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Chapter 1

Nonlinear Equations of the
Atmospheric and the Oceanic Motions

There are usually two methods for predicting long-term weather and cli-

mate. First, by statistical methods, we can use the current climate, the his-

torical record and numerical analysis to predict the future climate and the

possible global climatic changes. Second, because air is compressible, and

seawater is incompressible, by dynamical methods, we consider that the fu-

ture status of climate is a consequence determined by the current status and

the physical principles dominating these changes, thus we study equations

and models describing the atmospheric and oceanic motions. Regarding

weather prediction as an initial-boundary value problem in mathematical

physics, we can establish numerical weather prediction models based on

mathematical physical equation.

Numerical weather prediction is an outstanding applied research

achievement of atmospheric science in the 20th century, of which theoretical

foundation is the atmospheric dynamics. In 1922, Richardson introduced

the concept of numerical weather prediction for the first time ([183]). His

idea is that through solving the complete primitive equations governing the

atmosphere motions numerically, one can simulate the evolution process

of atmosphere, thus may predict weather quantitatively. Due to the weak

calculation ability at that time, the dream of numerical weather prediction

did not exist. Applying the long-wave theory and the scale-analysis the-

ory established by Rossby and others, Charney set up a two-dimensional

geostrophic model. With this model, he and his collaborators successfully

made true 24-hour numerical weather prediction on the ENIAV computer

of the Institute for Advanced Studies in Princeton for the first time. Along

with the boom of atmosphere science and the enhancing of data dealing

ability and numerical calculation ability of computer, researchers turn to

numerical weather prediction by the primitive equation models from 1960s
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([112,147,181,218]), greatly extend the time-range of numerical weather pre-

diction. Afterward researchers started to make long-term numerical weather

prediction, climate forecasting and numerical simulation of atmospheric cir-

culation by some primitive equation models of the atmosphere and oceans.

To actualize long-term numerical weather prediction, climate predic-

tion and numerical simulation of atmospheric circulation based on physical

methods, the first thing is to establish some atmospheric and oceanic dy-

namical models, which are the nonlinear partial differential equations with

initial-boundary value conditions which govern the atmospheric and ocean-

ic motion. In this chapter, we mainly present basic and primitive equations

and their boundary conditions which govern the atmospheric and oceanic

motion. For more detail see [220], and also [84,145,162,205,211].

1.1 Basic Equations of the Atmospheric and the Oceanic

Motions

1.1.1 Basic Equations of the Atmosphere

Regarding air and seawater as continuous media, one can use the Euler

method to describe the atmospheric and oceanic motions. In the inertial

coordinate frame (the coordinate axis is fixed with respect to the stellar),

according to the Newton second law, the momentum conservation equation

of the atmosphere is given by

dIV I

dt
= −1

ρ
grad3p+ gI +D,

where V I is the absolute velocity of the atmosphere (velocity in the inertial

coordinate frame),
dIV I

dt
=
∂V I

∂t
+(V I ·∇3)V I is the absolute acceleration

(acceleration in the inertial coordinate frame), ρ is the density of air, p is

the atmospheric pressure, −1

ρ
grad3p is the pressure-gradient force, gI is

the gravity, and D is a molecular viscous force (molecular friction force,

dissipative force), which is a dissipative force caused by air internal friction

or turbulent momentum transmission.

In general, researchers are concerned with the relative motions of the

atmosphere to the earth. So taking a coordinate frame rotating together

with the earth as a reference frame, researchers can observe atmospher-

ic relative motions. Suppose that the angular velocity of rotation in the
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rotating coordinate frame is Ω (that is the rotational angular velocity of

the earth), V is the atmospheric relative velocity,
dV

dt
is the atmospheric

relative acceleration in the rotating coordinate frame, then

V I = V + Ω× r,

dIV I

dt
=

dV I

dt
+ Ω× V I ,

where r is the radius vector. The proof of the second equation above ap-

pears in section 1.5 in [172]. According to the previous three equations,

we get in the rotating coordinate frame the atmospheric momentum

conservation equation

dV

dt
= −1

ρ
grad3p+ g − 2Ω× V +D, (1.1.1)

where g = gI + Ω2r is commonly referred to gravity (Ω is the value of the

earth rotation angular velocity), −2Ω× V is the Coriolis force, Ω2r is the

inertial centrifugal force,

d

dt
=

∂

∂t
+ V ·∇3

is the substantial derivative (often called the total derivative).

According to the mass conservation law, the continuity equation is

given by

dρ

dt
+ ρdiv3V = 0. (1.1.2)

In general, when describing large-scale motions of the troposphere and

the stratosphere, one may consider dry air as ideal gas, and can get the

atmospheric state equation

p = RρT, (1.1.3)

where the vaporation in the atmosphere is negligible, T means the temper-

ature absolute term of the atmosphere, and R = 287 J·kg−1K−1 is a gas

constant of dry air.

According to the first law of thermodynamics, the atmospheric ther-

modynamic equation is given by

cv
dT

dt
+ p

d 1
ρ

dt
=

dQ

dt
,
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where cv = 718 J·kg−1K−1, and
dQ

dt
is the quantity of heat per unit mass

of air obtained from external environment per unit time. Applying (1.1.3),

we have

R
dT

dt
=

dpρ
dt

=
1

ρ

dp

dt
+ p

d 1
ρ

dt
=
RT

p

dp

dt
+ p

d 1
ρ

dt
.

Combining the above two equations together, we get

cp
dT

dt
− RT

p

dp

dt
=

dQ

dt
, (1.1.4)

where cp = cv +R is specific heat at constant pressure.

Equations (1.1.1)-(1.1.4) are called the fundamental equations of

dry air, where the unknown functions are V , ρ, p, and T in these equations.

If D and
dQ

dt
are fixed, equations (1.1.1)-(1.1.4) are self-closed.

When one has to consider vaporation in the air, the moist air state

equation is

p = RρT (1 + cq), (1.1.5)

where q =
ρ1

ρ
is the mixing ratio of water vapor in the air, and ρ1 is

the density of water vapor in the air. Here, c represents positive constant

varying with context. c = 0.618 in (1.1.5). The thermodynamic equation

of the moist atmosphere is

cp
dT

dt
− RT (1 + cq)

p

dp

dt
=

dQ

dt
, (1.1.6)

the conservation equation of the water vapor in the air is

dq

dt
=

1

ρ
W1 +W2, (1.1.7)

where W1 is the condensation ratio of steam per unit volume, and W2 is

the volume change ratio of unit mass steam due to horizontal and verti-

cal diffusions. Equations (1.1.1), (1.1.2) and (1.1.5)-(1.1.7) are called the

equations of the moist atmospheric.

1.1.2 Basic Equations of the Oceans

Suppose that there are massless source-sinks within the oceans. In the

rotating coordinate frame, the equations of oceans consist of the following

equations:
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the momentum conservation equation

ρ
dV

dt
= −grad3p+ ρg − 2ρΩ× V +D,

the continuity equation
dρ

dt
+ ρdiv3V = 0,

the state equation

ρ = f(T, S, p),

the thermodynamic equation
dT

dt
= Q1,

and the salinity conservation equation
dS

dt
= Q2,

where S is salinity, Q1 is the heat source per unit mass seawater derive from

the external environment in unit time, and Q2 is the salt source per unit

mass seawater derive from the external environment in unit time.

Since the equations above are too complex, one has to do some simplifi-

cation. Generally, one takes Boussinesq approximation, that is, consider

ρ in ρg and the state equation as unknown function, but ρ in other position

as constant ρ0. Moreover, we use the following approximation equation to

replace the above state equation

ρ = ρ0[1− βT (T − T0) + βS(S − S0)],

where βT and βS are positive constants, and T0, S0 are the reference values

of temperature and salinity, respectively. Thus, we get the equations of

oceans as

ρ0
dV

dt
= −grad3p+ ρg − 2ρ0Ω× V +D, (1.1.8)

div3V = 0, (1.1.9)

ρ = ρ0[1− βT (T − T0) + βS(S − S0)], (1.1.10)

dT

dt
= Q1, (1.1.11)

dS

dt
= Q2. (1.1.12)

Remark 1.1.1. State equation (1.1.10) is an empirical equation, which

appears in [212]. The more general form is

ρ = ρ0

[
1− βT (T − T0) + βS(S − S0) +

p

ρ0c2s

]
,

where cs is a positive constant, and this equation appears in section 2.4.1

of [205].
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1.2 Equations of the Atmosphere and the Oceans in the

Sphere Coordinate Frame

1.2.1 Equations of the Atmosphere in the Sphere Coordi-

nate Frame

The atmosphere moves on the rotating earth surface. To study the relative

motion of the atmosphere, assuming that the earth surface is simulated by

a sphere surface, we discuss the atmosphere motion in spherical coordinate

system.

Let’s deduce the basic atmospheric equations in spherical coordinate

frame. Setting the center of earth as the origin of the spherical coordinate,

θ(0 ≤ θ ≤ π) denotes the co-latitude of earth (it mutually complement to

latitude), ϕ(0 ≤ ϕ ≤ 2π) denotes the longitude of earth, r denotes the

distance between the center and point on the surface of the earth, eθ, eϕ
and er are the unit vectors in the directions of θ, ϕ, r respectively, eθ tends

to the south along the longitude, eϕ tends to the east along the latitude, and

er tends outward along the radius. Using differential geometry symbols, we

have

eθ =
1

r

∂

∂θ
, eϕ =

1

r sin θ

∂

∂ϕ
, er =

∂

∂r
.

According to the definition of velocity, the air velocity V is expressed as

V = vθeθ + vϕeϕ + vrer,

where

vθ = r
dθ

dt
= rθ̇, vϕ = r sin θ

dϕ

dt
= r sin θϕ̇, vr =

dr

dt
= ṙ.

In spherical coordinate frame, the substantial derivative of any vector F is

given by
dF

dt
= lim

∆t→0

1

∆t
[F (t+ ∆t, θ(t+ ∆t), ϕ(t+ ∆t), r(t+ ∆t))

−F (t, θ(t), ϕ(t), r(t))]

=

(
∂

∂t
+ θ̇

∂

∂θ
+ ϕ̇

∂

∂ϕ
+ ṙ

∂

∂r

)
F

=

(
∂

∂t
+
vθ
r

∂

∂θ
+

vϕ
r sin θ

∂

∂ϕ
+ vr

∂

∂r

)
F.

Since ∇3 = eθ
1

r

∂

∂θ
+ eϕ

1

r sin θ

∂

∂ϕ
+ er

∂

∂r
in spherical coordinate frame,

the substantial derivative in spherical coordinate frame is
d

dt
=

∂

∂t
+ V ·∇3.
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By direct calculation, we have

deθ
dt

=
vϕ cot θ

r
eϕ −

vθ
r
er,

deϕ
dt

= −vϕ cot θ

r
eθ −

vϕ
r
er,

der
dt

= −vϕ
r
eϕ +

vθ
r
eθ.

Angular velocity of earth rotation is given by Ω = −Ω sin θeθ + Ω cos θer,

so

−2Ω× V = 2Ω cos θvϕeθ + (−2Ω cos θvθ − 2Ω sin θvr)eϕ + 2Ω sin θvϕer.

Using

div3V = ∇3 · V =
1

r sin θ

∂vθ sin θ

∂θ
+

1

r sin θ

∂vϕ
∂ϕ

+
1

r2

∂r2vr
∂r

,

and

dV

dt
=

d(vθeθ + vϕeϕ + vrer)

dt

= eθ
dvθ
dt

+ eϕ
dvϕ
dt

+ er
dvr
dt

+ vθ
deθ
dt

+ vϕ
deϕ
dt

+ vr
der
dt

.

We rewrite equations (1.1.1)-(1.1.4) following the basic equations of atmo-

sphere in spherical coordinate frame

dvθ
dt

+
1

r
(vrvθ − v2

ϕ cot θ) = − 1

ρr

∂p

∂θ
+ 2Ω cos θvϕ +Dθ,

dvϕ
dt

+
1

r
(vrvϕ + vθvϕ cot θ) = − 1

ρr sin θ

∂p

∂ϕ
− 2Ω cos θvθ − 2Ω sin θvr +Dϕ,

dvr
dt
− 1

r
(v2
θ + v2

ϕ) = −1

ρ

∂p

∂r
− g + 2Ω sin θvϕ +Dr,

dρ

dt
+ ρ

(
1

r sin θ

∂vθ sin θ

∂θ
+

1

r sin θ

∂vϕ
∂ϕ

+
1

r2

∂r2vr
∂r

)
= 0,

cp
dT

dt
− RT

p

dp

dt
=

dQ

dt
,

p = RρT,

where D = (Dθ, Dϕ, Dr) is viscosity term.

Because the thickness of the atmospheric layer to be studied (about 120

kilometers) is far less than the radius of earth a ≈ 6, 371 kilometers, we use

a instead of previous r which appears as coefficient in the above equations.
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For the large-scale motions, the item
2vr
r

in the mass conservation equation

can be omitted. Thus we simplify the above equations as

dvθ
dt

+
1

a
(vrvθ − v2

ϕ cot θ) = − 1

ρa

∂p

∂θ
+ 2Ω cos θvϕ +Dθ, (1.2.1)

dvϕ
dt

+
1

a
(vrvϕ + vθvϕ cot θ) = − 1

ρa sin θ

∂p

∂ϕ
− 2Ω cos θvθ − 2Ω sin θvr +Dϕ,

(1.2.2)

dvr
dt
− 1

a
(v2
θ + v2

ϕ) = −1

ρ

∂p

∂r
− g + 2Ω sin θvϕ +Dr, (1.2.3)

dρ

dt
+ ρ

(
1

a sin θ

∂vθ sin θ

∂θ
+

1

a sin θ

∂vϕ
∂ϕ

+
∂vr
∂r

)
= 0, (1.2.4)

cp
dT

dt
− RT

p

dp

dt
=

dQ

dt
, (1.2.5)

p = RρT, (1.2.6)

where
d

dt
=

∂

∂t
+
vθ
a

∂

∂θ
+

vϕ
a sin θ

∂

∂ϕ
+ vr

∂

∂r
.

1.2.2 Equations of the Oceans in the Sphere Coordinate

Frame

Suppose that the velocity of seawater is V = (u, v, w), and u, v, w are the

velocity of seawater respectively in the direction of θ, ϕ, r. In spherical

coordinate frame, the equations of the oceans under Boussinesq approxi-

mation are
du

dt
+

1

a
(wu− v2 cot θ) = − 1

ρ0a

∂p

∂θ
+ 2Ω cos θv +Du, (1.2.7)

dv

dt
+

1

a
(wv + uv cot θ) = − 1

ρ0a sin θ

∂p

∂ϕ
− 2Ω cos θu− 2Ω sin θw +Dv,

(1.2.8)

dw

dt
− 1

a
(u2 + v2) = − 1

ρ0

∂p

∂r
− ρ

ρ0
g + 2Ω sin θv +Dw, (1.2.9)

1

a sin θ

∂u sin θ

∂θ
+

1

a sin θ

∂v

∂ϕ
+
∂w

∂r
= 0, (1.2.10)

ρ = ρ0[1− βT (T − T0) + βS(S − S0)], (1.2.11)

dT

dt
= Q1, (1.2.12)

dS

dt
= Q2, (1.2.13)
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where D = (Du, Dv, Dw) is viscosity term.

d

dt
=

∂

∂t
+
u

a

∂

∂θ
+

v

a sin θ

∂

∂ϕ
+ w

∂

∂r
.

1.3 Equations of the Atmosphere in Atmospheric Pressure

Coordinate Frame

The basic equations of atmosphere motions are so complicated that re-

searcher is not able to solve them numerically or theoretically at present.

Therefore, researchers have to omit the minor and medium scale factors,

and simplify the basic equations of atmosphere motions reasonably in order

to achieve numerical weather prediction. As the vertical scale of the atmo-

sphere is far smaller than horizontal scale, the most natural simplification

method is to adopt the hydrostatic approximation, that is, substituting

the hydrostatic equilibrium equation

∂p

∂r
= −ρg

for the vertical momentum conservation equation. The hydrostatic equi-

librium equation demonstrates the equilibrium relationship between the

vertical pressure-gradient force and the gravity. It’s in conformity with

the weather observation data of the large-scale atmosphere, and also the

theoretical analysis.

Here we use the scale analysis to interpret briefly the rationality of the

hydrostatic approximation. For large-scale atmosphere motions, the hori-

zontal characteristic length scale of the motion is L ≈ O(106), the vertical

characteristic length scale of the motion is D ≈ O(104), the characteristic

scale of horizontal velocity is U ≈ O(101), the characteristic scale of ver-

tical velocity is W ≈ O(10−2), Ω ≈ O(10−4), and the characteristic scale

of atmospheric pressure is P ≈ O(105). Thus we know, in the vertical mo-

mentum equation, except −1

ρ

∂p

∂r
≈ O(101), −g ≈ O(101), scale of other

terms is all less than O(10−3). So we can replace the vertical momentum

conservation equation by the hydrostatic equilibrium equation.

According to the hydrostatic equilibrium equation, we know that the

pressure p is a monotonic decreasing function of r, that is, the mapping

(θ, ϕ, r; t) → (θ, ϕ, p; t) is one-to-one. Thus, we substitute a pressure coor-

dinate system (θ, ϕ, p; t) (also called the isobaric surface coordinate frame)

for the coordinate frame (θ, ϕ, r; t). Introducing a new pressure coordinate
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frame (θ∗, ϕ∗, p; t∗), we have

t∗ = t, θ∗ = θ, ϕ∗ = ϕ, p = p(θ, ϕ, r; t).

Now, let’s deduce the form of the atmospheric equations in the new pressure

coordinate frame (θ∗, ϕ∗, p; t∗). Firstly, in the pressure coordinate frame,

the substantial derivative of any vector F is

dF

dt∗
=

(
∂

∂t∗
+ θ̇∗

∂

∂θ∗
+ ϕ̇∗

∂

∂ϕ∗
+ ṗ

∂

∂p

)
F

=

(
∂

∂t∗
+ θ̇

∂

∂θ∗
+ ϕ̇

∂

∂ϕ∗
+ ṗ

∂

∂p

)
F.

To obtain a new form of the momentum equation in the new pressure

coordinate frame, we only compute a new form of the force here. In mete-

orology, usually substitute height z = r − a for r, thus, the original coordi-

nate is expressed as a function of the new coordinates t = t∗, θ = θ∗, ϕ =

ϕ∗, z = r − a = z(θ∗, ϕ∗, p; t∗). So we have

p = p(θ, ϕ, a+ z(θ∗, ϕ∗, p; t∗); t).

Differentiating the above function with respect to the variable p, we have

1 =
∂̃p

∂̃r

∂r

∂p
=
∂̃p

∂̃r

∂z

∂p
,

where, to distinguish derivatives in the two coordinate frames, we use
∂̃p

∂̃r
to

indicate the derivative of p with respect to r in the original coordinate frame,
∂z

∂p
to indicate the derivative of z with respect of p in the new coordinates

frame. The following symbols in this section are defined similarly. Taking

differential quotient of θ∗ and ϕ∗ in the above relationship of p, we have

0 =
∂̃p

∂̃θ

∂θ

∂θ∗
+
∂̃p

∂̃r

∂r

∂θ∗
=
∂̃p

∂̃θ
+
∂̃p

∂̃r

∂r

∂θ∗
,

0 =
∂̃p

∂̃ϕ

∂ϕ

∂ϕ∗
+
∂̃p

∂̃r

∂r

∂ϕ∗
=
∂̃p

∂̃ϕ
+
∂̃p

∂̃r

∂r

∂ϕ∗
.

Combining the above two equations with the hydrostatic equilibrium equa-

tion, we obtain

− 1

ρa

∂̃p

∂̃θ
= −1

a

∂Φ

∂θ∗
, − 1

ρa sin θ

∂̃p

∂̃ϕ
= − 1

a sin θ∗
∂Φ

∂ϕ∗
,
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where Φ = gz is generally called the geopotential. With the equation

1 =
∂̃p

∂̃r

∂z

∂p
and the hydrostatic equilibrium equation, we have

p
∂Φ

∂p
= −RT.

Therefore, we get the new form of momentum equations in the new pressure

coordinate frame as follows
dvθ
dt∗
− 1

a
v2
ϕ cot θ∗ = −1

a

∂Φ

∂θ∗
+ 2Ω cos θ∗vϕ +Dθ, (1.3.1)

dvϕ
dt∗

+
1

a
vθvϕ cot θ∗ = − 1

a sin θ∗
∂Φ

∂ϕ∗
− 2Ω cos θ∗vθ +Dϕ, (1.3.2)

p
∂Φ

∂p
= −RT. (1.3.3)

According to the principle that Coriolis force does no work, we omit the

term −2Ω sin θ∗vr. Similarly, because the scale of vr is very small to the

large scale atmospheric motions, we also omit
1

a
vrvθ,

1

a
vrvϕ.

Next, let’s deduce a new form of the mass conservation equation in the

new pressure coordinate frame. According to the hydrostatic equilibrium

equation, we have ρ = −1

g

∂̃p

∂̃r
. Substituting this equality in (1.2.4), we have

d̃
∂̃p

∂̃r
d̃t

+
∂̃p

∂̃r

(
1

a sin θ

∂̃vθ sin θ

∂̃θ
+

1

a sin θ

∂̃vϕ

∂̃ϕ
+
∂̃vr

∂̃r

)
= 0. (1.3.4)

With the definition of substantial derivative in the original coordinate

d̃

d̃t
=

∂̃

∂̃t
+
vθ
a

∂̃

∂̃θ
+

vϕ
a sin θ

∂̃

∂̃ϕ
+ vr

∂̃

∂̃r
,

and

d̃p

d̃t
=
∂̃p

∂̃t
+
vθ
a

∂̃p

∂̃θ
+

vϕ
a sin θ

∂̃p

∂̃ϕ
+ vr

∂̃p

∂̃r
,

we obtain

d̃
∂̃p

∂̃r
d̃t

=
∂̃

d̃p

d̃t
∂̃r
− ∂̃vθ

∂̃r

∂̃p

a∂̃θ
− ∂̃vϕ

∂̃r

∂̃p

a sin θ∂̃ϕ
− ∂̃vr

∂̃r

∂̃p

∂̃r
. (1.3.5)

With the relationship between the pressure coordinate frame and the orig-

inal coordinate frame, we have

∂̃

∂̃r
=
∂̃p

∂̃r

∂

∂p
,
∂̃

∂̃θ
=

∂

∂θ∗
+
∂̃p

∂̃θ

∂

∂p
,
∂̃

∂̃ϕ
=

∂

∂ϕ∗
+
∂̃p

∂̃ϕ

∂

∂p
.
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Thus,

∂̃
d̃p

d̃t
∂̃r

=
∂̃ṗ

∂̃r
=
∂̃p

∂̃r

∂ṗ

∂p
,

− ∂̃vθ

∂̃r

∂̃p

a∂̃θ
+
∂̃p

∂̃r

∂̃vθ sin θ

a sin θ∂̃θ

= − ∂̃p
∂̃r

(
∂̃p

a∂̃θ

∂vθ
∂p
− ∂̃vθ sin θ

a sin θ∂̃θ

)

= − ∂̃p
∂̃r

[
∂̃p

a∂̃θ

∂vθ
∂p
− 1

a sin θ

(
∂

∂θ∗
+
∂̃p

∂̃θ

∂

∂p

)
vθ sin θ

]

=
∂̃p

∂̃r

(
∂vθ sin θ∗

a sin θ∗∂θ∗

)
,

− ∂̃vϕ

∂̃r

∂̃p

a sin θ∂̃ϕ
+
∂̃p

∂̃r

∂̃vϕ

a sin θ∂̃ϕ

= − ∂̃p
∂̃r

(
∂̃p

a sin θ∂̃ϕ

∂vϕ
∂p
− ∂̃vϕ

a sin θ∂̃ϕ

)

= − ∂̃p
∂̃r

[
∂̃p

a sin θ∂̃ϕ

∂vϕ
∂p
− 1

a sin θ

(
∂

∂ϕ∗
+
∂̃p

∂̃ϕ

∂

∂p

)
vϕ

]

=
∂̃p

∂̃r

(
∂vϕ

a sin θ∗∂ϕ∗

)
.

In the process of verifying the first equality, we have used the relationship

p =
d̃p

d̃t
=

dp

dt∗
. Combining the above three equations together, we deduce

the continuity equation in the pressure coordinate frame from (1.3.4) and

(1.3.5)

∂ṗ

∂p
+

1

a sin θ∗

(
∂vθ sin θ∗

∂θ∗
+
∂vϕ
∂ϕ∗

)
= 0, (1.3.6)

the thermodynamic equation in the pressure coordinate frame is

cp
dT

dt∗
− RT

p
ṗ =

dQ

dt∗
. (1.3.7)

The equations (1.3.1)-(1.3.3), (1.3.6) and (1.3.7) are known as the dry

atmospheric equations in pressure coordinate frame, where

d

dt∗
=

∂

∂t∗
+ θ̇∗

∂

∂θ∗
+ ϕ̇∗

∂

∂ϕ∗
+ ṗ

∂

∂p
.
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With definitions of the substantial derivative and the hydrostatic equi-

librium equation in pressure coordinate frame, we get the vertical velocity

given by

vr =
dr

dt
=

dz

dt
=

∂z

∂t∗
+ θ̇∗

∂z

∂θ∗
+ ϕ̇∗

∂z

∂ϕ∗
+ ṗ

∂z

∂p

=
∂z

∂t∗
+
vθ
a

∂z

∂θ∗
+

vϕ
a sinϕ∗

∂z

∂ϕ∗
+ ṗ

∂z

∂p

=
∂z

∂t∗
+
vθ
a

∂z

∂θ∗
+

vϕ
a sinϕ∗

∂z

∂ϕ∗
− ṗ

ρg
.

1.4 Equations of the Atmosphere in the Topography Coor-

dinate Frame

In the practical case, researchers sometimes need to consider the variation

of topography of the earth surface. As the earth surface is not an isobar-

ic surface in this situation, we usually can’t take the pressure coordinate

frame, otherwise it’s difficult to give a reasonable lower boundary condition.

Therefore, we take the following topography coordinate (θ, ϕ, π; t), that is

t = t∗, θ = θ∗, ϕ = ϕ∗, π = π

(
p

ps

)
,

where ps(θ
∗, ϕ∗; t∗) denotes pressure of the earth surface, and π is a strictly

monotonic function of
p

ps
. Here π(1) denotes the earth surface, and π(0)

denotes the upper boundary of atmosphere. Here, we suppose π = ζ =
p

ps
.

Then, let’s deduce the form in the new topography coordinate (θ, ϕ, ζ; t)

of the equations of the atmosphere in the pressure coordinate frame

(θ∗, ϕ∗, p; t∗), which appear in the above section. First, in the topography

coordinate frame, the substantial derivative of any vector F is

dF

dt
=

(
∂

∂t
+ θ̇

∂

∂θ
+ ϕ̇

∂

∂ϕ
+ ζ̇

∂

∂ζ

)
F =

(
∂

∂t
+ θ̇∗

∂

∂θ
+ ϕ̇∗

∂

∂ϕ
+ ζ̇

∂

∂ζ

)
F,

where

ζ̇ =
psṗ− pṗs

p2
s

.

Applying the relationship between the pressure coordinate frame and the

topography coordinate frame, we have

∂̄

∂̄p
=
∂̄ζ

∂̄p

∂

∂ζ
=

1

ps

∂

∂ζ
, (1.4.1)
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∂̄

∂̄θ∗
=

∂

∂θ
+

∂̄ζ

∂̄θ∗
∂

∂ζ
=

∂

∂θ
− ζ

ps

∂ps
∂θ

∂

∂ζ
, (1.4.2)

∂̄

∂̄ϕ∗
=

∂

∂ϕ
+

∂̄ζ

∂̄ϕ∗
∂

∂ζ
=

∂

∂ϕ
− ζ

ps

∂ps
∂ϕ

∂

∂ζ
. (1.4.3)

To distinguish derivatives in the two coordinate frames, we use here
∂̄ζ

∂̄p
to

denote the derivative of ζ with respect to p in the original coordinate,
∂

∂ζ
to denote in the new coordinate. The following symbols are defined in a

similar way. With (1.4.1) and equation p
∂Φ

∂p
= −RT , we get

ζ
∂Φ

∂ζ
= −RT. (1.4.4)

We obtain the momentum equation in the new topography coordinate

frame. Here we only give the form of the pressure-gradient force. Using

(1.4.2), (1.4.3) and (1.4.4), we have

−1

a

∂̄Φ

∂̄θ∗
= − ∂Φ

a∂θ
+

ζ

aps

∂ps
∂θ

∂Φ

∂ζ
= − ∂Φ

a∂θ
−RT
aps

∂ps
∂θ

,

− 1

a sin θ∗
∂̄Φ

∂̄ϕ∗
= − ∂Φ

a sin θ∂ϕ
+

ζ

a sin θps

∂ps
∂ϕ

∂Φ

∂ϕ
= − ∂Φ

a sin θ∂ϕ
− RT

a sin θps

∂ps
∂ϕ

.

According to the above two equations, we get the horizontal momentum

equation in the new topography coordinate frame as

dvθ
dt
− 1

a
v2
ϕ cot θ = −

(
∂Φ

a∂θ
+
RT

aps

∂ps
∂θ

)
+ 2Ω cos θvϕ +Dθ, (1.4.5)

dvϕ
dt

+
1

a
vθvϕ cot θ = −

(
∂Φ

a sin θ∂ϕ
+

RT

a sin θps

∂ps
∂ϕ

)
− 2Ω cos θvθ +Dϕ.

(1.4.6)

Next, let’s deduce the mass conservation equation in the new topography

coordinate frame. With ζ̇ =
psṗ− pṗs

p2
s

, we have

ṗ = ζ̇ps + ζṗs.

Applying (1.4.1) and the above equation, we get

∂̄ṗ

∂̄p
=
∂̄ζ̇ps
∂̄p

+
∂̄ζṗs
∂̄p

=
∂ζ̇

∂ζ
+
ṗs
ps

+
ζ

ps

∂ṗs
∂ζ

. (1.4.7)
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With (1.4.2) and (1.4.3), we have

1

a sin θ∗

(
∂vθ sin θ∗

∂θ∗
+
∂vϕ
∂ϕ∗

)
=

1

a sin θ

[(
∂vθ sin θ

∂θ
− ζ

ps

∂ps
∂θ

∂vθ sin θ

∂ζ

)
+

(
∂vϕ
∂ϕ
− ζ

ps

∂ps
∂ϕ

∂vϕ
∂ζ

)]

=
1

a sin θ

(
∂vθ sin θ

∂θ
+
∂vϕ
∂ϕ

)
− ζ

a sin θps

(
∂ps
∂θ

∂vθ sin θ

∂ζ
+
∂ps
∂ϕ

∂vϕ
∂ζ

)
.

(1.4.8)

Since ps(θ
∗, ϕ∗; t∗) = ps(θ, ϕ; t), we get the following system by the defini-

tion of substantial derivative in the topography coordinate frame

ṗs =
∂ps
∂t

+
vθ
a

∂ps
∂θ

+
vϕ

a sin θ

∂ps
∂ϕ

, (1.4.9)

ζ

ps

∂ṗs
∂ζ

=
ζ

ps

(
∂ps
a∂θ

∂vθ
∂ζ

+
∂ps

a sin θ∂ϕ

∂vϕ
∂ζ

)
. (1.4.10)

Substituting (1.4.7) and (1.4.8) into (1.3.6), and applying (1.4.9) and

(1.4.10), we deduce the continuity equation in the new topography coor-

dinate frame as

∂ps
∂t

= −∂psζ̇
∂ζ
− 1

a sin θ

(
∂psvθ sin θ

∂θ
+
∂psvϕ
∂ϕ

)
. (1.4.11)

According to ṗ = ζ̇ps + ζṗs, we obtain the thermodynamic equation in the

new topography coordinate frame

cp
dT

dt
− RT

ζps
(ζ̇ps + ζṗs) =

dQ

dt
. (1.4.12)

We denote equations (1.4.4)-(1.4.6), (1.4.11) and (1.4.12) as the dry

atmospheric equations in topography coordinate frame, where

d

dt
=

∂

∂t
+ θ̇

∂

∂θ
+ ϕ̇

∂

∂ϕ
+ ζ̇

∂

∂ζ
=

∂

∂t
+
vθ
a

∂

∂θ
+

vϕ
a sin θ

∂

∂ϕ
+ ζ̇

∂

∂ζ
.

When studying the atmospheric motions below specific barometric alti-

tude (supposing the upper bound of atmospheric pressure is p = p0, where

p0 is a positive constant), researchers use the modified topography coordi-

nate frame (θ, ϕ, π; t), where

t = t∗, θ = θ∗, ϕ = ϕ∗, π = π(η), η =
p− p0

ps − p0
.

With the above methods, we can also deduce the atmospheric equations in

the modified topography coordinate frame.
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1.5 Equations of the Atmosphere and the Oceans in Local

Rectangular Coordinate Frame under β-Plane Approx-

imation

For the oceanic motions, researchers sometimes are concerned with some

local areas containing no polar region. One can simplify the local earth

surface into a flat plane, then choose the local rectangular coordinate frame.

In the same way, studying the properties of local atmospheric motions, we

can also choose local rectangular coordinate frame. Now let’s discuss the

oceanic equations in local rectangular coordinate frame.

Let O as a point on the sea level (its co-latitude is θ0), the forward

direction of x-axis point to the south, y-axis to the east, z-axis vertically

upward, ex, ey and ez in the three-coordinate direction of local rectangular

coordinate frame {O;x, y, z} are respectively unit constant vectors in x, y, z

axis directions. According to the definition of velocity, the velocity V is

expressed as

V = uex + vey + wez,

where

u =
dx

dt
, v =

dy

dt
, w =

dz

dt
.

In the local rectangular coordinate frame, the total derivative of any vector

F is

dF

dt

= lim
∆t→0

1

∆t
[F (t+ ∆t, x(t+ ∆t), y(t+ ∆t), z(t+ ∆t))− F (t, x(t), y(t), z(t))]

=

(
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z

)
F =

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
F.

As in the local rectangular coordinate frame, the gradient operator ∇3 =

ex
∂

∂x
+ey

∂

∂y
+ez

∂

∂z
, the total derivative in the local rectangular coordinate

frame is

d

dt
=

∂

∂t
+ V ·∇3.

To acquire the oceanic equations in the local rectangular coordinate

system, we have to find the approximate form of Coriolis force −2Ω×V in

the local rectangular coordinate frame. In the sphere coordinate frame,

−2Ω× V = 2Ω cos θveθ + (−2Ω cos θu− 2Ω sin θw)eϕ + 2Ω sin θver.
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Because 2Ω sin θw � 2Ω cos θu, 2Ω sin θv � g, in general situations,

one can omit 2Ω sin θw, 2Ω sin θv. Thus, we just have to find the ap-

proximate forms of 2Ω cos θv, 2Ω cos θu in the local rectangular coordinate

frame, that is, we should deal with the Coriolis parameter f = 2Ω cos θ.

Using the Taylor expansion of f = 2Ω cos θ at θ0, we get

f = 2Ω cos θ = 2Ω [cos θ0−(θ−θ0) sin θ0−(θ−θ0)2 cos θ0

2!
+(θ−θ0)3 sin θ0

3!
+···].

When θ − θ0 is small enough, there is

θ − θ0 ≈
x

a
,

where a is the earth radius. When
y

a
� 1, we take

f ≈ f0 = 2Ω cos θ0,

which means, the Coriolis parameter f can be considered as a constant.

So, when
y

a
< 1, and (

y

a
)2 � 1. So we can take

f ≈ 2Ω cos θ0 − x
2Ω sin θ0

a
= f0 − β0x.

Here β0 =
2Ω sin θ0

a
is the origin value of Rossby parameter β =

2Ω sin θ

a
in the local rectangular coordinate frame. The above equation is usually

called β-plane approximation. The Coriolis parameter can be considered as

a linear function of x in the local rectangular coordinate frame.

Remark 1.5.1. If O is a point on the sea level (its latitude is φ0 =
π

2
−θ0),

the forward direction of x-axis point to the east, y-axis to the north, z-axis

vertically upward, then the β-plane approximation is given by

f = 2Ω sinφ ≈ 2Ω sinφ0 + y
2Ω cosφ0

a
= f0 + β0y.

After taking Boussinesq approximation (except buoyancy term and den-

sity in the state equation, densities of other position are all considered con-

stant) and β-plane approximation, we get oceanic equations in the local

rectangular coordinate frame

du

dt
= − 1

ρ0

∂p

∂x
+ fβv +Du, (1.5.1)

dv

dt
= − 1

ρ0

∂p

∂y
− fβu+Dv, (1.5.2)

dw

dt
= − 1

ρ0

∂p

∂z
− ρ

ρ0
g +Dw, (1.5.3)
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∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1.5.4)

ρ = ρ0[1− βT (T − T0) + βS(S − S0)], (1.5.5)

dT

dt
= Q1, (1.5.6)

dS

dt
= Q2, (1.5.7)

where fβ = f0 − β0x, D = (Du, Dv, Dw) is the viscosity term, and

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
.

In the same way, one can obtain the equations of the dry atmosphere

(without hydrostatic approximation) in the local rectangular coordinate

frame
du

dt
= −1

ρ

∂p

∂x
+ fβv +Du, (1.5.8)

dv

dt
= −1

ρ

∂p

∂y
− fβu+Dv, (1.5.9)

dw

dt
= −1

ρ

∂p

∂z
− g +Dw, (1.5.10)

dρ

dt
+ ρ(

∂u

∂x
+
∂v

∂y
+
∂w

∂z
) = 0, (1.5.11)

p = RρT, (1.5.12)

cp
dT

dt
− RT

p

dp

dt
=

dQ

dt
, (1.5.13)

where fβ = f0 − β0x, D = (Du, Dv, Dw) is the viscosity term.

1.6 Equations of the Atmosphere and the Oceans under

Satification Approximation

The inhomogeneous heating of sun to earth causes noticeable density vari-

ance of the atmosphere and oceans, thus the density statification in the

atmosphere and oceans. One observational property of statification is that,

in general, the large-scale atmosphere and oceans are always gravity stable,

that is, the lighter fluids are always above the heavier fluids. The atmo-

spheric density is almost monotonic decreasing with the height, and the

ocean density is almost monotonic increasing with the depth. The exis-

tence of stable statification in the atmosphere and oceans, which results in
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the inhibition of vertical motion, contributes to the formation of the almost

horizontal motions.

Basing on the existence of stable statification in the atmosphere,

researchers can think that the large-scale atmospheric motions are

that the oscillations occur near the average state ((vθ, vϕ, ṗ,Φ, T ) =

(0, 0, 0, Φ̄(p), T̄ (p)), also called standard state), where Φ̄(p) and T̄ (p) satisfy

the hydrostatic equilibrium relationship, that is,

p
∂Φ̄(p)

∂p
= −RT̄ (p).

Next, let’s deduce the equations for perturbation states near the average

state (0, 0, 0, Φ̄(p), T̄ (p)) from (1.3.1)–(1.3.3), (1.3.6) and (1.3.7).

Suppose

(vθ, vϕ, ṗ) = (0 + v′θ, 0 + v′ϕ, 0 + ṗ′),

Φ = Φ̄(p) + Φ′, T = T̄ (p) + T ′.

The equations (1.3.1)-(1.3.3) and (1.3.6) are written as

dv′θ
dt
− 1

a
v′2ϕ cot θ∗ = −1

a

∂Φ′

∂θ∗
+ 2Ω cos θ∗v′ϕ +Dθ, (1.6.1)

dv′ϕ
dt

+
1

a
v′θv
′
ϕ cot θ∗ = − 1

a sin θ∗
∂Φ′

∂ϕ∗
− 2Ω cos θ∗v′θ +Dϕ, (1.6.2)

p
∂Φ′

∂p
= −RT ′, (1.6.3)

∂ṗ′

∂p
+

1

a sin θ∗

(
∂v′θ sin θ∗

∂θ∗
+
∂v′ϕ
∂ϕ∗

)
= 0. (1.6.4)

Substituting T = T̄ (p) + T ′ into equation (1.3.7), we have

cp
dT ′

dt
+ cp

∂T̄ (p)

∂p
ṗ− R(T̄ (p) + T ′)

p
ṗ =

dQ

dt
.

As |T − T ′| � p

Rṗ
, we take

R(T̄ (p) + T ′)

p
ṗ ≈ RT̄ (p)

p
ṗ. Thus

cp
dT ′

dt
+

(
cp
∂T̄ (p)

∂p
− RT̄ (p)

p

)
ṗ =

dQ

dt
.

If T̄ (p) satisfies R

(
RT̄ (p)

Cp
− p∂T̄ (p)

∂p

)
= C2, where C is a positive con-

stant, then

cp
dT ′

dt
− cpC

2

pR
ṗ =

dQ

dt
. (1.6.5)
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Getting rid of “′” and “∗”, introducing viscosity to the equation, and

letting
dQ

dt
= µ2∆T + ν2

∂

∂p
[(
gp

RT̄
)2 ∂T

∂p
] + F (θ, ϕ, p), we write equations

(1.6.1)-(1.6.5) as

∂v

∂t
+ ∇vv + ω

∂v

∂p
+ fk × v + gradΦ − µ1∆v − ν1

∂

∂p

[( gp
RT̄

)2 ∂v

∂p

]
= 0,

(1.6.6)

divv +
∂ω

∂p
= 0, (1.6.7)

∂Φ

∂p
+
bP

p
T = 0, (1.6.8)

R2

C2

(
∂T

∂t
+ ∇vT + ω

∂T

∂p

)
− R

p
ω − µ2∆T − ν2

∂

∂p

[( gp
RT̄

)2 ∂T

∂p

]
= F,

(1.6.9)

where ω = ṗ,

∇vṽ =

(
vθ
a

∂ṽθ
∂θ

+
vϕ

a sin θ

∂ṽθ
∂ϕ
− vϕṽϕ

a
cot θ

)
eθ

+

(
vθ
a

∂ṽϕ
∂θ

+
vϕ

a sin θ

∂ṽϕ
∂ϕ

+
vϕṽθ
a

cot θ

)
eϕ,

gradΦ =
∂Φ

a∂θ
eθ +

1

a sin θ

∂Φ

∂ϕ
eϕ,

∆v =

(
∆vθ −

2 cos θ

a2 sin2 θ

∂vϕ
∂ϕ
− vθ

a2 sin2 θ

)
eθ

+

(
∆vϕ +

2 cos θ

a2 sin2 θ

∂vθ
∂ϕ
− vϕ

a2 sin2 θ

)
eϕ,

divv = div (vθeθ + vϕeϕ) =
1

a sin θ

(
∂vθ sin θ

∂θ
+
∂vϕ
∂ϕ

)
,

∇vT =
vθ
a

∂T

∂θ
+

vϕ
a sin θ

∂T

∂ϕ
,

∆T =
1

a2 sin θ

[
∂

∂θ

(
sin θ

∂T

∂θ

)
+

1

sin θ

∂2T

∂ϕ2

]
,

where v = vθeθ + vϕeϕ, and ṽ = ṽθeθ + ṽϕeϕ. In the atmosphere science,

the equations (1.6.6)–(1.6.9) are also called the dry atmospheric primitive

equations.

For the ocean equations (1.5.1)-(1.5.7) in Boussinesq approximation,

ignoring salinity, taking ρ = ρ0[1− βT (T − T0)], and introducing viscosity,
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we have the following equations

du

dt
= − 1

ρ0

∂p

∂x
+ fβv + ν∆u,

dv

dt
= − 1

ρ0

∂p

∂y
− fβu+ ν∆v,

dw

dt
= − 1

ρ0

∂p

∂z
− ρ

ρ0
g + ν∆w,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

dρ

dt
= κ∆ρ.

(u, v, w, p, ρ) = (0, 0, 0, p̄(z), ρ̄(z)) is a solution of the above equations, which

is always denoted as an average state (or a standard state). Where p̄(z)

and ρ̄(z) satisfy the hydrostatic equilibrium relationship, that is,

∂p̄(z)

∂z
= −gρ̄(z).

Researchers can consider motions near the average state (0, 0, 0, p̄(z), ρ̄(z)).

Next, let’s deduce equations for motions perturbed near the average state

(0, 0, 0, p̄(z), ρ̄(z)). Supposing

(u, v, w) = (0 + u′, 0 + v′, 0 + w′), p = p̄(z) + p′, ρ = ρ̄(z) + ρ′,

we get the equations of oceans as follows

du′

dt
= − 1

ρ0

∂p′

∂x
+ fβv

′ + ν∆u′, (1.6.10)

dv′

dt
= − 1

ρ0

∂p′

∂y
− fβu′ + ν∆v′, (1.6.11)

dw′

dt
= − 1

ρ0

∂p′

∂z
− ρ′

ρ0
g + ν∆w′, (1.6.12)

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0, (1.6.13)

dρ′

dt
+

dρ̄

dz
w = κ∆ρ′ + κ

d2ρ̄

dz2
. (1.6.14)

If we take the static approximation, that is, substituting
∂P

′

∂Z
= ρ′g for

(1.6.12), and the equations (1.6.10)–(1.6.14) are called the ocean primitive

equations in the rectangular coordinate frame.
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1.7 Boundary Conditions

The atmospheric and oceanic motions can not only be described by the

equations listed above, but also are under the influence of boundary. So,

in this section we discuss the boundary conditions of the atmosphere and

oceans.

1.7.1 The Lower Boundary Conditions of the Atmosphere

In the pressure coordinate frame, if the lower interface of the atmosphere

p = P (the approximate value of earth surface, seen as a constant) is con-

sidered as ideal rigid body, and it is a material surface, then the normal

velocity of the air is zero, that is,

ṗ|p=P = 0. (1.7.1a)

In the same way, taking the spherical coordinate frame, and setting z =

r − a, z standing for the elevation, where a is the earth radius, we can

assume that the lower boundary condition of the atmosphere is

vr|z=0 = 0. (1.7.1b)

In the topography coordinate frame, the lower boundary condition of the

atmosphere is

ζ̇|ζ=1 = 0, (1.7.1c)

where ζ =
p

ps
. If the viscosity of the lower boundary surface p = P is

considered, then the velocity is zero, that is,

vθ|p=P = 0, vϕ|p=P = 0, ṗ|p=P = 0. (1.7.2a)

In the spherical coordinate frame, if the viscosity of the lower boundary

surface z = 0 is considered, then the lower boundary conditions of the

atmosphere are

vθ|z=0 = 0, vϕ|z=0 = 0, vr|z=0 = 0. (1.7.2b)

In the same way, in the topography coordinate frame, the lower boundary

conditions of the atmosphere are

vθ|ζ=1 = 0, vϕ|ζ=1 = 0, ζ̇|ζ=1 = 0. (1.7.2c)

(1.7.1a)-(1.7.2c) are generally called kinematic boundary conditions.
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In the local rectangular coordinate frame, if the vertical motion of the

lower boundary surface is caused by the force of landform z = h(x, y), then

the lower boundary condition is given by

w|z=h(x,y) =
dh

dt
= u

∂h

∂x
+ v

∂h

∂y
.

In the spherical coordinate frame, if the lower boundary surface is the sur-

face of the ocean, of which pressure is p0(θ, ϕ, t), then the lower boundary

condition of pressure p is given by

p(θ, ϕ, z, t)|z=0 = p0(θ, ϕ, t). (1.7.3a)

If the lower boundary surface has the topography hs(θ, ϕ), of which pressure

is ps(θ, ϕ, t), the lower boundary condition of pressure p is

p(θ, ϕ, z, t)|z=hs(θ,ϕ) = ps(θ, ϕ, t). (1.7.3b)

(1.7.3a) and (1.7.3b) are denoted as dynamic boundary conditions.

In the pressure coordinate frame, the thermodynamic condition of the

lower boundary surface p = P can be briefly written as

∂T

∂p
|p=P = −αs(T − Ts),

where αs is a parameter about turbulent thermal conductivity, which relies

on the properties of the lower surface, and Ts is the reference temperature

of the lower surface.

In the pressure coordinate frame, for Φ in (1.3.3), the geometrical con-

dition of the lower boundary surface is

Φ|p=P = Φs(θ, ϕ, t).

1.7.2 The Upper Boundary Conditions of the Atmosphere

First, in the real atmosphere, the upper boundary (z → +∞) should satisfy

lim
z→+∞

p = 0.

Second, since the total energy of vertical air column per unit section is

bounded, we get condition∫ +∞

0

(
v2
θ + v2

ϕ

2
+ cvT + gz

)
ρdz < +∞.

Thus,

ρv2
θ , ρv

2
ϕ, ρT, ρz → 0, as z → +∞. (1.7.4)
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(1.7.4) is generally called a physical boundary condition.

In the practical case, researchers always use homogeneous atmosphere

models, such as barotropic models (shallow water models), two-dimensional

quasi-geostrophic models and multi-dimensional quasi-geostrophic models.

In these models, researchers divide atmosphere into some layers, which are

incompressible homogeneous fluids, where the upper surface of each layer

is free surface, denoted by z = h(x, y, t) in the local rectangular coordinate

frame. The boundary condition on that free surface is given by

w|z=h =
dh

dt
=
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
,

where w is velocity in the direction of z, and u, v are respectively velocities

in the direction of x, y. For the interface of two layers z = h(x, y, t), the

boundary condition on the interface is given by

wi|z=h =
dh

dt
=
∂h

∂t
+ ui

∂h

∂x
+ vi

∂h

∂y
,

where i = 1, 2. This condition is called a kinematic condition of interface.

1.7.3 The Boundary Conditions of the Oceans

In the local rectangular coordinate frame, boundary conditions of the sea

level are given by

∂v

∂z
|z=0 = hτ, w|z=0 = 0, (1.7.5)

∂T

∂z
|z=0 = −α(T − T ∗), (1.7.6)

where v is the horizontal velocity, w denotes velocity in the direction of z,

h is the depth of ocean (supposed as constant), τ is the wind stress of the

sea level, and T ∗ is the sea water parameter temperature at the sea level.

The first equation of (1.7.5) indicates the effect of wind stress of the ocean

surface to the sea water, and (1.7.6) indicates the energy alternation at the

sea level. The boundary conditions of the lateral ocean can be written as

v · n = 0,
∂v

∂n
× n = 0, (1.7.7)

∂T

∂n
= 0. (1.7.8)

Here n denotes the external normal vector of the lateral ocean. (1.7.7)

indicates that the normal component of lateral horizontal velocity is zero,
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and horizontal velocity here is no-ship at the same time. (1.7.8) indicates

that there is no lateral heat flux. The boundary conditions of the bottom

ocean surface can be written as

∂v

∂z
|z=−h = 0, w|z=−h = 0,

∂T

∂z
= 0.


