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Ongoing research into dynamic, self-organizing, multihop wireless networks, called ad hoc networks,
promises to improve the efficiency and coverage of wireless communication. Such networks have a variety
of natural civil and military applications. They are particularly useful when networking infrastructure is
impossible or too costly to install and when mobility is desired. However, the ability to scale such networks
to large numbers of nodes remains an open research problem. For example, routing and transmitting
packets efficiently over ad hoc networks becomes difficult as they grow in size.

Progress in this area of research fundamentally depends on the capabilities of simulation tools and, more
specifically, on the scalability of wireless network simulators. Analytically quantifying the performance and
complex behavior of even simple protocols in the aggregate is often imprecise. Furthermore, performing
actual experiments is onerous: acquiring hundreds of devices, managing their software and configuration,
controlling a distributed experiment and aggregating the data, possibly moving the devices around, finding
the physical space for such an experiment, isolating it from interference, and generally ensuring ceteris
paribus are but some of the difficulties that make empirical endeavors daunting. Consequently, the vast
majority of research in this area is based entirely on simulation, a fact that underscores the critical role of
efficient simulators.
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19.1 Background

Discrete event simulators have been the subject of much research into their efficient design and exe-
cution.8,9,17,20 However, despite a plethora of ideas and contributions to theory, languages, and systems,
slow sequential simulators remain the norm.21 In particular, most published ad hoc network results are
based on simulations of a few nodes, for a short time duration, and over a limited size coverage area. Larger
simulations usually compromise on simulation detail. For example, some existing simulators simulate only
at the packet level without considering the effects of signal interference. Others reduce the complexity of
the simulation by curtailing the simulation duration, reducing the node density, or restricting mobility.
At a minimum, one would like to simulate networks of many thousands of nodes.

The two most popular simulators in the wireless networking research area are ns2 and GloMoSim.
The ns2 network simulator16 has a long history with the networking community, is widely trusted, and
has been extended to support mobility and wireless networking protocols. ns2 uses a clever “split object”
design, which allows Tcl-based script configuration of C-based object implementations. This approach
is convenient for users. However, it incurs substantial memory overhead and increases the complexity
of simulation code. Researchers have extended ns2 to conservatively parallelize its event loop,22 but this
technique has proved beneficial primarily for distributing ns2’s considerable memory requirements. Based
on numerous published results, it is not easy to scale ns2 beyond a few hundred simulated nodes. Recently,
simulation researchers have shown ns2 to scale, with substantial hardware resources and effort, to simu-
lations of a few thousand nodes.21

GloMoSim27 is a newer simulator written in Parsec,3 a highly optimized C-like simulation language.
GloMoSim has recently gained popularity within the wireless ad hoc networking community. It was des-
igned specifically for scalable simulation by explicitly supporting efficient, conservatively parallel execution
with lookahead. The sequential version of GloMoSim is freely available. The conservatively parallel version
has been commercialized as QualNet. Due to Parsec’s large per-entity memory requirements, GloMoSim
implements a technique called “node aggregation,” wherein the state of multiple simulation nodes are
multiplexed within a single Parsec entity. While this effectively reduces memory consumption, it incurs a
performance overhead and also increases code complexity. Moreover, the aggregation of state also renders
the lookahead techniques impractical, as has been noted by the authors. GloMoSim has been shown to
scale to 10,000 nodes on large, multi-processor machines.

This chapter describes the design of SWANS, a new Scalable Wireless Ad hoc Network Simulator.
SWANS is a componentized, virtual machine-based simulator5 built atop the JiST (Java in Simulation
Time) platform, a general-purpose discrete event simulation engine. SWANS significantly outperforms
ns2 and GloMoSim, both in time and space. We show results with networks that are more than an order
of magnitude larger than what is possible with the existing tools at the same level of simulation detail.
SWANS can also, unlike any existing network simulator, efficiently embed existing network applications
and run them over simulated networks.

19.2 Design Highlights

The SWANS software is organized as independent software components, called entities, that can be com-
posed to form complete wireless network or sensor network simulations, as shown in Figure 19.1. Its
capabilities are similar to ns216 and GloMoSim27 described above. There are entities that implement differ-
ent types of applications; networking, routing, and media access protocols; radio transmission, reception,
and noise models; signal propagation and fading models; and node mobility models. Instances of each
type of entity are shown italicized in Figure 19.1.

The SWANS simulator runs atop JiST, a Java-based discrete-event simulation engine that combines the
benefits of the traditional systems-based (e.g., ns2) and languages-based (e.g., GloMoSim) approaches to
simulation construction. JiST converts a standard virtual machine into a simulation platform by embed-
ding simulation time directly into the Java object model and into the virtual machine execution semantics.
Thus, one can write a simulator in a standard systems language (i.e., Java) and transparently perform
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FIGURE 19.1 The SWANS simulator consists of event-driven components that can be configured and composed to
form wireless network simulations.

optimizations and cross-cutting program transformations that are found in specialized simulation lan-
guages. JiST extends the Java object model with the notion of simulation entities. The simulation entities
represent components of a simulation that can progress independently through simulation time, each
encapsulating a disjoint subset of the simulation state. Simulation events are intuitively represented as
method invocations across entities. This programming model is convenient, efficient, and flexible. We
encourage the interested reader to further learn about JiST through the documentation and software
available online.4

SWANS is able to simulate much larger networks and has a number of other advantages over existing
tools. We leverage the JiST design within SWANS to (1) achieve high simulation throughput; (2) reduce
its memory footprint; and (3) run existing, Java-based network applications over simulated networks. In
addition, SWANS implements a technique called hierarchical binning to model wireless signal propagation
in a scalable manner. The combination of these attributes leads to a flexible and highly efficient simulator.
We discuss each of these concepts in turn, and then conclude with a discussion of possible directions for
future work.

We limit our discussion in the following sections to techniques implemented within SWANS for maxi-
mizing sequential simulation performance. Others, in projects such as PDNS,22 SWAN-DaSSF,15 WiPPET-
TeD,12 and SWiMNet,7 have presented algorithms and techniques to achieve scalability through distributed,
concurrent, and even speculative simulation execution. These techniques can sometimes provide around
an order of magnitude improvement in scale, but may require multiprocessor hardware or fast intercon-
nects to reduce synchronization costs. More importantly, such techniques are orthogonal to the ideas
presented here. A truly scalable network simulator requires raw sequential performance as well as effective
distribution and parallelism.

19.3 Throughput

Conventional wisdom regarding language performance2 argues against implementing a simulator in Java.
In fact, the vast majority of existing simulators have been written in C and C++, or their derivatives.
SWANS, however, performs surprisingly well: aggressive profile-driven optimizations combined with the
latest Java runtimes result in a high-performance system.

We selected to implement JiST and SWANS in Java for a number of reasons. First, Java is a standard, widely
deployed language and not specific to writing simulations. Consequently, the Java platform boasts a large
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number of optimized virtual machine implementations across many hardware and software configurations,
as well as a large number of compilers and languages26 that target this execution platform. Java is an
object-oriented language and it supports object reflection, serialization, and cloning, features that facilitate
reasoning about the simulation state at runtime. The intermediate bytecode representation conveniently
permits instrumentation of the code to support the simulation time semantics. Type-safety and garbage
collection greatly simplify the writing of simulations by addressing common sources of error.

In addition, the following are some aspects of SWANS and of the underlying JiST design that contribute
to its high computational throughput:

� Dynamic compilation. The simulator runtime, which is a standard Java virtual machine, continu-
ously profiles running simulations and dynamically performs important code optimizations, such
as constant propagation and function inlining. Dynamic optimizations provide significant perfor-
mance benefits because many stable simulation parameters are not known until the simulation is
running. In general, a dynamic compiler has more information available to it than a static compiler
and should, therefore, produce better code. Despite virtual machine overheads for profiling, garbage
collection, portability, runtime safety checks, and dynamic compilation, significant speedups can be
achieved. For example, greater than 10× speedups have been observed within the first few seconds
of simulation execution.
� Code inlining. Long-running simulations often exhibit tight computation loops through only a small

fraction of the code. The dynamic compiler can aggressively inline these “hot spots” to eliminate
function calls in the generated code. Because both the simulator, (SWANS) and the simulation
kernel (JiST) are written in Java, inlining can occur both within simulation entities and also across
the simulation kernel–entity boundary. For example, the dynamic Java compiler may decide to
inline portions of the kernel event queuing code into hot spots within the simulation code that
frequently enqueue events. Or, conversely, small and frequently executed simulation event handlers
may be inlined into the kernel event loop. A similar idea was first demonstrated by the Jalapeño
project.1

� No context switch. JiST provides protection and isolation for individual simulation entities from one
another and from the simulation kernel. However, this separation is achieved using safe language
techniques, eliminating the runtime overhead of traditional process-based isolation. A simulation
event between two co-located source and target entities can be dispatched, scheduled, delivered,
and processed without a single context switch.
� No memory copy. Each JiST entity has its own, independent simulation time and state. Therefore, to

preserve entity isolation, any mutable state transferred via simulation events across entity bound-
aries must be passed by copy. However, temporally stable objects are an exception to this rule. These
objects can safely be passed across entities by reference. To that end, JiST defines the notion of a
timeless object as one that will not change over time. This property may either be automatically in-
ferred through static analysis or specified explicitly. In either case, the result is zero-copy semantics
and increased event throughput.
� Cross-cutting program transformations. The timeless property just introduced is an apt example of

a cross-cutting optimization: the addition of a single tag, or the automatic detection of the timeless
property, affects all events within the simulation that contain objects of this type. Similarly, the de-
sign of JiST entities abstracts event dispatch, scheduling, and delivery. Thus, the implementations of
this functionality can be transparently modified. In general, the JiST bytecode-level rewriting phase
that occurs at simulation load time permits a large class of transparent program transformations
and simulation-specific optimizations, akin to aspect-oriented programming.13

High event throughput is essential for scalable network simulation. Thus, we present results showing
the raw event throughput of JiST versus competing simulation engines. These measurements were all taken
on a 2.0-GHz Intel Pentium 4 single-processor machine with 512 MB of RAM and 512 KB of L2 cache,
running the version 2.4.20 stock Redhat 9 Linux kernel with glibc v2.3. We used the publicly available
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versions of Java 2 JDK (v1.4.2), Parsec (v1.1.1), GloMoSim (v2.03), and ns2 (v2.26). Each data point
presented represents an average of at least five runs for the shorter time measurements.

The performance of the simulation engines was measured in performing a tight simulation event loop,
using equivalent, efficient benchmark programs written for each of the engines. The results are plotted in
Figure 19.2 on log-log and linear scales. As expected, all the simulations run in linear time with respect to
the number of events. A counter-intuitive result is that JiST, running atop Java, outperforms all the other
systems, including the compiled ones.

We therefore added a reference measurement to serve as a computational lower bound. This reference
is a program, written in C and compiled with gcc -O3, that merely inserts and removes elements
from an efficient implementation of an array-based priority queue. JiST comes within 30 percent of this
reference measurement, an achievement that is a testament to the impressive JIT dynamic compilation
and optimization capabilities of the modern Java runtime. Furthermore, the performance impact of these
optimizations can actually be seen as a kink in the JiST curve during the first fraction of a second of
the simulation. To confirm this, JiST was warmed with 106 events (or, for two tenths of a second) and
the kink disappeared. As seen on the linear plot, the time spent on profiling and dynamic optimizations
is negligible. Table 19.1 shows the time taken to perform 5 million events in each of the benchmarked
systems and also those figures normalized against both the reference program and JiST performance. JiST
is twice as fast as both Parsec and ns2-C, and GloMoSim and ns2-Tcl are one and two orders of magnitude
slower, respectively.

SWANS builds on the performance of JiST. We benchmark SWANS running a full ad hoc wireless
network simulation, running a UDP-based beaconing node discovery protocol (NDP) application. Node
discovery protocols are an integral component of many ad hoc network protocols and applications.10,11,24

Also, this experiment is representative both in terms of code coverage and network traffic; it utilizes
the entire network stack and transmits over every link in the network every few seconds. However, the
experiment is still simple enough to provide high confidence of simulating exactly the same operations
across the different platforms (SWANS, GloMoSim, and ns2), which permits comparison and is difficult
to achieve with more complex protocols. We simulate exactly the same network configuration across each
of the simulators, measuring the overall computation time required, including the simulation setup time
and the event processing overheads.

The throughput results are plotted both on log-log and on linear scales in Figure 19.3. ns2 is highly inef-
ficient compared to SWANS, running two orders of magnitude slower. SWANS outperforms GloMoSim by
a factor of 2. However, as expected, the simulation times in all three cases are still quadratic functions of the
number of nodes. To address this, we designed a scalable, hierarchical binning algorithm (discussed next)
to simulate the signal propagation. As seen in the plot, SWANS-hier scales linearly with the network size.

19.4 Hierarchical Binning

In addition to an efficient simulator design, it is also essential to model wireless signal propagation efficiently
because this computation is performed on every packet transmission. When a simulated radio transmits
a signal, SWANS must simulate the reception of that signal at all the radios that could be affected, after
considering fading, gain, and path loss. Some small subset of the radios in the coverage area will be within
interference range, above some sensitivity threshold. An even smaller subset of those radios will be within
reception range. The majority of the radios will not be tangibly affected by the transmission.

ns2 and GloMoSim implement a naı̈ve signal propagation algorithm that uses a slow, O(n), linear
search through all the radios to determine the node set within reception range. This clearly does not scale
as the number of radios increases. ns2 has recently been improved with a grid-based algorithm.18 We have
implemented both of these algorithms in SWANS. In addition, we have a new, more efficient and scalable
algorithm that uses hierarchical binning. The spatial partitioning imposed by each of these data structures
is depicted in Figure 19.4.

In the grid-based or flat binning approach (Figure 19.4(b)), the coverage area is subdivided into a grid
of node bins. A node location update requires constant time because the bins divide the coverage area in a



302 Handbook on Theoretical and Algorithmic Aspects of Sensor

0.1 1 10 100
0.01

0.1

1

10

100
Simulation event throughput

# of events (in millions)

ti
m

e 
(s

ec
o

n
d

s)

reference
JiST (cold)
JiST (warm)
Parsec
GloMoSim
ns2 (C)
ns2 (Tcl)

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Simulation event throughput

# of events (in millions)

ti
m

e 
(s

ec
o

n
d

s)

reference
JiST (cold)
Parsec
ns2 (C)

(b)

FIGURE 19.2 JiST has higher event throughput and comes within 30 percent of the reference lower bound program.
The kink in the JiST curve in the first fraction of a second of simulation is evidence of JIT dynamic compilation and
optimization at work.
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TABLE 19.1 Time Elapsed to Perform 5 Million Events, Normalized
Both Against the Reference and JiST Measurements

5 × 106 Events Time (sec) vs. Reference vs. JiST

Reference 0.738 1.00x 0.76x
JiST 0.970 1.31x 1.00x
Parsec 1.907 2.59x 1.97x
ns2-C 3.260 4.42x 3.36x
GloMoSim 9.539 12.93x 9.84x
ns2-Tcl 76.558 103.81x 78.97x
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FIGURE 19.3 SWANS outperforms both ns2 and GloMoSim in simulations of NDP.
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FIGURE 19.4 Hierarchical binning of radios in the coverage area allows location updates to be performed in expected
amortized constant time and the set of receiving radios to be computed in time proportional to its size. (a) linear lookup,
(b) flat binning, and (c) hierarchical binning.

regular manner. The neighborhood search is then performed by scanning all bins within a given distance
from the signal source. While this operation is also of constant time, given a sufficiently fine grid, the
constant is sensitive to the chosen bin size: bin sizes that are too large will capture too many nodes and
thus not serve their search-pruning purpose; bin sizes that are too small will require the scanning of many
empty bins. A bin size that captures only a small number of nodes per bin on the average is most effiicent.
Thus, the bin size is a function of the local radio density and the transmission radius. However, these
parameters may change in different parts of the coverage area, from radio to radio, and even as a function
of time, for example, as in the case of power-controlled transmissions.

Hierarchical binning (Figure 19.4(c)) improves on the flat binning approach by dividing the coverage
area recursively. Node bins are leaves of a balanced, spatial decomposition tree, which is of height equal
to the number of divisions, or h = log4( coverage area

bin size ). The hierarchical binning structure is like a quad-tree,
except that the division points are not the nodes themselves, but rather fixed coordinates. A similar idea
is proposed in GLS, a distributed location service for ad hoc networks.14 Note that the height of the tree
changes only logarithmically with changes in the bin or coverage area sizes. Furthermore, because nodes
move only a short distance between updates, the amortized height of the common parent of the two
affected node bins is constant in expectation. This, of course, is under the assumption of a reasonable node
mobility model that keeps the nodes uniformly distributed and also selects trajectories uniformly. Thus,
the amortized node location update cost is constant, including the maintenance of the inner node counts.
When scanning for node neighbors, empty bins can be pruned as we descend. Thus, the set of receiving
radios can be computed in time proportional to the number of receiving radios. Because, at a minimum,
we will need to simulate delivery of the signal at each simulated radio, the algorithm is asymptotically
as efficient as scanning a cached result, as proposed by Boukerche et al.,7 even when assuming no cache
misses. But, the memory overhead of the hierarchical binning scheme is minimal. Asymptotically, it
amounts to limn→∞�

log4n
i=1

n
4i = n

3 , where n is the number of network nodes. The memory overhead for
function caching is also O(n), but with a much larger constant. Furthermore, the memory accesses for
hierarchical binning are tree structured, exhibiting better locality.

19.5 Memory Footprint

Memory is critical for simulation scalability. In the case of SWANS, memory is frequently the limiting
resource. Thus, conserving memory allows for the simulation of larger network models. SWANS benefits
greatly from the underlying Java garbage collector. Automatic garbage collection of events and entity state
not only improves robustness of long-running simulations by preventing memory leaks, but also saves
memory by facilitating more sophisticated memory protocols:

� Shared state. Memory consumption can often be dramatically reduced by sharing common state
across entities. For example, simulated network packets are modeled in SWANS as a chain of objects
that mimic the chain of packet headers added by successive layers of the simulated network stack.
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Moreover, because the packets are timeless, by design, a single broadcasted packet can be shared
safely among all the receiving nodes. In fact, the very same data object sent by an application entity
at the top of one network stack would be received by the application entity at a receiving node.
In addition to the performance benefits of zero-copy semantics, as discussed previously, this sharing
also saves the memory required for multiple packet copies on every transmission. Although this
optimization may seem trivial, depending on their size, lifetime, and number, packets can occupy
a considerable fraction of the simulation memory footprint. Similarly, if one employs the TCP
component within a simulated node stack, then the very same object that is received at one node
can be referenced within the TCP retransmit buffer at the sending node, reducing the memory
required to simulate even large transmission windows. Naturally, this type of memory protocol
can also be implemented within the context of a non-garbage collected simulation environment.
However, dynamically created objects, such as packets, can traverse many different control paths
within the simulator and can have highly variable lifetimes. In SWANS, accounting for when to
free unused packets is handled entirely by the garbage collector, which not only greatly simplifies
the code, but also eliminates a common source of memory leaks that plague long simulation runs
in other non-garbage collected simulators.
� Soft state. Soft state, such as various caches within the simulator, can be used to improve simulation

performance. However, these caches should be reclaimed when memory becomes scarce. An ex-
ample of soft state within SWANS are routing tables computed from link state. The routing tables
can be automatically collected to free up memory and later regenerated, as needed. A pleasing side
effect of this interaction with the garbage collector is that when memory becomes scarce, only
the most useful and frequently used cached information will be retained. In the case of routing
tables, the cached information would be dropped altogether, with the exception of the most active
network nodes. As above, this type of memory management can also be implemented manually,
although it likely would be too complex to be practical. A garbage collected environment simplifies
the simulator code dramatically and increases its robustness.

To evaluate the JiST and SWANS memory requirements, we perform the same experiments as presented
earlier, but measure memory consumption. The simulator memory footprint that we measure includes
the base process memory, the memory overhead for simulation entities, and all the simulation data at the
beginning of the simulation. Figure 19.5 shows the JiST micro-benchmark (Figure 19.5(a)) and SWANS
macro-benchmark (Figure 19.5(b)) results. The plots show that the base memory footprint for each of
the systems is less than 10 MB. Also, asymptotically, the memory consumed increases linearly with the
number of entities, as expected. JiST performs well with respect to the memory overhead for simulation
entities, because they are just small Java objects allocated on a common heap. It performs comparably to
GloMoSim in this regard, which uses a technique called node aggregation specifically to reduce Parsec’s
memory consumption. A GloMoSim “entity” is also a small object containing an aggregation identifier
and other variables similar to those found in SWANS entities. In contrast, each Parsec entity contains its
own program counter and a relatively large logical process stack. In ns2, the benchmark program allocates
the smallest split object possible, which duplicates simulation state in both the C and the Tcl memory
spaces. JiST provides the same dynamic configuration capability using reflection, without requiring the
memory overhead of a split object design.

Because JiST is more efficient than GloMoSim and ns2 by almost an order and two orders of magni-
tude, respectively, SWANS is able to simulate networks that are significantly larger. The memory overhead
of hierarchical binning is shown to be asymptotically negligible. Also, as a point of reference, regularly
published results of a few hundred wireless nodes occupy more than 100 MB, and simulation researchers
have scaled ns2 to around 1500 non-wireless nodes using a 1-GB process.19,22 Table 19.2 provides exact
time and space requirements under each of the simulators for simulations of NDP across a range of net-
work sizes.

Finally, we present SWANS with some very large networks. For these experiments, we ran the same
simulations, but on dual-processor 2.2-GHz Intel Xeon machines (although only one processor was used)
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FIGURE 19.5 JiST allocates entities efficiently: comparable to GloMoSim at 36 bytes per entity and over an order
of magnitude less than Parsec or ns2. SWANS can simulate correspondingly larger network models due to this more
efficient use of memory and more sophisticated memory management protocols enabled by the garbage collector.

with 2 GB of RAM running Windows 2003. The results are plotted in Figure 19.6 on a log-log scale. We
show SWANS both with the naı̈ve propagation algorithm and with hierarchical binning. We observe linear
behavior for the latter in all simulations up to networks of one million nodes. The 106 node simulation
consumes just less than 1 GB of memory on initial configuration, runs with an average footprint of 1.2 GB
(fluctuating due to delayed garbage collection), and completes within 5.5 hours. This size of the network
exceeds previous ns2 and GloMoSim capabilities by two orders of magnitude.
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TABLE 19.2 SWANS Outperforms ns2 and GloMoSim in Both
Time and Space

Nodes Simulator Time (sec) Memory (KB)

500 SWANS 54 700
GloMoSim 82 5759
ns2 7136 58761
SWANS-hier 43 1101

5,000 SWANS 3250 4887
GloMoSim 6191 27570
SWANS-hier 430 5284

50,000 SWANS 312019 47717
SWANS-hier 4377 49262

19.6 Embedding Applications

SWANS has a unique and important advantage over existing network simulators. It can run regular,
unmodified Java network applications over simulated networks, thus allowing for the inclusion of exist-
ing Java-based software, such as Web servers, peer-to-peer applications, and application-level multicast
protocols, within network simulations. These applications do not merely send packets to the simulator
from other processes. They operate in simulation time, embedded within the same SWANS process space,
incurring no blocking, context switch, or memory copy, and thereby allowing far greater scalability.

This tight, efficient integration is achieved through a sequence of transparent program transformations,
whose end result is to embed a process-oriented Java network application into the event-oriented SWANS
simulation environment. The entire Java application is first wrapped within a special Java application
entity harness. Because multiple instances of an application can be running within different simulated
nodes, the harness entity serves as an anchor for the application context. Like the regular Java launcher,
the harness entity invokes an application’s main method to initiate it.
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FIGURE 19.6 SWANS scales to networks of 106 wireless nodes. The figure shows the time for a sequential simulation
of a heartbeat NDP.
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and attached to a call event. When this call event is complete, the kernel schedules a callback event to the caller. The
continuation is restored and the caller continues its processing from where it left off, albeit at a later simulation time.

Before loading an application, SWANS inserts a custom rewriting phase into the simulation kernel class
loader. Among other, more subtle modifications, this rewriting phase replaces all Java socket calls within
the original application with invocations to corresponding functionality within simulated SWANS sockets.
These SWANS sockets have identical semantics to their native counterparts in the standard Java library, but
send packets through the simulated network. Most importantly, the input (receive) and output (send) meth-
ods are implemented using blocking JiST events and simulation time continuations, which we explain next.

The semantics of a blocking events, as depicted in Figure 19.7, are a natural extension atop the existing
nonblocking events. The kernel first saves the call-stack of the calling entity and attaches it to the outgoing
event. When the call event is completed, the kernel notices that the event has caller information and the
kernel dispatches a callback event to the caller with its continuation information. Thus, when the callback
event is eventually dequeued, the state is restored and the execution continues right after the point of
the blocking entity method invocation. In the meantime, however, the local entity simulation time will
have progressed to the simulation time at which the calling event was completed, and other events may
have been processed against the entity in the interim.

To support these blocking semantics, JiST automatically modifies the necessary application code into
a continuation-passing style. This allows the application to operate within the event-oriented simulation
time environment. Our design allows blocking and nonblocking entity methods to coexist, which means
that event-oriented and process-oriented simulations can coexist. Unfortunately, saving and restoring the
Java call-stack for continuation is not a trivial task.23 The fundamental difficulty arises from the fact
that stack manipulations are not supported at either the language, the library, or the bytecode level. Our
solution draws and improves on the ideas in the JavaGoX25 and PicoThreads6 projects, which also save the
Java stack for other reasons. Our design eliminates the use of exceptions to carry state information. This is
considerably more efficient for our simulation needs because Java exceptions are expensive. Our design also
eliminates the need to modify method signatures. This fact is significant because it allows our continuation
capturing mechanism to function even across the standard Java libraries. In turn, this enables us to run
standard, unmodified Java network applications within SWANS. A network socket read, for example, is
rewritten into a blocking method invocation on a simulated socket, so that an application is “frozen” in
simulation time until a network packet is delivered to the application by the simulated socket entity.

19.7 Conclusion

In summary, SWANS is a componentized wireless network simulator built according to the virtual
machine-based simulator design.5 It significantly outperforms ns2 and GloMoSim, both in time and
space. We have shown results with networks that, at the same level of detail, are more than an order of
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magnitude larger than what is possible with existing tools. SWANS can also, unlike any existing network
simulator, efficiently run existing Java-based network applications over simulated networks. In general,
SWANS inherits the advantages of JiST and the Java platform.

The SWANS simulator is freely available4 and can be extended in a number of interesting directions,
including:

� Parallel, distributed, and speculative execution. The current implementations of JiST and SWANS
have focused exclusively on sequential performance. The system, however, was explicitly designed
and implemented with more sophisticated execution strategies in mind. It is possible to extend the
simulation kernel to allow multiple processing threads to operate concurrently on the simulation
state in order to leverage the full processing power of commodity multiprocessor machines. For
distributed simulation, JiST entity separators can readily be extended to support a single system
abstraction by transparently tracking entity locations as they are dynamically migrated across a
cluster of machines to balance computational and network load. The JiST kernel can then be
extended to support conservatively synchronized, distributed, cooperative operation with peer JiST
kernels, which would increase the available simulation memory and allow larger network models
to be processed. Synchronization protocols need not remain conservative. Because the JiST design
can already transparently support both checkpointing and rollback of entities, and because the
cost of synchronization is critical to the performance of a distributed simulator, it is worthwhile to
investigate various speculative execution strategies as well. Each of these three extensions to the
simulation kernel — parallel, distributed, and speculative execution — are already supported within
the current JiST semantics and can therefore be implemented transparently with respect to existing
SWANS components. Such extensions to the simulation kernel pose a rich space of design and
research problems.
� Declarative simulation specifications. SWANS is a componentized simulator and therefore tends

naturally to be configured as a graph of interconnected entities that can model some network with
given topology and node configurations. Because these component graphs often have repetitive
and highly compressible structure, it would be beneficial to construct them using short declarative
specifications, rather than the current approach, driven by imperative scripts. In general, it would
be interesting to develop high-level, possibly domain-specific, yet expressive, simulation configu-
ration languages.
� Simulation debuggers and interactive simulators. A significant advantage of leveraging the Java

platform is the ability to adopt existing Java tools, such as debuggers, often lacking in simulation
environments. Event-driven programs are particularly difficult to debug, thus compounding the
problem. An existing Java debugger could readily be extended to understand simulation events
and other simulation kernel data structures, resulting in functionality that is unparalleled in any
existing simulation environment. Because Java is a reflective language, SWANS simulations can be
paused, modified in-flight, and then resumed. The appropriate tools to perform such inspection
effectively (i.e., a graphical, editable view of the network and the state of its nodes, for example)
would facilitate interactive simulation and present interesting research opportunities. For example,
one could use the debugger to control the distributed simulation kernel and its global virtual time
scheduler, not only to obtain consistent cuts of the simulation state, but also to permit stepping
backwards in simulation time to understand root causes of a particular simulation state.

To conclude, we hope that the scalability, performance, and flexibility of SWANS, combined with
the popularity of the Java language, will facilitate its broader adoption within the network simulation
community.
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