
PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

Dedalus: A flexible framework for numerical simulations with spectral methods

Keaton J. Burns
Massachusetts Institute of Technology Departments of Mathematics and Physics, Cambridge, Massachusetts 02139, USA

and Center for Computational Astrophysics, Flatiron Institute, New York, New York 10010, USA

Geoffrey M. Vasil
School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales 2006, Australia

Jeffrey S. Oishi
Bates College Department of Physics and Astronomy, Lewiston, Maine 04240, USA

Daniel Lecoanet
Princeton Center for Theoretical Science and Princeton University Department of Astrophysical Sciences, Princeton, New Jersey 08544, USA

Benjamin P. Brown
University of Colorado Laboratory for Atmospheric and Space Physics and Department of Astrophysical and Planetary Sciences,

Boulder, Colorado 80309, USA

(Received 22 May 2019; accepted 30 November 2019; published 23 April 2020)

Numerical solutions of partial differential equations enable a broad range of scientific research. The Dedalus
project is a flexible, open-source, parallelized computational framework for solving general partial differential
equations using spectral methods. Dedalus translates plain-text strings describing partial differential equations
into efficient solvers. This paper details the numerical method that enables this translation, describes the design
and implementation of the codebase, and illustrates its capabilities with a variety of example problems. The
numerical method is a first-order generalized tau formulation that discretizes equations into banded matrices.
This method is implemented with an object-oriented design. Classes for spectral bases and domains manage the
discretization and automatic parallel distribution of variables. Discretized fields and mathematical operators are
symbolically manipulated with a basic computer algebra system. Initial value, boundary value, and eigenvalue
problems are efficiently solved using high-performance linear algebra, transform, and parallel communication
libraries. Custom analysis outputs can also be specified in plain text and stored in self-describing portable
formats. The performance of the code is evaluated with a parallel scaling benchmark and a comparison to a
finite-volume code. The features and flexibility of the codebase are illustrated by solving several examples: the
nonlinear Schrödinger equation on a graph, a supersonic magnetohydrodynamic vortex, quasigeostrophic flow,
Stokes flow in a cylindrical annulus, normal modes of a radiative atmosphere, and diamagnetic levitation.

DOI: 10.1103/PhysRevResearch.2.023068

I. INTRODUCTION

Partial differential equations (PDEs) describe continuum
processes. The continuous independent variables typically
represent space and time, but can also represent more abstract
quantities such as momentum, energy, age of a population,
or currency. The ability to equate the infinitesimal rates
of change of different quantities produces endless possible
applications. Important examples include wave propagation,
heat transfer, fluid flow, quantum mechanical probability flux,
chemical and nuclear reactions, biological phenomena, finan-
cial markets [1], or social/population dynamics [2,3]. Even

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

more intriguing are possible combinations of several of the
above [4,5].

Apart from a small handful of closed-form solutions, the
vast majority of PDEs require serious numerical and compu-
tational intervention. A wide variety of numerical algorithms
solve PDEs through the general approach of discretizing its
continuous variables and operators to produce a finite-sized
algebraic system yielding an approximate solution. Finite
element, finite volume, and finite difference methods are com-
mon schemes that discretize the domain of the PDE into cells
or points and derive algebraic relations between the values
at neighboring cells or points from the governing equations.
These methods can accommodate complex geometries (such
as the flow around an aircraft), but can be difficult to imple-
ment for complex equations and typically converge relatively
slowly as additional cells or points are added.

In contrast, spectral methods discretize variables by ex-
panding them in a finite set of basis functions and derive

2643-1564/2020/2(2)/023068(39) 023068-1 Published by the American Physical Society

https://orcid.org/0000-0003-4761-4766
https://orcid.org/0000-0002-8902-5030
https://orcid.org/0000-0001-8531-6570
https://orcid.org/0000-0002-7635-9728
https://orcid.org/0000-0001-8935-219X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.023068&domain=pdf&date_stamp=2020-04-23
https://doi.org/10.1103/PhysRevResearch.2.023068
https://creativecommons.org/licenses/by/4.0/

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

equations for the coefficients of these functions. These meth-
ods are well-suited to many equation types and provide
rapidly converging solutions (e.g., exponential for smooth
functions) as additional modes are included. However, spec-
tral methods are typically limited to simple geometries (such
as boxes, cylinders, and spheres). Recent literature has devel-
oped sparse representations of equations that are substantially
better conditioned and faster than traditional dense collocation
techniques [6–12]. These features make spectral methods an
attractive choice for scientists seeking to study a wide variety
of physical processes with high precision.

While computing capacities have grown exponentially over
the past few decades, the progression of software development
has been more gradual. Many software packages have chosen
one or a few closely related PDEs and focused on creating
highly optimized implementations of algorithms that are well-
suited to those choices. These solvers usually hardcode not
only the PDE but also the dynamical variables, choice of
input control parameters, integration scheme, and analysis
output. While many world-class simulation codes have been
developed this way, often scientific questions lead beyond
what a dedicated code can do. This is not always because of a
lack of computational power or efficiency, but often because
continued progress requires an alternative model, dynamical
variable reformulation, or more exotic forms of analysis.

Simulation packages with flexible model specification also
address an underserved scientific niche. It is often straight-
forward to write serial codes to solve simple one-dimensional
equations for particular scientific questions. It is also worth-
while to invest multiple person-years building codes that solve
well-known equations. However, it can be difficult to justify
spending significant time developing codes for novel models
that are initially studied by only a few researchers. We believe
this leaves many interesting questions unaddressed simply
from a local cost-benefit analysis. Flexible toolkits can lower
the barrier to entry for a large number of interesting scientific
applications.

The FENICS [13] and FIREDRAKE [14] packages both al-
low users to symbolically enter their equations in variational
form and produce finite-element discretizations suitable for
forward-modeling and optimization calculations. These are
very powerful tools for solving wide ranges of PDEs in
complicated geometries, however they remain less efficient
than spectral methods for many PDEs in simple geometries.
CHANNELFLOW [15] uses sparse Chebyshev methods to sim-
ulate the Navier-Stokes equations and allows users to find
and analyze invariant solutions using dynamical systems tech-
niques. However, the code is restricted to solving incompress-
ible flow in a periodic channel geometry. The CHEBFUN [16]
and APPROXFUN [17] packages are highly flexible toolkits for
performing function approximation using spectral methods.
They include a wide variety of features including sparse,
well-conditioned, and adaptive methods for efficiently solving
differential equations to machine precision. However, these
packages are not optimized for the solution of multidimen-
sional PDEs on parallel architectures.

The goal of the Dedalus project is to bridge this gap and
provide a framework applying modern, sparse spectral tech-
niques to highly parallelized simulations of custom PDEs. The
codebase allows users to discretize domains using the direct

products of spectral series and symbolically specify systems
of PDEs on those domains. The code then produces a sparse
discretization of the equations and automatically parallelizes
the solution of the resulting model. The Dedalus codebase
is open-source, highly modular, and easy to use. While its
development has been motivated by the study of turbulent
flows in astrophysics and geophysics, Dedalus is capable of
solving a much broader range of PDEs. To date, it has been
used for applications and publications in applied mathematics
[18–22], astrophysics [23–38], atmospheric science [39–44],
biology [45–47], condensed matter physics [48,49], fluid dy-
namics [50–61], glaciology [62], limnology [63], numerical
analysis [64–67], oceanography [68–72], planetary science
[73,74], and plasma physics [75–82].

We begin this paper with a review of the fundamental
theory of spectral methods and a description of the specific
numerical method employed by Dedalus (Sec. II). We then
provide an overview of the project and codebase using a
simple example problem (Sec. III). Sections IV–X detail the
implementations of the fundamental modules of the codebase,
with a particular emphasis on its systems for symbolic equa-
tion entry and automatic distributed-memory parallelization.
Although these sections describe essential details of the code,
a careful reading is not necessary to begin using Dedalus.
Finally, Sec. XI demonstrates the features and performance
of the codebase with a parallel scaling analysis, a comparison
to a finite volume code, and example simulations of nonlinear
waves on graphs, compressible magnetohydrodynamic flows,
quasigeostrophic flow in the ocean, Stokes flow in cylindri-
cal geometry, atmospheric normal modes, and diamagnetic
levitation.

II. SPARSE SPECTRAL METHODS

A. Fundamentals of spectral methods

1. Spectral representations of functions

A spectral method discritizes functions by expanding them
over a set of basis functions. These methods find broad
application in numerical analysis and give highly accurate and
efficient algorithms for manipulating functions and solving
differential equations. The classic reference Boyd et al. [83]
covers the material in this section in great detail.

Consider a complete orthogonal basis {φn(x)} and the
associated inner product (φn, φm)φ ∝ δn,m. The spectral rep-
resentation of a function f (x) comprises the coefficients { f φ

n }
appearing in the expansion of f (x) as

f (x) =
∞∑

n=0

f φ
n φn(x), (1)

with

f φ
n = (φn, f)φ

(φn, φn)φ
≡ 〈φn| f 〉. (2)

We will use bra-ket notation to denote such normalized bra-
family inner products. Formally, an exact representation re-
quires an infinite number of nonzero coefficients. Numerical
spectral methods approximate functions (e.g., PDE solutions)
using expansions that are truncated after N modes. The trun-
cated coefficients f̃ φ

n are computed using quadrature rules of

023068-2

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

the form

f̃ φ
n =

N−1∑
i=0

wi f (xi) (3)

where the weights wi and collocation points xi depend on the
underlying inner-product space. The quadrature scheme con-
stitutes a discrete spectral transform for translating between
the spectral coefficients and N samples of the function.

The error in the truncated approximation is often of the
same order as the last retained coefficient. The spectral
coefficients of smooth functions typically decay exponen-
tially with n, resulting in highly accurate representations.
The spectral coefficients of nonsmooth functions typically
decay algebraically as n−α , where α depends on the order of
differentiability of f (x). Exact differentiation and integration
on the underlying basis functions provides accurate calculus
for general functions. For PDEs with highly differentiable
solutions, spectral methods therefore give significantly more
accurate results than fixed-order schemes.

2. Common spectral series

Trigonometric polynomials are the archetypal spectral
bases: sine series, cosine series, and complex exponential
Fourier series. These bases provide exponentially converging
approximations to smooth functions on periodic intervals.
The fast Fourier transform (FFT) can compute the series
coefficients in O(N log2 N) time, enabling computations re-
quiring both the coefficients and grid values to be performed
efficiently.

The classical orthogonal polynomials also frequently ap-
pear as spectral bases. Most common are the Chebyshev
polynomials {Tn(x)}, which provide exponentially converging
approximations to smooth functions on the interval [−1, 1]. A
simple change of variables relates the Chebyshev polynomials
to cosine functions,

Tn(x) = cos(n cos−1(x)). (4)

Geometrically, Tn(x) is the projection of cos(nx) from the
cylinder to the plane; see Fig. 1. The relation to cosines
enables transforming between Chebyshev coefficients and
values on collocation points using the fast discrete cosine
transform (DCT). The fast transform often makes Chebyshev
series preferable to other polynomials on finite intervals.

3. Solving differential equations with spectral methods

Spectral methods solve PDEs by creating algebraic equa-
tions for the coefficients of the truncated solution. Different
approaches for constructing and solving these systems each
come with advantages and disadvantages. In examining a few
approaches, we consider a simple linear PDE of the form
Lu(x) = f (x), where L is a x-differential operator.

The collocation approach is perhaps the most common
polynomial spectral method. In this case, the differential
equation is enforced at the interior collocation points. The
solution is written in terms of the values at these points:

Lu(xi) = f (xi), i = 0, . . . , N − 1. (5)

The boundary conditions typically replace the DE at the
collocation endpoints. The collocation method works well in a

FIG. 1. Chebyshev polynomials (a) can be viewed as cosine
functions (b) drawn on a cylinder and projected onto the bisecting
plane (c).

broad range of applications. The primary advantages are that
many boundary conditions are easily enforced and the solu-
tion occurs on the grid. The primary disadvantages are that the
method produces dense matrices (L) and more complicated
boundary conditions require more care to implement [84].

An alternative is the Galerkin method, where the solution
is written in terms of “trial” functions {φn} that satisfy the
boundary conditions. The differential equation is then pro-
jected against a set of “test” functions {ψn}:∑

n

〈ψi|Lφn〉uφ
n =

∑
n

〈ψi|φn〉 f φ
n , i = 0, . . . , N − 1. (6)

For periodic boundary conditions, the Galerkin method us-
ing Fourier series produces diagonal derivative operators,
allowing constant-coefficient problems to be solved trivially.
Galerkin bases can be constructed from Chebyshev polyno-
mials for simple boundary conditions, with the caveat that
the series coefficients must be converted back to Chebyshev
coefficients to apply fast transforms.

The tau method generalizes the Galerkin method by solv-
ing the perturbed equation

Lu(x) + τP(x) = f (x), (7)

where P(x) is specified. The parameter τ adjusts to accommo-
date the boundary conditions, which are enforced simultane-
ously. The tau method provides a conceptually straightforward
way of applying general boundary conditions without needing
a specialized basis. The classical tau method [85,86] uses the
same test and trial functions and assumes P(x) = φn−1(x),
making it equivalent to dropping the last row of the discrete
L matrix and replacing it with the boundary condition. This
classical formulation with Chebyshev series results in dense
matrices, but (as described below) the tau method can be
modified to produce sparse and banded matrices for many
equations.

023068-3

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

FIG. 2. Derivative matrices using (a) Chebyshev-T and
(b) Chebyshev-U polynomials as test functions. Using different
families of test and trial functions allows general differential
operators to be represented with sparse matrices.

B. A general sparse tau method

This section describes the spectral method employed in
Dedalus. We use a tau method with different trial and test
bases, which produces sparse matrices for general equations.
Formulating problems as first-order systems and using Dirich-
let preconditioning (basis recombination) renders matrices
fully banded.

The method is fundamentally one-dimensional, but gener-
alizes trivially to D dimensions with all but one separable di-
mension (e.g., Fourier-Galerkin). Multidimensional problems
then reduce to an uncoupled set of 1D problems that are solved
individually.

Other approaches based on the ultraspherical method [9]
or integral formulations [7] similarly result in sparse and
banded matrices for many equations. Our particular approach
is designed to accommodate general systems of equations and
boundary conditions automatically.

1. Sparse differential operators

Traditional polynomial spectral formulations often result
in dense derivative matrices. In particular, the derivatives of
Chebyshev polynomials are dense when expanded back in
Chebyshev polynomials:

∂xTj (x) =
j−1∑
i=0

Ti(x)
2 j((j − i) mod 2)

1 + δi,0
. (8)

Figure 2 shows the matrix version of Eq. (8), referred to as the
“T-to-T” form. However, the derivatives of Chebyshev poly-
nomials (of the first kind) are proportional to the Chebyshev
polynomials of the second kind, Un(x):

∂xTn(x) = nUn−1(x). (9)

Defined trigonometrically,

Un(x) = sin((n + 1) cos−1(x))

sin(cos−1(x))
. (10)

Using test functions ψn = Un and trial functions φn = Tn

produces a single-band derivative matrix, called the “T-to-U”
form (right side in Fig. 2). We convert nondifferential terms

from T-to-U via the sparse conversion relation

2Tn(x) = Un(x) − Un−2(x). (11)

Together, these relations render first-order differential equa-
tions sparse. Higher-order equations can be handled by utiliz-
ing ultraspherical polynomials for higher derivatives [9], but
our approach is to simply reduce all equations to first-order
systems. The sparse-τ method extends to other orthogonal
polynomial series. Appendix 1 lists the full set of derivative
and conversion relations implemented in Dedalus.

2. Banded boundary conditions

Choosing the tau polynomial P(x) = UN−1(x) in a T-to-U
method allows dropping the last matrix row and finding u(x)
without finding τ . The system then consists of a banded inte-
rior matrix, bordered with a dense boundary-condition row.
Applying a right preconditioner renders the boundary row
sparse and the system fully banded. For Dirichlet boundary
conditions, using the adjoint relation of Eq. (11) gives the
nonorthogonal polynomials,

Dn(x) =
{

Tn(x), n = 0, 1
Tn(x) − Tn−2(x), n � 2 , (12)

where

Dn(±1) =
{

(±1)n, n = 0, 1
0, n � 2 . (13)

In this basis, Dirichlet boundary conditions only involve the
first two expansion coefficients. This technique is known as
“Dirichlet preconditioning” or “basis recombination.”

In summary, for first-order systems with Dirichlet bound-
ary conditions, choosing φn = Dn, ψn = Un, and P = UN−1

produces fully banded matrices. The resulting matrices are
efficiently sovled using sparse/banded algorithms. With a
first-order system, it is possible to reformulate any boundary
condition (e.g., Neumann or global integral conditions) in
terms of a Dirichlet condition on the first-order variables. This
formulation extends to other orthogonal polynomial bases.
Appendix 2 lists the full set of Dirichlet recombinations
implemented in Dedalus.

3. Nonconstant coefficients

Many physical problems require multiplication by spatially
nonconstant coefficients (NCCs) that vary slowly compared
to the unknown solution. Olver et al. [9], in the context of
Chebyshev polynomials, observed that multiplication by such
NCCs corresponds to band-limited spectral operators.

Multiplication by a general NCC g(x) acts linearly on u(x)
via ∑

j

〈ψi|gφ j〉uφ
j =

∑
j

Gψφ
i, j uφ

j . (14)

Given an expansion of the NCC in some basis as g(x) =∑∞
n=0 gξ

nξn(x), the NCC matrix is

Gψφ
i, j =

∞∑
n=0

gξ
n〈ψi|ξnφ j〉. (15)

For all orthogonal polynomials, 〈ψi|ξnφ j〉 = 0 if |i − j| >

n. We truncate NCC expansions by dropping all terms where

023068-4

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

FIG. 3. Conceptual stages in matrix construction for the Chebyshev discretization of Poisson’s equation with Dirichlet and Neumann
boundary conditions (matrix entries colored by sign). (1) Original (T-to-T) matrices with block columns corresponding to u and ux , and block
rows corresponding to the LHS of ∂xux = 0 and ∂xu − ux = f (x). The T-to-T differentiation matrices are dense upper triangular. (2) After
T-to-U conversion and the addition of boundary conditions via the tau method. The derivatives are sparse and the identity-block bandwidths
increase slightly. The boundary conditions involve all coefficients of u and ux . (3) After Dirichlet recombination. Boundary rows are sparse
and the equation-block bandwidths increase slightly. (4) After reversing the Kronecker product to group by modes rather than variables. This
final matrix is highly sparse and completely banded.

gξ
n is smaller than some threshold amplitude. The overall

bandwidth of Gψφ is therefore N ′, the number of terms that
are retained in the expansion of the NCC. For smooth NCCs,
N ′ � N and the multiplication matrix has low bandwidth.
Appendix 3 lists the full set of multiplication matrices imple-
mented in Dedalus.

4. Solving systems of equations

For coupled systems of equations with S variables,∑S
j=1 Li, ju j (x) = fi(x) for i = 1, . . . , S. In block-operator

form,

L · X = F , (16)

where X is the state vector of variables, uj , and L is a
matrix of the operators. We discretize the system by replacing
each Li, j with its sparse-tau matrix representation described
above. In block-banded form, using Kronecker products and
the placement matrix (Ei, j)k,l = δi,kδk,l ,

Lsys =
S∑

i, j=1

Ei, j ⊗ Li, j . (17)

The system matrix Lsys acts on the concatenation of the
variable coefficients and has bandwidth O(SN).

If the operator matrices are interleaved rather than block-
concatenated, the resulting system matrix will act on the
interleaved variable coefficients and takes the form

Lsys =
S∑

i, j=1

Li, j ⊗ Ei, j . (18)

This matrix will have bandwidth O(S), making it practical
to simultaneously solve coupled systems of equations with
large N .

5. Summary and example

Dedalus uses a modified tau method that produces banded
and well-conditioned matrices. Carefully chosen test-trial ba-

sis pairs render derivatives sparse. The first-order formula-
tion makes all boundary conditions equivalent to Dirichlet
conditions, which become banded under basis recombination.
Truncated NCC expansions retain bandedness for smooth
NCCs. Finally, matrices and coefficients are interleaved to
keep systems of equations banded.

Figure 3 shows the matrices at various conceptual stages
for a Chebyshev discretization of Poisson’s equation in 1D
with Dirichlet and Neumann boundary conditions:

∂2u

∂x2
= f (x), u(−1) = 0, ∂xu(1) = 0. (19)

The combination of writing equations as first-order systems,
T-to-U derivative mapping, Dirichlet preconditioning, and
grouping modes before variables produces a banded pencil
matrix.

We also note that coupled systems easily allow constraint
equations (those without temporal derivatives) to be imposed
alongside evolution equations, avoiding variable reformula-
tions and/or splitting methods. For instance, the divergence
condition in incompressible hydrodynamics can be imposed
directly (determining the pressure). The momentum equation
can then be integrated without splitting or derived pressure
boundary conditions.

III. PROJECT OVERVIEW AND DESIGN

A. Codebase structure

Dedalus makes extensive use of object-oriented program-
ming to provide a simple interface for the parallel solution
of general systems of PDEs. The basic class structure reflects
the mathematical objects that are encountered when posing
and solving a PDE. As an illustrative example, we consider
solving the Fisher-KPP equation, a reaction-diffusion equa-
tion that first arose in ecology:

∂u

∂t
− D∇2u = R u(1 − u), (20)

023068-5

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

with unknown variable u(x, t), diffusion coefficient D, and
reaction rate R [87,88].

Properly posing the PDE first requires specifying its spatial
domain. This is done by creating a Basis object discretiz-
ing each dimension over a specified interval and forming a
Domain object as the direct product of these bases. Here
we construct a 2D channel domain, periodic in x and with
Neumann boundary conditions on the boundaries in y, as the
direct product of a Fourier basis and a Chebyshev basis:

Next, we define an initial value problem on this domain
consisting of the PDE in first-order form (for temporal and
Chebyshev derivatives) along with the boundary conditions.
This is done by creating an Problem object representing the
problem type (here an initial value problem, IVP). Problem
parameters, string-substitutions (to simplify equation entry),
and plain-text equations and boundary conditions are then
added to the problem. Under the hood, Dedalus constructs
Field objects to represent the variables and Operator ob-
jects that symbolically represent the mathematical expressions
in the PDE.

To finish posing the IVP, we need to specify a temporal
integration scheme, the temporal integration limits, and the
initial values of the variables. This is done through the Solver
object built by each Problem. The initial data of the state
fields can be easily accessed from the solver and set in grid
(‘g’) or coefficient (‘c’) space.

Finally, the problem is solved by iteratively applying the
temporal integration scheme to advance the solution in time.
In Dedalus, this main loop is directly written by the user,
allowing for arbitrary data interactions as the integration pro-

gresses. Although not included in this example, Dedalus also
provides extensive analysis tools for evaluating and saving
quantities during the integration.

While this simple example covers the core user-facing
classes, several other classes control the automatic MPI par-
allelization and efficient solution of the solvers. All together,
the fundamental class hierarchy consists of the following:

(1) Basis: A one-dimensional spectral basis.
(2) Domain: The direct product of multiple bases, forming

the spatial domain of dependence of a PDE.
(3) Distributor: Directs the parallel decomposition of

a domain and spectral transformations of distributed data
between different states.

(4) Layout: A distributed transformation state, e.g., grid
space or coefficient space.

(5) Field: A scalar-valued field over a given domain. The
fundamental data unit in Dedalus.

(6) Operator: Mathematical operations on sets of fields,
composed to form mathematical expressions.

(7) Handler: Captures the outputs of multiple operators
to store in memory or write to disk.

(8) Evaluator: Efficiently coordinates the simultaneous
evaluation of the tasks from multiple handlers.

(9) Problem: User-defined PDEs (initial, boundary, and
eigen-value problems).

(10) Timestepper: ODE integration schemes that are
used to advance initial value problems.

(11) Solver: Coordinates the actual solution of a problem
by evaluating the underlying operators and performing time
integration, linear solves, or eigenvalue solves.

The following sections detail the functionality and imple-
mentation of these classes.

B. Dependencies

Dedalus is provided as an open-source python3 pack-
age. We choose to develop the code in PYTHON because it
is an open-source, high-level language with a vast ecosys-
tem of libraries for numerical analysis, system interaction,
input/output, and data visualization. While numerical algo-
rithms written directly in PYTHON sometimes suffer from poor
performance, it is quite easy to wrap optimized C libraries into
high-level interfaces with PYTHON . A typical high-resolution
Dedalus simulation will spend a majority of its time in opti-
mized C libraries.

The primary dependencies of Dedalus include the follow-
ing:

(1) The NUMPY, SCIPY, and CYTHON packages for PYTHON

[89,90].
(2) The FFTW C-library for fast Fourier transforms [91].
(3) An implementation of the MPI communication inter-

face and its PYTHON wrapper mpi4py [92].

023068-6

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

(4) The HDF5 C-library for reading and writing HDF5
files and its PYTHON wrapper h5py [93,94].

A wide range of standard-library PYTHON packages are
used to build logging, configuration, and testing interfaces
following standard practices.

Additionally, and perhaps counter-intuitively, we have
found that creating algorithms to accommodate a broad range
of equations and domains has resulted in a compact and main-
tainable codebase. Currently, the Dedalus package consists of
roughly 10 000 lines of PYTHON. By producing sufficiently
generalized algorithms, it is possible to compactly and ro-
bustly provide a great deal of functionality.

C. Documentation

Dedalus has been publicly available under the open-source
GPL3 license since its creation, and is developed under dis-
tributed version control. The online documentation includes
a series of tutorials and example problems demonstrating the
code’s capabilities and walking new users through the basics
of constructing and running a simulation. Links to the source
code repository and the documentation are available through
the project website [95].

D. Community

The Dedalus collaboration uses open-source code devel-
opment and strongly supports open scientific practices. The
benefits of the philosophy include distributed contributions to
the codebase, a low barrier-to-entry (especially for students),
and detailed scientific reproducibility. We outline these ideas
in detail in Oishi et al. [96].

Code development occurs through a public system of pull
requests and reviews on the source code repository. Periodic
releases are issued to the PYTHON package index (PyPI), and
a variety of full-stack installation channels are supported,
including single-machine and cluster install scripts and a
conda-based build procedure.

The core developers maintain mailing lists for the growing
Dedalus user and developer communities. The mailing list
is publicly archived and searchable, allowing new users to
find previous solutions to common problems with installation
and model development. The Dedalus user list currently has
over 150 members. A list of publications using the code is
maintained online [97].

IV. SPECTRAL BASES

Dedalus currently represents multidimensional fields using
the direct product of one-dimensional spectral bases. This di-
rect product structure generally precludes domains including
coordinate singularities, such as full disks or spheres. How-
ever, curvilinear domains without coordinate singularities,
such as cylindrical annuli can still be represented using this
direct product structure (for an example, see Sec. XI F). Basis
implementations form the lowest level of the program’s class
hierarchy. The primary responsibilities of the basis classes are
to define their collocation points and to provide an interface
for transforming between the spectral coefficients of a func-
tion and the values of the function on their collocation points.

An instance of a basis class represents a series of its
respective type truncated to a given number of modes Nc, and

remapped from native to problem coordinates with an affine
map. A basis object is instantiated with a name string defin-
ing the coordinate name, a base_grid_size integer setting
Nc, parameters fixing the affine coordinate map (a problem
coordinate interval for bases on finite intervals, or stretching
and offset parameters for bases on infinite intervals), and
a dealias factor. Each basis class is defined with respect
to a native coordinate interval, and contains a method for
producing a collocation grid of Ng points on this interval,
called a native grid of scale s = Ng/Nc. Conversions between
the native coordinates xn and problem coordinates xp are done
via an affine map of the form xp = axn + b, which is applied
to the native grid to produce the basis grid .

Each basis class defines methods for forward transform-
ing (moving from grid values to spectral coefficients) and
backward transforming (vice versa) data arrays along a single
axis. Using objects to represent bases allows the transform
methods to easily cache plans or matrices that are costly to
construct. The basis classes also present a unified interface
for implementing identical transforms using multiple libraries
with different performance and build requirements. We now
define the basis functions, grids, and transform methods for
the currently implemented spectral bases.

A. Fourier basis

For periodic dimensions, we implement a Fourier basis
consisting of complex exponential modes on the native inter-
val [0, 2π]:

φF
k (x) = exp(ikx) (21)

and a native grid consisting of evenly spaced points beginning
at the left side of the interval:

xi = 2π i

Ng
, i = 0, . . . , Ng − 1. (22)

A function is represented as a symmetric sum over positive
and negative wave numbers

f (x) =
km∑

−km

fkφ
F
k (x), (23)

where km = floor((Nc − 1)/2) is the maximum resolved wave
number, excluding the Nyquist mode kN = Nc/2 when Nc is
even. When f is a real function, we store only the complex
coefficients corresponding to k � 0; the k < 0 coefficients are
determined by conjugate symmetry. We discard the Nyquist
mode since it is only marginally resolved: for real functions,
the Nyquist mode captures cos(kN x), but not sin(kN x), which
vanishes on the grid when Ng = Nc.

The expansion coefficients are given explicitly by

fk = 1

2π

∫ 2π

0
f (x)φF∗

k (x)dx (24)

= 1

Ng

Ng−1∑
i=0

f (xi)φ
F∗
k (xi) (25)

and are computed with the fast Fourier transform (FFT). We
implement FFTs from both the SCIPYand FFTW libraries,
and rescale the results to match the above normalizations,

023068-7

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

i.e., the coefficients directly represent mode amplitudes. The
coefficients are stored in the traditional FFT output format,
starting from k = 0 and increasing to km, then following with
−km and increasing to −1.

B. Sine/cosine basis

For periodic dimensions possessing definite symmetry
with respect to the interval endpoints, we implement a SinCos
basis consisting of either sine waves or cosine waves on the
native interval [0, π]:

φc
k (x) = cos(kx), (26)

φs
k (x) = sin(kx), (27)

and a native grid consisting of evenly spaced interior points:

xi = π (i + 1/2)

Ng
, i = 0, . . . , Ng − 1. (28)

Functions with even parity are represented with cosine
series as

f (x) =
Nc−1∑
k=0

fkφ
c
k (x), (29)

while functions with odd parity are represented with sine
series as

g(x) =
Nc−1∑
k=1

gkφ
s
k (x). (30)

The Nyquist mode kN = Nc is dropped from the sine series,
since the corresponding cosine mode vanishes on the grid
when Ng = Nc.

The expansion coefficients are given explicitly by

fk = 2 − δk,0

π

∫ π

0
f (x)φc

k (x)dx (31)

= 2 − δk,0

Ng

Ng−1∑
i=0

f (xi)φ
c
k (xi), (32)

gk = 2

π

∫ π

0
g(x)φs

k (x)dx (33)

= 2

Ng

Ng−1∑
i=0

g(xi)φ
s
k (xi) (34)

and are computed using the fast discrete cosine transform
(DCT) and discrete sine transform (DST). The same grid is
used for both series, corresponding to type-II DCT/DSTs
for the forward transforms, and type-III DCT/DSTs for
the backward transforms. We implement transforms from
both the SCIPY and FFTW libraries, and rescale the results to
match the above normalizations, i.e., the coefficients directly
represent mode amplitudes.

These transforms are defined to act on real arrays, but
since they preserve the data-type of their inputs, they can be
applied simultaneously to the real and imaginary parts of a
complex array. The spectral coefficients for complex functions
are therefore also complex, with their real and imaginary parts
representing the coefficients of the real and imaginary parts of
the function.

C. Chebyshev basis

For finite nonperiodic dimensions, we implement a
Chebyshev basis consisting of the Chebyshev-T polynomials
on the native interval [−1, 1]:

Tn(x) = cos(n cos−1(x)). (35)

The native Chebyshev grid uses the Gauss-Chebyshev quadra-
ture nodes (also known as the roots or interior grid):

xi = − cos

(
π (i + 1/2)

Ng

)
, i = 0, . . . , Ng − 1. (36)

Near the center of the interval, the grid approaches an even
distribution where
x ≈ π/Ng. Near the ends of the interval,
the grid clusters quadratically and allows very small structures
to be resolved (Fig. 4).

A function is represented as

f (x) =
Nc−1∑
n=0

fnTn(x). (37)

The expansion coefficients are given explicitly by

fn = 2 − δn,0

π

∫ 1

−1

f (x)Tn(x)√
1 − x2

dx (38)

= 2 − δn,0

Ng

Ng−1∑
i=0

f (xi)Tn(xi) (39)

and are computed using the fast discrete cosine transform
(DCT) via the change of variables x = cos(θ). The Cheby-
shev basis uses the sameSCIPY and FFTW DCT functions
as the cosine basis, wrapped to handle the sign difference
in the change-of-variables and preserve the ordering of the
Chebyshev grid points. It also behaves similarly for complex
functions, preserving the data type and producing complex
coefficients for complex functions.

Chebyshev rational functions can also be used to discretize
the half line and the entire real line [12]. These functions are
not implemented explicitly in Dedalus, but can be utilized
with the Chebyshev basis by manually including changes of
variables in the equations.

D. Legendre basis

For finite nonperiodic dimensions, we also implement a
Legendre basis consisting of the Legendre polynomials Pn(x)
on the native interval [−1, 1]. The Legendre polynomials are
orthogonal on this interval as∫ 1

1
Pn(x)Pm(x)dx = δn,mN2

n , (40)

where N2
n = 2/(2n + 1).

The native grid points xi are the Gauss-
Legendre quadrature nodes, calculated using
scipy.special.roots_legendre.

A function is represented as

f (x) =
Nc−1∑
n=0

fnPn(x). (41)

023068-8

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

FIG. 4. Example collocation grids for the implemented bases. The Fourier basis grid is evenly spaced on a periodic interval. The
Chebyshev and Legendre basis grids cluster near the ends of a finite interval. The Hermite basis grid spreads out over the real line. The
Laguerre basis grid spreads one way over the half line. The Compound basis concatenates other bases on adjascent segments; e.g., three
Chebyshev segments.

The expansion coefficients are given by

fn = 1

N2
n

∫ ∞

−∞
f (x)Pn(x)dx (42)

= 1

N2
n

Ng−1∑
i=0

wi f (xi)Pn(xi), (43)

where wi are the Gauss-Legendre quadrature weights, also
computed using scipy.special.roots_legendre. We syn-
thesize the basis functions with the standard recursion re-
lations in extended precision, which prevents underflows
or overflows in problems with large numbers of modes.
Quadrature-based matrix-multiply transforms (MMTs) con-
vert between grid values and coefficients.

E. Hermite basis

For problems on the whole real line (−∞,∞), we imple-
ment a Hermite basis consisting of the physicists’ Hermite
polynomials Hn(x) and the normalized Hermite functions

φH
n (x) = e−x2/2Hn(x)/Nn, (44)

where N2
n = π1/22nn!. The Hermite polynomials are orthogo-

nal under the Gaussian weight as∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx = δn,mN2
n . (45)

The “enveloped” Hermite functions incorporate the weight
and normalizations so that∫ ∞

−∞
φH

n (x)φH
m (x)dx = δn,m. (46)

Since the Hermite functions exist over the entire real
line, the affine map from native to problem coordinates is
fixed by specifying center and stretch parameters, rather
than specifying a problem interval. The native grid points
xi are the Gauss-Hermite quadrature nodes, calculated using
scipy.special.roots_hermite.

Polynomial functions are represented in the standard basis
as

f (x) =
Nc−1∑
n=0

fnHn(x), (47)

while functions that decay towards infinity are represented in
the enveloped basis as

g(x) =
Nc−1∑
n=0

gnφ
H
n (x). (48)

The expansion coefficients are

fn = 1

N2
n

∫ ∞

−∞
f (x)Hn(x)e−x2

dx (49)

= 1

N2
n

Ng−1∑
i=0

wi f (xi)Hn(xi), (50)

gn =
∫ ∞

−∞
g(x)φH

n (x)dx (51)

=
Ng−1∑
i=0

wie
x2

i g(xi)φ
H
n (xi), (52)

where wi are the Gauss-Hermite quadrature weights, also
computed using scipy.special.roots_hermite. We syn-
thesize the basis functions with the standard recursion re-
lations in extended precision, which prevents underflows or
overflows in problems with hundreds of modes. Quadrature-
based matrix-multiply transforms (MMTs) convert between
grid values and coefficients.

F. Laguerre basis

For problems on the half real line (0,∞), we implement a
Laguerre basis consisting of the standard Laguerre polyno-
mials Ln(x) and the normalized Laguerre functions

φL
n (x) = e−x/2Ln(x). (53)

The Laguerre polynomials are orthonormal under the expo-
nential weight: ∫ ∞

0
Ln(x)Lm(x)e−xdx = δn,m. (54)

The enveloped functions incorporate the weight so that∫ ∞

0
φL

n (x)φL
m(x)dx = δn,m. (55)

023068-9

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

Since the Laguerre functions exist over the positive half
line, the affine map from native to problem coordinates is
fixed by specifying edge and stretch parameters, rather
than specifying a problem interval. A negative value of
the stretch parameters can be used to create a basis
spanning the negative half line. The native grid points xi

are the Gauss-Laguerre quadrature nodes, calculated using
scipy.special.roots_laguerre.

Polynomial functions are represented in the standard basis
as

f (x) =
Nc−1∑
n=0

fnLn(x), (56)

while functions that decay towards infinity are represented in
the enveloped basis as

g(x) =
Nc−1∑
n=0

gnφ
L
n (x). (57)

The expansion coefficients are

fn =
∫ ∞

0
f (x)Ln(x)e−xdx (58)

=
Ng−1∑
i=0

wi f (xi)Ln(xi), (59)

gn =
∫ ∞

0
g(x)φL

n (x)dx (60)

=
Ng−1∑
i=0

wie
xi g(xi)φ

L
n (xi), (61)

where wi are the Gauss-Laguerre quadrature weights, also
computed using scipy.special.roots_laguerre. We syn-
thesize the basis functions with the standard recursion re-
lations in extended precision, which prevents underflows or
overflows in problems with hundreds of modes. MMTs con-
vert between grid values and coefficients.

G. Compound bases

An arbitrary number of adjacent polynomial segments
can be connected to form a Compound basis. The spectral
coefficients on each subinterval are concatenated to form
the compound coefficient vector, and the standard transforms
operate on each subinterval. The compound basis grid is sim-
ilarly the concatenation of the subinterval grids. There are no
overlapping gridpoints at the interfaces since the polynomial
bases use interior grids. Continuity is not required a priori at
the interfaces, but is imposed on the solutions when solving
equations (see Sec. IX A).

The subintervals making up a compound basis may have
different resolutions and different lengths, but must be adja-
cent. Compound bases are useful for placing higher resolution
(from clustering near the endpoints of polynomial grids) at
fixed interior locations. Compound expansions can also sub-
stantially reduce the number of modes needed to resolve a
function that is not smooth if the positions where the function
becomes nondifferentiable are known. Figure 4 shows the grid
of a compound basis composed of three Chebyshev segments.

H. Scaled transforms and dealiasing

Each basis implements transforms between Nc coefficients
and scaled grids of size Ng = sNc, where s is the transform
scale . When s < 1, the coefficients are truncated after the first
Ng modes before transforming. Such transforms are useful for
viewing compressed (i.e., filtered) versions of a field in grid
space. When s > 1, the coefficients are padded with Ng − Nc

zeros above the highest modes before transforming. Padding
is useful for spectral interpolation, i.e., to view low resolution
data on a fine grid.

Transforms with s > 1 are necessary to avoid aliasing
errors when calculating nonlinear terms, such as products of
fields, in grid space. For each basis, the dealias scale is set
at instantiation and defines the transform scale that is used
when evaluating mathematical operations on fields. The well-
known “3/2 rule” states that properly dealiasing quadratic
nonlinearities calculated on the grid requires a transform scale
of s � 3/2. In general, an orthogonal polynomial of degree
Ng + n will alias down to degree Ng − n when evaluated on
the collocation grid of size Ng. A nonlinearity of order P
involving expansions up to degree Nc − 1 will have power up
to degree P(Nc − 1). For this maximum degree to not alias
down into degree Nc − 1 of the product, we must have 2Ng >

(P + 1)(Nc − 1). Picking a dealias scale of s = (P + 1)/2
is therefore sufficient to evaluate the nonlinearity without
aliasing errors in the first Nc coefficients. Nonpolynomial
nonlinearities, such as negative powers of fields, cannot be
fully dealiased using this method, but the aliasing error can be
reduced by increasing s.

I. Transform plans

To minimize code duplication and maximize extensibil-
ity, our algorithms require that each transform routine can
be applied along an arbitrary axis of a multidimensional
array. SCIPY transforms include this functionality, and we
built Cython wrappers around the FFTW Guru interface to
achieve the same. The wrappers produce plans for FFTs
along one dimension of an arbitrary dimensional array by
collapsing the axes before and after the transform axis, and
creating an FFTW plan for a two-dimensional loop of rank-1
transforms. For example, to transform along the third axis
of a five-dimensional array of shape (N1, N2, N3, N4, N5), the
array would be viewed as a three-dimensional array of shape
(N1N2, N3, N4N5) and a loop of N1N2 × N4N5 transforms of
size N3 would occur. This approach allows for the unified
planning and evaluation of transforms along any dimension
of an array of arbitrary dimension, reducing the risk of coding
errors that might accompany treating different dimensions of
data as separate cases.

The plans produced by FFTW are cached by the corre-
sponding basis objects and executed using the FFTW new-
array interface. This centralized caching of transform plans
reduces both precomputation time and the memory footprint
necessary to plan FFTW transforms for many data fields. The
FFTW planning rigor, which determines how much precom-
putation should be performed to find the optimal transform
algorithm, is also wrapped through the Dedalus configuration
interface.

023068-10

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

V. DOMAINS

Domain objects represent physical domains, discretized
by the direct product of one-dimensional spectral bases. A
Dedalus simulation will typically contain a single domain
object, which functions as the overall context for fields and
problems in that simulation. A domain is instantiated with a
list of basis objects forming this direct product, the data type
of the variables on the domain [double precision real (64-bit)
or complex (128-bit) floating point numbers], and the process
mesh for distributing the domain when running Dedalus in
parallel.

A. Parallel data distribution

Computations in Dedalus are parallelized by subdividing
and distributing the data of each field over the available
processes in a distributed-memory MPI environment. The
domain class internally constructs a Distributor object
that directs the decomposition and communication necessary
to transform the distributed fields between grid space and
coefficient space. Specifically, a domain can be distributed
over any lower-dimensional array of processes, referred to
as the process mesh. The process mesh must be of lower
dimension than the domain so that at least one dimension is
local at all times. Spectral transforms are performed along
local dimensions and parallel data transpositions change the
data locality to enable transforms across all dimensions.

To coordinate this process, the distributor constructs a
series of Layout objects describing the necessary transform
and distribution states of the data between coefficient space
and grid space. Consider a domain of dimension D and
shape (N1, N2, . . . , ND) distributed over a process mesh of
dimension P < D and shape (M1, M2, . . . , MP).

(1) The first layout is full coefficient space, where the first
P array dimensions are block-distributed over the correspond-
ing mesh axes, and the last D − P dimensions are local. That
is, the ith dimension is split in adjacent blocks of size Bi,i =
ceil(Ni/Mi), and the process with index (m1, m2, . . . , mP) in
the mesh will contain the data block from miBi,i : (mi + 1)Bi,i

in the ith dimension.
(2) The subsequent D − P layouts sequentially transform

each dimension to grid space starting from the last dimension
and moving backwards.

(3) After D − P transforms, the first P dimensions are
distributed and in coefficient space, and the last D − P di-
mensions are local and in grid space. A global data trans-
position makes the Pth dimension local in the next layout.
This transposition occurs along the Pth mesh axis, gathering
the distributed data along the Pth array dimension and redis-
tributing it along the (P + 1)th array dimension. This is an
all-to-all communication within each one-dimensional subset
of processes in the mesh defined by fixed (m1, . . . , mP−1).

(4) The next layout results from transforming the Pth
dimension (now local) to grid space.

(5) The transposition step then repeats to reach the next
layout: all-to-all communication transposes the (P − 1) and
Pth array dimensions over the (P − 1)th mesh axis.

(6) The next layout results from transforming the (P − 1)th
dimension (now local) to grid space.

(7) This process repeats, reaching new layouts by alter-
nately gathering and transforming sequentially lower dimen-
sions until the first dimension becomes local and is trans-
formed to grid space.

The final layout is full grid space. The first dimension is
local, the next P dimensions are distributed in blocks of size
Bn,n−1 = ceil(Nn/Mn−1), and the final D − P − 1 dimensions
are local. Moving from full coefficient space to full grid space
thus requires D local spectral transforms and P distributed ar-
ray transpositions. This sequence defines a total of D + P + 1
data layouts.

Figure 5 shows the data distribution in each layout for
3D data distributed over a process mesh of shape (4, 2).
The layout system provides a simple, well-ordered sequence
of transform/distribution states that can be systematically
constructed for domains and process meshes of any dimension
and shape. Conceptually, the system propagates the first local
dimension down in order for each spectral transform to be
performed locally. Care must be taken to consider edge cases
resulting in empty processes for certain domain and process
shapes. In particular, if (Mi − k)Bi,i > Ni or (Mi − k)Bi+1,i >

Ni+1 for any mesh axis i, then the last k hyperplanes along
the ith axis of the mesh will be empty. For instance, if M1 =
4 and N1 = 9, then the initial block size along the lowest
dimension will be B1,1 = 3, and therefore processes with
m1 = 4 will be empty. These cases are typically avoidable by
choosing a different process mesh shape for a fixed number of
processes.

For simplicity, we discussed fixed-shape global data
throughout the transform process. The implementation also
handles arbitrary transform scales along each dimension,
meaning Ni = Nc,i in coefficient space, and Ni = Ng,i = siNc,i

in grid space. The default process mesh is one-dimensional
and contains all available MPI processes.

B. Transpose routines

Consider the first transposition when moving from co-
efficient space to grid space, i.e., transposing the P and
(P + 1)th array dimensions over the Pth mesh axis. This
transposition does not change the data distribution over the
lower mesh axes; it consists of separate all-to-all calls within
each one-dimensional subset of processes defined by fixed
(m1, . . . , mP−1).

The transposition is planned by first creating separate
subgroup MPI communicators consisting of each group of
Mp processes with the same (m1, . . . , mP−1). Each commu-
nicator plans for the transposition of an array with the global
subgroup shape (B1,1, . . . , BP−1,P−1, NP, NP+1, . . . , ND), i.e.,
the subspace of the global data spanned by its subgroup
processes. This array is viewed as a four-dimensional ar-
ray with the reduced global subgroup shape (B1,1 × · · · ×
BP−1,P−1, NP, NP+1, NP+2 × · · · × ND), constructed by col-
lapsing the pre- and post-transposition dimensions. In this
way, the general case of transposing a D-dimensional array
distributed over a P-dimensional process mesh along an ar-
bitrary mesh axis is reduced to the problem of transposing a
four-dimensional array across its middle two dimensions.

When transposing the distribution along the pth mesh axis
between the pth and (p + 1)th array dimensions, the global

023068-11

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

FIG. 5. The parallel data distribution for 3D data over a process mesh of shape (4, 2). The global data is depicted as being split into the
portions that are local to each process. The dimensions are labeled e.g., kx when the corresponding dimension is in coefficient space, and, e.g.,
x in grid space. The transforms (TF) and transpositions (TP) stepping between layouts are indicated.

subgroup shape is given by (n1, . . . , nd) with

ni =

⎧⎪⎨
⎪⎩

Bi,i, i < p
Ni, i = p, p + 1
Bi,i−1, p + 1 < i � P + 1
Ni, i > P + 1

, (62)

where the first p array dimensions are distributed over the
corresponding mesh axes, the pth and (p + 1)th array dimen-
sions are alternating between being local and distributed over
the pth mesh axis, the following P − p array dimensions have
already undergone a transposition and are distributed over the
corresponding mesh axes less one, and the remaining array
dimensions are local. This global shape is collapsed to the
reduced global subgroup shape (G1, G2, G3, G4) where

G1 =
p−1∏
i=1

ni, G2 = np, G3 = np+1, G4 =
D∏

i=p+2

ni.

(63)

Routines using either MPI or FFTW are available
for performing the reduced data transpositions. The MPI
version begins with the local subgroup data of shape
(G1, Bp,p, Np+1, G4) and splits this data into the blocks of
shape (G1, Bp,p, Bp+1,p, G4) to be distributed to the other
processes. These blocks are then sequentially copied into
a new memory buffer so that the data for each process is
contiguous. A MPI all-to-all call is then used to redistribute
the blocks from being row-local to column-local, in reference
to the second and third axes of the reduced array. Finally,
the blocks are extracted from the MPI buffer to form the
local subgroup data of shape (G1, Np, Bp+1,p, G4) in the sub-
sequent layout. The FFTW version performs a hard (memory-
reordering) local transposition to rearrange the data into shape
(G2, G3, G1, G4), and uses FFTW’s advanced distributed-
transpose interface to build a plan for transposing a matrix
of shape (G2, G3) with an itemsize of G1 × G4 × Q, where Q
is the actual data itemsize.

Figure 6 shows the conceptual domain redistribution strat-
egy for the transposition between layouts 1 and 2 of the
example shown in Fig. 5. Both the MPI and FFTW im-
plementations require reordering the local data in memory
before communicating. However, they provide simple and
robust implementations encompassing the general transposi-
tions required by the layout structure. The MPI implementa-
tion serves as a low-dependency baseline, while the FFTW

routines leverage FFTW’s internal transpose optimization to
improve performance when an MPI-linked FFTW build is
available. The FFTW planning rigor and in-place directives
for the transpositions are wrapped through the Dedalus con-
figuration interface.

These routines can also be used to group transpositions
of multiple arrays simultaneously. Transposing S-many arrays
concatenates their local subgroup data and the reduced global
subgroup shape is expanded to (S × G1, G2, G3, G4). A plan
is constructed and executed for the expanded shape. This con-
catenation allows for the simultaneous transposition of multi-
ple arrays while reducing the latency associated with initiating
the transpositions. The option to group multiple transpositions
in this manner is controlled through the Dedalus configuration
interface.

C. Distributed data interaction

For arbitrary transform scalings in each dimension, the lay-
out objects contain methods providing: the global data shape,
local data shape, block sizes, local data coordinates, and local
data slices for Field objects. These methods provide the user
with the tools necessary to understand the data distribution at
any stage in the transformation process. This is useful for both
analyzing distributed data and initializing distributed fields
using stored global data.

The domain class contains methods for retrieving each
process’s local portion of the N-dimensional coordinate grid
and spectral coefficients. These local arrays are useful for
initializing field values in either grid space or coefficient
space. Code that initializes field data using these local arrays is

FIG. 6. The effective data redistribution that occurs during the
distributed transposition between layouts 1 and 2 of the example
shown in Fig. 5. This transposition is switching the second mesh axis
with M2 = 2 from distributing ky to distributing z.

023068-12

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

robust to changing parallelization scenarios, allowing scripts
to be tested serially on local machines and then executed on
large systems without modification.

VI. FIELDS

Field objects represent scalar-valued fields defined over
a domain. Each field object contains a metadata dictionary
specifying whether that field is constant along any axis, the
scales along each axis, and any other metadata associated
with specific bases (such as ‘parity’ for the sine/cosine
bases or ‘envelope’ for Hermite and Laguerre bases). When
the transform scales are specified or changed, the field ob-
ject internally allocates a buffer large enough to hold the
local data in any layout for the given scales. Each field
also contains a reference to its current layout, and a data
attribute viewing its memory buffer using the local data shape
and type.

A. Data manipulation

The Field class defines a number of methods for trans-
forming individual fields between layouts. The most basic
methods move the field towards grid or coefficient space by
calling the transforms or transpositions to increment or decre-
ment the layout by a single step. Other methods direct the
transformation to a specific layout by taking sequential steps.
These methods allow users to interact with the distributed grid
data and the distributed coefficient data without needing to
know the details of the distributing transform mechanism and
intermediate layouts.

The __getitem__ and __setitem__ methods of the field
class allow retrieving or setting the local field data in any
layout. Shortcuts ‘c’ and ‘g’ allow fast access to the full
coefficient and grid data, respectively. To complete a fully
parallelized distributed transform:

The set_scales method modifies the transform scales:

B. Field systems

The FieldSystem class groups together a set of fields.
The class provides an interface for accessing the coefficients
corresponding to the same transverse mode, or pencil, of a
group of fields. A transverse mode is a specific product of
basis functions for the first D − 1 dimensions of a domain,
indexed by a multi-index of size D − 1. Each transverse mode
has a corresponding 1D pencil of coefficients along the last
axis of a field’s coefficient data. The linear portion of a
PDE that is uncoupled across tranverse dimensions splits into
separate matrix systems for each transverse mode.

A FieldSystem of S fields will build an internal buffer of
size

(B1,1, . . . , BP,P, NP+1, . . . , ND−1, ND × S). (64)

FIG. 7. An operator tree representing the expression
2 ∗ (10 + f) + f ∗ dx(f).

That is, the local coefficient shape with the last axis size mul-
tiplied by the number of fields. The system methods gather
and scatter copy the separate field coefficients into and out
of this buffer. Each size-ND × S system pencil contains the
corresponding field pencils, grouped along the last axis, in a
contiguous block of memory for efficient access.

A CoeffSystem allocates and controls just the unified
buffer rather than also instantiating field objects. Coefficient
systems are used as temporary arrays for all pencils, avoiding
the memory overhead associated with instantiating new field
objects.

VII. OPERATORS

The Operator classes represent mathematical operations
on fields, such as arithmetic, differentiation, integration, and
interpolation. An operator instance represents a specific math-
ematical operation on a field or set of fields. Operators can be
composed to build complex expressions. The operator system
serves two simultaneous purposes: (1) It allows the deferred
and repeated evaluation of arbitrary operations and (2) it can
produce matrix forms of linear operations. Together, these
features allow the implicit and explicit evaluation of arbitrary
expressions, which is the foundation of Dedalus’ ability to
solve general PDEs.

A. Operator classes and evaluation

Operators accept operands (fields or operators) from the
same domain, as well as other arguments such as numerical
constants or strings. Each operator class implements methods
determining the metadata of the output based on the inputs;
e.g., the output parity of a SinCos basis. Operator classes
also have a check_conditions method that checks if the
operation can be executed in a given layout. For example,
spectral differentiation along some dimensions requires that
dimension to be in coefficient space as well as local for deriva-
tives that couple modes. Finally, operators have an operate
method which performs the operation on the local data of the
inputs once they have been placed in a suitable layout.

Operators can be combined to build complex expressions.
An arbitrary expression belongs to the root operator class,
with operands that belong to other operator classes, eventually
with fields or input parameters forming the leaves at the end
of the expression tree (see Fig. 7). The evaluate method

023068-13

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

computes compound operators by recursively evaluating all
operands, setting the operands’ transform scales to the dealias
scales, transforming the operands to the proper layout, and
calling the operate method. Arbitrary expression trees are
evaluated in a depth-first traversal. The evaluate method can
optionally cache its output if it may be called multiple times
before the values of the leaves change. The attempt method
tries to evaluate a field, but will not make any layout changes
while evaluating subtrees. It therefore evaluates an expression
as much as possible given the current layouts of the involved
fields. Finally, operators also implement a number of methods
allowing for algebraic manipulation of expressions, described
in Sec. VII F.

B. Arithmetic operators

The Add, Multiply, and Power classes implement addi-
tion, multiplication, and exponentiation respectively. Differ-
ent subclasses of these operators are invoked depending on
the types of input. A PYTHON metaclass implements this mul-
tiple dispatch system, which examines the arguments before
instantiating an operator of the proper subclass. For example,
the AddFieldField subclass adds two fields by adding the
local data of each field. The operation can be evaluated as
long as both fields are in the same layout. Addition between
fields requires compatible metadata, e.g., the same parity
or envelope, settings. The AddScalarField class likewise
adds a constant to a field. Multiplication and exponentiation
of fields must occur in grid space, but otherwise have similar
implementations.

The overloaded __add__, __mul__, and __pow__ meth-
ods allow for easy arithmetic on fields and operators using
PYTHON infix operators. For example, with a Dedalus field,
f, the expression f + 5 will produce an AddScalarField
instance. We also override the __neg__, __sub__, and
__truediv__ methods for negation, subtraction, and divi-
sion:

C. Unary grid operators

The UnaryGridFunction class implements common non-
linear unary functions: np.absolute, np.sign, np.conj,
np.exp, np.exp2, np.log, np.log2, np.log10, np.sqrt,
np.square, np.sin, np.cos, np.tan, np.arcsin, np.arccos,
np.arctan, np.sinh, np.cosh, np.tanh, np.arcsinh,
np.arccosh, and np.arctanh. The operation proceeds by
applying the function to the local grid space data of the
operand. The overloaded __getattr__ method intercepts
Numpy universal function calls on fields and operators and
instantiates the corresponding UnaryGridFunction. This al-
lows the direct use of Numpy ufuncs to create operators on
fields. For example np.sin(f) on a Dedalus field f will return
UnaryGridFunction(np.sin, f).

D. Linear spectral operators

Linear operators acting on spectral coefficients are derived
from the LinearOperator base class and the Coupled or

Separable base classes if they do or do not couple different
spectral modes, respectively. These operators are instantiated
by specifying the axis along which the operator is to be ap-
plied, which is used to dispatch the instantiation to a subclass
implementing the operator for the corresponding basis. These
operators implement a matrix_form method which produces
the matrix defining the action of the operator on the spectral
basis functions. For a basis φn and an operator A, the matrix
form of A is

Ai j = 〈φi|Aφ j〉. (65)

For separable operators, this matrix is diagonal by definition,
and represented with a one-dimensional array. For coupled
operators, this matrix is returned as a SCIPY sparse matrix.

In general, linear operators require their corresponding axis
to be in coefficient space to be evaluated. Coupled operators
further require that the corresponding axis is local. The local
data of the operand is contracted with the matrix form of
the operator along this axis to produce the local output data.
Operators may override this process by implementing an
explicit_form method if a more efficient or stable algo-
rithm exists for forward-applying the operator. For example,
forward Chebyshev differentiation uses a recursion rather than
a matrix multiplication.

1. Differentiation

Differentiate classes are implemented for each basis.
Differentiation of the Fourier and SinCos bases is a separa-
ble operator and therefore a diagonal matrix. Differentiation
of the polynomial bases is a coupled operator. Differentiation
of the Hermite polynomials and enveloped functions are both
naturally banded and therefore require no conversion into
a different test basis to retain sparsity. Differentiation of
the Chebyshev, Legendre, and Laguerre bases have dense
upper triangular matrices, but these are never used when
solving equations. Instead, we always convert the differen-
tial equations into a test basis with banded differentiation
matrices (see Sec. II B 1). These conversions are applied as
left preconditioners for the equation matrices. Appendix 1
shows the full differentiation and conversion matrices. For
the Chebyshev, Legendre, and Laguerre bases, forward dif-
ferentiation uses O(Nc) recurrence relations rather than dense
matrices. Template matrices are rescaled according to the
affine map between the native and problem coordinates. The
differentiation matrix for the compound basis is the block-
diagonal combination of the subbasis differentiation matrices.

For each basis type, a differentiation subclass is referenced
from the basis-class Differentiate method. These meth-
ods are aliased as, e.g., dx for a basis with name ‘x’ dur-
ing equation parsing. Additionally, a factory function called
differentiate (aliased as d) provides an easy interface
for constructing higher-order and mixed derivatives using the
basis names, by composing the appropriate differentiation
methods:

The differentiation subclasses also examine the
‘constant’ metadata of their operand, and return 0 instead

023068-14

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

of instantiating an operator if the operand is constant along
the direction of differentiation.

2. Integration

Integration is a functional that returns a constant for any
input basis series. Integration operators therefore set the
‘constant’ metadata of their corresponding axes to True.
The operator matrices are nonzero only in the first row (called
the operator vector).

The native integration vectors for each basis are rescaled
by the stretching of the affine map between the native and
problem coordinates. Integration for the compound basis con-
catenates each of the sub-basis integration vectors and places
the result in the rows corresponding to the constant terms in
each sub-basis.

For each basis type, an integration subclass is referenced
from the basis-class Integrate method. Additionally, a fac-
tory function called integrate (aliased as integ) provides
an easy interface for integrating along multiple axes, listed by
name, by composing the appropriate integration methods:

If no bases are listed, the field will be integrated over all of
its bases. If the operand’s metadata indicates that it is constant
along the integration axis, the product of the constant and the
interval length will be returned.

The antidifferentiate method of the Field class im-
plements indefinite integration. This method internally con-
structs and solves a simple linear boundary value problem
and returns a new Field satisfying a user-specified boundary
condition, fixing the constant of integration.

3. Interpolation

Interpolation operators are instantiated with an operand
and the interpolation position in problem coordinates. The
operator matrices are again nonzero except in the first row
(called the operator vector) and depend on the interpolation
position. The specified interpolation positions are converted
to the native basis coordinates via the basis affine map. The
strings ‘left’, ‘center’, and ‘right’ are also acceptable
inputs indicating the left endpoint, center point, and right
endpoint of the problem interval. Specifying positions in this
manner avoids potential floating-point errors when evaluating
the affine map at the endpoints.

The interpolation classes construct interpolation vectors
consisting of the pointwise evaluation of the respective basis
functions. Interpolation for the compound basis takes the in-
terpolation vector of the sub-basis containing the interpolation
position and places the result in the rows corresponding to the
constant terms in each sub-basis. If the interpolation position
is at the interface between two sub-basis, the first sub-basis is
used to break the degeneracy.

For each basis type, an interpolation subclass is referenced
from the Interpolate basis-class method. Additionally, a
factory function called interpolate (aliased as interp)
provides an easy interface for interpolating along multiple
axes, specified using keyword arguments, by composing the

appropriate integration methods:

If the operand’s metadata indicates that it is constant along
the interpolation axis, instantiation will be skipped and the
operand itself will be returned.

4. Hilbert transforms

The Hilbert transform of a function f (x) is the principal-
value convolution with (πx)−1:

H (f)(x) = 1

π
p.v.

∫ ∞

−∞

f (x′)
x − x′ dx′. (66)

The Hilbert transform has a particularly simple action on
sinusoids,

H (exp(ikx))(x) = −isgn(k) exp(ikx). (67)

The actions on cosine/sine functions result from taking
the real/imaginary parts. The Hilbert transform is imple-
mented as a separable operator for the Fourier and SinCos
bases and referenced from the HilbertTransform basis-
class methods. These methods are aliased as e.g., Hx for a
basis with name ‘x’. Additionally, a factory function called
hilberttransform (aliased as H) provides an easy interface
for constructing higher-order and mixed Hilbert transforms
using the basis names, similar to the differentiate factory
function. The Hilbert transform subclasses also examine the
‘constant’ metadata of their operand, and return 0 instead
of instantiating an operator if the operand is constant along
axis to be transformed.

E. User-specified functions

The GeneralFunction class wraps and applies general
PYTHON functions to field data in any specified layout. For
example, a user-defined PYTHON function func(A, B) which
accepts and operates on grid-space data arrays, can be
wrapped into a Dedalus Operator for deferred evaluation
using Dedalus fields fA and fB as

Section XI F gives a detailed example.

F. Manipulating expressions

The operator classes also implement a number of methods
allowing the algebraic manipulation of operator expressions,
i.e., a simple computer-algebra system. Section VIII describes
how this enables the construction of solvers for general partial
differential equations.

These methods include the following:
(1) atoms: recursively constructs the set of leaves of an

expression matching a specified type.
(2) has: recursively determines whether an expression

contains any specified operand or operator type.
(3) expand: recursively distributes multiplication and lin-

ear operators over sums of operands containing any specified

023068-15

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

operand or operator type. It also distributes derivatives of
products containing any specified operand or operator type
using the product rule.

(4) canonical_linear_form: first determines if all the
terms in an expression are linear functions of a specified set of
operands, and raises an error otherwise. In the case of nested
multiplications, it rearranges the terms so that the highest level
multiplication directly contains the operand from the specified
set.

(5) split: additively splits an expression into a set of
terms containing specified operands and operator types, and
a set of terms not containing any of them.

(6) replace: performs a depth-first search of an expres-
sion, replacing any instances of a specified operand or opera-
tor type with a specified replacement.

(7) order: recursively determines the compositional order
of a specified operator type within an expression.

(8) sym_diff: produces a new expression containing the
symbolic derivative with respect to a specified variable. The
derivative is computed recursively via the chain rule.

(9) as_ncc_operator: constructs the NCC
multiplication matrix associated with multiplication by
the expression. It requires that the corresponding domain
only have a single polynomial basis, and that this basis
forms the last axis of the domain. It further requires that the
expression is constant along all other (“transverse”) axes,
so that multiplication by the operand does not couple the
transverse modes. The method first evaluates the expression,
then builds the NCC matrix with the resulting coefficients.
The method allows the NCC expansion to be truncated at
a maximum number of modes (Nm < Nc) and for terms
to be excluded when the coefficient amplitudes are below
some threshold (| fn| < δ) so that the matrix is sparse for
well-resolved functions (see Sec. II B 3).

(10) operator_dict: constructs a dictionary represent-
ing an expression as a set of matrices acting on the specified
pencils of a specified set of variable. This method requires that
the expression be linear in the specified variables and contains
no operators coupling any dimensions besides the last.

The dictionary is constructed recursively, with each cou-
pled linear operator applying its matrix form to its operand
matrices, and each transverse linear operator multiplying its
operand matrices by the proper element of its vector form. Ad-
dition operators sum the matrices produced by their operands.
Multiplication operators build the matrices for the operand
containing the specified variables. They then multiply these
matrices by the NCC matrix form of the other operand.

G. Evaluators

An Evaluator object attempts to simultaneously evaluate
multiple operator expressions, or tasks, as efficiently as pos-
sible, i.e., with the least number of spectral transforms and
distributed transpositions. Tasks are organized into Handler
objects, each with a criterion for when to evaluate the han-
dler. Handlers can be evaluated on a specified cadence in
terms of simulation iterations, simulation time, or real-world
time (wall time) since the start of the simulation. Handlers
from the SystemHandler class organize their outputs into a
FieldSystem, while handlers from the FileHandler class
save their outputs to disk in HDF5 files via the h5py package

(Sec. X). The add_task method adds tasks to a handler and
accepts operator expressions or strings (which are parsed into
operator expressions using a specified namespace).

When triggered, the evaluator examines the attached han-
dlers and builds a list of the tasks from each handler scheduled
for evaluation. The evaluator uses the attempt methods to
evaluate the tasks as far as possible without triggering any
transforms or transpositions. If the tasks have not all com-
pleted, the evaluator merges the remaining atoms from the
remaining tasks, and moves them all to full coefficient space,
and reattempts evaluation. If the tasks are still incomplete,
the evaluator again merges the remaining atoms from the
remaining tasks, moves them forward one layout, and reat-
tempts evaluation. This process repeats, with the evaluator
simultaneously stepping the remaining atoms back and forth
through all the layouts until all of the tasks have been fully
evaluated. Finally, the process method on each of the sched-
uled handlers is executed.

This process is more efficient than sequentially evaluating
each expression. By attempting all tasks before changing
layouts, it makes sure that no transforms or transpositions
are triggered when any operators are able to be evaluated.
Additionally, it groups together all the fields that need to
be moved between layouts so that grouped transforms and
transpositions can be performed to minimize overhead and
latency.

VIII. PROBLEMS

Problem classes construct and represent systems of PDEs.
Separate classes manage linear boundary value problems
(LBVP), nonlinear boundary value problems (NLBVP), eigen-
value problems (EVP), and initial value problems (IVP). After
creating a problem, the equations and boundary conditions are
entered in plain text, with linear terms on the left-hand side
(LHS) and nonlinear terms on the right-hand side (RHS). The
LHS is parsed into a sparse matrix formulation, while the RHS
is parsed into an operator tree to be evaluated explicitly.

A. Problem creation

Each problem class is instantiated with a domain and a
list of variable names. Domains may have a maximum of
one polynomial basis, which must correspond to the last axis.
The linear portion of the equations must be no higher than
first order in time and coupled derivatives. Auxiliary variables
must be added to render the system first order. Optionally,
an amplitude threshold and a cutoff mode number can be
specified for truncating the spectral expansion of nonconstant
coefficients on the LHS. For eigenvalue problems, the eigen-
value name must also be specified; it cannot be ‘lambda’ since
this is a PYTHON reserved word. For initial value problems,
the temporal variable name can optionally be specified, but
defaults to ‘t’.

For example, to create an initial value problem for an
equation involving the variables u and v, we would write

023068-16

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

B. Variable metadata

Metadata for the problem variables is specified by indexing
the problem.meta attribute by variable name, axis, and then
property.

The most common metadata to set is the ‘constant’ flag
for any dimension, the ‘parity’ of all variables for each
SinCos basis, the ‘envelope’ flag for the Hermite and
Laguerre bases, and the ‘dirichlet’ flag for recombining
the Chebyshev, Legendre, and Laguerre bases (enabled by
default). Default metadata values are specified in the basis
definitions.

For example, we can set the parity of variables in our
problem along the x axis with

C. Parameters and nonconstant coefficients

Before adding the equations, any parameters (fields or
scalars used in the equations besides the problem vari-
ables) must be added to the parsing namespace through the
problem.parameters dictionary. Scalar parameters are en-
tered by value. Nonconstant coefficients (NCCs) are entered
as fields with the desired data. NCCs on the LHS can only
couple polynomial dimensions; an error will be raised if the
‘constant’ metadata is not set to True for all separable axes.

For example, we would enter scalar and NCC parameters
for a 3D problem on a double-Fourier (x, y) and Chebyshev
(z) domain as

D. Substitutions

One of the most powerful features of Dedalus is the ability
to define substitutions which act as string-replacement rules to
be applied during the equation parsing process. Substitutions
can be used to provide short aliases to quantities computed
from the problem variables and to define functions similar
to PYTHON lambda functions, but with normal mathematical-
function syntax.

For example, several substitutions that might be useful in a
hydrodynamical simulation are

Substitutions of the first type are created by parsing their
definitions in the problem namespace, and aliasing the result
to the substitution name. Substitutions of the second type
are turned into PYTHON lambda functions producing their
specified form in the problem namespace. Substitutions are
composable and form a powerful tool for simplifying the entry
of complex equation sets.

E. Equation parsing

Equations and boundary conditions are entered in plain
text using the add_equation and add_bc methods. Option-
ally, these methods accept a condition keyword, which
is a string specifying which transverse modes that equation
applies to. This is necessary to close certain equation sets
where, for example, the equations become degenerate for the
transverse-mean mode and/or certain variables require gauge
conditions.

First, the string-form equations are split into LHS and
RHS strings which are evaluated over the problem namespace
to build LHS and RHS operator expressions. The problem
namespace consists of the following:

(1) The variables, parameters, and substitutions defined in
the problem.

(2) The axis names representing the individual basis grids.
(3) The derivative, integration, and interpolation operators

for each basis.
(4) Time and temporal derivatives for the IVP (defaulting

to ‘t’ and ‘dt’).
(5) The eigenvalue name for the EVP.
(6) The universal functions wrapped through the

UnaryGridFunction class.
A number of conditions confirming the validity of the

LHS and RHS expressions are then checked. For all problem
types, the LHS expression and RHS must have compatible
metadata (e.g., parities). The LHS expression must be nonzero
and linear in the problem variables. The LHS must also be
first order in coupled derivatives. The expressions entered as
boundary conditions must be constant along the last axis.

For the individual problem classes, the following addi-
tional restrictions and manipulations are applied to the LHS
and RHS expressions.

1. Linear boundary value problems

The linear boundary value problem additionally requires
that the RHS is independent of the problem variables. This
allows for linear problems with inhomogeneous terms on the
RHS. Since the LHS terms are linear in the problem variables,
this symbolically corresponds to systems of equations of the
form

L · X = F , (68)

where X is the state vector of variable fields, and L is a
matrix of operators. The LHS expressions are expanded and
transformed into canonical linear form before being stored by
the problem instance.

023068-17

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

2. Nonlinear boundary value problems

Nonlinear boundary value problems are systems of the
form

L · X = F (X) (69)

The RHS can be any nonlinear function of the problem
variables. In addition to the L · X and F expressions, the
problem constructs the Frechet differential of the RHS with
respect to the problem variables:

FX ·
X = ∂εF (X + ε
X)|ε=0. (70)

This linear operator indicates the sensitivity, or directional
functional derivative, of F with respect to changes in X along

X . It is constructed symbolically using the operator methods
described in Sec. VII F roughly as

In general, the Frechet derivative of an expression will
contain nonconstant coefficients involving the problem vari-
ables X , which would generally couple horizontal modes.
Therefore, Dedalus only supports 1D NLBVPs. The LHS and
Frechet differential expressions are expanded and transformed
into canonical linear form before being stored by the problem
instance.

3. Eigenvalue problems

The eigenvalue problem requires that the RHS is zero,
and that the LHS terms must be linear in or independent of
the eigenvalue, which we refer to as σ . This corresponds to
systems of equations of the form

σM · X + L · X = 0, (71)

which are generalized linear eigenvalue problems. The M · X
and L · X expressions are extracted by splitting the LHS
expression on the presence of the eigenvalue variable, before
replacing it with 1. These expressions are expanded and
transformed into canonical linear form before being stored by
the problem instance.

4. Initial value problems

The initial value problem requires that the LHS coefficients
are time independent, the LHS is first order in time derivatives,
and the RHS has no time derivatives. This corresponds to
systems of the form

M · ∂tX + L · X = F (X , t). (72)

The M · X and L · X expressions are extracted by splitting
the LHS expression on the presence of the time derivative
dummy operator, before replacing it with the identity operator.
These expressions are expanded and transformed into canoni-
cal linear form before being stored by the problem instance.

IX. SOLVERS

Each problem type has a corresponding solver type which
builds the spectral matrices for the problem equations, imple-
ments methods for computing the solution to the equations,
and stores the solution state as a FieldSystem.

A. Matrix construction

The problem classes begin by building the operator ma-
trices for the LHS expression groups (M · X , L · X , and/or
FX ·
X). The matrices are constructed by first taking the set
of equations and boundary conditions that apply to each pencil
and calling the operator_dictmethod on each expression to
build the matrices acting on the corresponding coefficients of
the problem variables. For each pencil’s matrix to be solvable,
the number of applicable equations must equal the number of
variables in the problem, S. For a given pencil, we refer to
the operator matrix from the ith equation acting on the jth
variable as, e.g., Li, j . Each of these matrices is processed as
follows:

(1) If the ith equation is constant along the coupled direc-
tion, then all rows except the first of each Li, j are dropped.

(2) If the ith equation contains a coupled derivative on the
LHS, each Li, j is left-multiplied by the basis preconditioner
matrix, which renders the derivative matrix banded (e.g., the
T-to-U conversion for Chebyshev bases; see Sec. II B 1).

(3) By default, if the ith equation contains a coupled
derivative on the LHS, the last row of each Li, j is dropped and
replaced with one of the boundary conditions. The keyword
option tau in the problem.add_equation method overrides
this default behavior and explicitly forces or prevents the
solver from replacing the last row in that equation. This
implements boundary conditions using the tau method (see
Sec. II A 2). For the system to be solvable, it typically requires
the same number of boundary conditions as coupled differen-
tial equations. The tau keyword allows for nonstandard cases,
such as problems with singular end points.

(4) If the last basis is compound, the rows corresponding
to the final coefficient of each sub-basis, except for the last,
are dropped and replaced with internal boundary conditions
matching the sub-basis values at each internal interface for
each variable. This enforces continuity of all variables across
the subsegments.

(5) If the jth variable has been marked as constant along
the coupled direction, then all columns except the first of each
Li, j are dropped.

(6) If the jth variable has been marked for Dirichlet
preconditioning (enabled by default), then each Li, j is right-
multiplied by the Dirichlet conversion matrix. This has the
effect of rearranging the columns so that the matrix acts on the
coefficients of the Dirichlet expansion of the corresponding
variable, rendering all Dirichlet boundary conditions banded
(see Sec. II B 2).

Finally, the processed operator matrices are joined to pro-
duce the full preconditioned pencil matrix L̃. The matrices are
interleaved so that the columns and rows are grouped by mode
rather than by field (see Sec. II B 4). The bandwidth of the
pencil matrix then becomes S times the maximum bandwidth
of any of the individual subblocks, which is roughly set

023068-18

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

by the bandwidth of the nonconstant coefficient expansions.
Interleaved-block matrices PL

p and PR combining all the left
and right preconditioners, projections, and reorderings are
created and stored, since they will need to be applied to
the RHS and solution vectors, respectively, when solving the
matrix system.

The pencil matrices are stored as SCIPY sparse matrices.
The matrices produced for each of the LHS expression groups
(M · X , L · X , and/or FX ·
X) are expanded to occupy
the union of their sparsity patterns so that they can be added
efficiently.

B. Linear boundary value solver

The linear boundary value solver is instantiated from a
linear boundary value problem. It first constructs the matrices
L̃p = PL

p LpPR for each local pencil p from the stored LHS
expression group L · X . Here PL

p and PR explicitly indicate
that the expression matrices have been preconditioned from
the left and the right, and the p subscripts indicate that the left
preconditioner and expression matrices vary by pencil. The
solver then constructs a system handler for evaluating the RHS
equation and boundary condition expressions (F).

The solver class contains a solve method, which first
evaluates the RHS handler for F . At this point, the linear
boundary value problem is fully discretized, and conceptually
consists of solving an independent matrix problem for each
pencil given by

LpXp = Fp. (73)

The equivalent preconditioned system is given by

PL
p LpPR︸ ︷︷ ︸

L̃p

(PR)−1Xp︸ ︷︷ ︸
X̃p

= PL
p Fp︸︷︷︸
F̃p

. (74)

For each pencil, this system is solved in the following man-
ner:

(1) The RHS vector Fp is constructed by taking the pencil
data from the RHS handler.

(2) The pencil’s left preconditioner is applied to FP to
produce F̃p.

(3) Since L̃p is sparse and banded, it can be efficiently
solved against F̃p to produce X̃p.

(4) The state-vector pencil is recovered from X̃p by reap-
plying the right preconditioner as

PRX̃p = PR(PR)−1Xp = Xp (75)

and the result is assigned to the state-vector FieldSystem.
After the RHS is evaluated, this process is trivially paral-

lelized over pencils, with each process performing a series of
local sparse matrix solves for its local pencils. The sparsity
and bandedness of the matrix L̃p makes the linear solve an
efficient process, executing in O(Nc

D) time. Finally, although
(PR)−1 is a dense matrix, it never needs to be constructed,
as reapplying the sparse PR matrix to the output of the linear
solve reverses the implicit preconditioning of the unknowns.

C. Nonlinear boundary value solver

The nonlinear boundary value solver is instantiated from
the nonlinear boundary value problem. It constructs the ma-
trices L̃p for each pencil and handlers for evaluating the
expressions F and L · X .

The solver class contains a newton_iteration method,
which performs a single iteration of Newton’s method to move
the state vector towards the nonlinear solution. Conceptually,
the Newton step iteratively approaches the solution of the
nonlinear problem

LpXp = F (X)p (76)

by solving for the update δX n to the state vector that will cause
the future state vector X n+1 = X n + δX n to solve the NLBVP
when linearized around the current iteration X n:

LpX n+1
p = F (X n+1)p, (77)

Lp
(
X n

p + δX n
p

) = F (X n + δX n)p (78)

≈ F (X)p + FX δXp (79)

⇒ (Lp − FX)︸ ︷︷ ︸
Ap

δXp ≈ F (X)p − LpXp︸ ︷︷ ︸
Bp

. (80)

The Newton iteration begins by evaluating the RHS handlers
for F and L · X and building the matrices F̃p, which discretize
the Frechet derivative of F using the current state vector. For
each pencil, the update is then determined in the following
manner:

(1) The RHS vector Bp is constructed by combining the
pencil data from the RHS handlers.

(2) The left preconditioner is applied to produce B̃p.
(3) The LHS matrices are combined to produce Ãp, which

is solved against B̃p to produce δX̃p.
(4) The right preconditioner is applied to recover δXp.
(5) The state vector is updated as Xp → Xp + δXp.
We note that the sparse matrix being solved changes at each

iteration, since it depends on the evaluation of the Frechet
derivative at the current state vector. The magnitude of the
perturbations can be monitored to determine when the solver
has converged. Convergence can depend sensitively on the
initial values of the state vector, but the iterations converge
rapidly (quadratically) for sufficiently good starting positions.
The initial conditions are set by modifying the fields in the
solver.stateFieldSystem.

D. Eigenvalue solver

The eigenvalue solver is instantiated from the eigenvalue
problem. It constructs the M̃p and L̃p matrices and solves the
eigenvalue problem for a single pencil at a time, storing the
resulting eigenvalues and eigenvectors. The class contains a
set_state method which will set the solver’s state vector to
the specified eigenmode for visualization or further computa-
tion.

The solver class contains two methods for solving the
generalized eigenvalue problem for a specified pencil, which
conceptually takes the form

σMpXp + LpXp = 0. (81)

023068-19

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

1. Dense solver

The first is the solve_dense method, which converts the
LHS matrices to dense arrays and uses the scipy.linalg.eig
routine to directly solve the full generalized eigenvalue prob-
lem. This has the advantage of solving for all of the SNc

D
eigenmodes of the discretized system. However, the compu-
tational cost scales as O((SNc

D)3), which becomes prohibitive
at large resolutions.

2. Sparse solver

The second is the solve_sparse method, which solves for
a subset of the eigenmodes near a specified target eigenvalue
σT . The generalized problem for the preconditioned matrices
is first rearranged as a regular eigenvalue problem using a shift
and inversion:

(L̃p + σT M̃p)−1M̃p︸ ︷︷ ︸
Ãp

X̃p = − 1

(σ − σT)
X̃p = λpX̃p. (82)

A SCIPY sparse linear operator is constructed to repre-
sent the left-side operator Ãp. This is applied to a vector
by first applying M̃p, and then solving the result against
(L̃p + σT M̃p). This generalized linear operator is then passed
to the scipy.sparse.linalg.eig routine, which uses the
implicitly restarted Arnoldi method in ARPACK to iteratively
compute a specified number of eigenmodes with the largest
magnitude λ. The right preconditioner is applied to the result-
ing eigenmodes to recover Xp, and the computed values of λ

are inverted and shifted to recover the corresponding σ .
This shift-and-invert formulation allows using sparse regu-

lar eigenvalue solvers for the generalized eigenvalue problem,
with the requirement that (L̃p + σT M̃p) is full rank.

E. Initial value solver

The initial value solver is instantiated from the initial value
problem with one of the time-stepping classes as an argument,
defining the integrator to be used to step the problem forward
in time. The solver constructs the M̃p and L̃p matrices for each
pencil and a handler for evaluating the RHS expressions F .

Conceptually, the discretized problem takes the form

Mp∂t Xp + LpXp = F (X, t)p (83)

where the systems for different pencils are only coupled
through the RHS terms. In general, Mp may not be a full-
rank matrix, due to the presence of constraint equations and
boundary conditions. This system is integrated using mixed
implicit-explicit schemes, where the LHS terms are integrated
implicitly, and the RHS terms are integrated explicitly. The
time-stepping loop is written by the user, allowing for detailed
control of and interaction with the model as time-stepping
progresses.

1. Initial conditions

The solver’s initial state must be set before beginning a
simulation. The solver state is stored in the solver.state
field system, and initial conditions are set by directly modify-
ing the variables in this system before beginning integration,

e.g.,

When possible, it is best to begin a simulation with con-
sistent initial conditions that satisfy the constraint equations
and boundary conditions; see Sec. XI E. Initial conditions that
are inconsistent may introduce persistent errors or stability
problems with some time-stepping schemes.

Initial conditions can also be loaded from the analysis files
produced by Dedalus (Sec. X) via the solver.load_state
method. This is particularly useful for restarting simulations
from a checkpoint saved by a previous simulation.

2. Time evolution

The step method of the initial value solver advances the
state by one time step, producing X n+1 from X n, where the
superscripts denote the temporal iteration of the state vector.
The method accepts the time step dt as an argument. The
method then gathers the state system, calls the specified
integration routine to update the system, and scatters the
updated state system back to the field objects. In general,
the integration step will evaluate the RHS handler to perform
the temporal integration and will simultaneously evaluate any
other scheduled handlers (e.g., analysis tasks) attached to the
evaluator.

3. Time step determination

The implemented time-stepping schemes accommodate
changing the time step between iterations during a sim-
ulation. While the user can implement any desired al-
gorithm for determining the time step, the CFL class in
the dedalus.extras.flow_tools module can help deter-
mine what time step might adequately resolve physical
timescales in the evolving solution. The add_frequencies
and add_velocities methods allow users to enter expres-
sions corresponding to state-dependent frequencies and veloc-
ities of processes in their simulation, using the same string-
based parsing system that is used to enter equations. CFL
frequencies are derived from the entered velocities by dividing
their values by the grid spacing. Internally, the CFL class
builds an auxiliary handler to evaluate these frequencies at a
specified cadence, and as the simulation runs the suggested
time step is determined via the compute_dt method as fol-
lows:

(1) At each point on the grid, all of the specified frequen-
cies are added.

(2) The maximum total frequency from the entire grid is
taken and inverted to determine the CFL time step.

(3) This time step is then multiplied by a safety factor
(typically 0.1–0.5), specified at the CFL instantiation with the
compute_dtsafety keyword.

(4) The resulting time step is then bounded to lie with
absolute levels set by the min_dt and max_dt keywords, and
a within relative factors of the previous time step set by the
min_change and max_change keywords.

023068-20

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

(5) If the fractional change from the previous time step to
the newly determined time step is smaller than the threshold
parameter, the previous time step is returned. Otherwise, the
newly determined time step is returned.

The absolute limits can be useful to prevent the time step
from vastly overstepping relevant dynamics or grinding to a
halt due to a spurious feature of the solution. The relative
limits help prevent ill-conditioning that may occur for some
schemes when the time step varies too suddenly. The thresh-
olding option allows the time step to be frequently reevaluated
but avoids modifying it by inconsequential amounts. This can
have significant performance advantages since factorizations
of the IVP matrices are stored and reused when the time step
remains the same between iterations.

4. Termination

To help determine when a simulations should terminate,
the initial value solver implements the proceed property,
which determines whether any of the following three criteria
apply:

(1) The simulation time has exceeded the value assigned
to the solver.stop_sim_time attribute.

(2) The wall time (in seconds) since the solver was
instantiated has exceeded the value assigned to the
solver.stop_wall_time attribute.

(3) The iteration count has exceeded the value assigned to
the solver.stop_iteration attribute.

The wall-time stop is particularly useful for stopping simu-
lations before hard time-limits on cluster job submissions have
been reached, allowing for clean termination and potential
post-processing of the data before a job is terminated by the
system.

A simple time-stepping loop in an IVP can take the form

This will continue time stepping until any of the specified
stopping criteria have been reached, adjusting the time step
along the way via the CFL handler.

F. Time steppers

Rather than implementing a single specific time-stepping
scheme, Dedalus implements general algorithms for applying
mixed implicit-explicit (IMEX) multistep and Runge-Kutta
integrators along with a range of specific integrators of each
type. These IMEX schemes implicitly integrate the LHS
terms and explicitly integrate the RHS terms. This provides
temporal stability for linearly stiff equations without requiring
iterative algorithms for integrating the nonlinear terms.

1. Multistep IMEX integrators

A general multistep IMEX scheme with s steps temporally
discretizes preconditioned systems of the form of Eq. (83) into
the general form

s∑
j=0

a jM̃pX̃ n− j
p +

s∑
j=0

b jL̃pX̃ n− j
p =

s∑
j=1

c jF̃
n− j
p , (84)

where in general the coefficients a j , b j , and c j depend on
the time steps separating the steps, dtn−1 = t n − t n−1. This
expansion is rearranged to solve for the new state X n

p as

(a0M̃p + b0L̃p)︸ ︷︷ ︸
Ãn

p

X̃ n
p =

s∑
j=1

c jF̃
n− j
p − a jM̃pX̃ n− j

p − b jL̃pX̃ n− j
p︸ ︷︷ ︸

B̃n
p

.

(85)
The MultistepIMEX class implements this structure using

double-ended queues to store CoeffSystems containing M̃X̃ ,
L̃X̃ , F̃ , and dt for the s most recent steps. The class imple-
ments a step method, called with the latest time step dtn−1,
which produces X n as follows:

(1) The time-step queue is rotated with the newest value
replacing the oldest and the scheme coefficients aj , b j , c j are
evaluated using the time-step history.

(2) M̃X̃ n−1 and L̃X̃ n−1 are evaluated for all local pencils
without building the dense inverse of the right preconditioner
as, e.g.,

L̃pX̃p = PL
p LpPR(PR)−1Xp = PL

p LpXp. (86)

(3) The RHS handler is evaluated and the data for each
pencil is left preconditioned and stored in the F̃ n−1 coefficient
system.

(4) For each pencil, Ãn
p is solved against B̃n

p to produce
X̃ n

p . A matrix solver which stores and reuses factorizations of
each Ãn

p can reduce the solve time if the coefficients a0 and b0

remain unchanged from the previous iteration.
(5) Applying the right preconditioner recovers the state

vector X n
p .

Specific multistep schemes are implemented as subclasses
of the MultistepIMEX and define the scheme coefficients aj ,
b j , and c j via the compute_coefficients method. Dedalus
currently implements a number of Crank-Nicolson leap-frog,
Crank-Nicolson Adams-Bashforth, and semi-implicit BDF
methods from Wang and Ruuth [98], ranging from first to
fourth order schemes. The multistep methods only require a
single evaluation of the RHS per iteration. However, since
they depend on previous iterations, they cannot run full-order
when beginning a simulation. Instead, each scheme falls back
on lower-order schemes for the first s iterations of a simula-
tion. Multistep schemes may also become ill-conditioned if
the time step is varied abruptly.

2. Runge-Kutta IMEX integrators

A general Runge-Kutta IMEX scheme temporally dis-
cretizes preconditioned systems of the form of Eq. (83) by
constructing stages indexed by i = 1, . . . , s as

M̃pX̃ n,i
p − M̃pX̃ n,0

p + dt
i∑

j=0

Hi, j L̃pX̃ n, j
p = dt

i−1∑
j=0

Ai, j F̃
n, j
p ,

(87)
where F̃ n, j is evaluated at time t n, j = t n,0 + dtc j , X n,0 = X n,
and t n,0 = t n. The H , A, and c tableaus define a specific
scheme. This expansion is rearranged to sequentially solve for

023068-21

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

the stages as

(M̃p + dtHi,iL̃p)︸ ︷︷ ︸
Ãi

p

X̃ n,i
p

= M̃pX̃ n,0
p + dt

i−1∑
j=0

Ai, j F̃
n, j
p − dt

i−1∑
j=0

Hi, j L̃pX̃ n, j
p︸ ︷︷ ︸

B̃i
p

. (88)

We implement “globally stiffly accurate” methods where the
final stage is the advanced solution, i.e., X n+1 = X n,s and
t n+1 = t n,s = t n + dt . These schemes do not require M̃p to be
full rank, which it generally is not for Dedalus problems with
algebraic constraints and/or boundary conditions.

The RungeKuttaIMEX class implements this structure us-
ing CoeffSystems to store M̃X̃ n,0 as well as L̃X̃ n,i and F̃ n,i

for all of the stages. The class implements a step method,
called with the time step dt , which produces X n+1 as follows:

(1) M̃pX̃ n,0 is evaluated for all local pencils.
(2) Then for each stage i = 1, . . . , s:

(a) the RHS handler is evaluated and the data for each
pencil is left preconditioned and stored in the F̃ n,i−1 coef-
ficient system. For each pencil, L̃pX̃ n,i−1 is also evaluated.

(b) For each pencil, Ãi
p is solved against B̃i

p to produce
X̃ n,i

p . A matrix solver which stores and reuses the factor-
izations of each Ãi

p can be used to reduce the solve time if
the time step dt has remained unchanged from the previous
iteration.

(c) The right preconditioner is applied to recover X n,i
p ,

which is assigned to the state-vector. The solver simulation
time is set to t n,0 + dtci.
Specific multistep schemes are implemented as subclasses

of the RungeKuttaIMEX base class and define the H , A,
and c tableaus. Dedalus currently implements a number of
first, second, and third-order methods from Ascher et al.
[99] and Sprague et al. [100]. A particular advantage of the
Runge-Kutta methods is that they do not depend on any
previous iterations of the state variables, so they can take
full-order time steps at the beginning of a simulation and
trivially accommodate adaptive time stepping. The cost is that
the higher-order schemes perform multiple evaluations of the
RHS per iteration, but they tend to run stably with larger CFL
safety factors than the multistep schemes.

The ease of switching integrators allows users to easily
test a variety of schemes to find the best option for their
particular problem. In addition, the multistep and Runge-
Kutta base classes make it straightforward to implement new
time-stepping schemes.

G. Matrix solvers

Dedalus implements a generic interface for matrix solvers
in the dedalus.libraries.matsolvers module which sim-
plifies the implementation and comparison of different rou-
tines. The primary routines are direct sparse matrix solvers
from the SUPERLU and UMFPACK libraries, wrapped through
scipy.sparse package. For each library, we implement
fast single-solve routines as well as routines that store and

apply the factorized form of a matrix. These routines enable
fast solves against multiple right-hand sides at the expense
of initially computing the factorization. This is particularly
useful for initial value problems where the time step is fixed
or varying slowly.

Additional routines implement a variety of algorithms
specialized to banded matrices and block-diagonal matrices,
which result from full-Fourier problems and can be efficiently
inverted. The solver interface is designed to be easily exten-
sible, allowing users to simply wrap and test new routines for
specific problems.

The matrix solver routine can be specified when instanti-
ating a Solver object, and the default can be set using the
Dedalus configuration interface.

X. ANALYSIS AND POST-PROCESSING

The Dedalus handler system enables saving arbitrary anal-
ysis tasks while an initial value problem is running. This
system utilizes the same symbolic parsing system as is used
to specify equations and efficiently evaluates the analysis
tasks alongside the RHS terms on a specified cadence. Post-
processing tools simplify merging and interacting with the
resulting analysis files.

A. File handlers

After building a initial value solver, instances of the
FileHandler class can be attached to the solver’s evaluator
object to coordinate the periodic output of some simulation
data to HDF5 files using the h5py library. Each file handler is
instantiated with an output directory path and the cadence at
which handler’s tasks will be evaluated. This cadence can be
in terms of any combination of simulation time (specified with
sim_dt), wall time (specified with wall_dt), and iteration
(specified with iter). Simulation time cadences are often
useful for data analysis; wall time cadences are often useful
for checkpointing, e.g., saving the full state of a simulation
every hour. To limit the file sizes produced by the handler,
the outputs are split up into different sets over time, each
containing some number of writes that can be limited with the
max_writes keyword. For example, to setup a file handler to
be evaluated every few iterations:

Multiple file handlers can compute and save different sets
of tasks at different cadences. For example, you may want to
occasionally save full copies of the state variables for check-
pointing, more frequently save snapshots of some variables for
visualization, and very frequently save scalar quantities such
as the total energy in the simulation.

B. Analysis tasks

Tasks, or expressions to be computed and saved by the file
handler, are added to a given handler using the add_task
method. Tasks are entered in plain text and parsed using the
same namespace that is used for equation entry. For each task
the output layout, scaling factors, and a name can also be
specified. For example, creating a task to evaluate the kinetic

023068-22

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

energy density of a flow might look like:

For checkpointing, you can also simply specify that all of
the state variables should be saved:

C. Post-processing

By default, the output files for each file handler are ar-
ranged hierarchically as follows:

(1) At the top level is output directory that was specified
when the handler was constructed, e.g., ‘./output/’.

(2) Within this directory are subdirectories for each set
of outputs, with the same name plus a set number, e.g.,
‘output_s1/’.

(3) Within each subdirectory are HDF5 files containing
the local data for each process, with the same name plus a
process number, e.g., output_s1_p0.h5.

Often it is preferable to deal with the global dataset when
performing analysis or visualization in post-processing. The
distributed process files can be merged into global files for
each set using the merge_process_files function from
the dedalus.tools.post module. For some analyses, it is
additionally convenient to merge the output sets together
into a single file that is global in space and time, which
can be done with the merge_sets function. However, this
can generate very large files, and is not usually necessary
for analyses that are local in time, e.g., individually plotting
each output of a task. To assist with performing such tasks
in parallel, the visit_writes function will coordinate all
available processes to apply a given function to each output
across all sets from a handler.

Together, the symbolic specification of analysis tasks and
helper functions for merging and interacting with the out-
put files can dramatically simplify user interactions with
simulation products. High-level plotting functions for plot-
ting slices of fields and tasks are implemented in the
dedalus.extras.plot_tools module, and example scripts
utilizing these tools to construct visualizations in parallel are
available. The HDF5 output file format was chosen because it
is widely used in the scientific community, and allows users to
easily examine and visualize simulation outputs using a wide
variety of tools and languages.

XI. BENCHMARKS AND EXAMPLES

We demonstrate the features and performance of the
Dedalus codebase with a variety of examples involving dif-
ferent types of PDEs from a variety of fields. The examples
and some of the unique features that they demonstrate are the
following:

(1) Parallel scaling: strong scaling test of an incompress-
ible hydrodynamics IVP across many nodes.

(2) Kelvin-Helmholtz: accuracy benchmark of compress-
ible hydrodynamics with a finite-volume code.

(3) Nonlinear Schrödinger network: complex-valued PDE
on a network of 1D segments, programatic extension of
Dedalus interface to form spectral element method.

(4) Orszag-Tang vortex: moderate Mach-number vortices
in compressible magnetohydrodynamics, regularized and re-
solved shocks.

(5) Quasigeostrophic flow: asymptotically reduced equa-
tions for rotating incompressible flow, LBVP to balance initial
conditions.

(6) Cylindrical Stokes flow: low Reynolds-number flow in
an annulus using polar coordinates and nonconstant coeffi-
cients.

(7) Atmospheric waves: NLBVP to solve for the structure
of an atmosphere with radiative diffusion, EVP to examine
normal modes.

(8) Diamagnetic levitation: electrodynamics and rigid
body mechanics, immersed boundaries, ODE integration,
nonlocal boundary conditions.

Example scripts for these problems are available online
[101]. The project gallery [102] is updated with user con-
tributed examples on an ongoing basis.

A. Parallel scaling

A parallel scaling suite [103] for Dedalus is publicly avail-
able. Figure 8 shows performance and parallel scaling results
from 32 to 2048 cores for 3D Boussinesq hydrodynamics
and magnetohydrodynamics simulations in Fourier-Fourier-
Chebyshev domains. The tests were run on the Flatiron In-
stitute’s Popeye cluster [104] using 32 Intel Skylake cores per
node.

The code’s speed, as measured in mode-iterations per core-
second, is plotted against the number of cores, as measured
in pencils per core. The plateaus for each resolution indicate
the regions of ideal strong scaling; large 3D problems are
able to scale efficiently to thousands of cores. The roll off at
high core counts indicates the end of efficient strong scaling:
the parallel efficiency of Dedalus typically remains above
50% down to 8 pencils per core. The ratios of the plateau
values for different resolutions indicate that the weak scaling
efficiency is proportional to 1/ log2 N , as expected for FFT-
based computations. Boussinesq hydro with eight variables is
twice as fast as Boussinesq MHD with 16 variables, indicating
that execution timescales linearly with the number of problem
variables.

B. Kelvin-Helmholtz accuracy benchmark

Lecoanet et al. [24] performed an accuracy benchmark
comparing the finite-volume code Athena [105] and Dedalus.
Both codes simulated the Kelvin-Helmholtz instability in
a moderate Mach-number compressible flow. At low-to-
moderate resolution, numerical errors from the finite-volume
method can cause unphysical secondary instabilities to de-
velop within the rolls created by the flow. By directly com-
paring the nonlinear evolution of the flows at late times,
the authors found that the finite-volume method requires a
resolution of 163842 cells to avoid these spurious instabilities
and achieve the same accuracy as Dedalus at a resolution of
20482 modes (Fig. 9).

023068-23

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

FIG. 8. Dedalus performance (mode-iterations per core-second)
vs parallel scaling (pencils per core) from 32 to 2048 cores for
3D Boussinesq (a) hydrodynamics and (b) magnetohydrodynamics.
Colors correspond to different 3D (Fourier-Fourier-Chebyshev) res-
olutions. For each resolution, the open circle indicates the run on
512 cores, with the core count increasing by factors of two to the
right. Efficient strong scaling is seen down to roughly 8 pencils
per core. Weak scaling shows the expected ∝1/ log2 N efficiency
for FFT-based computations. Execution timescales linearly with the
number of problem variables.

This test demonstrates the power of high-order methods
for solving PDEs with smooth solutions. At low-to-moderate
Mach numbers with finite dissipation, the flow solution lacks
strong shocks and its spectral expansion converges rapidly.
Generally, for incompressible and low-Mach-number flows in
simple geometries, the rapid convergence of spectral methods
outweighs their larger per-iteration computation cost, making
them the ideal method for simulating a broad range of astro-
physical and geophysical flows.

C. Nonlinear Schrödinger network

The nonlinear Schrödinger equation (NLS) is classical field
equation describing the dispersive behavior of wave packets in
a weakly nonlinear medium [106]. The focusing NLS is a PDE
for the complex-valued field ψ given by

i
∂ψ

∂t
+ 1

2

∂2ψ

∂x2
= −ψ |ψ |2. (89)

In this example, we simulate the 1D NSE on a quantum graph,
i.e., a network of connected segments with differential equa-
tions (see Berkolaiko and Kuchment [107] and Noja [108]
for applications). This is achieved using a Dedalus domain
with a single Chebyshev segment but separate variables for

Athena
10242

Athena
40962

Athena
163842

Dedalus
20482

Dedalus
40962

t = 2

t = 4

t = 6

t = 8

FIG. 9. Snapshots of a moderate Mach-number Kelvin-
Helmholtz instability test problem simulated at various resolutions
with a finite-volume code (Athena) and Dedalus. The finite-volume
method introduces small errors which trigger unphysical secondary
instabilities in the vortex rolls. These spurious instabilities disappear
as the simulation resolution is increased. Quantitative comparisons
show comparable accuracy between the finite-volume method with
163842 degrees of freedom and Dedalus with 20482 degrees of
freedom. Figure adapted from Lecoanet et al. [24].

the solution on each segment, each governed by the NSE
and coupled through their boundary conditions to mimic
the network. This demonstrates how the parsing system in
Dedalus can be combined with a simple PYTHON workflow
to mimic a spectral element method by “connecting” distinct
domains via boundary conditions.

We begin by loading any user-defined network defined
by the planar positions of Nv-many vertices and a list of
Ne-many directed edges connecting two vertices. We then
build a domain with a single 1D, 64-mode Chebyshev basis,
which serves as the underlying elemental basis for the spectral
element method. We define an IVP by constructing variables
and adding equations for each edge. This is done by looping
over edges to create variable names encoding the edge index
and using PYTHON string substitution to insert these names
into the equations. This programatically adds Ne copies of
the NLS to the problem, one for each edge, with the deriva-
tive operators weighted by the inverse of the corresponding
edge length (Le) to account for the different true lengths
of the graph segments:

i
∂ψe

∂t
+ 1

2L2
e

∂2ψe

∂x2
= −ψe|ψe|2, e = 1, . . . , Ne. (90)

We encode edge-neighbor information using the graph in-
cidence matrix. Continuity of the solution at each vertex is
imposed by iteratively matching the solution at each incident
edge:

ψe(vn) = ψe′ (vn), ∀ e, e′ incident to vertex vn. (91)

Finally, Kirchoff’s law for conservation of flux is imposed
at each vertex by requiring the sum of the gradients of the

023068-24

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

FIG. 10. Evolution of the nonlinear Schrödinger equation on a
network, simulated by coupling the boundaries of different fields on
a 1D Chebyshev segment. A soliton initially isolated to one segment
scatters at the vertices and fills the network over time.

solution on each incident edge, weighted by the edge lengths
and signed by whether the edge is incoming or outgoing to
that vertex (σe = ±1), to be equal to zero:

∑
e∈vn

σe

Le

∂ψe

∂x

∣∣∣∣
vn

= 0. (92)

A bright soliton is placed on a single edge as the initial
condition, and the problem is integrated forward in time using
the SBDF2 time stepper. The soliton translates to the end
of the segment then scatters and disperses into the other
segments and eventually fills the graph. Snapshots of the
evolution are shown in Fig. 10. This example demonstrates
the composability of the Dedalus API and the advantage of
working within a high-level PYTHON environment.

D. Orszag-Tang vortex

Spectral methods can also correctly solve for high-Mach-
number flows which develop shocks, provided that diffusion
is introduced in the simulation to regularize the shocks. The
Orszag-Tang vortex problem [109] is a standard compressible
magnetohydrodynamics (MHD) test problem in astrophysics
(e.g., for the fixed-grid Godunov code ATHENA [110,111], the
finite difference code FLASH [112], smoothed-particle hydro-
dynamic codes [113], moving mesh codes [114], etc.). The
problem can be simulated with shock-capturing algorithms
(e.g., Riemann solvers) or those with numerical diffusivity
which can regularize the shocks (e.g., SPH). Here, we explic-
itly add diffusion of momentum, heat, and magnetic fields to
the model to regularize the shocks.

We note that a diffusive shock creates entropy at a rate
that is independent of (but mediated by) the microphysical

diffusion. For example, in Burger’s equation, ∂t u + u∂xu =
∂x(ν∂xu), the dissipation rate across a shock is

d

dt

∫
u2

2
dx = −

∫
ν|∂xu|2dx ≈ −
u3

12
. (93)

The leading order dissipation is independent of the viscosity,
and the correction is on the order of the inverse Reynolds
number with logarithmic corrections. Numerical simulations
of shocks should therefore give results that are mostly in-
dependent of the viscosity, provided the Reynolds number
is large enough. This principle underlies shock-capturing al-
gorithms, but can also be leveraged in spectral simulations.
Because of the weak dependence on the Reynolds number,
diffusivities much larger than the natural values can be used
to regularize shocks while still respecting important global
balances. As long as the resulting diffusive-shock length scale

� ∼ ν/
u is resolved, a spectral computation will be free of
Gibbs ringing and produce accurate results.

We simulate the Orszag-Tang vortex in a 2D domain
which is periodic in both x and y directions, and comprises
[0, 1]2. A vortex with velocity u = (− sin(2πy), sin(2πx))
is initialized in an ideal gas with constant density and pres-
sure, ρ = 25/(36π) and p = 5/(12π), and ratio of specific
heats γ = 5/3. The initial magnetic field is specified by a
vector potential Az = B0(cos(4πx)/(4π) + cos(2πy)/(2π)),
with B = ∇×A, and B0 = 1/

√
4π . The adiabatic sound speed

γ p/ρ = 1, so the flow is supersonic in parts of the domain,
which leads to the formation of MHD shocks. We solve the
equations

∂t u + ∇T ′ + T0∇ϒ − ν(∇2u + (1/3)∇∇·u)

= −u·∇u − T ′∇ϒ + ν∇ϒ ·S
+(B·∇B − (1/2)∇|B|2)e−ϒ, (94)

∂tϒ + ∇·u = −u·∇ϒ, (95)

∂t T
′ + (γ − 1)T0∇·u − (χ/cv)∇2T ′

= u·∇T ′ − (γ − 1)T ′∇·u + (χ/cv)∇T ′·∇ϒ

+(ν/2cv)(Tr(S2) + Tr(S)2) + (η/cv)|∇×B|2e−ϒ, (96)

∂t Az − η∇2Az = ez·(u×B). (97)

Here, ν, χ , and η are the viscosity, thermal diffusivity, and
magnetic diffusivity, T0 = 1/γ is the background temperature,
T ′ is the temperature perturbation, and ϒ = ln ρ. The heat
capacity at constant volume cv = (γ − 1)−1 = 3/2 normal-
izes the conduction and heating in the energy equation for T ′.
In the nonlinear viscous terms, the symmetric stress tensor
S = ∇u + (∇u)T − (2/3)∇·u I. This is an MHD-analog of
the equations introduced in Lecoanet et al. [23].

We run the simulation at rather high resolution, using 4096
modes in the x and y directions. We use 3/2 dealiasing in
each direction, although this does not eliminate aliasing errors
from converting from ϒ to ρ. We set all the diffusivities equal
to 10−4. For time stepping, we use a third-order, four-stage
DIRK/ERK method (RK443 of Ascher etal. [99]), with an
initial time step size of 2.5 × 10−5. We use adaptive time
stepping based on the CFL condition associated with both

023068-25

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

FIG. 11. Density at t = 0.5 in the Orszag-Tang vortex test. The
sharp density jumps visualize the MHD shocks. The structures
in the upper left and lower right corners are due to shock-shock
interactions, which are correctly treated in Dedalus.

flow and Alfvén speeds (but not the sound speed), with a
safety factor of 0.6. The simulation is run to t = 1.

Figure 11 shows the density at t = 0.5. There are very
sharp density gradients due to the formation of shocks. Even
more impressive, Dedalus is able to correctly follow the inter-
action between multiple shocks, which produces the features
in the upper left and lower right corners of the figure. These
are similar to what is found in high resolution simulations with
shock-capturing codes, e.g., Ref. [111].

To better visualize the shocks, we plot a horizontal profile
of the density at y = 0.3125 in Fig. 12. At this height, there
are shocks at x ≈ 0.3 and ≈0.7. The inset shows the solution
very close to x = 0.7. The shock is well-resolved by 4–5 grid

FIG. 12. A profile of the density at t = 0.5 and y = 0.3125 in the
Orszag-Tang vortex test. The inset shows the density profile around
x = 0.7, with crosses denoting grid points (using the nondealiased
grid). The shock is resolved by several grid points.

points. Note that the density stays smooth despite no diffusion
in the density equation. Rather, it appears that the combination
of viscosity and thermal diffusivity cause the temperature and
pressure to regularize, which in turn regularizes the density
via the ideal gas equation of state, p = ρT .

E. Quasigeostrophic flow

One of the original motivations behind Dedalus was to al-
low the straightforward computation of nonstandard equation
sets. It is a common practice for modelers to start with some-
thing universal, such as Navier-Stokes, or Maxwell equations,
make a series of asymptotic reductions, and arrive at a new set
of equations that can capture an interesting physical regime.
It is often not clear how useful these equations are until they
are simulated. But it is risky to write “off-the-shelf” solvers
for new equations before there is good evidence that they are
useful to at least a few people.

The quasigeostrophic (QG) model is a classic approxima-
tion used in geophysical and astrophysical fluid dynamics. Ini-
tially, the QG model was intended to reduce the overall cost of
simulations. The idea is to filter sub-dominant fast-timescale
waves, while retaining essential nonlinear dynamics. Current
state-of-the art simulations no longer require the QG assump-
tion on the basis of cost. However the equations are still
used widely because of their relative simplicity and explana-
tory power. QG is a nonstandard model that became widely
adopted. Since the advent of QG, other strongly nonlinear
reduced models appear in different fields occasionally, but
computational results can lag by several years. For example, in
stratified fluids [23,115,116], in magnetized fluids [117,118],
in Langmuir turbulence [119,120], in near-inertial wave dy-
namics [121–123], and in rapidly rotating fluids [124–126]
(theory) [100,127,128] (simulation).

The solution of the QG equation has a long history starting
with numerical weather prediction in the 1950s [129,130].
Under certain restrictive assumptions, the QG problem can be
reduced to 2D equations on the surface, e.g., Refs. [131,132],
or three-dimensional equations in a triply periodic domain,
e.g., Refs. [133,134]. However, the most general case requires
a three-dimensional layer with boundaries e.g., Ref. [135], and
nonconstant coefficients. In our current work, we pick QG as
an interesting example problem because it highlights many
features unique to Dedalus. We choose the most difficult and
general case of a finite 3D layer because it illustrates the most
design features within a single model. Like previous work,
it would be straightforward to simplify our example script to
model a triply periodic domain, or a two-dimensional layer, if
one wanted.

The traditional QG equations collapse to a single, second-
order equation for the potential vorticity (PV). This is
equivalent to a first-order formulation with two dynamical
variables and two first-order equations. A first-order formu-
lation does not increase the computational cost because the
second-derivative matrix has double the bandwidth of the first-
derivative matrix. Dedalus can use the traditional PV formula-
tion in terms of the streamfunction and its vertical derivative.
Here, we describe an alternative formulation choosing more
physically meaningful variables, which makes the problem

023068-26

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

more straightforward to pose and generalize; at no additional
cost.

We solve for two variables: w (upwelling) and p (pressure).
All other physical quantities (e.g., buoyancy and velocity) are
diagnostic in terms of w and p. The upwelling field is not
part of the traditional formulation. Although we solve for two
variables instead of a single variable (PV) in the traditional
formulation, using the vertical velocity makes the boundary
conditions much simpler; we do not need to solve a nonlinear
buoyancy advection equation on the boundary.

We use Dedalus substitutions to define several of the
important physical variables in terms of the pressure p,

u = −∂y p, (98)

v = ∂x p, (99)

θ = ∂z p, (100)

ζ = ∂xv − ∂yu = (
∂2

x + ∂2
y

)
p. (101)

Dedalus substitutions can be recursive, e.g., to define ζ . The
substitutions reflect the well-known geostrophic and hydro-
static diagnostic balances inherent in the theory. Pressure
assumes the role of the stream function, ψ . We subsequently
define the advection substitution with an argument,

D(q) ≡ u ∂xq + v ∂yq. (102)

We also use substitutions to prescribe horizontal fourth-order
hyperdiffusion,

L(q) ≡ ∂2
x q + ∂2

y q,
4(q) = L4(q). (103)

The problem parameters are the Coriolis variation β, the
Ekman friction γ , the stratification profile �(z), the thermal-
wind profile U (z), and the hyperdiffusivities ν4 and κ4. We
solve the coupled prognostic equations,

∂tζ + U∂xζ + βv − ∂zw + ν4
4(ζ) = −D(ζ), (104)

∂tθ + U∂xθ − U ′v + �w + κ4
4(θ) = −D(θ). (105)

The traditional formulation solves the entire buoyancy
evolution equation on the boundary. This is a complicated way
to impose no vertical flow. Because the upwelling is part of
our formulation, we impose the boundary condition directly.
More precisely, we impose Ekman flux boundary conditions.

w ∓ γ± ζ = 0 at z = 0, 1. (106)

Ekman pumping conditions result from a closure model of an
asymptotically thin viscous boundary layer [136]. We could
easily include boundary stress or topography on the right-hand
side.

The −U ′ shear term in the bulk equation comes from a
large-scale background thermal-wind profile

∂zU = −∂y�, (107)

where �(y, z) = y S(z) is a linear north-south-varying buoy-
ancy profile. Unstable modes extract energy from this ther-
mal variation. The evolution equations are a coupled pair of
first-order equations in ∂z for p and w. There is only one
independent time derivative as ζ and θ are both related to p,

as is PV

PV = ζ + ∂z(�−1 θ) = (
∂2

x + ∂2
y + ∂z�

−1∂z
)
p (108)

Looking at the diagnostic balances, we can see that

∂zζ − (
∂2

x + ∂2
y

)
θ = 0. (109)

This is the “thermal-wind” balance that follows from geostro-
phy and hydrostatic balance. The vertical velocity field, w,
satisfies its own diagnostic balance at each time step, which
removes nonbalanced forcing terms. The vertical velocity here
is exactly analogous to the pressure field for incompressible
hydrodynamics; it is a Lagrange multiplier enforcing the
consistent evolution of ζ and θ , which are both related to the
pressure.

Balanced initial conditions. We initialize the pressure with
filtered random noise on the grid; vorticity and buoyancy
follow directly. In practice, this is likely to be sufficient to
initialize the simulation. Some time steppers may correct for
unbalanced initial conditions. For completeness, we illustrate
how to solve a linear boundary-value problem (LBVP) for the
upwelling given an initial pressure field.

Knowing p(t = 0, x, y, z), we set up the coupled problem
for w(t = 0, x, y, z):

L(�t)−∂zw=−D(ζ)−U∂xζ −βv−ν4
4(ζ), (110)

∂z�t +�w=−D(θ)−U∂xθ+U ′v−κ4
4(θ), (111)

w = ±γ±ζ at z = 0, 1. (112)

We could collapse these to a single system for w. However, we
can mostly reuse the original system if we introduce a slack
variable, �t . The slack variable takes the place of the time
evolution terms in the full system. Solving this LBVP gives
the vertical velocity at t = 0 and �t = ∂t p|t=0. This general
approach can be used to derive balanced initial conditions
for other equations with time-independent constraints, e.g.,
incompressible hydrodynamics.

The simulation. We nondimensionalize z with the domain
depth, H . We nondimensionalize x, y with the Rossby radius
of deformation at the top of the box, L = N H/ f , where N is
the characteristic background buoyancy frequency at z = H ,
and f is twice the background planetary rotation rate. We
solve for the relative nonlinear fluctuations around a linearly
unstable thermal wind profile; U (z) = z, U ′(z) = 1. We
nondimensionalize time using the background shear rate. Here
we instead use a depth-dependent nondimensional stratifica-
tion parameter, which necessitates a fully three-dimensional
approach.

�(z) = e2z−2 (113)

Dedalus expands this profile in a Chebyshev series up to a
cutoff tolerance of 10−8.

The presence of the shear implies a large-scale background
buoyancy gradient. We include a background planetary vortic-
ity gradient (β effect) with β = 0.1. To saturate the simulation
we use hyper-diffusivities ν4 = κ4 = 10−6, bottom friction
γ− = 0.16, but no top friction. The horizontal domain size is
40 × 20 Rossby radii in the x, y directions respectively. We
use 256 × 128 Fourier modes in the x, y directions, and 32
Chebyshev modes in the z direction, all using 3/2 dealiasing.

023068-27

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

FIG. 13. Surface and lateral slices of the PV (top) and buoyancy
perturbation θ (bottom) in a 3D quasigeostrophic flow. Both images
are at t = 200 in the statistically saturated state.

The Chebyshev tau method balances energy to exponentially
high accuracy; exact energy conservation could be still be
imposed, however, by formulating a self-adjoint system with
an alternative orthogonal polynomial basis [65,137,138].

The whole configuration is baroclinically unstable. The
motion is a kind of side-ways convective heat transport. For
background, we highly recommend the book “Atmospheric
and Oceanic Fluid Dynamics” by Geoffrey K. Vallis [139].
To summarize the phenomenology: “It is the instability that
gives rise to the large- and mesoscale motion in the atmo-
sphere and ocean—it produces atmospheric weather systems,
for example—and so is, perhaps, the form of hydrodynamic
instability that most affects the human condition.”

We compute the nonlinear evolution until the system
reaches a statistically stationary state, which takes roughly
75 dynamical time units. Figure 13 shows the PV and ver-
tical vorticity ζ at t = 200. The solution contains a sea of
compact eddies that form, merge, and breakup over several
dynamical times. For these parameters, the system is mostly
two-dimensional. There are, however, nontrivial variations in
the depth-dependence of PV.

F. Stokes flow

Many important biophysical and industrial fluid prob-
lems occur in a high-drag (or low Reynolds number) limit
(u0�0/ν = Re � 1) where the momentum equation reduces
to Stokes flow. Here, we present and solve a simple test prob-
lem demonstrating boundary-driven Stokes flow in curvilinear
geometry with time-dependent tracer fields.

We simulate the classic “unmixing” demonstration e.g.,
Ref. [140], where a Taylor-Couette device with an inner-
cylinder radius, Rin, turns n times and then reverses back to
the start. For low Re, the flow is reversible, and m-many dye
tracers will appear to mix and then unmix. We nondimen-
sionalize lengths with the gap width, �0 = Rout − Rin, and
velocities with the maximum innercylinder speed, u0. The
Peclet number u0�0/κ = Pe controls the tracer mass diffusion.
Taking Re → 0,

∇2u = ∇p, (114)

∇ · u = 0, (115)

∂t cm + u · ∇cm = ∇2cm

Pe
, m = 1, 2, 3. (116)

The domain is a noslip two-dimensional cylindrical annulus
with radius 1 � r � 2 and angle 0 � θ < 2π . The diffusive
dye flux Fm = −∇cm/Pe = 0 at the boundaries. The flow
vanishes at the outer wall; u(t, Rout, θ) = 0. The tangential
velocity at the inner wall is a time-dependent regularized
square wave

uθ (t, Rin, θ) = arctan(50 sin(t/nrot))

arctan(50)
. (117)

The time-dependent boundary condition uses the
GeneralFunction mechanism described in Sec. VII E.
The initial dye fields are circular Gaussians with widths
δ = 1/4 centered at rdye = 3/2, θm = 2πm/3.

Since the domain is a cylindrical annulus, which excludes
the origin, it can be accurately discretized using a direct prod-
uct of Fourier and Chebyshev bases in θ and r, respectively.
For simulating the full disk, nondirect product bases imposing
certain regularity conditions at the origin are necessary [64]
(these will be implemented in future versions of Dedalus).

In polar coordinates, the differential operators ∇, ∇2 con-
tain nonconstant coefficients proportional to 1/r and 1/r2

multiplying the radial and azimuthal derivatives, which can
simply be added when entering the equations. Naively (for ex-
ample) one might implement the angular part of the Laplacian
as ‘d(u, th = 2)/r2’ where th is the θ spatial variable. How-
ever, the Chebyshev expansion r−2 converges very slowly,
leading to dense nonconstant coefficient matrices. To avoid
this, we multiply all equations by r or r2 (depending on the
order of derivatives). The resulting nonconstant coefficient
matrices only contain bandwidth one or two.

We solve this system with 512 × 512 modes using the
Runga-Kutta 443 time stepper and a fixed dt = 0.005. The
simulation runs approximately four rotations forwards and
backwards; nrot = 8. Figure 14 shows snapshots of the flow at
five times, symmetric about the middle of the simulation. The
dye spreads out into thin sheets as the inner cylinder rotates in
the counter-clockwise direction; the sheets congregate back,
differing from the original Gaussian blobs due to the action of
the dye. The final shapes are not Gaussian. Shear dispersion
leads to thin structure (sharp gradients) in the radial direction,
and hence the diffusion is not isotropic.

This simulation uses high Pe = 107, causing the sheets to
become very thin. The dye-patches area stays constant in the
absence of diffusion. Equating the initial and final area A0 ∼
πδ2/4 ≈ Af ∼ nrot2πrdyeδr, implies the sheet width δr ∼
1/200. For the diffusion time across the sheets to be greater
than the total simulation time, τD � 2nrot � 10, we require
Pe � 10/δr2 ∼ 4 × 105. The example code also works with
Pe = ∞, disabling the ∇2cm/Pe terms and flux boundary
conditions. In this case, the well-resolved sheets return to the
original Gaussian with only slight time-stepping errors.

G. Atmospheric waves

Stratified (nonrotating, neutral) atmospheres support two
classes of linear waves: acoustic waves and gravity waves.
The properties of these waves are easy to compute in constant
coefficient atmospheres (like isothermal atmospheres), but
require numerical solutions when the atmosphere structure
introduces nonconstant coefficients. Solving for the nonlinear

023068-28

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

FIG. 14. Evolution of the tracer fields in a reversible Taylor-Couette Stokes flow. The three separate tracer fields are visualized as red,
green, and blue in a single RGB image. As time progresses, we rotate the inner cylinder first counter clockwise and then clockwise. By the end
of the simulation, the flow has returned to its initial conditions, modified only by mass diffusion of the dye.

atmospheric background structure is challenging. Here we
use a nonlinear boundary value problem (NLBVP) to solve for
an atmosphere profile, and then solve an eigenvalue problem
(EVP) for the wave modes.

We study an optically thin plane-parallel atmosphere
coupled to an underlying, optically thick adiabatic layer.
This models the Sun’s photosphere and lower atmosphere,
or Jupiter’s atmosphere spanning the radiative-convective
boundary and the lower stratosphere. For the background
structure, we solve hydrostatic and thermal equilibrium, in-
cluding radiation transport under the Eddington tensor ap-
proximation, e.g., Refs. [141–144]:

∂Pg

∂z
+ ∂Pr

∂z
= −ρg, (118)

∂Pr

∂z
= −ρκFr

c
, (119)

with Pg the gas pressure, Pr the radiation pressure, ρ the
density, g the constant gravity, κ the opacity, Fr the constant
radiative flux, and c the speed of light. We use an ideal gas
equation of state Pg = ρRT with R the gas constant and T the
temperature, the Eddington tensor closure Pr = f aT 4 with a
the radiation constant and f = 1/3, and a Kramer-like opacity
law for κ:

κ (ρ, T) = κ0

(
ρ

ρ0

)a(T

T0

)b

, (120)

With these substitutions, and nondimensionalizing by ρ0,
T0, and a length scale L, the equations become

1

ρ

∂ρ

∂z
+ 1

T

∂T

∂z
= −g∗

T

[
1 −

(
F

FEdd

)
ρaT b

]
, (121)

1

T

∂T

∂z
= −Qρa+1T b−4, (122)

where g∗ = gL/RT0, FEdd = gc/κ0, and Q = ρ0κ0FrL/

4 f acT 4
0 .

For F � FEdd, the optically thick deep solution will be
nearly polytropic with ρ ∝ T m where m = (3 − b)/(1 + a).
We fix a = 1, b = 0 and take g∗ = m + 1 to define the length-
scale L. Q is taken to be 1 − 1.68 × 10−4, corresponding to
ln(Teff/T0) = −2 in a gray atmosphere. We solve this nonlin-
ear boundary value problem in Dedalus using ln ρ and ln T as
dynamical variables with 128 Legendre modes. A dealiasing
factor of 2 is used, which reduces but cannot eliminate aliasing
errors since exponential nonlinearities (formally including

infinite polynomial orders) are present in the formulation.
Solutions converge to a relative tolerance of 10−8 in O(10)
Newton iterations. When F = 0 there is an analytic solu-
tion due to Brandenburg [145] which our numerical solution
matches to 10 digits in the L2 norm, verifying the correctness
of the implementation. We proceed here with F/FEdd = 10−5,
for which there is no analytic solution.

We plot the temperature, density, and pressure in Fig. 15.
The bottom, optically thick, part of the atmosphere is nearly
polytropic with ρ ∝ T (3/2), as expected for this choice of a
and b [146]. The top, optically thin, part of the atmosphere
is nearly isothermal while the density and pressure drop expo-
nentially. This region has a constant Brunt-Väisälä (buoyancy)
frequency

N2 = −g∂zs/CP. (123)

FIG. 15. (a) Structure of a balanced atmosphere with an Edding-
ton closure for radiation transport and a Kramer-like opacity law
with a = 1, b = 0. At depth, the atmosphere is nearly an adiabatic
polytrope with constant s/CP and N2 ≈ 0. The upper atmosphere
is nearly isothermal with exponentially decaying ρ and P. (b) The
upper atmosphere is a resonant cavity for internal gravity waves with
N2 > 0. Frequencies are normalized by the Brunt-Väisälä frequency
N in the isothermal layer.

023068-29

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

Next we consider the oscillation modes of this atmosphere.
The character of waves modes depends on their frequency
relative to ω±, which are defined as

ω2
+ = ω2

L + ω2
ac, (124)

ω2
− = ω2

L

ω2
L + ω2

ac

N2, (125)

where the Lamb frequency ωL and acoustic frequency ωac

are related to the properties of the background atmosphere
e.g., Ref. [147]. Acoustic waves have frequencies greater
than ω+, while gravity waves have frequencies less than ω−.
We plot ω± for our atmosphere in Fig. 15. High-frequency
sound waves can propagate all the way to the bottom of
the atmosphere, whereas gravity waves mostly stay in the
optically thin isothermal layer.

We write the ideal, linearized fully compressible equations
as

∂tw + ∂zT1 + T0∂z ln ρ1 + T1∂z ln ρ0 = 0, (126)

∂t u + ∂xT1 + T0∂x ln ρ1 = 0, (127)

∂t ln ρ1 + w∂z ln ρ0 + (∂xu + ∂zw) = 0, (128)

∂t T1 + w∂zT0 + (γ − 1)T0(∂xu + ∂zw) = 0, (129)

for the perturbation velocities w and u, and thermal and log
density perturbations T1 and ln ρ1. The nonconstant coeffi-
cients of the atmosphere are ∂z ln ρ0, T0 and ∂zT0 and we
take γ = 5/3. For simplicity, we impose impenetrable top and
bottom boundaries (w = 0).

We formulate this as an eigenvalue problem in Dedalus
by replacing ∂t = iω and ∂x = −ikx and solving for complex
eigenvalue ω given specified horizontal wavenumbers kx. We
use the eigentools [148] package to automatically test whether
eigenvalues are numerically converged using the techniques
described in Boyd et al. ([83], Ch. 7.5). As expected, we find
about 50% of the eigenvalues are converged for sufficiently
high resolution. Here we solve with 256 Legendre modes for
twenty distinct kx, themselves logrithmically spaced. Legen-
dre expansions produce optimal polynomial approximations
in the L2 norm and may be preferable to Chebyshev ex-
pansions in problems where the lack of a fast transform is
unimportant, such as dense eigenvalue problems.

Figure 16 shows the frequencies (or equivalently periods)
of the wave modes calculated with the Dedalus eigenvalue
solver. Because sound waves have frequencies greater than ω+
and gravity waves have frequencies less than ω−, we also plot
the minimum of ω− and maximum of ω+ over the vertical
extent of the atmosphere (both of which occur in the isother-
mal layer). This allows us to easily distinguish sound waves
from gravity waves. We also find that, at fixed horizontal wave
number, the frequency spacing between sound waves is about
constant, whereas the period spacing between gravity waves
is about constant. This well-known property follows from the
dispersion relation in the large-vertical-wave-number limit.

Figure 17 shows vertical velocity eigenfunctions w, scaled
by

√
ρ. These modes correspond to the marked modes in

Fig. 16. All eigenfunctions have been normalized by the mode

FIG. 16. Eigenmode (a) frequencies and (b) periods for a ra-
diative atmosphere. The mode frequencies ω are normalized by the
Brunt-Väisälä frequency N in the isothermal layer. Acoustic modes
(“ac”, blue), gravity modes (“gw”, red), and f-modes (“f”, black) are
identified by their frequencies. Acoustic waves are expected to have
nearly equal frequency spacing, while gravity waves have nearly
equal period spacing, as is observed. Colored circles highlight modes
shown in Fig. 17.

kinetic energy:

w = wEVP

W
, W =

√∫
ρ
(
u2

EVP + w2
EVP

)
dz∫

ρdz
. (130)

We find that the eigenfunctions follow the intuition of the
propagation diagram in Fig. 15. Gravity modes are trapped
in the upper atmosphere, while acoustic modes span a larger

FIG. 17. Vertical velocity eigenfunctions for a radiative atmo-
sphere, scaled by

√
ρ, including (a) acoustic modes and (b) gravity

modes. Gravity modes are almost entirely confined to the isothermal
portion of the atmosphere and are evanescent in the adiabatically
stratified deep interior. Acoustic modes propagate in both regions,
with high frequency waves propagating deeper.

023068-30

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

region of the full atmosphere with the highest frequency
modes reaching the bottom of the domain. The effects of
the nonconstant coefficients are visible in the acoustic modes
which have a varying vertical wavelength in the deep adiabatic
interior and a nearly constant vertical wavelength in the upper
isothermal region.

This example of wave eigenfunctions and eigenvalues
demonstrates the ability to link a complex atmosphere with
detailed solves. This example considered ideal waves in a
bounded atmosphere, but can be easily extended to nonadia-
batic waves with thermal damping, to magnetohydrodynamic
waves propagating through a background magnetic field, and
to systems with open boundary conditions.

H. Diamagnetic levitation

This example computes the motion of a levitating rigid
body under the competing influence of gravity and an imposed
diffuse background magnetic field. There are three general
classes of magnetic levitation: (i) AC electromagnetic sus-
pension of a conductor relying on an alternating background
field; (ii) motion-induced suspension such as Maglev trains
and spinning tops; and (iii) diamagnetic levitation, which
results from magnetically induced eddy currents from a dc
field within special types of macroscopic media. Diamagnetic
levitation is usually the weakest form, but superconductivity
provides the important exception. Past experimental work
on diamagnetic levitation used an approximately 16 Tesla
solenoid to suspend a frog quasi-stably (and mostly safe for
the frog) [149].

For context, magnetic levitation of any kind is actually
a rigid-body version of magnetohydrodynamic buoyancy (or
Parker instability), which are well-know in astrophysics [150].
Maglev train physics is very similar to differential-rotation
induced magnetic buoyancy; which is important in stellar and
planetary interiors [151]. All types of levitation would be
amenable simulation in Dedalus; including magnetohydrody-
namic buoyancy. Here we focus exclusively on solid-body
diamagnetic levitation.

Electrodynamics. We use the (nonrelativistic) Maxwell’s
equations for the magnetic flux density B, electric field E ,
magnetic field H , and current density J:

∂t B + ∇ × E = 0, (131)

∇ · B = 0, (132)

∇ × H = J. (133)

Closing the system requires a constitutive relation between H
and B, and Ohm’s Law between E and J (in a frame moving
with velocity v),

H = B

μ
, E = ρ J − v × B. (134)

The constitutive parameters are the resistivity ρ (inverse
electrical conductivity), the magnetic permeability μ, and the
diffusivity η = ρ/μ.

We use a magnetic potential B = ∇ × A to enforce
the magnetic Gauss’s law ∇ · B = 0. In two dimensions, we
can use a scalar magnetic potential (three dimensions would

require a gauge choice). Then Faraday’s law of induction is

∂t A = vxBy − vyBx + ρ

[
∂y

Bx

μ
− ∂x

By

μ

]
, (135)

where Bx = ∂yA and By = −∂xA.
Eulerian velocity. We embed a freely movable (yet cou-

pled) rigid body within the neutral background. First, the
rigid-body translation and rotation produce the local Eulerian
“fluid” (continuum) velocity

if (x, y) ∈ M(x0, y0, θ), then

vx(t, x, y) = ẋ0(t) − (y − y0(t)) θ̇ (t), (136)

vy(t, x, y) = ẏ0(t) + (x − x0(t)) θ̇ (t). (137)

The set M(x0, y0, θ) represents the points inside the body
with center of mass x0(t), y0(t) and orientation angle θ (t). The
Eulerian velocity vanishes outside the body.

Mask function. We use a smooth mask function (rather than
strictly binary) to indicate the solid-object region. We model
our solid as an ellipse with 2:1 semimajor/semiminor axis
ratio. We use an adjustable error function profile for the mask
function

Mε(x, y) = 1

2

{
1 − Erf

[√
π

2ε

(
x2

a2
+ x2

b2
− 1

)]}
. (138)

The smoothed-mask function approach is called the
“smoothed-volume-penalty method” (SPV). Recent detailed
analysis shows this method is quite competitive with all
other techniques for treating moving solid objects. Also, the
smooth transition region aids in controlling error compared to
an abrupt transition [67].

Coupled ODEs. Translation and rotation about the center of
mass follow a set of ordinary differential equations describing
Newton’s laws of conservation of momentum and angular
momentum.

d

dt

[
x0(t)
y0(t)

]
=

[
vx(t)
vy(t)

]
, (139)

d

dt

[
vx(t)
vy(t)

]
= 1

m

[
F̄x(t)
F̄y(t)

]
−

[
0
g

]
, (140)

d

dt

[
θ (t)

I ω(t)

]
=

[
ω(t)
τ̄z(t)

]
. (141)

The parameters m and I are the object’s mass and moment
of inertial; g represents gravitational acceleration. For the el-
lipse I/m = π a b (a2 + b2)/4. Solving this system of 6 ODEs
requires computing the total force, F̄x, F̄y, and torque, τ̄z.
Each depends on the background magnetic field and material
properties of the rigid body.

Lorentz force. We compute the total force on the object by
integrating the Lorentz force density

L = J × B = ∇ ·
[

H B − H · B

2
I

]
+ H · B

2
∇ ln μ. (142)

023068-31

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

The force on the rigid body is

F̄ = −
∫

L dx = −
∫

H · B

2
∇ ln μ dx. (143)

The gradient of the permeability makes sense because the
material is highly localised, yet infinitely differential via
Eq. (138).

Magnetic susceptibility. For most everyday substances
(e.g., frogs), the magnetic permeability is extremely close to
that of free space, μ0. Defining

χ = μ

μ0
− 1. (144)

we assume |χ | � 1 (e.g., graphite has χ ≈ −2 × 10−5),

1

μ
≈ 1 − χ Mε

μ0
, ∇ ln μ ≈ χ ∇Mε. (145)

This simplifies our equations considerably. This assumption
would not be justified for a partial superconductor where χ ≈
−1. In the case of the force and torque,

F̄ ≈ −χ

∫ |B|2
2μ0

∇Mε dx, (146)

τ̄ ≈ −χ

∫ |B|2
2μ0

(r − r0) × ∇Mε dx. (147)

Considering a negative upward magnetic pressure gradient, it
follows that levitation requires χ < 1. The proportionality of
the force to χ shows the need for very strong magnetic fields.

Simulation. We solve the magnetic induction equation
in nonmoving electrically neutral background. Most of the
domain is filled with a harmonic magnetic field to a good
approximation; like the air around us. We nondimensional-
ize the kinematics of the simulation based gravity and the
semi-minor axis of our elliptical rigid body. Therefore g = 1,
a = 2, and b = 1. We choose a mask smoothing parameter
ε = 0.025. We solve the magnetic induction equation under
the above approximations in a rectangular 16 × 8 domain. We
use a Fourier series with 1024 modes for the x direction and
a Chebyshev series with 512 modes for the y direction. In
both directions, we use the 3/2 dealiasing rule. We fix the
vertical magnetic field at the bottom of the domain, and allow
a free vacuum field at the top. We enforce the top boundary
condition via the Hilbert transform in the x direction

A = −B0

k
sin(kx) at y = y0, (148)

Bx − Hx(By) = 0 at y = y1. (149)

The simulation starts with a harmonic field satisfying the
boundary conditions.

We release the solid ellipse from rest with an initial 30◦
tilt. Figure 18 shows the ellipse and magnetic field at three
representative times in its evolution. The object free falls
until it encounters a strong enough magnetic pressure gradient
to rebound. Along the way, some of the background field
diffuses into the object. As the object bounces upward, the
captured field resists and eventually halts the rebound. The
process continues until the object is mostly sliding and rotat-
ing along the top of the magnetic arches.

FIG. 18. Evolution of a diamagnetic object levitating in a mag-
netic field. The purple ellipse shows the solid-body region. The
black lines show magnetic field lines the same way iron filings trace
the magnetic field from a strong bar magnet. Green dots show the
time-dependent trajectory of the ellipse’s center of mass at equally
spaced time intervals.

XII. CONCLUSION AND OUTLOOK

The integrity and reproducibility of computational science
relies critically on robust, open-source, and well-supported
code. We have introduced Dedalus, a public PYTHON frame-
work for solving PDEs using spectral methods with an inter-
disciplinary community of users and developers.

Dedalus enables users to construct custom domains using
the direct product of spectral series, to symbolically specify
systems of equations and boundary conditions, and to perform
custom data analysis. Dedalus supports initial value, eigen-
value, and linear and nonlinear boundary value problems. The
solution of these problems is automatically parallelized using
MPI, allowing for seamless scaling from individual laptops to
supercomputers with tens-of-thousands of cores. The Dedalus
distribution includes simple example scripts to help users be-
come familiar with the code’s features. In this paper, we have
included a diverse range of example problems demonstrating
more advanced features and the code’s adaptability to many
different physical models.

We are committed to continually enhancing and optimizing
Dedalus and supporting its users. Substantial extensions to the
codebase are currently underway. These include support for
multiple coupled dimensions, coordinate-free equation entry,
enhanced stand-alone data analysis, and non-direct-product
bases for tensorial quantities in curvilinear coordinates (par-
ticularly full disks, spheres, and balls [64–66]). We actively
help users to troubleshoot problems and formulate Dedalus-
compatible models on our public, searchable mailing list. Our
goal for the future is to continue growing through community

023068-32

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

development and to provide robust tools for a wide range of
scientific applications.

The Dedalus code and the example problems are available
online at [95].

ACKNOWLEDGMENTS

We thank Eliot Quataert; the Dedalus collaboration be-
gan under the encouragement and support of E. Quataert
when the authors resided at or near the Berkeley Theoretical
Astrophysics Center in 2011-2014. We thank Keith Julien
for many years of encouragement and freely sharing ideas
about spectral methods and mathematical modeling; many
key parts of this work trace back to his original insights.
We also thank Sheehan Olver and Alex Townsend for many
conversations relating deep technical knowledge of spectral
numerical methods. We also greatly appreciate the sustained
support for the project and its developers offered by Tom
Abel, Lars Bildsten, Glenn Flierl, Mordecai-Mark Mac Low,
and Nevin Weinberg. We thank Shane Keating, K. Shafer
Smith, and Gregory Wagner for helping to clarify the physics
and nomenclature of the quasigeostrophic model. We thank
Eric Hester for helping to develop the general volume pe-
nalization methods used for magnetic levitation. We thank
the Kavli Institute for Theoretical Physics (KITP); all authors
of this paper participated in the “Wave-Flow Interaction in
Geophysics, Climate, Astrophysics, and Plasmas” program in
Spring of 2014, when substantial early work on this project
was undertaken. Through KITP’s support, this research was
supported in part by the NSF under Grant No. NSF PHY-
1748958. We thank the Woods Hole Oceanographic Institute
Geophysical Fluid Dynamics Summer Program, which has
hosted most of the authors together at some point during the
development of this project. K.J.B. and D.L. acknowledge the
University of Sydney School of Mathematics and Statistics
Research Committee Fund for supporting multiple visits to
the University of Sydney to collaborate on this project. K.J.B.
acknowledges support from a Flatiron Research Fellowship,
an NSF Graduate Research Fellowship under Grant No.
1122374, a Woods Hole GFD Fellowship, an MIT Kavli
Graduate Fellowship, and a DOE SULI Internship. G.M.V.
acknowledges support from the Australian Research Coun-
cil under Project No. DE140101960, and the Woods Hole
GFD Program. J.S.O. acknowledges support from Bates Col-
lege startup funding, NASA LWS Grant No. NNX16AC92G,
NASA SSW Grant No. 80NSSC19K0026, Research Corpora-
tion Scialog Collaborative Award (TDA) No. 24231, and NSF
Grant No. AST10-09802. D.L. acknowledges support from
a Hertz Foundation Fellowship, an NSF Graduate Research
Fellowship under Grant No. DGE 1106400, a PCTS Fel-
lowship, a Lyman Spitzer Jr. Fellowship, and a Woods Hole
GFD Fellowship. B.P.B. acknowledges support from a KITP
postdoc position, University of Colorado Boulder startup
funding, NASA LWS Grant No. NNX16AC92G, and NASA
SSW Grant No. 80NSSC19K0026. Computations were con-
ducted with support from the NASA High End Computing
(HEC) Program through the NASA Advanced Supercomput-
ing (NAS) Division at Ames Research Center on Pleiades with
allocation GID s1647.

APPENDIX: SPECTRAL OPERATOR MATRICES

1. Differentiation and conversion matrices

a. Fourier

Fourier differentiation is a separable operator with a matrix
form

∂xφ
F
k (x) = ikφF

k (x) ⇒ DF
k,k′ = ikδk,k′ , (A1)

where the k in the matrix entry expression is the signed wave
number of the corresponding mode.

b. Sine/cosine

Sine/cosine differentiation is a separable operator which
flips the parity of its operand and has matrix forms

∂xφ
c
k (x) = −kφs

k (x) ⇒ DC
k,k′ = −kδk,k′ , (A2)

∂xφ
s
k (x) = kφc

k (x) ⇒ DS
k,k′ = kδk,k′ . (A3)

c. Chebyshev

The derivatives of the Chebyshev polynomials satisfy the
recurrence relation

∂xTn(x)

n
= 2Tn−1(x) + ∂xTn−2(x)

n − 2
. (A4)

Therefore

Di, j = 〈Ti|∂xTj〉 (A5)

= 2 j((j − i) mod 2)

1 + δi,0
[i < j]. (A6)

The derivatives of the Chebyshev-T polynomials are sparse
in the Chebyshev-U polynomials:

∂xTn(x) = nUn−1(x). (A7)

Furthermore, the polynomials satisfy the identity

2Tn(x) = Un(x) − Un−2(x), (A8)

which provides a sparse T-to-U conversion operator for left
preconditioning Chebyshev differential equations:

PL
i, j = 〈Ui|Tj〉 (A9)

= δi, j − δi, j−2

2 − δ j,0
. (A10)

d. Legendre

The derivatives of the Legendre polynomials satisfy the
recurrence relation

∂xPn(x) = (2n − 1)Pn−1(x) + ∂xPn−2(x). (A11)

Therefore

Di, j = 〈Pi|∂xPj〉 (A12)

= (2i + 1)((j − i) mod 2)[i < j]. (A13)

The Legendre polynomials are equal to the Jacobi poly-
nomials Jα,β with α = β = 0. Their derivatives are therefore

023068-33

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

sparse in the Jacobi polynomials with α = β = 1:

∂xPn(x) = ∂xJ0,0
n (x) = n + 1

2
J1,1

n−1(x). (A14)

Furthermore, the Jacobi polynomials satisfy the identity

2(2n + 1)J0,0
n (x) = (n + 2)J1,1

n (x) − nJ1,1
n−2(x), (A15)

which provides a sparse conversion operator for left precondi-
tioning Legendre differential equations:

PL
i, j = 〈

J1,1
i

∣∣Pj
〉

(A16)

= j + 2

2(2 j + 1)
δi, j − j

2(2 j + 1)
δi, j−2. (A17)

e. Hermite

The derivatives of Hermite polynomials are naturally
sparse in the Hermite polynomials themselves:

∂xHn(x) = 2nHn−1(x). (A18)

The Hermite polynomial differentiation matrix is therefore
banded and is given by

Di, j = 〈Hi|∂xHj〉 = 2 jδi, j−1. (A19)

The enveloped Hermite functions satisfy

∂xφ
H
n (x) =

√
n

2
φH

n−1(x) −
√

n + 1

2
φH

n+1(x). (A20)

The differentiation matrix for the enveloped Hermite func-
tions is therefore also banded and given by

Di, j = 〈
φH

i

∣∣∂xφ
H
j

〉 =
√

j

2
δi, j−1 −

√
j + 1

2
δi, j+1. (A21)

Since these matrices are both banded, no conversion op-
erators / left preconditioners are necessary for the Hermite
basis.

f. Laguerre

The derivatives of Laguerre polynomials are sparse in the
generalized Laguerre polynomials as

∂xLn(x) = −L(1)
n−1(x), (A22)

where

L(1)
n (x) =

n∑
i=0

Li(x). (A23)

The Laguerre polynomial differentiation matrix is therefore

Di, j = 〈Li|∂xL j〉 = −1[i < j]. (A24)

The enveloped Laguerre functions satisfy

∂xφ
L
n (x) = −1

2
φL

n (x) −
n−1∑
i=0

φL
i (x). (A25)

The differentiation matrix for enveloped Laguerre functions is
therefore

Di, j = 〈
φL

i

∣∣∂xφ
L
j

〉 = − 1

1 + δi, j
[i � j]. (A26)

Both differentiation matrices are rendered sparse by con-
version from Laguerre polynomials to the first generalized
Laguerre polynomials. This is applied to left precondition all
Laguerre differential equations and is given by

PL
i, j = 〈

L(1)
i

∣∣Lj
〉 = δi, j − δi, j−1. (A27)

2. Dirichlet recombination matrices

a. Chebyshev and Legendre

The Chebyshev and Legendre polynomials satisfy the end-
point conditions Tn(±1) = Pn(±1) = (±1)n. These polyno-
mials recombine to isolate the boundary support to the first
two modes as

DT
n (x) =

{
Tn(x), n = 0, 1
Tn(x) − Tn−2(x), n � 2 , (A28)

and likewise for the Legendre polynomials. These Dirichlet
polynomials therefore satisfy

DT
n (±1) = DP

n (±1) =
{

(±1)n, n = 0, 1
0, n � 2 . (A29)

The sparse conversion matrix from the Dirichlet polynomi-
als to the Chebyshev/Legendre polynomials is used as a right
preconditioner to compress the boundary rows corresponding
to Dirichlet boundary conditions while maintaining sparsity
of the equation matrices. This matrix is given by

PR
i, j = 〈

Ti

∣∣DT
j

〉 = 〈
Pi

∣∣DP
j

〉 = δi, j − δi, j−2[j > 1]. (A30)

b. Laguerre

The Laguerre polynomials satisfy the endpoint condi-
tion Ln(0) = 1. These polynomials recombine to isolate the
boundary support to the first mode as

Dn(x) =
{

L0(x), n = 0
Ln(x) − Ln−1(x), n � 1 . (A31)

These Dirichlet polynomials therefore satisfy

Dn(0) =
{

1, n = 0
0, n � 1 . (A32)

The sparse conversion matrix from the Dirichlet polyno-
mials to the Laguerre polynomials is used as a right pre-
conditioner to compress the boundary rows corresponding to
Dirichlet boundary conditions while maintaining sparsity of
the equation matrices. This matrix is given by

PR
i, j = 〈Li|Dj〉 = δi, j − δi, j−1[j � 1]. (A33)

This matrix is used to right precondition problems using
both the Laguerre polynomials and the enveloped Laguerre
functions.

3. NCC multiplication matrices

a. Chebyshev

The Chebyshev polynomials satisfy the multiplicative
identity

Tn(x)Tj (x) = Tj+n(x) + T| j−n|(x)

2
. (A34)

023068-34

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

The single-mode Chebyshev multiplication matrices are
therefore

〈Ti|TnTj〉 = δi, j+n + δi,| j−n|
2

. (A35)

b. Legendre

The Legendre polynomials satisfy the three-term recur-
rence relation

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x), (A36)

which is encoded in the Legendre Jacobi matrix J such that

xPi(x) = Ji, jPj (x). (A37)

Since the Legendre Jacobi matrix encodes the action of
multiplication by x, the Legendre polynomial multiplication
matrices are given by the corresponding Legendre polynomi-
als of the Jacobi matrix:

〈Pi|PnPj〉 = (Pn(J))i, j ≡ (
MP

n

)
i, j . (A38)

The Legendre polynomial multiplication matrices can there-
fore be constructed by applying the Legendre recurrence
relation to the Legendre Jacobi matrix:

MP
0 = I, (A39)

MP
1 = J, (A40)

(n + 1)MP
n+1 = (2n + 1)JMP

n − nMP
n−1. (A41)

c. Hermite

The Hermite polynomials satisfy the three-term recurrence
relation

Hn+1(x) = 2xHn(x) − 2nHn−1(x). (A42)

The Hermite polynomial multiplication matrices can therefore
be constructed by applying this recurrence relation to the

corresponding Hermite Jacobi matrix, as detailed above for
Legendre polynomials.

Matrices for multiplication between Hermite polynomi-
als and enveloped Hermite functions are implemented by
reweighting the Hermite multiplication matrices as

〈
φH

i

∣∣Hnφ
H
j

〉 = Ni

Nj
〈Hi|HnHj〉. (A43)

Multiplication between enveloped Hermite functions is not
currently implemented as it is not band-limited when ex-
panded in the enveloped functions. Including such terms
would be possible by expanding the basis to include different
powers of the Gaussian envelope.

d. Laguerre

The Laguerre polynomials satisfy the three-term recur-
rence relation

(n + 1)Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x). (A44)

The Laguerre polynomial multiplication matrices can there-
fore be constructed by applying this recurrence relation to the
corresponding Laguerre Jacobi matrix, as detailed above for
Legendre polynomials.

Matrices for multiplication between Laguerre polynomials
and enveloped Laguerre functions utilizes the same matrices
since 〈

φL
i

∣∣Lnφ
L
j

〉 = 〈Li|LnLj〉. (A45)

Multiplication between enveloped Laguerre functions is not
currently implemented as it is not band-limited when ex-
panded in the enveloped functions. Including such terms
would be possible by expanding the basis to include differ-
ent powers of the exponential envelope, i.e., the generalized
Laguerre polynomials.

[1] B. Tóth, Y. Lemperiere, C. Deremble, J. de Lataillade, J.
Kockelkoren, and J. P. Bouchaud, Anomalous Price Impact
and the Critical Nature of Liquidity in Financial Markets,
Phys. Rev. X 1, 021006 (2011).

[2] J. Burridge, Spatial Evolution of Human Dialects, Phys. Rev.
X 7, 031008 (2017).

[3] B. L. Keyfitz and N. Keyfitz, The McKendrick partial differ-
ential equation and its uses in epidemiology and population
study, Math. Comput. Modelling 26, 1 (1997).

[4] P. J. S. Franks, NPZ models of plankton dynamics: Their con-
struction, coupling to physics, and application, J. Oceanogr.
58, 379 (2002).

[5] B. Lemmerer and S. Unger, Modeling and pricing of space
weather derivatives, Risk Manag. 21, 265 (2019).

[6] L. Greengard, Spectral integration and two-point boundary
value problems, SIAM J. Numer. Anal. 28, 1071 (1991).

[7] K. Julien and M. Watson, Efficient multi-dimensional solution
of PDEs using Chebyshev spectral methods, J. Comput. Phys.
228, 1480 (2009).

[8] B. K. Muite, A numerical comparison of Chebyshev methods
for solving fourth order semilinear initial boundary value
problems, J. Comput. Appl. Math. 234, 317 (2010).

[9] S. Olver, S. Olver, A. Townsend, and A. Townsend, A fast
and well-conditioned spectral method, SIAM Rev. 55, 462
(2013).

[10] J. F. Gibson, Channelflow: A spectral Navier-Stokes simulator
in C++ Tech. Rep. (U. New Hampshire, 2014); Channelflow.
org.

[11] D. Viswanath, Spectral integration of linear boundary value
problems, J. Comput. Appl. Math. 290, 159 (2015).

[12] B. Miquel and K. Julien, Hybrid Chebyshev function bases for
sparse spectral methods in parity-mixed PDEs on an infinite
domain, J. Comput. Phys. 349, 474 (2017).

[13] https://fenicsproject.org.
[14] https://www.firedrakeproject.org.
[15] http://channelflow.org.
[16] http://www.chebfun.org.
[17] https://github.com/JuliaApproximation/ApproxFun.jl.

023068-35

https://doi.org/10.1103/PhysRevX.1.021006
https://doi.org/10.1103/PhysRevX.1.021006
https://doi.org/10.1103/PhysRevX.1.021006
https://doi.org/10.1103/PhysRevX.1.021006
https://doi.org/10.1103/PhysRevX.7.031008
https://doi.org/10.1103/PhysRevX.7.031008
https://doi.org/10.1103/PhysRevX.7.031008
https://doi.org/10.1103/PhysRevX.7.031008
https://doi.org/10.1016/S0895-7177(97)00165-9
https://doi.org/10.1016/S0895-7177(97)00165-9
https://doi.org/10.1016/S0895-7177(97)00165-9
https://doi.org/10.1016/S0895-7177(97)00165-9
https://doi.org/10.1023/A:1015874028196
https://doi.org/10.1023/A:1015874028196
https://doi.org/10.1023/A:1015874028196
https://doi.org/10.1023/A:1015874028196
https://doi.org/10.1057/s41283-019-00052-0
https://doi.org/10.1057/s41283-019-00052-0
https://doi.org/10.1057/s41283-019-00052-0
https://doi.org/10.1057/s41283-019-00052-0
https://doi.org/10.1137/0728057
https://doi.org/10.1137/0728057
https://doi.org/10.1137/0728057
https://doi.org/10.1137/0728057
https://doi.org/10.1016/j.jcp.2008.10.043
https://doi.org/10.1016/j.jcp.2008.10.043
https://doi.org/10.1016/j.jcp.2008.10.043
https://doi.org/10.1016/j.jcp.2008.10.043
https://doi.org/10.1016/j.cam.2009.12.029
https://doi.org/10.1016/j.cam.2009.12.029
https://doi.org/10.1016/j.cam.2009.12.029
https://doi.org/10.1016/j.cam.2009.12.029
https://doi.org/10.1137/120865458
https://doi.org/10.1137/120865458
https://doi.org/10.1137/120865458
https://doi.org/10.1137/120865458
http://Channelflow.org
https://doi.org/10.1016/j.cam.2015.04.043
https://doi.org/10.1016/j.cam.2015.04.043
https://doi.org/10.1016/j.cam.2015.04.043
https://doi.org/10.1016/j.cam.2015.04.043
https://doi.org/10.1016/j.jcp.2017.08.034
https://doi.org/10.1016/j.jcp.2017.08.034
https://doi.org/10.1016/j.jcp.2017.08.034
https://doi.org/10.1016/j.jcp.2017.08.034
https://fenicsproject.org
https://www.firedrakeproject.org
http://channelflow.org
http://www.chebfun.org
https://github.com/JuliaApproximation/ApproxFun.jl

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

[18] D. Lecoanet and R. R. Kerswell, Connection between non-
linear energy optimization and instantons, Phys. Rev. E 97,
012212 (2018).

[19] S. M. Tobias and J. B. Marston, Three-dimensional rotating
Couette flow via the generalised quasilinear approximation,
J. Fluid Mech. 810, 412 (2016).

[20] S. M. Tobias, J. S. Oishi, and J. B. Marston, Generalized
quasilinear approximation of the interaction of convection
and mean flows in a thermal annulus, Proc. R. Soc. A 474,
20180422 (2018).

[21] G. Michel and G. P. Chini, Multiple scales analysis of slow–
fast quasi-linear systems, Proc. R. Soc. A 475, 20180630
(2019).

[22] C. D. Marcotte and V. N. Biktashev, Predicting critical ignition
in slow-fast excitable models, Phys. Rev. E 101, 042201
(2020).

[23] D. Lecoanet, B. P. Brown, E. G. Zweibel, K. J. Burns, J. S.
Oishi, and G. M. Vasil, Conduction in low mach number flows.
I. Linear and weakly nonlinear regimes, Astrophys. J. 797, 94
(2014).

[24] D. Lecoanet, M. McCourt, E. Quataert, K. J. Burns, G. M.
Vasil, J. S. Oishi, B. P. Brown, J. M. Stone, and R. M. O’Leary,
A validated non-linear Kelvin–Helmholtz benchmark for nu-
merical hydrodynamics, Mon. Not. R. Astron. Soc. 455, 4274
(2015).

[25] G. M. Vasil, On the magnetorotational instability and elastic
buckling, Proc. R. Soc. A 471, 20140699 (2015).

[26] D. Lecoanet, J. Schwab, E. Quataert, L. Bildsten, F. X.
Timmes, K. J. Burns, G. M. Vasil, J. S. Oishi, and B. P. Brown,
Turbulent chemical diffusion in convectively bounded carbon
flames, Astrophys. J. 832, 71 (2016).

[27] D. Lecoanet, G. M. Vasil, J. Fuller, M. Cantiello, and K. J.
Burns, Conversion of internal gravity waves into magnetic
waves, Mon. Not. R. Astron. Soc. 466, 2181 (2017).

[28] E. H. Anders and B. P. Brown, Convective heat transport in
stratified atmospheres at low and high Mach number, Phys.
Rev. Fluids 2, 083501 (2017).

[29] S. E. Clark and J. S. Oishi, The Weakly Nonlinear magnetoro-
tational instability in a local geometry, Astrophys. J. 841, 1
(2017).

[30] S. E. Clark and J. S. Oishi, The weakly nonlinear magnetoro-
tational instability in a global, cylindrical taylor–couette Flow,
Astrophys. J. 841, 2 (2017).

[31] L. K. Currie and M. K. Browning, The magnitude of viscous
dissipation in strongly stratified two-dimensional convection,
Astrophys. J. Lett. 845, L17 (2017).

[32] D. Seligman and G. Laughlin, A vorticity-preserving hydrody-
namical scheme for modeling accretion disk flows, Astrophys.
J. 848, 54 (2017).

[33] L. K. Currie and S. M. Tobias, Convection-driven kine-
matic dynamos with a self-consistent shear flow, Geophys.
Astrophys. Fluid Dyn. 113, 131 (2019).

[34] E. Quataert, D. Lecoanet, and E. R. Coughlin, Black hole
accretion discs and luminous transients in failed supernovae
from non-rotating supergiants, Mon. Not. R. Astron. Soc.:
Lett. 485, L83 (2019).

[35] E. H. Anders, C. M. Manduca, B. P. Brown, J. S. Oishi,
and G. M. Vasil, Predicting the rossby number in convective
experiments, Astrophys. J. 872, 138 (2019).

[36] A. T. Clarke, C. J. Davies, D. Ruprecht, and S. M. Tobias,
Parallel-in-time integration of kinematic dynamos, Journal of
Computational Physics: X 7, 100057 (2020).

[37] E. H. Anders, D. Lecoanet, and B. P. Brown, Entropy rain:
Dilution and compression of thermals in stratified domains,
Astrophys. J. 884, 65 (2019).

[38] D. Lecoanet, M. Cantiello, E. Quataert, L.-A. Couston, K. J.
Burns, B. J. S. Pope, A. S. Jermyn, B. Favier, and M. Le Bars,
Low-frequency variability in massive stars: Core generation or
surface phenomenon? Astrophys. J. Lett. 886, L15 (2019).

[39] N. Tarshish, N. Jeevanjee, and D. Lecoanet, Buoyant motion
of a turbulent thermal, J. Atmos. Sci. 75, 3233 (2018).

[40] L.-A. Couston, D. Lecoanet, B. Favier, and M. Le Bars, Order
Out of Chaos: Slowly Reversing Mean Flows Emerge from
Turbulently Generated Internal Waves, Phys. Rev. Lett. 120,
244505 (2018).

[41] G. K. Vallis, D. J. Parker, and S. M. Tobias, A simple system
for moist convection: the Rainy–Bénard model, J. Fluid Mech.
862, 162 (2019).

[42] M. Perrot, P. Delplace, and A. Venaille, Topological transition
in stratified fluids, Nat. Phys. 15, 781 (2019).

[43] D. Lecoanet and N. Jeevanjee, Entrainment in resolved, dry
thermals, J. Atmos. Sci. 76, 3785 (2019).

[44] B. McKim, N. Jeevanjee, and D. Lecoanet, Buoyancy-driven
entrainment in dry thermals, Q. J. Royal Meteorol. Soc. 146,
415 (2020).

[45] O. Mickelin, J. Słomka, K. J. Burns, D. Lecoanet, G. M. Vasil,
L. M. Faria, and J. Dunkel, Anomalous Chained Turbulence
in Actively Driven Flows on Spheres, Phys. Rev. Lett. 120,
164503 (2018).

[46] M. Mussel and M. F. Schneider, Similarities between ac-
tion potentials and acoustic pulses in a van der Waals fluid,
Sci. Rep. 9, 73 (2019).

[47] M. Mussel and M. F. Schneider, It sounds like an action
potential: unification of electrical, chemical and mechanical
aspects of acoustic pulses in lipids, J. R. Soc. Interface 16,
20180743 (2019).

[48] M. Marciani and P. Delplace, Chiral Maxwell waves in contin-
uous media from Berry monopoles, Phys. Rev. A 101, 023827
(2020).

[49] V. Heinonen, K. J. Burns, and J. Dunkel, Quantum hydrody-
namics for supersolid crystals and quasicrystals, Phys. Rev. A
99, 063621 (2019).

[50] D. Lecoanet, M. Le Bars, K. J. Burns, G. M. Vasil, B. P.
Brown, E. Quataert, and J. S. Oishi, Numerical simulations
of internal wave generation by convection in water, Phys. Rev.
E 91, 063016 (2015).

[51] L. A. Couston, D. Lecoanet, B. Favier, and M. Le
Bars, Dynamics of mixed convective–stably-stratified fluids,
Phys. Rev. Fluids 2, 094804 (2017).

[52] E. H. Anders, B. P. Brown, and J. S. Oishi, Accelerated evo-
lution of convective simulations, Phys. Rev. Fluids 3, 083502
(2018).

[53] L.-A. Couston, D. Lecoanet, B. Favier, and M. Le Bars, The
energy flux spectrum of internal waves generated by turbulent
convection, J. Fluid Mech. 854, 1103 (2018).

[54] N. Balci, A. M. Isenberg, and M. S. Jolly, Turbulence in ver-
tically averaged convection, Physica D: Nonlinear Phenomena
376-377, 216 (2018).

023068-36

https://doi.org/10.1103/PhysRevE.97.012212
https://doi.org/10.1103/PhysRevE.97.012212
https://doi.org/10.1103/PhysRevE.97.012212
https://doi.org/10.1103/PhysRevE.97.012212
https://doi.org/10.1017/jfm.2016.727
https://doi.org/10.1017/jfm.2016.727
https://doi.org/10.1017/jfm.2016.727
https://doi.org/10.1017/jfm.2016.727
https://doi.org/10.1098/rspa.2018.0422
https://doi.org/10.1098/rspa.2018.0422
https://doi.org/10.1098/rspa.2018.0422
https://doi.org/10.1098/rspa.2018.0422
https://doi.org/10.1098/rspa.2018.0630
https://doi.org/10.1098/rspa.2018.0630
https://doi.org/10.1098/rspa.2018.0630
https://doi.org/10.1098/rspa.2018.0630
https://doi.org/10.1103/PhysRevE.101.042201
https://doi.org/10.1103/PhysRevE.101.042201
https://doi.org/10.1103/PhysRevE.101.042201
https://doi.org/10.1103/PhysRevE.101.042201
https://doi.org/10.1088/0004-637X/797/2/94
https://doi.org/10.1088/0004-637X/797/2/94
https://doi.org/10.1088/0004-637X/797/2/94
https://doi.org/10.1088/0004-637X/797/2/94
https://doi.org/10.1093/mnras/stv2564
https://doi.org/10.1093/mnras/stv2564
https://doi.org/10.1093/mnras/stv2564
https://doi.org/10.1093/mnras/stv2564
https://doi.org/10.1098/rspa.2014.0699
https://doi.org/10.1098/rspa.2014.0699
https://doi.org/10.1098/rspa.2014.0699
https://doi.org/10.1098/rspa.2014.0699
https://doi.org/10.3847/0004-637X/832/1/71
https://doi.org/10.3847/0004-637X/832/1/71
https://doi.org/10.3847/0004-637X/832/1/71
https://doi.org/10.3847/0004-637X/832/1/71
https://doi.org/10.1093/mnras/stw3273
https://doi.org/10.1093/mnras/stw3273
https://doi.org/10.1093/mnras/stw3273
https://doi.org/10.1093/mnras/stw3273
https://doi.org/10.1103/PhysRevFluids.2.083501
https://doi.org/10.1103/PhysRevFluids.2.083501
https://doi.org/10.1103/PhysRevFluids.2.083501
https://doi.org/10.1103/PhysRevFluids.2.083501
https://doi.org/10.3847/1538-4357/aa6ff1
https://doi.org/10.3847/1538-4357/aa6ff1
https://doi.org/10.3847/1538-4357/aa6ff1
https://doi.org/10.3847/1538-4357/aa6ff1
https://doi.org/10.3847/1538-4357/aa6ff6
https://doi.org/10.3847/1538-4357/aa6ff6
https://doi.org/10.3847/1538-4357/aa6ff6
https://doi.org/10.3847/1538-4357/aa6ff6
https://doi.org/10.3847/2041-8213/aa8301
https://doi.org/10.3847/2041-8213/aa8301
https://doi.org/10.3847/2041-8213/aa8301
https://doi.org/10.3847/2041-8213/aa8301
https://doi.org/10.3847/1538-4357/aa8e45
https://doi.org/10.3847/1538-4357/aa8e45
https://doi.org/10.3847/1538-4357/aa8e45
https://doi.org/10.3847/1538-4357/aa8e45
https://doi.org/10.1080/03091929.2018.1517210
https://doi.org/10.1080/03091929.2018.1517210
https://doi.org/10.1080/03091929.2018.1517210
https://doi.org/10.1080/03091929.2018.1517210
https://doi.org/10.1093/mnrasl/slz031
https://doi.org/10.1093/mnrasl/slz031
https://doi.org/10.1093/mnrasl/slz031
https://doi.org/10.1093/mnrasl/slz031
https://doi.org/10.3847/1538-4357/aaff61
https://doi.org/10.3847/1538-4357/aaff61
https://doi.org/10.3847/1538-4357/aaff61
https://doi.org/10.3847/1538-4357/aaff61
https://doi.org/10.1016/j.jcpx.2020.100057
https://doi.org/10.1016/j.jcpx.2020.100057
https://doi.org/10.1016/j.jcpx.2020.100057
https://doi.org/10.1016/j.jcpx.2020.100057
https://doi.org/10.3847/1538-4357/ab3644
https://doi.org/10.3847/1538-4357/ab3644
https://doi.org/10.3847/1538-4357/ab3644
https://doi.org/10.3847/1538-4357/ab3644
https://doi.org/10.3847/2041-8213/ab5446
https://doi.org/10.3847/2041-8213/ab5446
https://doi.org/10.3847/2041-8213/ab5446
https://doi.org/10.3847/2041-8213/ab5446
https://doi.org/10.1175/JAS-D-17-0371.1
https://doi.org/10.1175/JAS-D-17-0371.1
https://doi.org/10.1175/JAS-D-17-0371.1
https://doi.org/10.1175/JAS-D-17-0371.1
https://doi.org/10.1103/PhysRevLett.120.244505
https://doi.org/10.1103/PhysRevLett.120.244505
https://doi.org/10.1103/PhysRevLett.120.244505
https://doi.org/10.1103/PhysRevLett.120.244505
https://doi.org/10.1017/jfm.2018.954
https://doi.org/10.1017/jfm.2018.954
https://doi.org/10.1017/jfm.2018.954
https://doi.org/10.1017/jfm.2018.954
https://doi.org/10.1038/s41567-019-0561-1
https://doi.org/10.1038/s41567-019-0561-1
https://doi.org/10.1038/s41567-019-0561-1
https://doi.org/10.1038/s41567-019-0561-1
https://doi.org/10.1175/JAS-D-18-0320.1
https://doi.org/10.1175/JAS-D-18-0320.1
https://doi.org/10.1175/JAS-D-18-0320.1
https://doi.org/10.1175/JAS-D-18-0320.1
https://doi.org/10.1002/qj.3683
https://doi.org/10.1002/qj.3683
https://doi.org/10.1002/qj.3683
https://doi.org/10.1002/qj.3683
https://doi.org/10.1103/PhysRevLett.120.164503
https://doi.org/10.1103/PhysRevLett.120.164503
https://doi.org/10.1103/PhysRevLett.120.164503
https://doi.org/10.1103/PhysRevLett.120.164503
https://doi.org/10.1038/s41598-018-36426-9
https://doi.org/10.1038/s41598-018-36426-9
https://doi.org/10.1038/s41598-018-36426-9
https://doi.org/10.1038/s41598-018-36426-9
https://doi.org/10.1098/rsif.2018.0743
https://doi.org/10.1098/rsif.2018.0743
https://doi.org/10.1098/rsif.2018.0743
https://doi.org/10.1098/rsif.2018.0743
https://doi.org/10.1103/PhysRevA.101.023827
https://doi.org/10.1103/PhysRevA.101.023827
https://doi.org/10.1103/PhysRevA.101.023827
https://doi.org/10.1103/PhysRevA.101.023827
https://doi.org/10.1103/PhysRevA.99.063621
https://doi.org/10.1103/PhysRevA.99.063621
https://doi.org/10.1103/PhysRevA.99.063621
https://doi.org/10.1103/PhysRevA.99.063621
https://doi.org/10.1103/PhysRevE.91.063016
https://doi.org/10.1103/PhysRevE.91.063016
https://doi.org/10.1103/PhysRevE.91.063016
https://doi.org/10.1103/PhysRevE.91.063016
https://doi.org/10.1103/PhysRevFluids.2.094804
https://doi.org/10.1103/PhysRevFluids.2.094804
https://doi.org/10.1103/PhysRevFluids.2.094804
https://doi.org/10.1103/PhysRevFluids.2.094804
https://doi.org/10.1103/PhysRevFluids.3.083502
https://doi.org/10.1103/PhysRevFluids.3.083502
https://doi.org/10.1103/PhysRevFluids.3.083502
https://doi.org/10.1103/PhysRevFluids.3.083502
https://doi.org/10.1017/jfm.2018.669
https://doi.org/10.1017/jfm.2018.669
https://doi.org/10.1017/jfm.2018.669
https://doi.org/10.1017/jfm.2018.669
https://doi.org/10.1016/j.physd.2018.02.005
https://doi.org/10.1016/j.physd.2018.02.005
https://doi.org/10.1016/j.physd.2018.02.005
https://doi.org/10.1016/j.physd.2018.02.005

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

[55] S. Lepot, S. Aumaître, and B. Gallet, Radiative heating
achieves the ultimate regime of thermal convection, Proc. Natl.
Acad. Sci. 115, 8937 (2018).

[56] G. Michel and G. P. Chini, Strong wave–mean-flow coupling
in baroclinic acoustic streaming, J. Fluid Mech. 858, 536
(2019).

[57] K. J. Burns, D. Lecoanet, G. M. Vasil, J. S. Oishi, and
B. P. Brown, The “Sphered Cube”: A new method for the
solution of partial differential equations in cubical geometry,
arXiv:1903.12642.

[58] J. Földes, N. Glatt-Holtz, G. Richards, and J. Whitehead, Hy-
drodynamic stability in the presence of a stochastic forcing:a
case study in convection, arXiv:1704.03840.

[59] J. Olsthoorn, E. W. Tedford, and G. A. Lawrence, Diffused-
interface Rayleigh-Taylor instability with a nonlinear equation
of state, Phys. Rev. Fluids 4, 094501 (2019).

[60] G. Saranraj and A. Guha, Energy transfer in resonant and
near-resonant internal wave triads for weakly non-uniform
stratifications. Part I: Unbounded domain, arXiv:1808.05591.

[61] C. B. Rocha, T. Bossy, S. G. Llewellyn Smith, and W. R.
Young, Improved bounds on horizontal convection, J. Fluid
Mech. 883, 5957 (2020).

[62] J.-H. Kim, W. Moon, A. J. Wells, J. P. Wilkinson, T. Langton,
B. Hwang, M. A. Granskog, and D. W. Rees Jones, Salinity
control of thermal evolution of late summer melt ponds on
arctic sea ice, Geophys. Res. Lett. 45, 8304 (2018).

[63] J. Olsthoorn, C. E. Bluteau, and G. A. Lawrence, Under-
ice salinity transport in low-salinity waterbodies, Limnol.
Oceanogr. 65, 247 (2020).

[64] G. M. Vasil, K. J. Burns, D. Lecoanet, S. Olver, B. P. Brown,
and J. S. Oishi, Tensor calculus in polar coordinates using
Jacobi polynomials, J. Comput. Phys. 325, 53 (2016).

[65] G. M. Vasil, D. Lecoanet, K. J. Burns, J. S. Oishi, and B. P.
Brown, Tensor calculus in spherical coordinates using Jacobi
polynomials. Part-I: Mathematical analysis and derivations, J.
Comput. Phys.: X 3, 100013 (2019).

[66] D. Lecoanet, G. M. Vasil, K. J. Burns, B. P. Brown, and
J. S. Oishi, Tensor calculus in spherical coordinates using
Jacobi polynomials. Part-II: Implementation and examples,
J. Comput. Phys.: X 3, 100012 (2019).

[67] E. W. Hester, G. M. Vasil, and K. J. Burns, Improving
convergence of volume penalized fluid-solid interactions,
arXiv:1903.11914.

[68] J. O. Wenegrat, J. Callies, and L. N. Thomas, Submesoscale
baroclinic instability in the bottom boundary layer, J. Phys.
Oceanogr. 48, 2571 (2018).

[69] J. Callies, Restratification of abyssal mixing layers by subme-
soscale baroclinic eddies, J. Phys. Oceanogr. 48, 1995 (2018).

[70] C. Tauber, P. Delplace, and A. Venaille, A bulk-interface
correspondence for equatorial waves, J. Fluid Mech. 868, 123
(2019).

[71] S. Kar and A. Guha, An inverse technique for reconstructing
ocean’s density stratification from surface data, Ocean Model.
147, 101561 (2020).

[72] R. M. Holmes, C. de Lavergne, and T. J. McDougall, Tracer
transport within abyssal mixing layers, J. Phys. Oceanogr. 49,
2669 (2019).

[73] B. Bordwell, B. P. Brown, and J. S. Oishi, Convective dynam-
ics and disequilibrium chemistry in the atmospheres of giant
planets and brown dwarfs, Astrophys. J. 854, 8 (2018).

[74] J. B. Parker and N. C. Constantinou, Magnetic eddy viscosity
of mean shear flows in two-dimensional magnetohydrodynam-
ics, Phys. Rev. Fluids 4, 083701 (2019).

[75] S. Davidovits and N. J. Fisch, Sudden Viscous Dissipation
of Compressing Turbulence, Phys. Rev. Lett. 116, 105004
(2016).

[76] S. Davidovits and N. J. Fisch, Compressing turbulence and
sudden viscous dissipation with compression-dependent ion-
ization state, Phys. Rev. E 94, 053206 (2016).

[77] A. E. Fraser, Role of stable modes in driven shear-flow turbu-
lence, Phys. Plasmas 25, 122303 (2018).

[78] S. Davidovits and N. J. Fisch, Viscous dissipation in two-
dimensional compression of turbulence, Phys. Plasmas 26,
082702 (2019).

[79] H. Zhu, Y. Zhou, and I. Y. Dodin, Theory of the Tertiary
Instability and the Dimits Shift from Reduced Drift-Wave
Models, Phys. Rev. Lett. 124, 055002 (2020).

[80] J. B. Parker, J. W. Burby, J. B. Marston, and S. M.
Tobias, Nontrivial topology of the Alfvén continuum and
topological character of reversed-shear Alfvén eigenmodes,
arXiv:1909.07910.

[81] Y. Zhou, H. Zhu, and I. Y. Dodin, Solitary zonal structures
in subcritical drift waves: A minimum model, Plasma Phys.
Control. Fusion 62, 045021 (2020).

[82] J. B. Parker, J. B. Marston, S. M. Tobias, and Z. Zhu,
Topological gaseous plasmon polariton in realistic plasma,
arXiv:1911.01069.

[83] J. P. Boyd, Chebyshev and Fourier Spectral Methods (Dover
Publications, Mineola, 2001).

[84] T. A. Driscoll and N. Hale, Rectangular spectral collocation,
IMA J. Numer. Anal. 38, dru062 (2015).

[85] C. Lanczos, Trigonometric interpolation of empirical and ana-
lytical functions, J. Math. Phys. 17, 123 (1938).

[86] C. W. Clenshaw, The numerical solution of linear differential
equations in Chebyshev series, Math. Proc. Cambridge Philos.
Soc. 53, 134 (1957).

[87] R. A. Fisher, The wave of advance of advantageous genes,
Ann. Eugenics 7, 355 (1937).

[88] A. Kolmogorov, I. Petrovskii, and N. Piscunov, A study of
the equation of diffusion with increase in the quantity of
matter, and its application to a biological problem, Byul.
Moskovskogo Gos. Univ. 1, 1 (1937).

[89] P. Virtanen, R. Gommers, T. E. Oliphant et al., SciPy 1.0–
fundamental algorithms for scientific computing in PYTHON,
Nature Methods 17, 261 (2020).

[90] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn,
and K. Smith, Cython: The best of both worlds, Comput. Sci.
Eng. 13, 31 (2011).

[91] M. Frigo and S. G. Johnson, The design and implementation
of FFTW3, Proc. IEEE 93, 216 (2005).

[92] L. Dalcin, R. Paz, M. Storti, and J. D’Elía, MPI for PYTHON:
Performance improvements and MPI-2 extensions, J. Parallel
Distributed Comp. 68, 655 (2008).

[93] The HDF Group, Hierarchical Data Format, version 5 (1997),
http://www.hdfgroup.org/HDF5/.

[94] A. Collette, PYTHON and HDF5 (O’Reilly Media, Inc, Se-
bastopol, 2013).

[95] http://dedalus-project.org/
[96] J. S. Oishi, B. P. Brown, K. J. Burns, D. Lecoanet, and

G. M. Vasil, Perspectives on reproducibility and sustainability

023068-37

https://doi.org/10.1073/pnas.1806823115
https://doi.org/10.1073/pnas.1806823115
https://doi.org/10.1073/pnas.1806823115
https://doi.org/10.1073/pnas.1806823115
https://doi.org/10.1017/jfm.2018.785
https://doi.org/10.1017/jfm.2018.785
https://doi.org/10.1017/jfm.2018.785
https://doi.org/10.1017/jfm.2018.785
http://arxiv.org/abs/arXiv:1903.12642
http://arxiv.org/abs/arXiv:1704.03840
https://doi.org/10.1103/PhysRevFluids.4.094501
https://doi.org/10.1103/PhysRevFluids.4.094501
https://doi.org/10.1103/PhysRevFluids.4.094501
https://doi.org/10.1103/PhysRevFluids.4.094501
http://arxiv.org/abs/arXiv:1808.05591
https://doi.org/10.1017/jfm.2019.850
https://doi.org/10.1017/jfm.2019.850
https://doi.org/10.1017/jfm.2019.850
https://doi.org/10.1017/jfm.2019.850
https://doi.org/10.1029/2018GL078077
https://doi.org/10.1029/2018GL078077
https://doi.org/10.1029/2018GL078077
https://doi.org/10.1029/2018GL078077
https://doi.org/10.1002/lno.11295
https://doi.org/10.1002/lno.11295
https://doi.org/10.1002/lno.11295
https://doi.org/10.1002/lno.11295
https://doi.org/10.1016/j.jcp.2016.08.013
https://doi.org/10.1016/j.jcp.2016.08.013
https://doi.org/10.1016/j.jcp.2016.08.013
https://doi.org/10.1016/j.jcp.2016.08.013
https://doi.org/10.1016/j.jcpx.2019.100013
https://doi.org/10.1016/j.jcpx.2019.100013
https://doi.org/10.1016/j.jcpx.2019.100013
https://doi.org/10.1016/j.jcpx.2019.100013
https://doi.org/10.1016/j.jcpx.2019.100012
https://doi.org/10.1016/j.jcpx.2019.100012
https://doi.org/10.1016/j.jcpx.2019.100012
https://doi.org/10.1016/j.jcpx.2019.100012
http://arxiv.org/abs/arXiv:1903.11914
https://doi.org/10.1175/JPO-D-17-0264.1
https://doi.org/10.1175/JPO-D-17-0264.1
https://doi.org/10.1175/JPO-D-17-0264.1
https://doi.org/10.1175/JPO-D-17-0264.1
https://doi.org/10.1175/JPO-D-18-0082.1
https://doi.org/10.1175/JPO-D-18-0082.1
https://doi.org/10.1175/JPO-D-18-0082.1
https://doi.org/10.1175/JPO-D-18-0082.1
https://doi.org/10.1017/jfm.2019.233
https://doi.org/10.1017/jfm.2019.233
https://doi.org/10.1017/jfm.2019.233
https://doi.org/10.1017/jfm.2019.233
https://doi.org/10.1016/j.ocemod.2019.101561
https://doi.org/10.1016/j.ocemod.2019.101561
https://doi.org/10.1016/j.ocemod.2019.101561
https://doi.org/10.1016/j.ocemod.2019.101561
https://doi.org/10.1175/JPO-D-19-0006.1
https://doi.org/10.1175/JPO-D-19-0006.1
https://doi.org/10.1175/JPO-D-19-0006.1
https://doi.org/10.1175/JPO-D-19-0006.1
https://doi.org/10.3847/1538-4357/aaa551
https://doi.org/10.3847/1538-4357/aaa551
https://doi.org/10.3847/1538-4357/aaa551
https://doi.org/10.3847/1538-4357/aaa551
https://doi.org/10.1103/PhysRevFluids.4.083701
https://doi.org/10.1103/PhysRevFluids.4.083701
https://doi.org/10.1103/PhysRevFluids.4.083701
https://doi.org/10.1103/PhysRevFluids.4.083701
https://doi.org/10.1103/PhysRevLett.116.105004
https://doi.org/10.1103/PhysRevLett.116.105004
https://doi.org/10.1103/PhysRevLett.116.105004
https://doi.org/10.1103/PhysRevLett.116.105004
https://doi.org/10.1103/PhysRevE.94.053206
https://doi.org/10.1103/PhysRevE.94.053206
https://doi.org/10.1103/PhysRevE.94.053206
https://doi.org/10.1103/PhysRevE.94.053206
https://doi.org/10.1063/1.5049580
https://doi.org/10.1063/1.5049580
https://doi.org/10.1063/1.5049580
https://doi.org/10.1063/1.5049580
https://doi.org/10.1063/1.5111961
https://doi.org/10.1063/1.5111961
https://doi.org/10.1063/1.5111961
https://doi.org/10.1063/1.5111961
https://doi.org/10.1103/PhysRevLett.124.055002
https://doi.org/10.1103/PhysRevLett.124.055002
https://doi.org/10.1103/PhysRevLett.124.055002
https://doi.org/10.1103/PhysRevLett.124.055002
http://arxiv.org/abs/arXiv:1909.07910
https://doi.org/10.1088/1361-6587/ab78f3
https://doi.org/10.1088/1361-6587/ab78f3
https://doi.org/10.1088/1361-6587/ab78f3
https://doi.org/10.1088/1361-6587/ab78f3
http://arxiv.org/abs/arXiv:1911.01069
https://doi.org/10.1093/imanum/dru062
https://doi.org/10.1093/imanum/dru062
https://doi.org/10.1093/imanum/dru062
https://doi.org/10.1093/imanum/dru062
https://doi.org/10.1002/sapm1938171123
https://doi.org/10.1002/sapm1938171123
https://doi.org/10.1002/sapm1938171123
https://doi.org/10.1002/sapm1938171123
https://doi.org/10.1017/S0305004100032072
https://doi.org/10.1017/S0305004100032072
https://doi.org/10.1017/S0305004100032072
https://doi.org/10.1017/S0305004100032072
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1016/j.jpdc.2007.09.005
http://www.hdfgroup.org/HDF5/
http://dedalus-project.org/

BURNS, VASIL, OISHI, LECOANET, AND BROWN PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

of open-source scientific software from seven years of the
dedalus project, arXiv:1801.08200.

[97] http://dedalus-project.org/citations/.
[98] D. Wang and S. J. Ruuth, Variable step-size implicit-explicit

linear multistep methods for time-dependent partial differen-
tial equations, J. Comput. Math. 26, 838 (2008).

[99] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit
Runge-Kutta methods for time-dependent partial differential
equations, Appl. Num. Math. 25, 151 (1997).

[100] M. Sprague, K. Julien, E. Knobloch, and J. Werne, Numerical
simulation of an asymptotically reduced system for rotation-
ally constrained convection, J. Fluid Mech. 551, 141 (2006).

[101] https://github.com/DedalusProject/methods_paper_examples.
[102] http://dedalus-project.org/gallery/.
[103] https://github.com/DedalusProject/dedalus_scaling.
[104] https://www.sdsc.edu/support/user_guides/popeye-

simons.html.
[105] https://github.com/PrincetonUniversity/Athena-Cversion.
[106] M. Ablowitz and B. Prinari, Nonlinear Schrödinger systems:

Continuous and discrete, Scholarpedia 3, 5561 (2008).
[107] G. Berkolaiko and P. Kuchment, Introduction to Quan-

tum Graphs (American Mathematical Society, Providence,
2013).

[108] D. Noja, Nonlinear Schrödinger equation on graphs: Recent
results and open problems, Philos. Trans. R. Soc., A 372,
20130002 (2013).

[109] S. A. Orszag and C. M. Tang, Small-scale structure of
two-dimensional magnetohydrodynamic turbulence, J. Fluid
Mech. 90, 129 (1979).

[110] J. M. Stone, T. A. Gardiner, P. Teuben, J. F. Hawley, and
J. B. Simon, Athena: A new code for astrophysical MHD,
Astrophys. J. Suppl. Ser. 178, 137 (2008).

[111] K. G. Felker and J. M. Stone, A fourth-order accurate finite
volume method for ideal MHD via upwind constrained trans-
port, J. Comput. Phys. 375, 1365 (2018).

[112] D. Lee and A. E. Deane, An unsplit staggered mesh scheme for
multidimensional magnetohydrodynamics, J. Comput. Phys.
228, 952 (2009).

[113] T. S. Tricco, D. J. Price, and M. R. Bate, Constrained hyper-
bolic divergence cleaning in smoothed particle magnetohydro-
dynamics with variable cleaning speeds, J. Comput. Phys. 322,
326 (2016).

[114] P. Mocz, Correspondence between constrained transport
and vector potential methods for magnetohydrodynamics,
J. Comput. Phys. 328, 221 (2017).

[115] D. R. Durran, Improving the anelastic approximation,
J. Atmos. Sci. 46, 1453 (1989).

[116] G. M. Vasil, D. Lecoanet, B. P. Brown, T. S. Wood, and E. G.
Zweibel, Energy conservation and gravity waves in sound-
proof treatments of stellar interiors. II. Lagrangian constrained
analysis, Astrophys. J. 773, 169 (2013).

[117] G. P. Zank and W. H. Matthaeus, The equations of reduced
magnetohydrodynamics, J. Plasma Phys. 48, 85 (1992).

[118] C. S. Ng, L. Lin, and A. Bhattacharjee, High-lundquist number
scaling in three-dimensional simulations of parker’s model of
coronal heating, Astrophys. J. 747, 109 (2012).

[119] G. P. Chini, K. Julien, and E. Knobloch, An asymptotically
reduced model of turbulent Langmuir circulation, Geophys.
Astrophys. Fluid Dyn. 103, 179 (2009).

[120] Z. Malecha, G. Chini, and K. Julien, A multiscale algorithm
for simulating spatially-extended Langmuir circulation dy-
namics, J. Comput. Phys. 271, 131 (2014).

[121] G. L. Wagner, G. Ferrando, and W. R. Young, An asymp-
totic model for the propagation of oceanic internal tides
through quasi-geostrophic flow, J. Fluid Mech. 828, 779
(2017).

[122] G. L. Wagner and W. R. Young, A three-component model for
the coupled evolution of near-inertial waves, quasi-geostrophic
flow and the near-inertial second harmonic, J. Fluid Mech.
802, 806 (2016).

[123] G. L. Wagner and W. R. Young, Available potential vorticity
and wave-averaged quasi-geostrophic flow, J. Fluid Mech.
785, 401 (2015).

[124] K. Julien, E. Knobloch, and J. Werne, A new class of equations
for rotationally constrained flows, Theor. Comput. Fluid Dyn.
11, 251 (1998).

[125] K. Julien, E. Knobloch, R. Milliff, and J. Werne, Generalized
quasi-geostrophy for spatially anisotropic rotationally con-
strained flows, J. Fluid Mech. 555, 233 (2006).

[126] K. Julien, J. M. Aurnou, M. A. Calkins, E. Knobloch, P.
Marti, S. Stellmach, and G. M. Vasil, A nonlinear model
for rotationally constrained convection with Ekman pumping,
J. Fluid Mech. 798, 50 (2016).

[127] K. Julien, E. Knobloch, A. M. Rubio, and G. M. Vasil, Heat
Transport in Low-Rossby-Number Rayleigh-Bénard Convec-
tion, Phys. Rev. Lett. 109, 254503 (2012).

[128] M. Plumley, K. Julien, P. Marti, and S. Stellmach, The effects
of Ekman pumping on quasi-geostrophic Rayleigh-Bénard
convection, J. Fluid Mech. 803, 51 (2016).

[129] J. G. Charney and N. A. Phillips, Numerical integration of
the quasi-geostrophic equations for barotropic and simple
baroclinic flows, J. Atmos. Sci. 10, 71 (1953).

[130] N. A. Phillips, The general circulation of the atmosphere:
A numerical experiment, Q. J. R. Meteorol. Soc. 82, 123
(1956).

[131] W. R. Holland and P. B. Rhines, An example of eddy-
induced ocean circulation, J. Phys. Oceanogr. 10, 1010
(1980).

[132] R. Salmon, Baroclinic instability and geostrophic turbulence,
Geophys. Astrophys. Fluid Dyn. 15, 167 (2006).

[133] J. C. McWilliams, J. B. Weiss, and I. Yavneh, Anisotropy
and coherent vortex structures in planetary turbulence, Science
264, 410 (1994).

[134] A. Vallgren and E. Lindborg, Charney isotropy and equiparti-
tion in quasi-geostrophic turbulence, J. Fluid Mech. 656, 448
(2010).

[135] R. Tulloch and K. S. Smith, A note on the numerical repre-
sentation of surface dynamics in quasigeostrophic turbulence:
Application to the nonlinear eady model, J. Atmos. Sci. 66,
1063 (2009).

[136] S. Stellmach, M. Lischper, K. Julien, G. Vasil, J. S. Cheng,
A. Ribeiro, E. M. King, and J. M. Aurnou, Approaching the
Asymptotic Regime of Rapidly Rotating Convection: Bound-
ary Layers versus Interior Dynamics, Phys. Rev. Lett. 113,
254501 (2014).

[137] M. Watwood, I. Grooms, K. A. Julien, and K. S.
Smith, Energy-conserving Galerkin approximations for quasi-
geostrophic dynamics, J. Comput. Phys. 388, 23 (2019).

023068-38

http://arxiv.org/abs/arXiv:1801.08200
http://dedalus-project.org/citations/
http://global-sci.org/intro/article_detail/jcm/8663.html
https://doi.org/10.1016/S0168-9274(97)00056-1
https://doi.org/10.1016/S0168-9274(97)00056-1
https://doi.org/10.1016/S0168-9274(97)00056-1
https://doi.org/10.1016/S0168-9274(97)00056-1
https://doi.org/10.1017/S0022112005008499
https://doi.org/10.1017/S0022112005008499
https://doi.org/10.1017/S0022112005008499
https://doi.org/10.1017/S0022112005008499
https://github.com/DedalusProject/methods_paper_examples
http://dedalus-project.org/gallery/
https://github.com/DedalusProject/dedalus_scaling
https://www.sdsc.edu/support/user_guides/popeye-simons.html
https://github.com/PrincetonUniversity/Athena-Cversion
https://doi.org/10.4249/scholarpedia.5561
https://doi.org/10.4249/scholarpedia.5561
https://doi.org/10.4249/scholarpedia.5561
https://doi.org/10.4249/scholarpedia.5561
https://doi.org/10.1098/rsta.2013.0002
https://doi.org/10.1098/rsta.2013.0002
https://doi.org/10.1098/rsta.2013.0002
https://doi.org/10.1098/rsta.2013.0002
https://doi.org/10.1017/S002211207900210X
https://doi.org/10.1017/S002211207900210X
https://doi.org/10.1017/S002211207900210X
https://doi.org/10.1017/S002211207900210X
https://doi.org/10.1086/588755
https://doi.org/10.1086/588755
https://doi.org/10.1086/588755
https://doi.org/10.1086/588755
https://doi.org/10.1016/j.jcp.2018.08.025
https://doi.org/10.1016/j.jcp.2018.08.025
https://doi.org/10.1016/j.jcp.2018.08.025
https://doi.org/10.1016/j.jcp.2018.08.025
https://doi.org/10.1016/j.jcp.2008.08.026
https://doi.org/10.1016/j.jcp.2008.08.026
https://doi.org/10.1016/j.jcp.2008.08.026
https://doi.org/10.1016/j.jcp.2008.08.026
https://doi.org/10.1016/j.jcp.2016.06.053
https://doi.org/10.1016/j.jcp.2016.06.053
https://doi.org/10.1016/j.jcp.2016.06.053
https://doi.org/10.1016/j.jcp.2016.06.053
https://doi.org/10.1016/j.jcp.2016.09.059
https://doi.org/10.1016/j.jcp.2016.09.059
https://doi.org/10.1016/j.jcp.2016.09.059
https://doi.org/10.1016/j.jcp.2016.09.059
https://doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2
https://doi.org/10.1088/0004-637X/773/2/169
https://doi.org/10.1088/0004-637X/773/2/169
https://doi.org/10.1088/0004-637X/773/2/169
https://doi.org/10.1088/0004-637X/773/2/169
https://doi.org/10.1017/S002237780001638X
https://doi.org/10.1017/S002237780001638X
https://doi.org/10.1017/S002237780001638X
https://doi.org/10.1017/S002237780001638X
https://doi.org/10.1088/0004-637X/747/2/109
https://doi.org/10.1088/0004-637X/747/2/109
https://doi.org/10.1088/0004-637X/747/2/109
https://doi.org/10.1088/0004-637X/747/2/109
https://doi.org/10.1080/03091920802622236
https://doi.org/10.1080/03091920802622236
https://doi.org/10.1080/03091920802622236
https://doi.org/10.1080/03091920802622236
https://doi.org/10.1016/j.jcp.2013.07.003
https://doi.org/10.1016/j.jcp.2013.07.003
https://doi.org/10.1016/j.jcp.2013.07.003
https://doi.org/10.1016/j.jcp.2013.07.003
https://doi.org/10.1017/jfm.2017.509
https://doi.org/10.1017/jfm.2017.509
https://doi.org/10.1017/jfm.2017.509
https://doi.org/10.1017/jfm.2017.509
https://doi.org/10.1017/jfm.2016.487
https://doi.org/10.1017/jfm.2016.487
https://doi.org/10.1017/jfm.2016.487
https://doi.org/10.1017/jfm.2016.487
https://doi.org/10.1017/jfm.2015.626
https://doi.org/10.1017/jfm.2015.626
https://doi.org/10.1017/jfm.2015.626
https://doi.org/10.1017/jfm.2015.626
https://doi.org/10.1007/s001620050092
https://doi.org/10.1007/s001620050092
https://doi.org/10.1007/s001620050092
https://doi.org/10.1007/s001620050092
https://doi.org/10.1017/S0022112006008949
https://doi.org/10.1017/S0022112006008949
https://doi.org/10.1017/S0022112006008949
https://doi.org/10.1017/S0022112006008949
https://doi.org/10.1017/jfm.2016.225
https://doi.org/10.1017/jfm.2016.225
https://doi.org/10.1017/jfm.2016.225
https://doi.org/10.1017/jfm.2016.225
https://doi.org/10.1103/PhysRevLett.109.254503
https://doi.org/10.1103/PhysRevLett.109.254503
https://doi.org/10.1103/PhysRevLett.109.254503
https://doi.org/10.1103/PhysRevLett.109.254503
https://doi.org/10.1017/jfm.2016.452
https://doi.org/10.1017/jfm.2016.452
https://doi.org/10.1017/jfm.2016.452
https://doi.org/10.1017/jfm.2016.452
https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2
https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2
https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2
https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2
https://doi.org/10.1002/qj.49708235202
https://doi.org/10.1002/qj.49708235202
https://doi.org/10.1002/qj.49708235202
https://doi.org/10.1002/qj.49708235202
https://doi.org/10.1175/1520-0485(1980)010<1010:AEOEIO>2.0.CO;2
https://doi.org/10.1175/1520-0485(1980)010<1010:AEOEIO>2.0.CO;2
https://doi.org/10.1175/1520-0485(1980)010<1010:AEOEIO>2.0.CO;2
https://doi.org/10.1175/1520-0485(1980)010<1010:AEOEIO>2.0.CO;2
https://doi.org/10.1080/03091928008241178
https://doi.org/10.1080/03091928008241178
https://doi.org/10.1080/03091928008241178
https://doi.org/10.1080/03091928008241178
https://doi.org/10.1126/science.264.5157.410
https://doi.org/10.1126/science.264.5157.410
https://doi.org/10.1126/science.264.5157.410
https://doi.org/10.1126/science.264.5157.410
https://doi.org/10.1017/S0022112010002703
https://doi.org/10.1017/S0022112010002703
https://doi.org/10.1017/S0022112010002703
https://doi.org/10.1017/S0022112010002703
https://doi.org/10.1175/2008JAS2921.1
https://doi.org/10.1175/2008JAS2921.1
https://doi.org/10.1175/2008JAS2921.1
https://doi.org/10.1175/2008JAS2921.1
https://doi.org/10.1103/PhysRevLett.113.254501
https://doi.org/10.1103/PhysRevLett.113.254501
https://doi.org/10.1103/PhysRevLett.113.254501
https://doi.org/10.1103/PhysRevLett.113.254501
https://doi.org/10.1016/j.jcp.2019.03.029
https://doi.org/10.1016/j.jcp.2019.03.029
https://doi.org/10.1016/j.jcp.2019.03.029
https://doi.org/10.1016/j.jcp.2019.03.029

DEDALUS: A FLEXIBLE FRAMEWORK FOR NUMERICAL … PHYSICAL REVIEW RESEARCH 2, 023068 (2020)

[138] J. L. Aurentz and R. Mikael Slevinsky, On symmetrizing the
ultraspherical spectral method for self-adjoint problems, J.
Comput. Phys. 410, 109383 (2020).

[139] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics (Cam-
bridge University Press, Cambridge, 2006).

[140] E. Fonda and K. R. Sreenivasan, Unmixing demonstration
with a twist: A photochromic Taylor-Couette device, Am. J.
Phys. 85, 796 (2017).

[141] D. Mihalas and B. Weibel Mihalas, Foundations of Ra-
diation Hydrodynamics (Oxford University Press, Oxford,
1984).

[142] J. I. Castor, Radiation Hydrodynamics (Cambridge University
Press, Cambridge, 2007).

[143] Y.-F. Jiang, J. M. Stone, and S. W. Davis, A godunov method
for multidimensional radiation magnetohydrodynamics based
on a variable eddington tensor, Astrophys. J. Suppl. 199, 14
(2012).

[144] Y.-F. Jiang, M. Cantiello, L. Bildsten, E. Quataert, and O.
Blaes, Local radiation hydrodynamic simulations of massive

star envelopes at the iron opacity peak, Astrophys. J. 813, 74
(2015).

[145] A. Brandenburg, Stellar mixing length theory with entropy
rain, Astrophys. J. 832, 6 (2016).

[146] A. Barekat and A. Brandenburg, Near-polytropic stellar simu-
lations with a radiative surface, Astron. Astrophys. 571, A68
(2014).

[147] B. W. Hindman and E. G. Zweibel, The effects of a hot outer
atmosphere on acoustic-gravity waves, Astrophys. J. 436, 929
(1994).

[148] https://github.com/DedalusProject/eigentools.
[149] M. D. Simon and A. K. Geim, Diamagnetic levitation: Flying

frogs and floating magnets (invited), J. Appl. Phys. 87, 6200
(2000).

[150] D. J. Acheson, Instability by magnetic buoyancy, Sol. Phys.
62, 23 (1979).

[151] G. M. Vasil and N. H. Brummell, Magnetic buoyancy insta-
bilities of a shear-generated magnetic layer, Astrophys. J. 686,
709 (2008).

023068-39

https://doi.org/10.1016/j.jcp.2020.109383
https://doi.org/10.1016/j.jcp.2020.109383
https://doi.org/10.1016/j.jcp.2020.109383
https://doi.org/10.1016/j.jcp.2020.109383
https://doi.org/10.1119/1.4996901
https://doi.org/10.1119/1.4996901
https://doi.org/10.1119/1.4996901
https://doi.org/10.1119/1.4996901
https://doi.org/10.1088/0067-0049/199/1/14
https://doi.org/10.1088/0067-0049/199/1/14
https://doi.org/10.1088/0067-0049/199/1/14
https://doi.org/10.1088/0067-0049/199/1/14
https://doi.org/10.1088/0004-637X/813/1/74
https://doi.org/10.1088/0004-637X/813/1/74
https://doi.org/10.1088/0004-637X/813/1/74
https://doi.org/10.1088/0004-637X/813/1/74
https://doi.org/10.3847/0004-637X/832/1/6
https://doi.org/10.3847/0004-637X/832/1/6
https://doi.org/10.3847/0004-637X/832/1/6
https://doi.org/10.3847/0004-637X/832/1/6
https://doi.org/10.1051/0004-6361/201322461
https://doi.org/10.1051/0004-6361/201322461
https://doi.org/10.1051/0004-6361/201322461
https://doi.org/10.1051/0004-6361/201322461
https://doi.org/10.1086/174968
https://doi.org/10.1086/174968
https://doi.org/10.1086/174968
https://doi.org/10.1086/174968
https://github.com/DedalusProject/eigentools
https://doi.org/10.1063/1.372654
https://doi.org/10.1063/1.372654
https://doi.org/10.1063/1.372654
https://doi.org/10.1063/1.372654
https://doi.org/10.1007/BF00150129
https://doi.org/10.1007/BF00150129
https://doi.org/10.1007/BF00150129
https://doi.org/10.1007/BF00150129
https://doi.org/10.1086/591144
https://doi.org/10.1086/591144
https://doi.org/10.1086/591144
https://doi.org/10.1086/591144

