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Dedication to Alan M. Turing, 1912–1954

In 1935 a twenty-three year old graduate student heard the lectures of
M.H.A. Newman at the University of Cambridge on Gödel’s incomplete-
ness theorem [1931] and on Hilbert’s Entscheidungsproblem (decision prob-
lem). Turing gave his solution to the incredulous Newman on April 15,
1936. Turing conceived his automatic machine (a-machine) as an idealized
typewriter with an infinite carriage, a reading head, and a very simple finite
program. He produced noncomputable real numbers, and showed that the
Hilbert’s decision problem has no algorithm. Turing [1936] then gave a con-
vincing demonstration that every effectively calculable function is Turing
computable. Turing’s extraordinary analysis of a computation process was
enthusiastically accepted by the other founders of the subject, Gödel, Kleene,
and Church. Later Turing [1939] proposed an oracle machine (o-machine)
which led to relative computability (Turing reducibility), the single most
important concept in computability theory and the one most relevant to
modern computing.

“That this really is the correct definition of mechanical com-
putability was established beyond any doubt by Turing.”

-Kurt Gödel 193? Notes in Gödel Nachlass [1935]
“ But I was completely convinced only by Turing’s paper.”

-Gödel: letter to Kreisel of May 1, 1968 [Sieg, 1994, p. 88].

“ . . . one [Turing] has for the first time succeeded in giving an
absolute definition of an interesting epistemological notion, i.e.,
one not depending on the formalism chosen.”

-Gödel, Princeton Bicentennial, [1946, p. 84].

“Turing’s computability is intrinsically persuasive” but “λ-definability
is not intrinsically persuasive” and “general recursiveness scarcely
so (its author Gödel being at the time not at all persuaded).”

-Stephen Cole Kleene [1981b, p. 49]

Of the three different notions: computability by a Turing ma-
chine, general recursiveness of Herbrand-Gödel-Kleene, and λ-definability,
“The first has the advantage of making the identification with ef-
fectiveness in the ordinary (not explicitly defined) sense evident
immediately—i.e., without the necessity of proving preliminary
theorems.”

-Alonzo Church, in his review [1937] of Turing [1936].



vi CONTENTS



Preface

The subtitle of this book, The Art of Classical Computability, emphasizes
three very important concepts: (1) computability (as opposed to recursion
or induction); (2) classical computability (algorithmic functions on certain
countable structures in the original sense of Turing and Post); and (3) the
art of computability: a skill to be practiced, but also important an esthetic
sense of beauty and taste in mathematics.

Classical Computability Theory

Classical computability theory is the theory of functions on the integers com-
putable by a finite procedure. This includes computability on many count-
able structures since they can be coded by integers. Computable functions
include the recursive functions of Gödel [1934], and the Turing machines
presented in Turing [1936], as well as the advances in the 1930’s by Church,
Kleene, and Post. Turing [1939, §4] very briefly suggested the concept of an
oracle Turing machine (o-machine), a kind of local Turing machine which
can access an external database, which Turing called an oracle. Computabil-
ity from a database is the model for much of our computing in the real world,
such as accessing the internet.

Post [1944] developed this into Turing reducibility (relative computabil-
ity) of a set B from a set A (written B ≤T A) if a Turing machine with A on
its oracle tape can compute B. Post [1948] defined the Turing degree of a set
A to be the collection of all sets Turing equivalent to A, i.e., coding exactly
the same information as A. This led to the important program of measuring
the information content not only of sets of integers, but of real numbers,
algebraic structures, models, and algorithmic complexity and Kolmogorov
complexity, and computable combinatorics such as Ramsey’s Theorem. Post
[1944] simultaneously developed the theory of computably enumerable (c.e.)
sets, those which can be effectively generated. The c.e. sets correspond to
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many problems in mathematics in number theory, finitely presented groups,
differential geometry and other areas.

The Art of Classical Computability

Mathematics is an art as well as a science. We use the word “art” in two
senses. First “art” means a skill or craft which can be acquired and improved
by practice. For example, Donald Knuth wrote The Art of Computer Pro-
gramming, a comprehensive monograph in several volumes on programming
algorithms and their analysis. Similarly, the present book is intended to
be a comprehensive treatment of the craft of computability in the sense of
knowledge, skill in solving problems, and presenting the solution in the most
comprehensible, elegant form. The sections have been rewritten over and
over in response to comments by hundreds of readers about what was clear
and what was not, so as to achieve the most elegant and easily understood
presentation.

However, in a larger sense this book is intended to develop the art of
computability as an artistic endeavor, and with appreciation of its math-
ematical beauty. It is not enough to state a valid theorem with a correct
proof. We must see a sense of beauty in how it relates to what came before,
what will come after, the definitions, why it is the right theorem, with the
right proof, in the right place.

One of the most famous art treasures is Michelangelo’s statue of David
displayed in the Accademia Gallery in Florence. The long aisle to approach
the statue is flanked with the statues of Michelangelo’s unfinished slaves
struggling as if to emerge from the block of marble. There are practically
no details, and yet they possess a weight and power beyond their physical
proportions. Michelangelo thought of himself, not as carving a statue, but
as seeing the figure within the marble and then chipping away the marble
to release it. The unfinished slaves are perhaps a more revealing example of
this talent than the finished statue of David.

Similarly, it was Alan Turing [1936] and [1939] who saw the figure of com-
putability in the marble more clearly than anyone else. Finding a formal
definition for effectively calculable functions was the first step, but demon-
strating that it captured computability was as much an artistic achieve-
ment as a purely mathematical one. Gödel himself had expressed doubt
that it would be possible to do so. The other researchers thought in terms
of mathematical formalisms like recursive functions, λ-definable functions,
and arithmetization of syntax. It was Turing who saw the computer itself
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in the marble, a simple intuitive device equipped with only a finite program
and using only a finite sequence of strokes at each stage in a finite compu-
tation, the vision closest to our modern computer. Even more remarkable,
Turing saw how to explicitly demonstrate that this mechanical device cap-
tured all effectively calculable processes. Gödel immediately recognized this
achievement in Turing and in no one else.

The first aim of this book is to present the craft of computability, but
the second and more important goal is to teach the reader to see the figure
inside the block of marble. It is to allow the reader to understand the nature
of a computable process, of a set which can be computably enumerated, of
the process by which one set B is computed relative to another set A, of a
method by which we measure the information content of a set, an algebraic
structure, or a model, and how we approximate these concepts at a finite
stage in a computable process.

The Mountaintop View

Understanding a mathematical book or paper or giving a paper or lecture
related to what Leo Harrington calls the mountaintop view. As an example,
suppose you are standing on the tenth floor of Evans Hall at the Berkeley
Department of Mathematics, looking west over the San Franciso Bay. Some-
one asks you how to drive from the Berkeley campus to San Francisco. You
do not give turn by turn instructions. You simply say: go west along Uni-
versity Avenue to the Bay; turn left on the Expressway; turn right on the
Bay Bridge; and you are in San Francisco. Similarly, to explain a compli-
cated mathematical paper you choose a small number of the most important
elements, stress these, and let the other parts fall into place. Adopting this
principle is closely tied to an artistic conception of the mathematical work,
since this method is most likely to communicate the mathematical beauty
to an audience.

Evolution of Terminology

The Term “Recursive”

When Dedekind [1888] proved that a definition by recursion uniquely defines
a function, he called it “definition by induction.” The term “recursive” arose
in the first half of the 1900’s. Hilbert [1904] used the term “rekurrent(e),”
and in [1923] he used “Rekursion”. Skolem in [1923] showed that many
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number-theoretic functions are primitive recursive, and he used “rekurri-
erend.” According to Gandy the term “recursive” was apparently first used
in English by Ramsey [1928].

The concept of recursion stems from the verb “recur,” “to return to a
place or status.” The primary mathematical meaning of recursive has al-
ways been “defined by induction,” as in §?? and §?? Scheme (V). Gödel
[1931] used the German “rekursiv” to mean what we now call “primitive
recursive,” which we shall define in §??. After Gödel [1934] “recursive” for-
mally meant “Herbrand-Gödel (general) recursive.” The advantage of the
Herbrand-Gödel definition of recursive function (§??) was that it encom-
passed recursion on an arbitrary number of arguments and allowed partial
functions which primitive recursion did not.

The Term “Computable”

The term “computable” appears much earlier in 1646 in English usage ac-
cording to the Oxford English Dictionary [O.E.D., 1989]. Both O.E.D.
and Webster’s Third International Dictionary [1993] give the definition of
“computable” as roughly synonymous with “calculable,” capable of being
ascertained or determined by a mathematical process especially of some in-
tricacy. The meaning of “calculate” is somewhat more general including “to
figure out,” “to design or adapt for a purpose,” “to judge to be probable,”
while “compute” means more “to determine by a mathematical process,” or
“to determine or calculate by means of a computer.” Turing [1936] used the
term “computable” even in his title, and began his paper,

“The ‘computable numbers’ may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite
means.”

Gödel [1934] §9 also uses the term “computability” to explain the effec-
tive conditions he had added to the Herbrand definition, and uses the terms
“computable” and “computability” in Gödel [1936] and [1946].

“Recursive” Acquires the Meaning “Computable”

From 1931 to 1934 Church and Kleene had been studying a class of effec-
tively calculable functions called λ-definable functions. By 1934 Kleene had
shown that a large class of number theoretic functions were λ-definable. On
the strength of this evidence, Church proposed to Gödel around March, 1934
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the first version of his Church’s Thesis that the notion of “effectively cal-
culable” be identified with “λ-definable,” a suggestion which Gödel rejected
as “thoroughly unsatisfactory.”

In addition, it was difficult to present the results to a mathamatical
audience in the formalism λ-definable functions, even though they became
useful much later with the development of computers. Kleene [1981] wrote,
“I myself, perhaps unduly influenced by rather chilly receptions from audi-
ences around 1933–35 to disquisitions on λ-definability, chose, after general
recursiveness had appeared, to put my work in that format. . . . .”

In 1935 Church changed the formal definition in Church’s Thesis from
“λ-definable” to “recursive,” which was his abbreviation for the Herbrand-
Gödel general recursive definition of Gödel [1934]. On April 19, 1935 Church
presented to the American Mathematical Society his famous proposition
published in Church [1936] and known since Kleene’s book [1952] as Church’s
Thesis which asserts that the effectively calculable functions should be iden-
tified with the (Herbrand-Gödel) recursive functions. Gödel still refused to
accept this identification even though it was phrased in terms of his own
recursive functions.

In 1934 the terms and concepts had been completely clear and distinct.
“Effectively calculable” meant the informal notion of “specified by a finite
algorithm,” and “recursive” meant the formal notion of “definable by the
Herbrand-Gödel equations” and more generally “defined by some kind of in-
duction.” That distinction was about to become blurred for the next sixty
years from 1936 to 1996. With the advent of Church [1936], Kleene [1936],
Kleene [1943], and particularly the influential book Kleene [1952], “recur-
sive” acquired the additional informal meaning “effectively calculable,” and
the field came to be known under Kleene as “recursive function theory” or
simply “recursion theory” for short, even though Gödel objected that this
term should be used with reference to the work Rosza Peter does (recursion
on several arguments).

By 1936 Kleene and Church had begun thinking of the word “recursive”
to mean “computable,” or “calculable.” Church had seen his first thesis
rejected by Gödel and was heavily invested in the acceptance of his 1936
thesis in terms of recursive functions. Without the acceptance of this thesis
Church had no unsolvable problem. Church wrote in [1936, p. 96], reprinted
in Davis [1965], that a “recursively enumerable set” is one which is the
range of a recursive function. This is apparently the first appearance of the
term “recursively enumerable” in the literature and the first appearance of
“recursively” as an adverb meaning “effectively” or “computably.”

In the same year Kleene [1936, p. 238] cited in Davis [1965, p. 238]
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mentioned a “recursive enumeration” and noted that there is no recursive
enumeration of Herbrand-Gödel systems of equations which gives only the
systems which define the (total) recursive functions. By a “recursive enumer-
ation” Kleene states that he means “a recursive sequence (i.e., the successive
values of a recursive function of one variable).” Post [1944], under the in-
fluence of Church and Kleene, adopted this terminology of “recursive” and
“recursively enumerable” over his own terminology of “effectively generated
set,” “normal set,” “generated set.” Thereafter, it became firmly established
in the literature.

Ambiguity in the Term “Recursive”

The Kleene-Church assignment of “recursive” to mean “algorithmic” or “cal-
culable” led to ambiguity. On one hand Kleene identified recursion theory
with algorithmic functions and he wrote in Kleene [1988, p. 19], “The recog-
nition of algorithms goes back at least to Euclid (c. 330 B.C.).” On the other
hand, Kleene [1981b, p. 44] wrote of Dedekind [1988], (where induction was
used to define addition and multiplication), “I think we can say that recur-
sive function theory was born there ninety-two years ago with Dedekind’s
Theorem 126 (‘Satz der Definition durch Induktion’) that functions can be
defined by primitive recursion.” Did Kleene mean that recursion and in-
ductive definitions began with Dedekind in 1888 or that computability and
algorithms began there and not with Euclid? When Kleene used the term
“recursive” to also mean “algorithmic,” one was never sure whether a partic-
ular instance meant “algorithmic” or “inductive.” Our language had become
indistinct. When a speaker used the word “recursive” in 1990 in front of
a general audience, did he mean “defined by induction,” “related to fixed
points and reflexive program calls,” or did he mean “computable?”

Difficulty in Communication

The term “recursive” may have originally been an appropriate term for the
subject in 1936 because some mathematicians and scientists understood that
term in the sense of “inductive” and because the term “computer” had not
yet become known to the general public. By 1990 it was the reverse. Those
who had heard the term “recursive” associated it with the second of the
elementary programming methods of iteration and recursion (i.e., defined
by induction). Very few associated it with the extended Kleene meaning
of “defined by a finite procedure” or “calculable.” In contrast, Turing had
used his Turing machine model to construct a real digital computer during
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1940-1945 for cryptanalysis, and John von Neumann used it to design the
EDVAC computer architecture where the data and program are stored in the
same address space. With the arrival of IBM’s Personal Computer (PC) in
1981 the computer was transformed from an arcane object in a special room
accessed by a stack of IBM cards in 1960 to a kind of electronic typewriter,
capable of all kinds of calculations, compositions, and communication via
the ethernet with other computers.

By 1990 the situation had become very difficult. Many people had access
to a personal computer on their desks and the terminology of computing
was familiar to the general population, but the term “recursive” was limited
to very small number who mainly understood the wrong meaning. They
mainly associated it with a first year programming course or a definition
by induction on mathematics and almost never with computability. So few
people understood the meaning of “recursive” that by 1990 we had to begin
papers with, “Let f be a recursive function (that is, a computable function),”
as if we were writing in Chinese and then translating back into English.

Furthermore, university students interested in computability failed to
recognize the content from the course title “Recursive Function Theory”
in the catalogue description, and never took the course. Writing letters of
recommendation to place graduate students became more difficult because
virtually no one on the hiring committee knew what “recursion theory” was.

The founders of the two key definitions of computabilty, Turing and
Gödel, never used the word “recursive” to mean “computable,” and objected
when it was so used. When others did, Gödel reacted sharply negatively, as
related by Martin Davis.

In a discussion with Gödel at the Institute for Advanced Study
in Princeton about 1952–54, I [Martin Davis] casually used the
term “recursive function theory” as it was used then. “To my
surprise, Gödel reacted sharply, saying that the term in question
should be used with reference to the kind of work Rosza Peter
did.” (See R. Peter’s work on recursions in [1934] and [1951].)

Making the Change to Computability

By 1995 the confusion had become great. Soare [1996] wrote an article Com-
putability and Recursion for the Bulletin of Symbolic Logic on the history
and scientific reasons why one should use “computable” and not “recursive”
to mean “calculable.” “Recursive” should mean “inductive” as it had for
Dedekind and Hilbert. At first, few were willing to make such a dramatic
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change, overturning a sixty year old tradition of Kleene, the most influen-
tial leader in computability after 1940. In 1996 the terms “computability
theory” and “computably enumerable (c.e.) set” did not come “trippingly
on the tongue” (to use the phrase in Shakespeare’s Hamlet Act 3, Scene 2,
1–4) as they do now. However, in a few months more people were convinced
by the logic of the situation. Three years later the A.M.S. conference in
Boulder, Colorado had the title, Computability Theory and Its Applications:
Current Trends and Open Problems, a title that would have been unthink-
able a few years earlier. At that meeting, referenced in Soare [2000], most
researchers had adopted the new terminology and conventions. Changing
back from “recursive” to “computable” during 1996–1999 has had a number
of advantages. Simultaneously, the Elsevier volume Handbook of Recursion
Theory changed its name to Handbook of Computability Theory and solicited
Soare’s paper [1999b] as its lead paper.

Epilogue on Computability

Today the term “recursive” means “inductive” as it always has. Few use
it to also mean “computable.” The change was not merely a change of
names but also a change of attitudes. Ironically, by 1990 the subject of
Recursion Theory had been moving ever more inward and away from the
general scientific public in spite of the applications mentioned above. Leo
Harrington said, “Model Theory is about models, Set Theory is about sets,
but Recursion Theory is not about recursion.”

The change of names signalled a return to the concepts of Turing and
Gödel with an emphasis on computability not induction. Books on com-
putability sprang up with a different orientation, such as Cooper [2004] and
Enderton [2011]. In the last decade Barry Cooper formed the organization
Computability in Europe (CiE) which meets every summer at a different
location and which several hundred people attend. The fields represented
in the 2010 meeting included: Proof Theory and Computation, Computa-
tional Complexity, Computability of the Physical, Reasoning and Compu-
tation from Liebniz to Boole, Biological Computing, Web Applications and
Computation. These are diverse fields but all have the concept of com-
putability in common. The change of terminology has announced to those
inside computability and those outside that we are open for communication.
Cooper said it would not have been possible to have achieved such a large
and diverse audience for the CiE meetings under the name “Recursion in
Europe.”
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The Great Papers of Computability

During the 1930’s, educators suggested that college students should read
the great books of Western culture in the original. At the University of
Chicago the principal proponents were President Robert Maynard Hutchins
and his colleague Professor Mortimer Adler. The curriculum relied on pri-
mary sources as much as possible and a discussion under the supervision of
a professor. For decades the Great Books Program became a hallmark of a
University of Chicago education.

In the first two decades of Computability Theory from 1930 to 1950 the
primary sources were papers not books. Most were reprinted in the book by
Martin Davis [1965] The Undecidable: Basic Papers on Undecidable Propo-
sitions, Unsolvable Problems, and Computable Functions. Of course, all of
these papers are important, shaped the subject, and should be read by the
serious scholar. However, many of these papers are written in a complicated
mathematical style which is difficult for a beginner to comprehend. Nev-
ertheless, at least two of these papers are of fundamental importance and
are easily accessible to a beginning student. My criteria for selecting these
papers are the following.

1. The paper must have introduced and developed a topic of fundamental
importance to computability.

2. The topic and its development must be as important today as then.

3. The paper must be written in a clear, informal style, so appealing that
any beginning student will enjoy reading it.

There are two papers in computability which meet these criteria.

Turing [1936] Especially §9

Turing’s [1936] paper is probably the single most important paper in com-
putability. It introduces the Turing machine, the universal machine, and
demonstrates the existence of undecidable problems. It is most often used
in mathematics and computer science to define computable functions. It is
perhaps Turing’s best known and most influential paper.

I am especially recommending Turing [1936] The extent of the com-
putable numbers, §9, pp. 249–254 in Turing [1936]. Here Turing gives a
demonstration that the numbers computable by a Turing machine “include
all numbers which would naturally be regarded as computable.” This is
a brilliant demonstration and is necessary for the argument. Without it
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we do not know that we have diagonalized against all potential decidable
procedures and therefore we have no undecidable problems. Books on com-
putability (including mine) rarely give this demonstration even though it is
critical, perhaps because of its nonmathematical nature. Every student of
computability should read this very short section.

Post [1944] Especially §11

Turing [1939] very briefly introduced the notion of an “oracle machine,” a
Turing machine which could consult an oracle tape (database), but he did
not develop the idea. In his paper Recursively enumerable sets of positive
integers and their decision problems, Emil Post Post [1944] developed two
crucial ideas, the structure and information content of computably enumer-
able (c.e.) sets, and the idea of a set B being reducible to another set A.

Turing [1939] never thought of his oracle machine as a device for reduc-
ing one set to another. It was simply a local machine interacting with an
external database as a laptop might query the Internet. Post was the first
to turn the oracle machines into a reducibility of a set B to a set A, writ-
ten B ≤T A, which Post generously called Turing reducibility. Post’s entire
paper is wonderfully written and easily accessible to a beginner. He begins
with simpler reduciblities such as many-one and truth-table and works up
to Turing reducibility which was not understood at the time.

The last section §11 General (Turing) reducibility is especially recom-
mended. Here Post explored informally the idea of a c.e. set B being Turing
reducible to another c.e. set A. For the next decade 1944–1954 Post contin-
ued to develop the notions of Turing reducibility and information content.
Post [1948] introduced the idea of degrees of unsolvability, now called Tur-
ing degrees, which are the key to measuring information content of a set
or algebraic structure. Post gave his notes to Kleene before his death in
1954. Kleene revised them and published Kleene-Post [1954] introducing a
finite forcing argument as in Chapter 6 to define Turing incomparable sets
each Turing computable in K. These two notions: computability by Tur-
ing’s automatic machine (a-machine) in [1936]; and reducibility of one set
B to another set A in Turing [1939] §4, and Post [1944]; are two of the two
most important ideas in computability theory. Therefore, these papers are
required should be read by anyone taking a course from this book.

There are other excellent computability papers reprinted in Martin Davis
[1965] especially the Gödel incompleteness theorem [1931] with the improve-
ment by Rosser, and the computability papers by Church [1936], Kleene
[1936] and [1943]. Some of these papers may be difficult for a beginner to
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read, but they will be more accessible after a first course in computability.
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Introduction

Hilbert’s Famous Programs Set the Stage

By the 1890’s Georg Cantor had published several papers on his new set
theory, originally invented to solve a problem in Fourier analysis. Mathe-
maticians were interested, but concerned over the famous paradoxes which
soon emerged. More rigorous formulations of set theory with restricted rules
of set formation avoided these paradoxes, but mathematicians feared that
new contradictions might arise and they searched for a proof that these
formulations of set theory were consistent.

In his epochal address to the International Congress of Mathematicians
in 1900, David Hilbert, one of the two foremost mathematicians of the first
third of the twentieth century, reduced the question of the consistency of
geometry to that of the real numbers, and in 1904 posed the question of
proving the consistency of arithmetic. This was to become one of his two
main programs in logic and the foundations of mathematics from 1900 to
1930. The other was the Entscheidungsproblem (decision problem) which
was to give a decision procedure for all valid sentences of first order logic (the
predicate calculus), a program which emerged over several decades but was
formulated clearly by Hilbert and Ackermann in 1928. A decision procedure
here meant a decision procedure for much of mathematics which could be
formulated in first order logic.

Gödel’s Incompleteness Theorem [1931]

Hilbert retired in 1930, and gave a special address in Königsberg, his birth
city, in which he repeated his insistence that there are no unsolvable prob-
lems. At the same conference, a quiet, unknown young man, Kurt Gödel,
from Vienna, only a year past his Ph.D. announced a result which would
seal the death of Hilbert’s finite consistency program and forever transform
the foundations of mathematics. Few understood the significance of Gödel’s
announcement, but one who did was John von Neumann. Already by 1930

xxi
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John von Neumann was one of the leading mathematicians in Hilbert’s group
in Göttingen and after Hilbert’s retirement was soon to become the most
influential mathematician on a world scale.

Gödel’s remarkable proof introduced for the first time the arithmeti-
zation of syntax (see §??), i.e., the assignment of a code number (Gödel
number) to every element of the syntax. This enabled him to demonstrate
for any effectively axiomatized formal system T extending Peano Arithmetic
(PA) a sentence which asserted its own unprovability. Therefore, T must
be incomplete or inconsistent. Gödel used primitive recursive functions (see
§??) to do the coding. Kleene later used Gödel’s methods including prim-
itive recursive functions for coding and arithmetization of syntax to prove
the Enumeration Theorem ?? and the closely related Normal Form Theo-
rem stated in Exercise ??. Turing [1936] independently gave a more direct
proof of the Enumeration Theorem by defining a universal Turing machine
(??) which could simulate the behavior of any Turing machine and there-
fore gave a computable enumeration of partial computable functions. The
Enumeration Theorem is essential for computability theory as we discuss in
Remark ??.

Recursive Functions Emerge

Although Gödel had used primitive recursive functions (§??) in his 1931
paper, he knew that Ackermann [1928] had shown the existence of a func-
tion defined by simultaneous recursion on two variables which was not
primitive recursive but was clearly computable (see §??.) Building on a
suggestion of Herbrand, Gödel [1934] developed a formal system called the
Herbrand-Gödel (HG) recursive functions (??) which now are called simply
the recursive functions. Later Kleene introduced an equivalent formalism,
the µ-recursive functions (see §??) based on the five schemata for primitive
recursive functions plus a sixth schema for unbounded search, whose useful-
ness depended heavily on Gödel’s method for arithmetization of syntax in
§??.

After seeing Gödel’s definition, Church announced to the American Math-
ematical Society [1935] what Kleene later in his very influential book [1952]
called Church’s Thesis (§??), that the effectively calculable functions should
be indentified with the (Herbrand-Gödel) recursive functions. On the ba-
sis of this thesis, Church [1936] announced the unsolvability of Hilbert’s
Entscheidungsproblem. Gödel rejected Church’s thesis even though it was
phrased in terms of Gödel’s own formal model of HG-recursive functions
and was partly based on his own arithmetization of syntax. Gödel was not
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convinced that his recursive functions “comprised all possible recursions,”
and he thought that perhaps the thesis could not be proved but rather is a
“heuristic principle.”

Capturing Computability

In the spring of 1935 Alan Turing had attended lectures by Max Newman on
Hilbert’s Entscheidungsproblem and Gödel’s Incompleteness Theorem. He
worked intensely on the problem and brought his solution to Newman on
April 15, 1936. Turing’s automatic machine (a-machine) differed greatly
from the other models, such as λ-definable functions or recursive functions,
and was much closer to modern digital computers.

A Turing machine was a kind of idealized typewriter with an infinite
carriage and a reading head moving back and forth one cell at a time (§??).
Equally important was the informal but precise analysis in Turing [1936]
of a human being calculating and how to simulate it with his a-machine.
Gödel’s reaction was immediate and overwhelmingly positive as described
in the dedication. Turing [1937] proved that his a-machines were equiv-
alent to the λ-definable functions and hence to the other formal models
of computability. After 1936 most people accepted what we now call the
Church-Turing Thesis: a function is intuitively computable iff it is Turing
computable or equivalently if it is recursive (see §??).

Turing’s Oracle Machines (o-Machines)

Since no one at Cambridge was working in computability and mathematical
logic, Newman suggested that Turing go to Princeton and complete a Ph.D.
with Church, which Turing did from 1936–1938. Turing [1939] contains his
thesis. It was mainly about ordinal logics, a topic suggested by Church, but
one page described an oracle machine (o-machine) which is of the greatest
importance. The description was very brief and sketchy without detail or
applications. With the start of World War II in September, 1939, Turing
left academia for the British cryptographic world and never returned to
computability theory.

Emil Post Develops Turing Reducibility

Turing’s oracle machine concept lay dormant for five years until Emil Post’s
magnificent paper [1944] revived it, greatly expanded it, and cast the sub-
ject in an informal, intuitive light. This has been one of the most influential
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papers on computability theory since 1936. We may imagine an oracle ma-
chine (o-machine) as an ordinary Turing a-machine with a read only “oracle
tape” on which can be written the characteristic function of some set A as
defined precisely in §??. The set B computed by this machine is said to be
A-computable, or Turing reducible to A, written B ≤T A (§??). We write
ΦA
e = B and regard ΦA

e as the Turing functional computed by the eth oracle
program P̃e (§??) with A on the oracle tape.

The oracle machines subsume the ordinary a-machines because if ϕe is
computed by ordinary Turing program Pe, then there is an oracle machine
Φi with oracle program P̂i such that ϕe(x) = ΦA

i (x) where A = ∅ the
empty set. But the oracle machines do much more. Turing reducibility is
the single most important concept in computability theory because in the
theory and applications we rarely prove results about computable functions
on computable sets. We compare noncomputable (undecidable) sets B and
A with respect to their relative information content. Turing reducibility
gives us a precise measure of the information they encode relative to other
sets and the Turing degrees (§??) are equivalence classes containing sets
with the same information content. The thesis which was initiated briefly
by Turing [1939, §4] and developed so eloquently by Post [1944, §11] is the
most important thesis in the subject because it subsumes the others, and it
gets to the heart of what researchers do in practice.

Post-Turing Thesis, Post [1944, §11]. A set B is effectively reducible to a
set A in the intuitive sense if and only if B is Turing reducible to A.

Post Studies Computably Enumerable Sets

Turing and Church concentrated on formalisms for defining computable
functions, but Post’s formalism of production systems led him naturally
to study effectively generated sets, those which could be effectively listed.
The formal equivalent in modern terminology is that of a computably enu-
merable (c.e.) set defined as We = domain ϕe in §?? or equivalently one
which can be listed (§??) by a computable function.

Post’s Thesis (equivalent to the Church-Turing Thesis) is that a set is
effectively generated if and only if it is c.e. Post recognized the widespread
occurrence of c.e. sets in other branches of mathematics and asked whether
(up to Turing equivalence) there was just one unsolvable problem for c.e.
sets equivalent to the Gödel diagonal set K = {e : e ∈ We}, called the
complete set. Post’s Problem (see Definition ??) was whether there is a
noncomputable c.e. set A <T K. Post’s problem and the results in his
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paper [1944] had a great influence for decades.

Bounded Reductions

At first Post did not make much progress on the general case of Turing
reducibility. To progress toward it he considered various stronger reducibil-
ities. A Turing reduction ΦA

e = B is a bounded Turing reduction (§??),
written B ≤bT A, if there is a computable function h(x) bounding the use
function, i.e., ϕAe (x) ≤ h(x) where the use function ϕAe (x) is the maximum
element used (scanned) during the computation (§??). For example, if B is
many-one reducible to A, B ≤m A by a computable function f , i.e., x ∈ B
iff f(x) ∈ A, then the reduction is bounded by h(x) = f(x). Post also
introduced a truth-table reduction B ≤tt A (§??) the case where Φe is not
only a bounded Turing reduction but is also defined on all initial segments
of [0, h(x)]. Along with various bounded reducibilities Post introduced c.e.
sets A which, although coinfinite, had ever thinner complements, such as
simple (§??) and hypersimple sets (§??).

Finally Understanding Turing Reducibility

Post realized that the bounded reducibilities and thin sets would not solve
his problem. It required a deeper understanding of Turing reducibility. His
understanding increased over the next decade after 1944. Post [1948] intro-
duced the notion of degree of unsolvability to collect into one equivalence
class sets coding the same information content (§??). He wrote notes on his
work. As he became terminally ill in 1954 Post gave them to Kleene who
expanded them and published Kleene-Post [1954]. This paper was a fun-
damental advance toward solving Post’s problem and toward understanding
Turing reducibility. The key idea was the continuity of Turing functionals
(§??) (also called the Use Principle Theorem ??) that if ΦA

e (x) = y then
Φσ
e (x) = y for some finite initial segment σ ≺ A and then if B � σ then

ΦB
e (x) = y also.

Using this, Kleene and Post constructed sets A and B in K such that
A 6≤T B and B 6≤T A. Hence, ∅ <T A <T K (see §??). This did not
explicitly solve Post’s Problem because the sets were not c.e., but Kleene
and Post divided the conditions into requirements of the form ΦA

e 6= B
as in (??), which could be arranged in a priority list of order type ω and
processed one at a time as in (??) using the Use Principle. This became
the model for most arguments in the subject. It became the key step in
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the later solution of Post’s Problem by Friedberg [1957] and Muchnik[1956]
since they combined this strategy with a computable approximation stage
by stage as in §??.

From these ideas emerged the understanding that a Turing functional
Φe is continuous as a map on Cantor space 2ω and is not only continuous
but effectively continuous (see §??) because the inverse image of a basic
open set is the computable union of basic open sets (§??). Conversely, any
classically continuous functional Ψ on Cantor space is effectively continuous
(i.e., a Turing functional) relative to some real parameter X ⊆ ω (see §??).
This links the fundamental notion from computability theory to one of the
most basic notions of analysis.

Computing in the Modern World

A Turing a-machine is an example of a closed computing process, like a
calculator, which is given a program and an initial input but no further
data during its computation. In contrast a Turing o-machine is an example
of an open computing process which can receive additional data during the
computation, just as a modern computer can access a database (oracle)
such as the World Wide Web which is too large to be incorporated into
the machine itself. Many modern computing processes are open computing
processes and can be simulated only by an o-machine but not an a-machine.

Priority Arguments

The Kleene-Post construction had constructed finite initial segments σ ≺ A
and τ ≺ B such that for some x, ΦA

e (x) 6= τ(x). Hence ΦA
e (x) 6= B(x). To

make the setsA andB computably enumerable Muchnik [1956] and Friedberg
[1957] had to abandon the K-oracle and computably enumerate the sets
letting As be the finite set of elements enumerated in A by the end of stage
s and likewise for Bs. They attempted to preserve strings σ ≺ As and τ ≺ Bs
when it seemed to give Φσ

e (x) 6= τ(x). This action might later be injured
because action by a higher priority requirement forces σ 6≺ As+1 causing this
condtion for e to begin all over again. This finite injury method is presented
in §??. These results led to much more complicated infinite injury arguments
presented in Part II. To answer the riddle of how a requirement can be
injured infinitely often and still be satisfied in the end go to Chapter 8.
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Games in Computability Theory

In Part III we consider some games which shed light on computability and
serve as a useful tool to discover and present theorems. The Banach-Mazur
games in Chapter 11 had been used decades ago in point set topology to
study dense open sets. They are used here to study the finite extension
constructions presented in Chapter 6 and to help give a paradigm there to
analyze extension constructions. Banach-Mazur games are useful when we
are doing a construction computably in an oracle, but when we are con-
structing computably enumerable sets the construction must be completely
decidable with no oracle.

Lachlan [1970] invented a new kind of game, called a Lachlan game to
handle effective constructions which we present in Chapter 13. In a Lachlan
game there are two players, Player I (RED), and Player II (BLUE), each
of whom plays a finite or infinite collection of sets. Certain requirements
are specified in advance. Each player may enumerate into the sets he is
playing finitely many elements at every stage. At the end the game is won
according to whether the sets satisfy the predetermined requirements or not.
We present Lachlan games in Chapter 13, but the reader is advised to begin
reading Chapter 13 as soon as possible because the methods will be helpful
in most of the exercises as illustrated in Chapter 13 with references back to
the earlier chapters.

Terminology and Notation

Most mathematicians believe that a fitting choice of terminology and nota-
tion is essential to mathematics. Georg Cantor, the founder of modern set
theory wrote this.

“I am extremely careful with the choice of those [i.e., new no-
tions], as I take the position that the development and propa-
gation in no small degree depends on a fortunate and properly
fitting terminology.”

Philosopher Charles S. Peirce described the importance of language for
science in The Ethics of Terminology, Volume II, Elements of Logic, p. 129.

“. . . the woof and warp of all thought and all research is symbols,
and the life of thought and science is the life inherent in symbols;
so that it is wrong to say that a good language is important to
good thought, merely; for it is of the essence of it.”
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Terminology

A function is computable if it is defined by a Turing machine and recursive if
it is general recursive, i.e., defined by a set of Herbrand-Gödel equations, or
equivalently if it is µ-recursive as defined by Kleene. By the Church-Turing
Thesis the Turing computable functions coincide with the algorithmically
computable, i.e., intuitively computable, or effectively calculable functions.
We use the term “computable” in either of the two meanings: effectively cal-
culable in the intuitive sense; or formally computable by a Turing machine.

We use the term “recursive” informally to mean “defined by induction”
in the sense of §?? and §??, especially by a procedure using the Primi-
tive Recursion Scheme V of Definition ??. We take the formal meaning
of “recursive” to be Herbrand-Gödel recursive (§??) or equivalently Kleene
µ-recursive (§??). We regard these as reflexive program calls, in which the
program calls itself. We extend the meaning of reflexive program calls to
include the Kleene Recursion Theorem ??.

We do not use the term “recursive” to mean “effectively calculable” or
“Turing computable,” although the latter is extensionally (but not inten-
sionally) equivalent to recursive. This attention to the intensional meaning
of terms allows a more precise and historically more accurate usage of terms
such as recursive and computable.

Notation

Notation will be defined when introduced. The Quick Finder Index is on
page xxxiii. The Notation Index is in the Appendix Part ??. We now
summarize the most common notation.

Notation for Sets.

The universe is the set of nonnegative integers ω = {0, 1, 2, 3, . . . } which
sometimes appears in the literature as N. Most of the objects we study can
be associated with some n ∈ ω called a “code number” or “Gödel number.”
We can think of operations on these objects as being presented by a cor-
responding function on these numbers and our functions will have domain
and range contained in ω.

Upper case Latin letters A, B, C, D and X, Y , Z normally represent
subsets of ω = {0, 1, 2, 3, . . . } with the usual set operations A ∪ B, A ∩ B;
|A|, or card(A) denotes the cardinality of A; max(A) denotes the maximum
element x ∈ A if A is finite; A ⊆ B denotes that A is a subset of B, and
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A ⊂ B that it is a proper subset; A − B denotes the set of elements in A
but not in B; A = ω −A, the complement of A; A tB denotes the disjoint
union, i.e., A ∪ B provided that A ∩ B = ∅ ; the symmetric difference is
A∆B = (A− B) ∪ (B − A); a, b, c, . . .x, y, z, . . . represent integers in ω;
A × B is the cartesian product of A and B, the set of ordered pairs (x, y)
such that x ∈ A and y ∈ B; 〈x, y〉 is the integer which is the image of the
pair (x, y) under the standard pairing function from ω × ω onto ω; A ⊆∗ B
denotes that |A − B| < ∞; A =∗ B denotes that A ∆ B is finite; A ⊂∞ B
denotes that |B − A| = ∞. Given a simultaneous enumeration (see p. ??)
of A and B let A \ B denote the set of elements enumerated in A before B
and A↘ B = (A \ B) ∩ B, the set of elements appearing in A and later in
B.

Logical Notation

We form predicates with the usual notation of logic where &, ∨, ¬, =⇒, ∃,
∀, µx denote respectively: and, or, not, implies, there exists, for all, and
the least x: (µx)R(x) denotes the least x such that R(x) if it exists, and
is undefined otherwise; (∃∞x) denotes “there exist infinitely many x,” and
(∀∞x) denotes “for almost all x” as in Definition ??. These quantifiers are
dual to each other. The latter is written (∃x0)(∀x ≥ x0). We use x, y, z < w
to abbreviate x < w, y < w, and z < w. In a partially ordered set we let
x | y denote that x and y are incomparable, i.e., x 6≤ y and y 6≤ x. We often
use dots to abbreviate brackets before and after the principal connective of
a logical expression. For example, [α . =⇒ . β] abbreviates [[ α ] =⇒ [ β ]].
From the first expression, insert a right bracket to the left of =⇒ and a left
bracket to the right and insert matching brackets at the beginning and end
of formulas α and β. The periods increase readability of a long expression.
TFAE abbreviates “The following are equivalent.”

We use the usual Church lambda notation for defining partial functions.
Suppose [. . . x . . .] is an expression such that for any integer x the expres-
sion has at most one corresponding value y. Then λx [. . . x . . .] denotes the
associated partial function θ(x) = y, for example λx [x2 ]. The expression
λx [ ↑ ] denotes the partial function which is undefined for all arguments.
We also use the lambda notation for partial functions of k variables, writ-
ing λx1x2 . . . xk in place of λx. An expression such as λx y [x+ y ], denotes
addition as a function of x and y. However, λx [x+y ], indicates that the ex-
pression is viewed as a function of x with y as a parameter, such as λx [x+2].
One advantage is that with an expression of several arguments, such as in
the s-n-m Theorem ?? (Parameter Theorem) we can make clear which ar-
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guments are variables and which are parameters, for example as explained
in Remark ??.

Notation for Strings and Functionals

We let 2<ω denote the the set of all finite sequences of 0’s and 1’s called
strings and denoted by σ, ρ, and τ. Let 2ω denote the set of all functions
f from ω to 2 = {0, 1}, and ωω the set of all functions f from ω to ω.
The integers n ∈ ω are type 0 objects, (partial) functions f ∈ 2ω or subsets
A ⊆ ω (which are identified with their characteristic function χA ∈ 2ω) are
type 1 objects, a (partial) functional Ψ is a map from type 1 objects to type
1 objects, i.e., a map from 2ω to 2ω and is called a type 2 object. Identifying
a set A with its characteristic function χA we often write A(x) for χA(x).
Upper case Latin letters A, B, C, . . . , represent subsets of ω. Script letters
A, B, C represent subsets of 2ω and are called classes to distinguish them
from sets.

Partial Computable (P.C.) Functions

Let {Pe}e∈ω be an effective numbering of all Turing machine programs (as
in Definition ??). We write ϕe(x) = y if program Pe with input x halts and
yields output y, in which case we say that ϕe(x) converges (written ϕe(x)↓ ),
and otherwise ϕe(x) diverges (written ϕe(x)↑ ); {ϕe}e∈ω is an effective listing
of all partial computable (p.c.) functions; the domain and range of ϕe are
denoted by dom(ϕe) and rng(ϕe). A set A is computably enumerable (c.e.)
if it can be effectively listed, i.e., if A = dom(ϕe) for some e.

If dom(ϕe) = ω then ϕe is a total computable function (abbreviated
computable function); we let f , g, h, . . . denote total functions; f ◦ g or fg
denotes the composition of functions, applying first g to an argument x and
then applying f to g(x). Let f �x denote the restriction to elements y < x
and f �� x the restriction to elements y ≤ x.

Turing Functionals ΦA
e

Let {P̃e}e∈ω be an effective numbering of all Turing machine oracle pro-
grams, finite sets of sextuples defined in §??. Write ΦA

e (x) = y if oracle
program P̃e with A on its oracle tape and input x halts and yields output y.
Let the use function ϕAe (x) be the greatest element z for which the computa-
tion scanned the square A(z) on the oracle tape. We regard Φe as a (partial)
functional (type 2 object) from 2ω to 2ω mapping A to B if ΦA

e = B.
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The use function ϕAe (x) has an exponent A to distinguish from the p.c.
function ϕ(x). They usually come in matched pairs, ΨA(x) and ψA(x),
ΘA(x) and θA(x), where the lower case function denotes the use function
for the upper case functional. See Definition ?? (vi) for a function f as
oracle in place of the set A.

Lachlan notation.

When E(As, xs, ys, . . .) is an expression with a number of arguments sub-
scripted by s denoting their value at stage s, Lachlan has introduced the
notation E(A, x, y, . . .)[ s ] to denote the evaluation of E where all arguments
are taken with their values at the end of stage s.

(1) ΦA
e (x) [ s ] denotes ΦAs

e,s (xs) and ϕAe (x) [ s ] denotes ϕAs
e,s(xs).

This Lachlan notation has become very popular and is now used in most
papers and books.

Sections Marked � and Exercises Marked �

Sections marked with the latex symbol � (oslash) should be omitted in a first
course simply to streamline the course so the core material can be completed
in a quarter or semester. However, bright and highly motivated students are
encouraged to study these sections anyway because they require no more
mathematics than has been presented up to that point and are usually no
more difficult than the rest. Sections in Chapters 1–7 not marked with �

are part of the core and normally should be covered in sequence in a course.
The symbol diamond � is used to denote greater difficulty in an exercise

and should not be confused with the section symbol �. An exercise with no
� is usually straightforward from the definitions and preceding text, and is
often included to have a reference for an explicit statement without writing
out fairly obvious proofs. An exercise with one diamond� is harder and
usually requires some thought. An exercise with two diamonds�� is harder
still, and should be avoided in routine homework assignments. Hints to
various exercises will be given in the back of the book in Part VI Appendix B
on hints.
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