of threads, "A"
is the number of replicates of each accelerator needed by a bench-
mark, and "D" is data size. For example, a benchmark featuring 4
cores, 2 threads, 1 replicate of each accelerator, and an argument
that is 64-cubes of data would be described as 4c-2t-1a-64d. For
MI benchmarks since data is cubic in form, "D" shows a cube of
D × D × D data elements for each argument. For VN benchmarks
data is linear, thus "D" shows the absolute data size. Next the re-
sults for baseline speedup and energy improvement are discussed.

4.1 Speedup and energy improvements
Figures 6, 10, 8, and 12 shows the speedup and energy gain re-

sult for the ARC base configuration (Nc-Nt-Na) compared to run-
ning the software-only version of the benchmark on the same num-
ber of processors, threads, and data size. The highest speedup is
for Registration (485X for 1c-1t-1a-32d case) and the lowest is for
EKF-SLAM (13X for 16p-16t-16a case). The best energy gain
is for registration with 641X improvement. On average we get
241X energy improvement over all the benchmarks and configura-
tion. VN benchmarks are shown benefiting less from acceleration
as compared to MI benchmarks due largely to data sizes selected.
A study of the impact of data size on accelerator efficiency can be
found in [11].

We observe a reduction in speedup as we increase the number of
cores and threads. This reduction is attributed to several sources.
First, we measure the time from the start of all threads, to the end
of the last thread, thus the results shown are the measured time
of the longest running thread. Adding more threads increases the
likelihood of observing normal fluctuations in run time. Lastly,
while we increase the number of cores and accelerators, we do not
correspondingly increase network resources, memory bandwidth,
or cache capacity. As a result, increasing the number of cores
and threads resulted in additional contention for communication
and memory resources. This impacted accelerated cases more than
software-only cases because, while the same amount of data is ac-
cessed, the accelerated cases access this data over a much shorter
time period.

Figures 7 and 11 show the speedup gain ARC achieves com-
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pared to the OS+Acc. Here, for larger base configurations we see
an increase speedup compare to OS managed systems. The reasons
for this are: 1) by increasing number of threads and processors,
the OS management overhead (thread context switching, TLB ser-
vices, ...) increases, and 2) for larger configurations, the number
of interrupts are also increasing, which makes our system perform
better due to the use of light-weight interrupt in the place of the OS
interrupts. Figures 9 and 13 also show the energy improvement of
ARC over the OS+Acc case. Here by making configurations larger,
we see a better energy gain over OS+Acc system. Again registra-
tion performs best with 63X. On average we get 17X energy gain
over OS+Acc case.

4.2 Accelerator virtualization results
Figure 15 shows the result of virtualizing a 512x512 2D FFT and

a 128x128x8 3D FFT on multiple 128x128 2D FFTs. The SW case
is compared to having 1, 2, and 8 copies of 128x128 2D accelerator
on the chip (8 FFT is based on assigning a maximum 5% of the chip
area to FFT). The SW case is the result of running FFTW3 [12]. In
the best case for 3D-FFT we obtained 14.4X speedup and for 2D-
FFT we obtained 8.4X speedup.

4.3 Light-weight interrupt benefit
To measure the benefit of light-weight interrupts, we examined a

platform lacking light-weight interrupts to compare our ARC plat-
form against a system that relies instead on OS handling of inter-
rupts. Figure 14 shows the speedup measured over a platform lack-
ing light-weight interrupts. ARC is up to 2.5X faster than an other-
wise identical system that lacks light-weight interrupts. The larger
the data size, the more interrupts are generated, so the benefits of
ARC increases as the data size grows.

4.4 Accelerator sharing results
Run-time estimation was calculated using a simple regression

model based on profiled runs. Additional details regarding this re-
gression model can be found in [11]. Wait-time estimation was
based on the accumulated run-time estimates. Our results shows
that the estimated error ranges from < 1% to 6% of execution times
on accelerators, which is sufficiently predictable for this to be a
very practical approach.

5. CONCLUSION AND FUTURE WORK
We have discussed hardware architectural support for accelerator-

rich CMPs. This was motivated by our belief that future supercom-
puters, especially green supercomputers, will improve their perfor-
mance and power efficiency through extensive use of accelerators.
First, we presented a hardware resource management scheme for
sharing of accelerators and arbitration of multiple requesting cores.
Second, we presented a mechanism that allows us to efficiently
compose a larger virtual accelerator out of multiple smaller acceler-
ators. Our results showed large performance and energy efficiency
improvement over a software implementation, and also using OS-
based accelerator management, with minimal hardware overhead
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Figure 16: ARC development flow

8. SUPPLEMENTAL

8.1 Programming interface to ARC
The Application Programming Interface (API) involved in using

accelerators is presented in Figure 16. For each type of accelerator,
one dynamic linked library (DLL) is provided. This DLL is specific
to a target platform, and provides a mapping from accelerator calls
to actual invocations of physical accelerators. Calls to accelerators
have their implementations dynamically linked to application code.

8.2 EVALUATION METHODOLOGY

8.2.1 Simulation tool-chain
In order to make the exploration of this topic practical, a num-

ber of supporting tools were created. These tools simplified the
authoring of programs that used accelerators, and automated the
process of implementing our chosen accelerators in our simulator
framework. These tools were used in place of hand-written imple-
mentations and hand-adapted benchmarks to allow us to simulate
systems that would have been prohibitively complex to manually
author, such as those that utilized many accelerators or featured
complicated inter-accelerator communication. Additionally, we be-
lieve that this is representative of what will be done in the develop-
ment of future accelerator exploiting libraries, to simplify the job of
programmers who would use these libraries without compromising
any of the capabilities of these accelerators.

With this toolchain, generation of accelerators is only a matter
of identifying a function in an application’s source code to acceler-
ate. We have automated the process of extracting these functions,
compiling these modules into VHDL, and synthesizing these mod-
ules to extract timing and energy information. This process yields a
module that plugs into our cycle-accurate simulation infrastructure
to model this hardware unit, and coordinates the execution of this
selected function in a pipelined fashion.

Once we select the functions we want to accelerate, typically en-
compassing the kernel of the benchmark, we procedurally generate
a program segment to use these accelerators. We described commu-
nication between accelerators in a simple data-flow language that
we use to generate C source code. These program segments to-
gether make up the platform specific DLL mentioned above. This
code is responsible for coordinating interactions between acceler-
ators, registering and handling interrupts, managing task descrip-
tions and accelerator resources, and dealing with synchronization
between accelerators and the CPU. Figure 17 illustrates the work
flow described here. The AutoPilot [10] behavioral synthesis tool

Figure 17: Process used to generate simulation structures and
Accelerator using programs

is used to synthesize the C modules into ASIC.

8.2.2 Benchmarks
To illustrate the effectiveness of our ARC platform, we evaluate

a number of compute intensive benchmarks from both the medi-
cal imaging domain as well as the computer vision and navigation
domain. Information on medical imaging domain can be found
in [5]. Information on computer vision and navigation domain can
be found in [8].

8.2.3 Simulation Platform
Our experiments were conducted using a heavily modified ver-

sion of the Simics and GEMS [19] [20] simulation platform. The
machine we modeled was based on a multicore system consisting
of a mix of Ultrasparc III processors and accelerators. In order to
create a fair comparison between machines of different configura-
tions, we maintained a fixed cache and network configuration. Our
network topology was a mesh modeled on a system normally used
to support 32 processors. These nodes were then configured to ei-
ther be processors, accelerators, or empty sockets. We featured a
per-processor split L1 cache, and a distributed L2 spread across all
nodes that relied on a directory based coherence protocol. Table 4
shows the machine configurations which is modeled in simulations.

8.2.4 Area/Timing/Power Measurements
The AutoPilot [10] behavioral synthesis in combination with the

Synopsys design compiler was used to synthesize the C modules
into ASIC (using 32nm ASIC library from Synopsys). The timing
information produced by the synthesis process was back-annotated
to our accelerator modules to model cycle accurate accelerators.
For computing energy we used power reports from Synopsys for
accelerators and McPAT [18] for CPU power. Table 5 shows the
synthesis results for the accelerators in our selected benchmarks
together with the GAM and DMA-controller.

Table 4: Simics/GEMS configuration
CPU Ultra-SPARC III-i @ 2.0GHz
Number of cores 1, 2, 4, 8, 16
Coherence protocol MSI_MOSI_CMP_directory
L1 cache 32 KB, 4 way set-associative
L2 cache 8 MB, 8-way set-associative
Memory latency 1000 cycles
Network topology Mesh
Operating System Solaris10

Table 5: Synthesis results

Deblur Registration Denoise Segmentation GAM DMA-C
Clock(ns) 2 2 2 2 1 1
Area (µm2) 2013228 3853095 496908 688298 12270 10071
Power (mW) 98.28 256.3 57.69 80.93 2.64 0.59


