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NONLINEAR ERROR CORRECTION:
THE CASE OF MONEY DEMAND IN
THE UNITED KINGDOM
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This paper explores single-equation nonlinear error correction (NEC) models with linear
and nonlinear cointegrated variables. Within the class of semiparametric NEC models, we
use smoothing splines. Within the class of parametric models, we discuss the interesting
properties of cubic polynomial NEC models and we show how they can be used to
identify unknown threshold points in asymmetric models and to check the stability
properties of the long-run equilibrium. A new class of rational polynomial NEC models is
also introduced. We found multiple long-run money demand equilibria. The stability
observed in the money-demand parameter estimates during more than a century, 1878 to
2000, is remarkable.
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1. INTRODUCTION

Single-equation error correction (EC) models were originally proposed by Phillips
(1954, 1957). However, Sargan (1964) represents the first important empirical EC
application, which was extended later to the UK consumption function by Davidson
et al. (1978); see Hendry and Richard (1983). In the context of linear cointegrated
variables, Engle and Granger (1987) suggested a two-step OLS estimator of EC
models and a unit root test for testing the null hypothesis of non-cointegration based
on the application of the Dickey-Fuller test to the residuals of the OLS cointegrating
regression. Stock (1987) found the asymptotic distribution of the one-step nonlin-
ear least-squares (NLS) estimator of EC models. Since then, there has been a vast
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body of econometric literature comparing the two approaches; see for example,
Banerjee et al. (1986, 1993), Gonzalo (1994), Hendry (1995), and Johansen (1995).

Johansen (1992) considers the efficiency of the one-step maximum likelihood
estimation procedure of linear EC models based on weakly exogenous variables.
On the other hand, Phillips and Hansen (1990), Phillips (1991), Phillips and Loretan
(1991), and Marmol et al. (2002) study alternative efficient least-squares and in-
strumental variables estimators, always within a linear cointegration context.

In standard EC models with cointegrated variables, the corresponding EC adjust-
ment (equilibrium correction1) is linear. This important linearity property imposes
at least three strong restrictions on the underlying economic behavior:

(i) The long-run equilibrium is unique.
(ii) The adjustment toward the equilibrium (equilibrium correction) is symmetric.

(iii) The equilibrium correction is a constant proportion of the previous equilibrium
error.

However, there are good theoretical and empirical reasons to believe that the linear-
ity property of the equilibrium correction is too restrictive. For example, the exis-
tence of asymmetric adjustment costs of the inputs (labor, capital, etc.) of the firms
implies the existence of asymmetric EC models; see Escribano and Pfann (1998).
It is also natural to believe that the equilibrium corrections could be business-cycle
dependent, implying that those adjustments are not constant proportions of previ-
ous equilibrium errors. Finally, there is a large amount of empirical evidence of
regime shifts in linear models. This has an alternative interpretation, based on the
well-known result that nonlinear models can sometimes be approximated by linear
models with regime shifts. The advantage of the class of nonlinear error correction
(NEC) models that we introduce in this paper is that it can easily encompass those
three properties.

The seminal NEC model was introduced and applied to money demand in the
United Kingdom (1878 to 1970) by Escribano (1985, 1986). Later, Hendry and
Ericsson (1991) were able to combine this nonlinear (cubic polynomial) error cor-
rection with other suggestions of Longbottom and Holly (1985) and then produced
a better specification of the UK money demand that encompasses the previous
ones. Latter, Ericsson et al. (1998) extended the money demand analysis until the
year 1993, incorporating an interesting measure of opportunity cost of holding
money.

In this paper, we give sufficient conditions to characterize single-equation NEC
models with linear cointegrated variables (representation theorem) using the results
of Escribano and Mira (2002). Furthermore, we propose an econometric method-
ology to specify the nonlinear equilibrium correction terms, which is based on
parametric (ordinary least-squares or nonlinear least-squares) and semiparametric
(smoothing splines) estimation procedures.

Previous parametric NEC models have used cubic polynomial adjustments,
which are unbounded and therefore provide no warrantee that the adjustment
toward the equilibrium is stable (equilibrium correction). Therefore, in this paper,
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we introduce the class of rational polynomials and show that they can generate
unbounded, but stable, adjustments toward the equilibrium (or equilibria) while
mimic king most of the nice, flexible features of cubic polynomials.

The structure of the paper is as follows. In Section 2, we characterize NEC
models with linear cointegrated variables, within the context of parametric non-
linear models. On the basis of Padé approximants we justify the generality of
rational polynomial NEC models. In Section 3.1, we reproduce the main aspects
of the unpublished semiparametric EC models discussed by Escribano (1986, ch.
4) in the context of the smoothing-spline estimators. In Section 3.2, we briefly
review the asymptotic properties of the two-step least-squares estimation proce-
dure of parametric NEC models. In Section 3.3, we introduce the preliminary
analysis that can be done to identify NEC terms. In Section 4, we briefly review
the three main unpublished and competing original UK money demand estimates
(1878–1970) of Hendry and Ericsson (1983), Longbottom and Holly (1985), and
Escribano (1985, 1986). In Section 4.1, we implement the econometric methodol-
ogy suggested in Section 3 to specify NEC models with the seminal applications
to the money demand in the UK (1878–1970). In Section 4.2, we briefly evaluate
Hendry and Ericsson’s (1991) and Ericsson et al.’s (1998) money demand equa-
tions. In Section 5, we extend the money demand estimates of Ericsson et al. (1998)
from the year 1993 to the year 2000. Cubic and rational polynomial NEC mod-
els are estimated and evaluated during the extended period and a brief discussion
on nonlinear cointegration is included. Finally, in Section 6 we present the main
conclusions.

2. COINTEGRATION AND NONLINEAR ERROR CORRECTION

In this section, we introduce some useful concepts of time-series that are integrated
of order 0 and 1, I (0) and I (1), and we characterize the concept cointegration in
the context of NEC models. The problem of introducing nonlinearities in nonsta-
tionary contexts is nontrivial since the concepts of integration and cointegration
are based on linear time-series frameworks.

In general, the concept of I (1) is related to time-series variables that need to be
differenced once to become covariance-stationary, I (0). Therefore, given a finite
starting value, the partial sum of an I (0) process is I (1) since their variance and
covariance grow over time. The basic idea now is to extend the usual concepts of
I (0) processes to allow for certain types of heteroskedasticity and nonlinearities
of the underlying sequences. To do that we use nonlinear measures of short-run
dependence; see Davidson (1994).

For example, the concept of α-mixing introduced by Rosenblatt (1978), mea-
sures dependence between events that are separated by at least m periods (leads
and lags). Another useful measure for the degree of temporal dependence in a time-
series is based on the concept of near epoch dependence (NED); see Appendix A.
Say that the coefficient φm is a measure of the worst mean square prediction error
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of νt based on the present, near past, and near future of ηt , E(νt/ηt−m , . . . , ηt+m).
If the sequence is φ-NED, then the worst conditional mean square prediction error
tends to zero as m → ∞.

The concepts of α-mixing and NED are used now to define operative definitions
of I (0) and I (1) in a nonlinear context, following Escribano and Mira (2002).

DEFINITION 1. The sequence εrt is said to be I (0) if it is an α-mixing se-
quence (φ-NED on the underlying α-mixing sequence νr t ) and the partial sum
xrt = ∑ t

i=1εri is not α-mixing (is not φ-NED). We then say that xrt = ∑ t
i=1εri

is I (1).

Let εr0 = 0. Notice that from Definition 1 if xrt is I (1), then �xrt is I (0). Further-
more, if εr t is I (−1), then the partial sum xrt = ∑ t

i=1εri is an α-mixing sequence
(φ-NED on the underlying α-mixing sequence νr t ) and therefore not I (1). In Sec-
tion 3.2, we use these concepts to discuss the asymptotic distribution of the two-step
least-squares estimator of NEC models.

The concepts of I (0) based on α-mixing or φ-NED are related to the notions of
“short memory in distribution” and “short memory in mean” discussed by Granger
and Teräsvirta (1993) and Granger (1995). Our broad concept of I (0) has the clear
advantage of having laws of large numbers (LLN) and functional central-limit
theorems (FCLT) associated with them; see, for example, White (1984), Herrndorf
(1984), Phillips (1987), Gallant and White (1988), Wooldridge and White (1988),
Davidson (1994) and Dufrénot and Mignon (2002).

On the basis of those concepts, Escribano and Mira (1996) found the asymp-
totic distribution of the nonlinear least-squares (NLS) estimator of the nonlinear
cointegrating relationship.

Let the N × 1 vector Xt be equal to (yt , q ′
t )

′, where yt is an escalar and qt is an
(N − 1) × 1 vector.2

The following concept of cointegration is convenient for Theorem 1.

DEFINITION 2 (COINTEGRATION). If yt and qt are I(1) and there is a linear
combination, zt ≡ yt −α′qt , that is α-mixing (or correspondingly φ-NED) for the
parameters (1, α′) and is not α-mixing (or φ-NED) for any other vector (1, α∗′

)

with α′ �= α∗′
, then yt and qt are cointegrated with cointegrating vector (1, −α′).

This definition can easily cover cases of nonlinear cointegration if we allow
zt ≡ g(yt − α′qt ) in Definition 2. The concept of I (0) for φ-NED sequences is
now used, instead of the asymptotic uncorrelation condition used by Escribano
(1987), to properly characterize single-equation NEC models based on the repre-
sentation theorem of Escribano and Mira (2002). The objective of Theorem 1 is to
give sufficient conditions for NEC models to imply cointegration (Granger-type
representation theorem).

THEOREM 1 (SINGLE-EQUATION NEC REPRESENTATION THEOREM).
Let the N × 1 vector Xt = (yt , q ′

t )
′, where yt is a scalar and qt is the (N − 1) × 1

vector be generated by
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�yt = b′
0�qt + b′

1�qt−1 + · · · + b′
r�qt−r + a1�yt−1 + · · · + ap�yt−p

+ f (zt−1, γ ) + εyt , (1a)

�qt = εqt , (1b)

zt ≡ yt − α′qt , (1c)

where

(i) εyt is a martingale difference sequence relative, to the information generated by the
explanatory variables (Xt−1) observed up to time t − 1, with zero mean, constant
variance, σ 2, and the (N − 1) × 1 vector εqt is α-mixing with constant variance–
covariance matrix, �;

(ii) the determinantal equation |1 − a1 B − a2 B2 + · · · + ap B p| = 0 has all its roots
outside the unit circle;

(iii) the function f (z, γ ) is continuously differentiable on z;
(iv) and −2 < d f (zt−1, γ )/dzt−1 < 0 (stability condition)
(v) �qt , εyt and the cross products have finite second-order moments.

Then,

(a) Xt is a vector of I(1) components and
(b) zt and �Xt are φ-NED and therefore yt and qt are cointegrated with cointegrating

vector (1, −α′).

Proof. See Appendix A.

In Theorem 1, we show that when there is an NEC model like (1a), if the stability
condition (iv) is satisfied, then under some regularity conditions the first difference
of the variables, �Xt , must be I (0); yt and the levels of some (or all) of the qt

variables are cointegrated; and zt = yt −α′qt (some but not all of the components
of α could equal to 0).

Notice that when the maximum lags r and p are equal, and when certain common
factor restrictions (COMFAC) are satisfied [see Hendry and Mizon (1978)], b′

0 −
α′ = 0, b′

1 − a1α
′ = 0, . . . , b′

p − apα
′ = 0, we can write the NEC—equation

(1a)—in terms of zt :

�zt = a1�zt−1 + · · · + ap�zt−p + f (zt−1, γ ) + εyt . (2)

This nonlinear autoregressive process, AR(p + 1), for zt is a nonlinear extension of
the augmented Dickey-Fuller (ADF) equation used by Engle and Granger (1987)
to test the null hypothesis of unit roots (noncointegration) against roots lower than
unity (cointegration). With the NEC models [equation (2)], the null hypothesis
of noncointegration [(zt , I (1))] implies that H0 : f (zt−1, γ ) = 0 whereas, under
the alternative hypothesis of cointegration (zt , φ-NED), H1 : f (zt−1, γ ) �= 0 with
−2 < d f (z, γ )/dz < 0.

Escribano (1985, 1986) suggested the use of cubic polynomials for f (zt−1, γ ) =∑3
i=1 ci zi since polynomials can approximate general nonlinear functions based
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on Taylor-series expansions. However, a first-order autoregressive cubic polyno-
mial representation for zt cannot globally satisfy the useful φ-NED condition of
Escribano and Mira (1997, 2002), −1 < (dzt/dzt−1) < 1, since polynomials are
unbounded and explosive functions for large values of zt−1.

To solve the instability problem of polynomial approximations for large values
of zt−1, we suggest the class of time-series models based on low-order rational
polynomial functions that globally satisfy the stability condition (iv) of Theorem 1,
while avoiding the three undesirable properties (i)–(iii) of linear EC models men-
tioned in the introduction. This property will become clear in the empirical appli-
cation of Section 5.

Among the many nonlinear parametric functional forms to consider for f (z, γ ),
there is a also a sound argument in favor of rational polynomial functional forms
based on Padé approximants. The argument goes as follows: Assume that the
function f (z, γ ) can be written as a power series; then, Padé’s approximant is the
rational fraction

{L/M} = (d0 + d1z + d2z2 + · · · + dL zL)/(1 + e1z + e2z2 + · · · + eM zM), (3)

which has a Maclaurin expansion that agrees with the power-series expansion.
In total, we have L + M + 1 unknown coefficients in (3). The rational fraction,
{L/M}, should fit the power series so that

f (z, γ ) =
∝∑

i=1

ci z
i = (d0 + d1z + d2z2 + · · · + dL zL)

/(1 + e1z + e2z2 + · · · + eM zM) + O(zL+M+1). (4)

Power series have a circle of convergence |z| = R. If |z| < R, the series converges;
if |z| > R, it diverges. When R = ∞, the function is analytic. The following
version of Montessus’s theorem [see Baker and Graves-Morris (1996)] gives a
general approximation result.

THEOREM 2 (CONVERGENCE OF PADÉ APPROXIMANTS). Let f (z,γ )

be a function that is analytic at the origin and analytic in the entire z-plane except
for a countable number of isolated poles and essential singularities. Suppose ε > 0
and δ > 0 are given. Then, M0 exists such that any {L/M} Padé approximant of
the ray sequence with L/M = λ (λ �= 0 λ �= ∝) satisfies

| f (z, γ ) − {L/M}| < ε, for any M ≥ M0, (5)

on any compact set of the z-plane except for a set of measures less than δ.

Proof. See Appendix A.

However, we argue in this paper that cubic polynomial functional forms are
very useful and flexible parametric approximations to unknown functional forms.
The first justification is based on the simulation results obtained with Lagrange
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multiplier (LM) tests, when testing the null hypothesis of linearity against the
alternative of nonlinearity; see, for example, Tsay (1986) and Escribano and Jorda
(2001). Second, cubic polynomial approximations can be used as decision rules for
selecting nonlinear parametric time-series models. Teräsvirta (1994) and Escribano
and Jorda (1999, 2001) discussed the use of this type of LM tests when selecting
between logistic and exponential smooth-transition autoregressive (STAR) models
and between logistic and exponential smooth-transition regression (STR) models,
respectively. Third, cubic polynomials can be used to detect asymmetries (linear
or nonlinear) and threshold points (unique equilibrium or multiple equilibria); see
Escribano and Pfann (1998). Fourth, they can be used to empirically check the
stability condition (φ-NED condition) of the nonlinear adjustment, f (z, γ ); see
condition (iv) of Theorem 1.

In the empirical applications discussed in Sections 4 and 5, we show how to use
the flexibility of cubic polynomial functional forms in the context of NEC models.

3. SPECIFICATION, ESTIMATION, AND TESTING IN NEC MODELS

One of the main advantages of using the concepts of I (1), I (0), and cointegration
defined in the previous section is that they allow us to check whether an esti-
mated NEC model satisfies those conditions. This is so because we give explicitly
sufficient conditions on the nonlinear function.

On the other hand, to make the broad concepts of I (1) and I (0) introduced
in Definition 1 testable we could add extra conditions in the manner of Phillips
(1987) and Lo (1991).

Assumption 1.

(i) Let νt be I (0) and α-mixing so that the sequence of partial sums yt = ∑t
i=1 νi is

I (1);
(ii) E(νt ) = 0, for all t ;

(iii) sup E |νt |β < ∞, for some β > 2;
(iv) σ 2 = limT →∝ E(T −1 y2

T ) < ∞, with 0 < σ 2 < ∞;
(v)

∑∞
m=1 α1−2/β

m < ∞, where the αm–mixing coefficient is defined in Appendix A.

On the basis of Assumption 1, Herrndorf (1984) proved the following FCLT:
T −1/2(

∑[T r ]
i=1 νi ) → σ W (·) where W (·) is a standard Brownian motion.

Lo (1991) suggested the use of the test statistic T −1/2 QT :

QT = (1/σT (s))

{
max

1≤k≤T

k∑
i=1

(νi − µT ) − min
1≤k≤T

k∑
i=1

(νi − µT )

}
, (6a)

σ 2
T (s) = (1/T )

T∑
i=1

(νi − µT )2 + (2/T )

s∑
i=1

(1 − i/(s + 1))

×
k∑

i= j+1

(ν j − µT )(ν j−i − µT ), (6b)
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where µT and σ 2
T (s) are the estimated mean and variance of νt , and the optimal

value of s is obtained as the integer value of KT , where KT = (3T/2)1/3(2ρ/(1 −
ρ2)2/3.

Under the null hypothesis, H0 : νt satisfies Assumption 1, Lo (1991) derived the
nonstandard asymptotic distribution of the test statistic T −1/2 QT .

Kwiatkowski et al. (1992) used a different test statistic to test the same null
hypothesis (H0),

KPSST = (
1/σ 2

T (s)
)
(1/T 2)

T∑
t=1

y2
t , (7)

where yt = ∑t
i=1 (νi − µT ) and σ 2

T (s) is given by (6b). The values of s that they
consider are s = 0, s = (4(T/100)1/4), s = (12(T/100)1/4), and the optimal value
of s previously mentioned (integer value of KT ).

Using the statistics T −1/2 QT and KPSST , we could test the null hypothesis, H0:
νT is I (0) and satisfies Assumption 1 against the alternative H1: νT is I (1) and/or
does not satisfy Assumption 1.

Similarly, we could use the same test statistics to test the hypothesis of I (0)
versus I (1) based on φ-NED νt sequences, provided that they satisfy a FCLT.
Wooldridge and White (1988) gave explicit conditions for a FCLT to hold under
NED conditions; see also Davidson (1994).

3.1. Semiparametric Approach

Before we describe the semiparametric estimation procedure of NEC models based
on somoothing splines, it is convenient to rewrite model (1a) as

�yt = f (zt−1, γ ) + �Q′
t b + �Y ′

t−1a + εyt , (8)

where �Q′
t = (�q ′

t , �q ′
t−1, . . . , �q ′

t−r ) is a 1 × (N − 1)r vector and �Y ′
t−1 =

(�yt−1, . . . , �yt−p) is a 1 × p vector of lagged dependent variables, and b and a
are the parameter vectors of orders r(N − 1) × 1 and p × 1, respectively.

When the sample size is T + h, t = −h, . . . , T with h = max(r , p), model (8)
in matrix notation becomes

�y = f (Z−1, γ ) + �Qb + �Y a + εy, (9)

where �y = (�y1, . . . , �yT )′, f (Z−1, γ ) = ( f (z0, γ ), . . . , f (zT −1, γ ))′ and
εy = (εy1, . . . , εyT )′ are T × 1 vectors, �Q = (�Q1, . . . , �Q1−r ) is a matrix of
order T × (N − 1)r and �Y = (�Y−1, . . . , �Y−p) a matrix of order T × P .

Our objective is to estimate the unknown nonlinear equilibrium correction,
f (Z−1, γ ), by the semiparametric procedure of smoothing splines. Spline smooth-
ing is a very flexible estimation technique. The first analysis of their statistical
properties for nonperiodic nonlinear functions appeared in Wahba (1975) and
Silverman (1985). Different empirical applications of this estimation procedure
are in Granger et al. (1984), Engle et al. (1986), and Härdle and Linton (1994).
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The smoothing-splines estimator that we use in the empirical section is obtained
using the following procedure. Substitute equation (9) by a general parametric
approximation,

�y = χ−1β + �Hφ + εy, (10)

where f (Z−1, γ ) ≈ χ−1β, �H = (�Q, �Y ) and φ = (b′a′)′. In this approxima-
tion χ−1 is a T × K matrix of zeros and ones and k ≤ T is the number of intervals
into which the domain of the function has been divided. The matrix χ−1 is formed
by reading each of the T observations of zt−1 and assigning the value 1 to the
interval where the observation lies and 0 in the rest of the intervals. To estimate a
smooth function, while avoiding overfitting the data, we can impose a smoothing
penalty. To do that explicitly, we will first write equation (10) as

�y = Wδ + εy, (11)

where W = (χ−1, �H ) and δ = (β ′, φ′)′. The estimator of δ is obtained by mini-
mizing the following objective function:

Minδ(ε
′
yεy + λδ′V ′V δ), (12)

where the matrix V is chosen so that the smoothing constraint applies, in a direct
way, only to the parameter vector β. Let V = (B, 0), where B is a K × K matrix
and 0 is a K × L matrix where L = (N − 1)xr + p; hence,

ε′
yεy + λδ′V ′V δ = ε′

yεy + λβ ′ B ′ Bβ. (13)

The first component is the usual error sum of squares and the second represents the
penalty imposed for lack of smoothness. The content of the matrix B determines
what type of smoothing constraints we want to impose. If, following the idea of
smoothing splines, we impose a penalty based on the second derivative of the
function f (z, γ ), then, when the intervals are of equal size, the matrix B will be
formed so that three adjacent β ′s are close to a straight line, βi+1 + βi−1 − 2βi = 0;
see Engle et al. (1986) for the treatment of a more general case.

The solution to the optimization problem (12) is

δ(λ) = (W ′W + λV ′V )−1W ′�y, (14)

which, in a more explicit form, can be written as

δ(λ) =
[
χ ′

−1χ−1 + λB ′ B χ ′
−1�H

�H ′χ−1 �H ′�H

]−1 [
χ ′

−1 �y

�H′ �y

]
(15)

The estimator δ(λ) is, under some regularity conditions, consistent but biased. The
size of the bias of δ(λ) depends positively on the value of the parameter λ. On the
other hand, the variance decreases with λ getting the classical trade-off between
bias and efficiency.
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To ascertain what the optimal value of λ should be, Wahba (1975) developed the
generalized cross-validation (GCV) procedure. This procedure chooses the value
of λ that solves

MinλGCV(λ) = RSS(λ)/(1 − trace(G(λ)/T))2, (16)

where RSS(λ) = (�y − �ŷ)′(�y − �ŷ), �ŷ is the fit and G(λ) = W (W ′W +
λV ′V )−1W ′, see Härdle and Linton (1994) for a discussion on the properties of
this procedure.

When working with macroecomic variables, the sample sizes are usually too
small to obtain consistent and efficient nonparametric or semiparametric estima-
tors. However, as we will see in the empirical application of the UK money demand,
this semiparametric procedure can be very informative in finding appropriate types
of nonlinear functional forms, cubic polynomials, rational polynomials, etc. The
final empirical step should therefore consist of the estimation of NEC models
from those suggested parametric specifications. This final step should provide
more efficient estimates.

3.2. Parametric Approach

Assumption 2. The vector (�yt , �q ′
t )

′ satisfies a FCLT based on NED se-
quences, and zt satisfies Assumption 1.

THEOREM 3 (TWO-STEP ESTIMATOR OF NEC). Under Assumption 2
and conditions (i)–(v) of Theorem 1,

yt = α′qt + zt (17a)

�yt = b′
0�qt + b′

1�qt−1 + · · · + b′
r�qt−r + a1�yt−1 + · · ·

+ ap�yt−p + f (zt−1, γ ) + εyt . (17b)

Equations (17a) and (17b) can be estimated by OLS and NLS with the following
properties:

(a) The OLS estimator of the cointegrating vector α, in (17a), is superconsistent and
its asymptotic distribution is nonstandard.

(b) The OLS and NLS estimators of the parameters (b0, b1, . . . , br )
′ and (a1, . . . , ap, γ )

of equation (17b) have the same limiting distribution no matter what value of zt−1

we use: the true value (zt−1) or its OLS estimate, (Ut−1), from (17a).
(c) The OLS or NLS estimators of the parameters (b0, b1, . . . , br )

′ and (a1, . . . , ap, γ )

of equation (17b), where zt−1 was previously estimated (Ut−1) by OLS on (17a), are√
T -consistent and asymptotically normal.

Proof. See Appendix A.

Those least-squares (LS) estimation results are based on Stock (1987) and
Escribano and Mira (1996, 1997) and generalize Engle and Granger (1987) two-
step estimator to single-equation NEC models.
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Most of the previous results on estimation and inference in NEC models are
based on parametric procedures (OLS, NLS) when the nonlinear functional form
is known. However, the functional form is generally unknown and, if we start with
the wrong class of nonlinear functions, it might be difficult to reach a good model.
As will become clear in the next section, to overcome this problem we suggest
starting the nonlinear specification with the semiparametric estimation procedure
mentioned in Section 3.1 in order to find out plausible parametric functional forms
for the nonlinear equilibrium correction. However, this makes sense if we have pre-
viously identified certain nonlinearities in the model. This procedure is explained
in the next section.

3.3. Testing for the Existence of NEC Adjustments

The first step of the methodology is the estimation of a linear specification. Once
we have evidence of cointegration and have specified a linear EC model, usual
misspecification tests can be applied to test for nonlinearities in the equilibrium
correction. For example, one can use an LM test based on the R2 of auxiliary
regressions (using the asymptotic χ2 distribution) or its small-sample counterpart
(based on the F distribution) to test the null hypothesis of linear error correction
(H0: EC) against the alternative hypothesis of nonlinear error correction (H1:
NEC). Alternatively, we could use the likelihood ratio (LR) or Wald (W) tests.
Sometimes, LM tests have the advantage of being easier to compute in nonlinear
cases. Furthermore LM tests can be used to identify certain types of parametric
functional forms to be used. For example, when selecting between logistic and
exponential specifications, Teräsvirta (1994) proposed an interesting decision rule,
in the context of smooth-transition autoregression models (STAR). Escribano and
Jorda (1999, 2001) suggested an alternative decision rule and extended the analysis
to the class of smooth-transition regression models (STR). As we will see later,
those decision rules based on LM tests could also be informative when deciding
among alternative nonlinear functional forms in NEC models.

If the linear error-correction model have been rejected in favor of a nonlinear
error correction, then we should follow a semiparametric estimation procedure
(smoothing splines, kernels, etc.) to identify the class of parametric nonlinear
functions. This strategy is most relevant in the absence of large sample sizes since
parametric estimates will be more efficient and the corresponding test statistics
more powerful.

Once we have estimated a plausible parametric nonlinear formulation of the
error correction adjustment (NEC), the usual misspecification tests should be ap-
plied to test the null hypothesis of correct specification against the alternative
misspecification hypotheses: autocorrelation, heteroskedasticity, wrong dynamic
specification, parameter nonconstancy, etc.

In the following sections we apply this econometric methodology to different
periods of the UK money demand and discuss competing estimates, some of which
were mentioned critically by Friedman and Schwartz (1991).
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4. EMPIRICAL APPLICATIONS OF NEC METHODOLOGY

We start this section with a brief historical review of some of the first unpublished
competing UK money demand estimates based on annual observations from the
year 1878 to 1970. The database was originally obtained from Friedman and
Schwartz (1982) but rescaled as in Hendry and Ericsson (1983) to compensate for
the Southern Ireland effect. Table 1 includes the three main unpublished compet-
ing specifications of the money demand that were independently proposed. One
of them represents the first nonlinear and asymmetric error-correction model esti-
mated. In what follows, we briefly highlight the basic differential elements of the
three alternative money demand specifications.

Hendry and Ericsson (1983) estimated an EC money demand equation in one-
step (see Table 1, col. 2) by OLS, as a critical reaction to the empirical approach
followed by Friedman and Schwartz (1982). The implicit cointegration relationship
was between the log-inverse velocity of circulation of money (m − p − i)t−4 and
short-run interest rate (RS)t . To obtain parameter constancy, their specification
needed a questionable dummy variable D2 (see Appendix B), which captures what
Friedman and Schwartz (1982) called a “liquidity preference shift.” Based on this,
Hendry and Ericsson (1983) realized that their specification was not satisfactory.
This comment motivated other researchers to look for alternative money demand
specifications.

Simultaneously, two different money demand equations were estimated, one at
the London Business School in the United Kingdom, by Longbottom and Holly
(1985), and the other at the University of California at San Diego (USA) by
Escribano (1985, 1986).

Longbottom and Holly (1985) estimated a linear error correction in one-step by
OLS (see Table 1, col. 3). The implicit cointegration relationship they considered
was among real money stock (m − p)t−1, real income (i)t , and short-run interest
rates in logs (rs)t . Therefore, they did not impose a unit income elasticity of real
money demand in the long-run. In particular, they suggested the following changes:
(i) relax the restriction on the coefficient of the first lagged dependent variable, (ii)
use interest rates in logs in both the long run (rl) and the short run (rs), (iii) relax
the restriction on the coefficients of the rate of growth of prices, and (iv) impose
the same coefficient on both world war dummies, D1 and D3. With those changes,
they did not use the dummy variable D2 and reduced the estimated standard error
of the regression from 1.7% to 1.4%.

Escribano (1985, 1986), followed an alternative strategy, estimating a NEC in
two-steps (see of Table 1, cols. 3 and 4). The explicit nonlinear cointegration rela-
tionship was between log-inverse velocity of circulation of money (m− p−i)t and
short-run interest rates (RS)t without logs. The dynamic formulation considered
in the second step incorporated the following changes: (i) relax the restrictions on
the coefficient of the first lagged dependent variable, (ii) relax the restriction on
the coefficients of the growth rate of prices, (iii) include the first difference of both
short-run and long-run interest rates (RS and RL), and (iv) incorporate the lagged
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TABLE 1. Historical competing estimates of money demand in the UK (1878–1970)

Dependent variable

Regressors �(m − p)t
a �(m − p)t

b (m − p − i)t
c �(m − p)t

d

�2(m − p)t − 1 0.37 (7.4)e

�2(m − p)t − 2 −0.06 (0.8) −0.13 (3.1)
�(m − p)t−1 0.47 (7.5) 0.45 (6.1)
�(m − p)t−2 −0.16 (3.0)
�(m − p)t−3 0.08 (1.7)
(1/4)�4it 0.64 (4.3)
�it 0.08 (1.7)
�2 pt −0.47 (11.7) −0.63 (15.4)
�2 pt−2 −0.14 (2.0)
�pt −0.61 (13.8)
�pt−1 −0.22 (4.8) 0.37 (7.0)
�RLt −0.01 (1.8)
(1/2)�2 RLt −3.3 (3.0)
�2rlt −0.0108 (5.9)
�RSt −0.008 (3.7)
(m − p − i)t−4 −0.20 (10.0)
(m − p)t−1 −0.058 (4.0)
it 0.065 (4.4)
RSt −0.78 (4.3) −0.7
rst −0.0056 (1.6)
D1 1.9 (2.4) 0.04 (4.4)
D2 3.6 (6.0)
D3 0.6 (0.7) 0.04 (6.1)
D1 + D3 0.034 (6.2)
Ut−1

f −0.018 (0.6)
U 2

t−1 0.5 (3.3)
U 3

t−1 −2.18 (2.3)

Constant −0.086 (0.7) −0.074 (2.4) −4.91 0.004 (1.6)
R2 0.82 0.86 0.56 0.87
100σ 1.7% 1.46% 10.9% 1.46%
No. of parameters 12 10 2 14

a Hendry and Ericsson (1983) one-step EC.
b Longbottom and Holly (1985) one-step EC.
c Escribano (1985, 1986) cointegration.
d Escribano (1985, 1986) two-step NEC.
e Absolute values of t ratios are in parentheses.
f Ut−1 = (m − i − p)t−1 + 4.91 + 0.7RSt−1.
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residuals (Ut−1) from the cointegrating relationship in a nonlinear form (cubic
polynomial error correction). The incorporation of the nonlinear equilibrium cor-
rection made the contribution of the dummy variable D2 insignificant and reduced
the estimated standard regression error of the regression from 1.7% to 1.4%. Both
alternative parameterizations—columns 3 and 5 of Table 1—represented signif-
icant improvements over previous money demand equations, as was later recog-
nized by Friedman and Schwartz (1991) and Hendry and Ericsson (1991).

4.1. Empirical Application of NEC Methodology to the UK Money
Demand from 1878 to 1970

This section is based on the seminal work of Escribano (1985, 1986, 1996) and
therefore uses the original data set to describe the econometric methodology dis-
cussed in Sections 2 and 3 when searching for nonparametric and parametric
functional NEC models. For the stability analysis, larger data sets will be consid-
ered. The usual first step in dynamic single-equation modeling is to analyze the
univariate time-series properties of the variables. This is important to determine
the class of models and the estimation and inference properties that we should
consider. However, since the descriptive analysis of this data set can be found
in Friedman and Schwartz (1982) and in Hendry and Ericsson (1991), we only
discuss what is different in terms of the I (1) and I (0) properties of the variables.

Recall from Theorem 1 that the vector Xt = (yt , q ′
t )

′, where yt is a scalar and qt

is an (N − 1) × 1 vector. The dependent variable that we want to explain in the
dynamic regression analysis is the log of the real money stock yt ≡ (m − p)t and
its rate of growth �yt ≡ �(m − p)t . The set of explanatory variables form an
8 × 1 vector (qt )

′ ≡ (i, p, rs, rl, D1, D2, D3, 1)′t where the first component (i)
is the log of real income, (p) is the implicit price deflator of real income in logs,
(rs) is the log of the short-run interest rate, (rl) is the long-run interest in logs, and
the variables (D1), (D3), and (D2) are dummy variables to capture special events
such as World War I, World War II, and a “liquidity preference shift,” produced
by “economic depression and war,” following the work of Friedman and Schwartz
(1982, p. 281). The precise definitions of the variables are given in Appendix B.

When the true model is a NEC model, we might first want to check that the two-
step estimation procedure works correctly, giving consistent OLS estimates of the
cointegration relationship in the presence of a nonlinear model of the residuals.
Theorem 3 requires that the errors from the cointegrating relationship are α-mixing,
satisfy Assumption 1, and the first difference of the variables of the model is I (0)
and satisfies Assumption 1. All of these conditions are testable.

In Table 2, we report the numerical values of Lo (1991) and Kwiatkowski et al.
(1992) test statistics obtained for the following components of the vector of first
differences (�(m − p), �i, �p, �rs, �rl, �RL)′t )

′.
Given that all estimated values of the test statistics are inside the 95% confidence

interval, we cannot reject the null hypotheses that the variables in first differences
are I (0) and satisfy Assumption 1 against the alternative hypothesis of I (1). If we
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TABLE 2. H0 : xt is I (0) and satisfies Assumption 1; H1: xt is I (1) and/or does not
satisfy Assumption 1

Test statistica �(m − p) �i �p �rs �rl �RL u U

Lo (1991) 1.23 1.05 0.98 0.86 1.27 1.38 1.20 1.30
Kwiatkowski et al. (1992) 0.22 0.07 0.37 0.12 0.37 0.55 0.13 0.24

a Lo’s 95% asymptotic confidence interval, CI = (0.86, 1.75). KPSS’s 95% asymptotic confidence interval, CI = (0,
0.46). In both test statistics, the truncation lag used to estimate the variance of xt was always the optimal; s = integer
value of KT . See equations (6a), (6b), and (7) of Section 3.

plot the first difference of the relevant series from 1878–2000, it is clear that none
of the series in first differences look like I (1), confirming the results of the test
statistics that the first difference of the variables is I (0) and therefore the partial
sums are I (1).

Furthermore, from unit root tests and the evolution of the autocorrelations and
partial autocorrelation of the univariate time series, we conclude that the compo-
nents of the vector Xt = (yt , q ′

t )
′, except for the dummy variables and the constant,

can be characterized as I (1); see Escribano (1985, 1986), Hendry and Ericsson
(1991) and Ericsson et al. (1998) for more details.

In the last two columns of Table 2, we report several cointegrating tests, under
the assumption that RSt (or rst ) are strictly exogenous in their corresponding coin-
tegrating regression. The results of testing the null hypothesis (H0) of cointegration
are based on the test statistic of KPSST extended by Shin (1994). From the results
of column 8 of Table 2, we cannot reject that there is a cointegrating relationship
(H0) between inverse velocity of circulation of money in logs, (m − i − p)t , and
short-run interest rates in logs, (rn)t . Similarly, column 9 of Table 2 shows that
there is no evidence against a nonlinear cointegrating relationship (H0) between
inverse velocity of circulation of money in logs, (m − i − p)t and short-run interest
rates without logs, (RN)t . In both cases the test statistics based on the residuals,
u and U from the OLS-cointegrating regressions, are inside the 95% confidence
interval. Therefore, in both cases, we cannot reject the null hypothesis of coin-
tegration against the alternative hypothesis that the residuals are I (1) and/or do
not satisfy Assumption 1. The power of the test and the small-sample critical
value (C.V.) require a deeper analysis but the study is beyond the scope of this
paper.

Given that the variables are cointegrated, we can proceed by estimating a linear
error correction model; see Table 3. Following the results of Escribano (1985,
1986), Table 3 confirms the previous evidence against the null hypothesis of no
cointegration [Ut is I (1)] between log-inverse velocity of circulation of money
(m − i − p)t and short-run interest rates (RS)t , with a t-ratio of Ut−1 equal to –3.2.

Once we have found a plausible linear error-correction model, we could test for
the existence of an NEC model. We could do that by using standard testing princi-
ples based on Lagrange multipliers (LM), Wald (W), or likelihood ratio (LR). As
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TABLE 3. Linear EC money demand in the UK (1878–1970)

Dependent Variable: �(m − p)t

Regressors Coefficient Std. Error T-Statistic Prob.

�(m − p)t−1 0.474211 0.064393 7.364367 0.0000
�2(m − p)t−2 −0.116981 0.043494 −2.689598 0.0086
�pt −0.605699 0.042652 −14.20079 0.0000
�pt−1 0.412947 0.048929 8.439632 0.0000
�rst −0.017993 0.005734 −3.138068 0.0023
�2rlt −0.078436 0.018762 −4.180574 0.0001
D1 + D3 0.032756 0.005681 5.765859 0.0000
Ut−1 −0.047327 0.015133 −3.127427 0.0024
Constant 0.009610 0.002138 4.494353 0.0000

R2 0.85
Adjusted R2 0.84
σ 1.5
Sum-squared residual 0.019
Durbin-Watson statistic 1.83
Mean dependent variable 0.0141
S.D. dependent variable 0.037
Akaike info criterion −8.29
Schwartz criterion −8.04

Nonlinear Error Correction Test
H0: Linear EC

H1: Nonlinear EC (NEC)
Omitted variables test: U 2

t−1, U 3
t−1

F-statistic 5.334583 Probability 0.006638a

Log likelihood 11.37544 Probability 0.003387a

a Significant rejection of linearity at 1%.

we mentioned earlier the LM test is probably the simplest test against nonlinear
alternatives since all we have to do is estimate an artificial regression using the
residuals from the linear error-correction model as the dependent variable and the
explanatory variables of the linear EC model as the regressors, plus polynomial
terms of the first lag of the residuals from the OLS cointegrating relationship
estimated in the first step, U 2

t−1 and U 3
t−1. However, if the NEC model can also

be estimated by OLS, this advantage of the LM test disappears. For example, in
Table 3, we report the results of implementing an LR test for the null hypothesis
of linearity against the alternative of NEC. The log likelihood, or its small-sample
counterpart F-statistic, has p-values smaller than 0.05, rejecting the null of linear-
ity in favor of NEC. As discussed by Teräsvirta (1994) and Escribano and Jorda
(1999, 2001), the LM tests for linearity, based on the alternative hypothesis of
cubic polynomials or fourth-order polynomials, have power against logistic or
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exponential nonlinear models. However, for reasons that will be mentioned later,
we suggest considering a new class of nonlinear functions: rational polynomial
error-correction models.

Once we have found evidence of a NEC model, we suggest estimating the un-
known nonlinear relationship by the semiparametric procedure based on smoothing
splines; see Section 2.

Given that we have rejected the null hypothesis of linear error correction in
favor of NEC, we could maintain the parametric linear dynamic specification
while allowing the nonlinearity to affect only the error correction term. Applying
the smoothing-splines estimation procedure to the money demand of the United
Kingdom (1878–1970), we find that the number of intervals K is 11 and that the
estimated (optimal) value of the smoothing parameter λ is λ = 0.00001216. The
empirical results obtained are reported in Model A of Table 4.

The graphical representation of the nonlinear adjustment is in Figure 1. From
the graph it is again clear that the two attractor points (equilibria) are 0 and 0.2.
We could also interpret the values of U between 0 and 0.2 representing the mul-
tiple long-run equilibria of the money demand. It is interesting to realize that the
nonlinear plot of this semiparametric estimation looks like the cubic polynomial
plot previously obtained.

TABLE 4. Smoothing splines estimation of nonlinear equilibrium corrections

Model 4A Model 4B

Intervals Coefficients t-Ratios Intervals Coefficients t-Ratios

1 0.0301 5.28 1 0.0121 3.99
2 0.0127 4.76 2 0.0093 3.95
3 0.0074 3.28 3 0.0082 3.86
4 0.0051 2.30 4 0.0076 3.79
5 −0.00084 −0.37 5 0.0060 3.38
6 −0.00241 −1.03 6 0.0048 2.90
7 −0.00011 −0.04 7 0.0032 1.92
8 0.00386 1.13 8 0.0009 0.49
9 0.00029 0.08 9 −0.0024 −0.97

10 0.00068 0.16 10 −0.0058 −1.17
11 −0.00574 −1.04 11 −0.0081 −2.01

Sample period: 1878–1970 Sample period: 1878–1970
No. of observations: 93 No. of observations: 93
Standard error of the regression: 1.51% Standard error of the regression: 1.67%
Standard error with denominator trace: 1.45% Standard error with denominator

trace: 1.58
Optimal value of λ: 0.00001216 Value of λ: 10,000
GCV: 0.0000024 GCV: 0.0000027
Durbin-Watson: 2.02 Durbin-Watson: 2.00
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FIGURE 1. Nonparametric Error Correction (Smoothing Splines) UK Money Demand (1878–
1970).
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Therefore, the nonparametric estimation supports cubic polynomials as plausi-
ble parametric functional approximations of the nonlinear equilibrium correction.
The next closest parametric alternative is the rational polynomial, which as we
mentioned before, has an important advantage over cubic polynomials, since it is
consistent with Ut being φ-NED.

One possible interpretation of the asymmetric adjustment is that it is piecewise
nonlinear only with negative equilibrium errors but the adjustment is linear with
positive errors greater than or equal to 0.2. The economic and statistical inter-
pretation of this possibility is unclear but it could be justified by having certain
asymmetric adjustment costs.

When imposing a strong smoothing constraint (large value of the smoothing
parameter λ) on the splines estimator, we get a linear error-correction adjustment.
This linear error-correction model was obtained by setting the value of λ at 10,000
while keeping 11 intervals; see Model 4B of Table 4. The graphical representation
of the linear error-correction adjustment is in Figure 1. From the graph, it is clear
that the whole adjustment is biased toward the value of U = 0.2, thus explaining
why the initial estimates of the UK money demand (1878–1970) required the use
of the dummy variable D2 in their linear specifications.

The final money demand of Hendry and Ericsson (1991) is a NEC model esti-
mated by the two-step procedure of Engle and Granger (1987); see columns 2 and 3
of Table 3. Following Escribano (1985, 1986), they incorporated the residuals from
the OLS estimator (Ut ), lagged once, as a cubic polynomial in the dynamic for-
mulation. The NEC term of Hendry and Ericsson (1991) is in column 3 of Table 5,
−2.55(Ut−1 − 0.2)U 2

t−1 = 0.5U 2
t−1 − 2.55U 3

t−1. Following Longbottom and Holly
(1985), they also included the short run and the long-run interest rates in logs (rates
of change) in the short run. In the last rows of column 3 of Table 5, we present sev-
eral misspecification tests. We were unable to reject the null hypothesis of correct
specification. That is, or AR(2) structure in the residuals, or ARCH(1), etc.

Following Granger and Lee (1989) in the last column of Table 5, we report the
estimation of an asymmetric error-correction model with the threshold point (τ) at
0. However, this model is worse since the standard error of the regression increases
from 1.42% to 1.46% and only the negative errors are significantly different from
zero. In Section 5, we will give an explanation of this result using the extended
data set going from 1878 to 2000.

4.2. Econometric Evaluation of Ericsson et al. (1998) UK Money
Demand Estimates

Hendry and Ericsson (1991) also extended the model presented in column 3 of
Table 5 to cover the period from 1970 to 1975. This is an important period due to the
introduction of Competition and Credit Control regulations. To account for that,
they define a dummy variable D4, see Appendix B, which also enters interactively
with the rate of growth of the short-run (�rs) interest rates, (D4�rs). Additional
data from 1975 to 1993 were compiled by Attfield et al. (1995) and examined by
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TABLE 5. Money demand in the UK estimates from 1878–1970

Dependent variable

Regressors (m − i − p)t
a �(m − p)t

b �(m − p)t
c �(m − p)t

d

�2(m − p)t−2 −0.10 (2.5)e −0.10 (2.4) −0.09 (2.0)
�(m − p)t−1 0.45 (7.4) 0.45 (7.1) 0.43 (6.6)
�pt −0.60 (15.0) −0.59 (14.8) −0.59 (14.4)
�pt−1 0.39 (8.5) 0.39 (8.4) 0.38 (8.0)
�2rlt −0.062 (3.4) −0.062 (3.4) −0.065 (3.4)
�rst −0.021 (3.9) −0.021 (3.9) −0.021 (3.7)
RSt −7.0
D1 + D3 3.7 (6.8) 3.7 (6.6) 3.8 (6.5)
Ut−1

f

U 2
t−1 0.50 (3.4)

U 3
t−1 −2.55 (4.6)

(Ut−1 − 0.2)U 2
t−1 −2.55 (4.6)

Ut−1 D(Ut−1 > 0) 0.01 (0.5)
Ut−1 D(Ut−1 ≤ 0) −0.15 (3.6)
Constant −0.31 0.005 (2.4) 0.005 (2.2) 0.002 (0.7)
T 98 (1873–1970) 93 93 93
R2 0.56 0.87 0.87 0.86
100σ 10.9% 1.42% 1.43% 1.46%
No. of parameters 2 9 10 10

Misspecification test p-value p-value p-value

AR(2) 0.26 0.26 0.16
ARCH(1) 0.22 0.23 0.41
Normality 0.38 0.37 0.35
X 2

i 0.60 0.71 0.24
Xi ∗ X j 0.76 0.88 0.24
RESET 0.52 0.52 0.98

a Hendry and Ericsson (1991) cointegration.
b Hendry and Ericsson (1991) two-step NEC.
c Cubic polynomial two-step NEC.
d Asymmetric two-step NEC.
e Absolute values of t-ratios are in parentheses.
f Ut−1 = (m − p − i)t−1 + 0.31 + 7.0 RSt−1.

Ericsson et al. (1998). We replicate their two-step estimation in column 2 of Table 6.
In step 1, they estimate the long-run parameters from the cointegrating relationship
using the period of 1873–1970 and impose those estimated parameter values of
the cointegrating vector for the period 1873–1993. In step 2, they estimate the
error-correction model including cubic polynomial equilibrium correction terms,
following Escribano (1985, 1986). However, as we can see in the misspecification
test included in the last rows of Table 6, col. 2, there is clear evidence of some
autocorrelation, AR(2), in the residuals of the model.
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TABLE 6. Money demand in the UK estimates from 1878 to 1993 (dependent
variable: rate of change of real stock of money)

Dependent variable

Regressors �(m − p)t
a

�(m − p)t
b

�(m − p)t
c

�(m − p)t
d

�2(m − p)t−2 −0.10 (2.35)e −0.10 (2.33) −0.10 (3.10) −0.08 (1.72)
�(m − p)t−1 0.48 (9.00) 0.49 (8.83) 0.66 (8.93) 0.64 (8.45)
�(m − p)t−2 −0.21 (3.32) −0.20 (3.13)
�pt −0.62 (14.89) −0.62 (14.59) −0.64 (15.77) −0.62 (14.86)
�pt−1 0.40 (8.77) 0.41 (8.90) 0.57 (7.61) 0.52 (6.92)
�pt−2 −0.15 (2.62) −0.10 (1.70)
�2rlt −0.04 (2.55) −0.04 (2.50) −0.04 (2.50) −0.04 (2.36)
�rna

t −0.02 (3.39) −0.02 (3.34) −0.02 (3.65) −0.02 (3.69)
Dc 0.05 (7.27) 0.05 (7.24) 0.05 (7.00) 0.05 (7.15)
D1 + D3 0.0039 (7.11) 0.04 (6.52) 0.04 (6.56) 0.03 (6.36)
D4�rs 0.10 (3.77) 0.09 (3.24) 0.08 (3.14) 0.07 (2.72)
(Ut−1 − α)U 2

t−1 −2.26 (6.77) −2.13 (4.44) −2.21 (6.08) −2.00 (4.34)
Parameter α 0.2 (fixed) 0.13 (1.11) 0.2 (fixed) 0.18 (2.26)
Constant 0.004 (1.93) 0.01 (2.18) 0.01 (3.10) 0.01 (2.60)

Cointegration relationship : Ut = (m − p − i)t − α0 − α1 RN a
t

Constant −0.32 (15.33) −0.30 (6.95) −0.34 (17.28) −0.30 (8.89)
RN a

t −6.67 (11.67) −6.89 (17.67) −6.30 (13.84) −7.03 (15.73)

T 116 116 116 116
R2 0.87 0.87 0.88 0.89
100σ 1.62% 1.62% 1.57% 1.56%
No. of parameters 11 14 15 16

Misspecification tests p-value p-value p-value p-value

AR(2) 0.03 f 0.07 0.16 0.12
ARCH(1) 0.90 0.81 0.96 0.81
Normality 0.98 0.98 0.78 0.89
X 2

i 0.57 0.64 0.70 0.72
Xi ∗ Xj 0.57 0.65
RESET 0.25 0.65

a Hendry et al. (1998) two-step NEC OLS.
b Hendry et al. (1998) one-step NEC NLS.
c Two-step NEC OLS.
d One-step NEC NLS.
e Absolute values of t-ratios are in parentheses.
f Significant at 5%.

This problem is mitigated but not solved by estimating this model in one step
by nonlinear least squares (NLS) (see column 3 of Table 6). Columns 4 and 5
of Table 6 show that their specification can be improved by getting rid of the
constraint imposed on the lagged dependent variable at lags 2 and 3. To test for
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that, we included the variable �pt−2 as an extra regressor. It became significant
with an absolute value of the t-ratio equal to 2.62, and after that the model passes all
the misspecification tests (see last rows of columns 4 and 5 of Table 6). Therefore,
from now on we will use the NEC specification obtained in columns 4 and 5 as a
benchmark when searching for alternative nonlinear money-demand specifications
during the extended period of 1878 to 2000.

5. NEC MODELS OF UK MONEY DEMAND FROM 1878 TO 2000

The first aspect we want to address in this section is the fact that we have a nonlinear
cointegration relationship between the log of velocity of circulation of money,
v = −(m− p−i), and short-run interest rates without logs, RNa = RNA, Figure 2A.
This implies that there is a long-run money demand relationship between real
money in logs (m − p)t and short-run interest (RNa)t with a constant unit income
(i) elasticity. A linear cointegrating relationship is obtained if we include RN a in
logs, rna = LRNA, in the cointegrating relationship; see Figure 2B.

Nonlinear cointegration relationships raise difficult econometric questions:

(i) What do we mean by nonlinear cointegration?
(ii) Can we have a representation theorem for NEC models, similar to Theorem 4 of

Escribano and Mira (2002), when the variables are nonlinearly cointegrated?
(iii) Is it possible that two variables are simultaneously linearly and nonlinearly cointe-

grated?
(iv) If this is the case, which of the two cointegrating relationship is better?

The answer to question (i) was given after Definition 2 of Section 2, using the
concepts of integration suggested by Escribano and Mira (1996, 2002).

For general nonlinear cointegrating functions, it is difficult to obtain a repre-
sentation theorem. However, it is possible to give a simple answer to question (ii)
for the particular linear and nonlinear cointegrating functions obtained with the UK
money demand since 1878. All we have to do is to consider that in
Theorem 2 of Section 2, the vector of explanatory variables qt includes the short-
run interest rates in logs(rna) as well as in levels (RN a) and that they only enter in
the cointegrating vector one at a time. It is an empirical issue which of two coin-
tegrating specifications is the most appropriate. To answer question (iii), we first
estimate both cointegrating vectors with very similar long-run results in terms of
goodness of fit. The plots of both cointegrating series in Figures 2A and 2B support
the same conclusion. Both pairs of series seem to move together in the long-run but
the distance between them varies through time, giving support to the possibility
of multiple equilibria and also to the possibility that the adjustment toward the
multiple equilibria is not constant. To empirically support those hypotheses, we
estimate different NEC models.

First we estimate a NEC model with all of the variables being entered as logs.
Therefore, the log variables are linearly cointegrated. The estimation results are
given in Model A, col. 2 of Table 7. The NEC model satisfies all the misspecifica-
tion tests done (see the last rows of column 2 of Table 7). The NEC term is a cubic
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FIGURE 2. (A) Nonlinear cointegration. (B) Linear cointegration.

polynomial in ut−1, where ut is the linear cointegrating error. The corresponding
absolute value of the t-ratio of (ut−1 − 0.2)u2

t−1 is 4.6 and the standard error of the
regression model A is 1.71%.3

The equivalent analysis is done with the nonlinear cointegrating residuals Ut .
The results are in column 3 of Table 7, where Ut represents the corresponding
long-run equilibrium error. Model B of Table 7 shows that the absolute value of
the t-ratio of the cubic polynomial error-correction term, (Ut−1 −0.2)U 2

t−1, is 5.33
and the standard error of the equation is 1.61%. Therefore, in terms of goodness
of fit, the answer is clear: The nonlinear cointegration relationship fits better than
the linear one.

The cubic polynomial equilibrium correction of Model B, column 3, of Table 7,
is plotted in Figure 3. On the horizontal axis, we have the values of the long-run
equilibrium errors, Ut = (m − p − i)t + 0.35 + 6.16 RN a

t , and on the vertical
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TABLE 7. Alternative estimates of money demand in the UK (1878–2000) (depen-
dent variable: rate of change of real stock of money)

Dependent variable

Regressors �(m − p)t
a �(m − p)t

b (m − p − i)t
c �(m − p)t

d

�2(m − p)t−2 −0.10 (2.12)e −0.09 (2.15) −0.09 (2.02) −0.09 (5.63)
�(m − p)t−1 0.70 (8.87) 0.67 (8.61) 0.66 (8.26) 0.67 (8.39)
�(m − p)t−2 −0.25 (3.83) −0.24 (3.82) −0.22 (3.37) −0.23 (3.49)
�pt −0.68 (15.46) −0.64 (15.24) −0.63 (14.55) −0.64 (14.88)
�pt−1 0.61 (7.65) 0.58 (7.57) 0.55 (6.94) 0.56 (7.16)
�pt−2 −0.21 (3.34) −0.15 (2.53) −0.11 (1.76) −0.13 (2.03)
�2rlt −0.05 (3.10) −0.04 (2.98) −0.05 (3.41) −0.05 (3.30)
�2rlt−2 −0.03 (1.95) −0.04 (2.49) −0.03 (2.27)
�rn a

t −0.02 (3.22) −0.02 (3.61) −0.02 (3.21) −0.02 (3.32)
D1 + D3 0.04 (5.99) 0.03 (6.29) 0.03 (5.44) 0.03 (5.63)
D4�rs 0.11 (3.89) 0.08 (2.92) 0.07 (2.66) 0.08 (2.90)
Dc 0.05 (6.25) 0.05 (6.68) 0.05 (7.15) 0.05 (7.02)
(ut−1 − 0.2)u2

t−1
f −2.22 (4.60)

(Ut−1 − 0.2)U 2
t−1

g −2.02 (5.33)
(U 3

t−1)/ −1.66 (4.80)
[1/(Ut−1 + 1)2 + 0.21]

(U 3
t−1) / [(Ut−1 + 1)2 + 1] −3.25 (4.67)

Constant 0.01 (4.14) 0.01 (3.83) 0.01 (5.69) 0.02 (5.63)
T 123 123 123 123
R2 0.85 0.87 0.86 0.87
100σ 1.71% 1.61% 1.66% 1.64%
No. of parameters 13 14 14 14

Misspecification tests p-value p-value p-value p-value

AR(2) 0.46 0.15 0.31 0.30
ARCH(1) 0.54 0.62 0.46 0.52
Normality 0.66 0.91 0.92 0.91

a Model A, two-step NEC.
b Model B, two-step NEC.
c Model C, two-step NEC.
d Model D, two-step NEC.
e Absolute values of t-ratios are in parentheses.
f ut−1 = (m − i − p)t−1 + 1.26 + 0.19 rna

t−1.
g Ut−1 = (m − i − p)t−1 + 0.35 + 6.16 RN a

t−1.

axis the cubic polynomial error-correction term, POL(Ut ) = −2.02(Ut−0.2)U 2
t

for t = 1878–2000.
On the other hand, Model A of Table 7 has very similar nonlinear cubic poly-

nomial adjustment (see Figure 4). The horizontal axis has the values of the other
long-run equilibrium errors obtained from ut = (m − p − i)t + 1.26 + 0.19 rna

t ,
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with the short-run interest rates in logs (linear cointegration), and in the vertical axis
the cubic polynomial equilibrium correction terms, POL(ut ) = −2.22(ut −0.2)u2

t .
Cubic polynomials are very flexible since they can be thought of as a parametric

approximation to any function that is fourth-order continuously differentiable. In
fact, for NEC modeling, they represent a very useful tool to identify threshold
points. In particular, in the UK money demand since 1878, we saw that there is a
continuum of equilibria between 0 and 0.2 and therefore we can identify two thresh-
old points (attractors) τ1 = 0 and τ2 = 0.2 (see Figure 1, Model A and Figure 3).
For more than two threshold points, we would need to consider a higher-order
polynomial approximation or the nonparametric approach such as the smoothing
splines of Section 3.1. Notice that if we specify an asymmetric error correction for
the UK money demand with only one threshold point at τ = 0 [see Granger and Lee
(1989)], it will be misspecified. This is the reason why only adjustments to negative
values of Ut−1 are significant in the Asymmetric NEC Model, column 5, of Table 5.
On the contrary, cubic polynomials are robust to having one or two thresholds.

The main caveat of cubic polynomials is that they do not globally satisfy the
equilibrium correction condition (stability condition) −2 < d f (z, γ )/dz < 0
when z → ∞, although in sample it could satisfy it. Some other unstable reactions
can be observed to the right of the zero equilibrium error; see Figures 3 and 4.
Therefore, we would like to have a class of parametric models that satisfies the
previous four desirable properties of cubic polynomials and the stability condition
on d f (z, γ )/dz, which is sufficient for zt to be φ-NED; see Theorem 1. Simple
nonlinear functions that satisfy those conditions are certain types of the rational
polynomials introduced in Section 2. For example,

f (z, γ ) = {(z + γ1)
3 + γ2}/{(z + γ3)

2 + γ4}, (18)

FIGURE 3. Cubic polynomial in Ut .
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FIGURE 4. Cubic polynomial in ut .

where if γ2 = −γ 3
1 and (γ 2

3 +γ4) �=0, then f (z = 0, γ ) = 0 is the equilibrium. The
adjustment can be asymmetric and/or nonlinear, generalizing Granger and Lee’s
(1989) asymmetric (piecewise linear) error correction.

If we want the rational polynomials to have multiple equilibria, we might prefer
the following functional form:

f (z, γ ) = γ0{(z + γ1)
3 + γ2}/{(1/(z + γ3)

2) + γ4}, (19)

where if γ2 = −γ 3
1 ; then, f (z = 0, γ ) = 0 and f (z = −γ3, γ ) = 0 and f (z, γ ) ≈

0 for all z ∈ (0, γ3). Therefore, we could have a continuum of equilibria between
0 and γ3. Estimates of (18) and (19) are given by models C and D of Table 7.
Figures 5 and 6 represent the nonlinear adjustments. It is clear that the adjustment
is faster the farther we are from U = 0, and it is clearly asymmetric. This type of
asymmetry is not piecewise linear around a zero threshold point, but is piece wise
nonlinear around a set of threshold points around zero.

The equilibrium value (threshold) U = 0.2 of Figures 3 and 4 has an inter-
pretation in terms of the role that the dummy variable D2 was playing in the
linear money-demand equations of Friedman and Schwartz (1982) and Hendry
and Ericsson (1983); see column 2 of Table 1. If we run a cointegrating regression
with log-inverse velocity of circulation of money on a constant, the dummy D2
and short-run interest rates (RNa), then the estimated coefficient of D2 is near 0.2,
which corresponds to the positive extreme value (threshold) of the interval of the
long-run equilibria obtained by estimating NEC models.
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FIGURE 5. Rational polynomial (Model C of Table 7).

5.1. Two-Step OLS Estimation of NEC Money Demand (1878–2000)4

The best two-step money demand equation estimated for the period 1878 to 2000
is Model B of Table 7, which is written below as equations (20a) and (20b). In what
follows, we will evaluate this econometric specification in terms of the stability

FIGURE 6. Rational polynomial (Model D of Table 7).
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of the parameter estimates as well as other possible sources of misspecification
(autocorrelation, heteroskedasticity, normality, functional form, etc.).

The actual values of (m − p)t and the corresponding fitted values are ploted in
Figure 7 with satisfactory results for such a long period of time.

Step 1: Nonlinear cointegration relationship:

Ut = (m − p − i)t + 0.35 + 6.16 RN a
t . (20a)

Step 2:

�(m − p)t = 0.67�(m − p)t−1 − 0.24�(m − p)t−2 − 0.09�2(m − p)t

(8.61) (3.82) (2.15) (14.64) (7.11)

− 0.62�pt + 0.53�pt−1 − 0.11�pt−2 − 0.04�2rlt

(1.86) (2.56) (1.82)

− 0.03�2rlt−2 − 0.02�rna
t + 0.03(D1 + D3)t + 0.07D4�rst

(3.91) (6.32) (2.47) (7.16)

+ 0.05Dct − 1.81(Ut−1 − 0.2)U 2
t−1 + 0.01

(4.03) (1.97) (3.83) (20b)

Summary statistics of equation (20b). The t-ratios are in parentheses under
the coefficient estimates, T = 123 [1878–2000], 14 variables, R2 = 0.87, 100σ =
1.61%; AR1-2, F(2, 107) = 1.93 (p-value = 0.15); ARCH(1), F(1, 107) = 0.25
(p-value = 0.62); normality, χ2(2) = 0.19 (p-value = 0.91); functional forms X2

i ,
F(24, 84) = 0.8 (p-value = 0.72); and Xi∗ X j , F(85, 23) = 0.75 (p-value = 0.83);
RESET, F(1,108) = 0.60 (p-value = 0.43); J t = 2.35; and Var = 0.34. It is clear
that equation (20b) passes all the misspecification tests, including the stability tests
of Hansen (1992), (Joint statistic) J t = 2.35, and (variance statistic) var = 0.3; see
Hendry and Doornik (1996) for a detailed explanation of each test statistic.

The stability analysis of the parameter estimates of this NEC model is com-
plemented with a graphical representation of the standardized innovations in the
first graph of Figure 8. The second graph plots the one-step residuals with the
0 ± (S.E)t . The third graph of the panel plots the one-step Chow statistics nor-
malized by their one-off 1% critical values. Finally, the last graph represents the
breakpoint Chow statistics similarly normalized. The stability of the parameter
estimates of the model is clear.

To get stronger support on the empirical constancy of the model, we estimate the
main parameters of the model using recursive least squares. The results are included
in Figure 9. The eight graphs plot the recursive estimated coefficients plus-or-minus
twice the recursively estimated standard errors, and all of the estimated coefficients
show a remarkable stability over such a long period of time.

However, even if the UK money demand estimated from 1878 to 2000 in equation
(20b) behaves satisfactorily, it is possible to get more precise estimates by doing a
joint estimation of the short-run and the long-run (cointegration) parameters. This
could be especially important for certain types of nonlinearities. To explain this
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possible source of deviation between the OLS (two-step) and the NLS estimates,
we can write equation (1a) as (21b),

yt = α′qt + zt (21a)

zt = (b0 − α)′�qt + b′
1�qt − 1 + · · · + b′

r�qt − r + a1�yt − 1 + · · ·
+ ap�yt−p+ zt−1 + f (zt−1, γ ) + εyt . (21b)

Therefore, if the error zt of the cointegrating relationship (21a) has important non-
linearities or breaks [see Campos et al. (1996) and Arranz and Escribano (2000)],
then the OLS estimates in (21a) might not be reliable. In those circumstances, we
should expect to have more precise estimates from the joint estimation of equa-
tions (1a) and (1c) or (20a) and (20b). The empirical NLS results are reported in
equations (22a) and (22b) below.

5.2. One-Step NLS Estimation of NEC Money Demand (1878–2000)

The model (22b) fits marginally better than the corresponding two-step OLS con-
tempart since the percentage standard error of the regression (22b) is reduced from
σ = 1.61% to σ = 1.57%.

This money demand model passes all the misspecification tests done at the 5%
significance level; see the summary statistics included below equation (22b). It
is interesting to comment on the important stability of the long-run parameter
estimates obtained during very different long time periods. For example, if we
compare the coefficients of the cointegrating vectors from the three different pe-
riods (1878–1970), (1878–1993), and (1878–2000), the corresponding results are
the following: from Table 5, col. 2, we have (1, α1) = (1, 7.0); from Table 6, col. 5,
we have (1, α1) = (1, 7.0); and from equation (22a), we have (1, α1) = (1, 7.3).

Joint estimation (NLS) of equations (17a) and (17b):
Nonlinear cointegration relationship:

Ut = (m − p − i)t + 0.16 + 7.33 RN a
t (22a)

(2.65) (13.2)

Nonlinear error correction:

�(m − p)t = 0.63�(m − p)t−1 − 0.23�(m − p)t−2 − 0.07�2(m − p)t

(8.10) (3.58) (1.49) (15.24) (7.57)

− 0.64�pt + 0.58�pt−1− 0.15�pt−2 − 0.04�2rlt − 0.03�2rlt−2

(2.53) (2.98) (1.95) (3.61)

− 0.02�rna
t + 0.03(D1 + D3)t + 0.08D4�rst+ 0.05Dct

(6.29) (2.92) (6.68)

− 2.02(Ut−1 − 0.2)U 2
t−1 + 0.01

(5.33) (2.83) (22b)
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Summary statistics of equation (22b): The t-ratios are in parentheses under
the coefficient estimates; T = 123 [1878–2000]; 17 variables; R2 = 0.87; 100σ =
1.57%; AR1-2, F(2, 104) = 2.43 (p-value = 0.09); ARCH(1), F(1, 104) = 1.21
(p-value=0.27); normality, χ2(2) = 0.07 (p-value = 0.96); functional forms X2

i ,
F(29, 76) = 1.03 (p-value = 0.44).

Before concluding, we want to stress the three main issues that we identify as the
key elements in order to obtain a parameter constant UK money-demand equation
from 1878 to 2000. The first one is the inclusion of proxies for deregulation. The
second one is the fact that we are using the updatted measure of the opportunity
cost of holding money, RN a , suggested by Ericsson et al. (1998). The difference
of this measure with respect to the RN variable used until the year 1970 is clearly
seen in Figures B.1 and B.2 of Appendix B. Finally, the third key element for
getting parameter constancy is the fact that the equilibrium correction is nonlinear
(NEC) around multiple equilibria identified by the interval with two clear thresh-
old extreme values at 0 and 0.2. The cubic polynomial, (Ut−1 − 0.2)U 2

t−1, error-
correction model estimates those threshold values (0, 0.2) in a simple and flexible
way since the term U 2

t−1 measures deviations from 0 while the term (Ut−1 − 0.2)

measures deviations from 0.2.

6. CONCLUSIONS

In this paper, we study single-equation (NEC) models with linear and nonlin-
ear cointegrated variables. The concepts I (1) and I (0), introduced by Escribano
and Mira (1997, 2002), are used to characterize single-equation NEC models.
Those concepts replace similar ones introduced by Escribano (1987), based on the
concepts of asymptotic uncorrelation and trends in mean and variance. The main
advantages of these new definitions are that they have associated laws of large num-
bers and central limit theorems and therefore allow us to obtain the asymptotic
distribution of the least-squares estimators, and to test the null hypothesis of I (0).

We have proposed an econometric methodology to specify NEC models in the
context of parametric and semiparametric error-correction models. By using the
database of Friedman and Schwartz (1982) and Ericsson et al. (1998) but extended
until the year 2000, we implement this econometric methodology to specify a NEC
model for money demand for the United Kingdom. Within the class of parametric
models, we discuss the properties of the cubic polynomial NEC models introduced
by Escribano (1985) and used later by Hendry and Ericsson (1991), Ericsson
et al. (1998), Escribano and Granger (1998), and Escribano and Pfann (1998).
We recommend the use of cubic polynomials because (i) they represent a very
flexible functional form, (ii) they can be estimated by OLS or NLS, (iii) they can
be justified as LM tests for nonlinearity, (iv) they can be used to estimate two
threshold points in asymmetric NEC models, and (v) they can be used to check
the stability properties of the long-run equilibrium estimates.

A new class of rational polynomial NEC models is introduced because it main-
tains all the previous desirable properties of cubic polynomial adjustments and can
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be specified so that the stability conditions of the nonlinear equilibrium correction
are imposed while the function need not be bounded by a constant as in the logistic
or exponential specifications. The generality of the rational polynomials is justified
in terms of Padé approximants.

Within the class of semiparametric NEC models, we suggest and implement an
econometric methodology estimating money demand of the United Kingdom by
smoothing splines. The empirical estimates of the money demand using the opti-
mal value of the smoothing parameter, obtained by generalized cross validation,
confirms the following final conclusions: The two threshold points are around 0
and 0.2; the nonlinear adjustments are asymmetric; both cubic polynomials and
low-order rational polynomials are good in sample parametric approximations to
the unknown nonlinear and asymmetric error corrections; the existence of long-
run multiple equilibria is a likely empirical possibility; and, finally, the in-sample
nonlinear adjustment is globally stable, except maybe in the interval 0 and 0.2,
where the adjustments might be either insignificant or unstable.

In the empirical section we found certain cases within this class of rational
polynomials that are consistent with having a money demand with multiple long-
run equilibria between 0 and 0.2 and having an asymmetric NEC adjustment around
the two threshold equilibrium points.

Constant parameter estimates in money demand models is a major issue in
empirical studies, as was documented by Laidler (1969), Judd and Scadding (1982),
and Goldfeld and Sichel (1990). Our final UK money demand estimates from 1878
to 2000 based on the initial specification by Ericsson et al. (1998) is constant in the
parameters and satisfies all the misspecification tests done. Two important aspects
of this specification are worth mentioning. The first one is the inclusion of proxies
for deregulation and the use of an updated measure of the opportunity cost of
holding money, RN a . The second key element for getting parameter constancy
is the fact that the equilibrium correction is nonlinear (NEC) around multiple
equilibria.

The class of smooth-transition regression (STR) models could encompass NEC
models if we extend the usual STR framework to allow for the variables to be
nonstationary and cointegrated and for the nonlinear function to be unbounded.
These are interesting extensions of STR models but are incompatible with the
usual fundamental assumptions that require the variables to be stationary and
geometrically ergodic; see Tong (1990) and Granger and Teräsvirta (1993). The
present approach based on Escribano and Mira (1997, 2002) [see also Dufrénot
and Mignon (2002)] overcomes this problem. However, this question is beyond the
scope of this paper and we are currently working on an the extension of Teräsvirta
and Eliasson (2001) by applying STR models to the UK money demand since 2000.

NOTES

1. The equilibrium correction terminology was introduced by Hendry (1995, p. 213) and implicitly
assumes that the adjustment toward the equilibrium is stable [see condition (iv) of Theorem 1], which
is a very important restriction in nonlinear models.
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2. Since qt is an I (1) vector we assume that all its elements are I (1) and not cointegrated. This is
what Escribano and Peña (1994) called a jointly I (1) vector.

3. The variable �2rlt−2 was dropped in Model A since it was not significant. However, this variable
is important when the short-run interest rate is specified in levels (not in logs) in the cointegration
relationship; see Models B, C, and D of columns 3, 4, and 5, respectively, of Table 7.

4. These estimation results and the misspecification test done with equations (20a) to (20b) were
computed using PcGive 9.0; see Hendry and Doornik (1996).
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Härdle, W. & O. Linton (1994) Applied nonparametric methods. In Handbook of Econometrics,
Vol. IV, Ch. 38, pp. 2297–2339.

Harris, D. & B. Inder (1994) Test of the null hypothesis of cointegration. In C.P. Hargreaves (ed.),
Nonstationary Time Series Analysis and Cointegration, pp. 133–152.

Hendry, D.F. (1995) Dynamic Econometrics. Oxford : Oxford University Press.
Hendry, D.F. & J.A. Doornik (1996) Empirical Econometric Modelling Using PcGive Professional 9.0

for Windows. London: International Thompson Business Press.
Hendry, D.F. & N. Ericsson (1983) Assertion Without Empirical Basis: An Econometric Appraisal of

“Monetary Trends in the . . . United Kingdom” by Milton Friedman and Anna Schwartz in Monetary
Trends in the United Kingdom. Paper 22, pp. 45–101 (with additional references), Bank of England
Panel of Academic Consultants.

Hendry, D.F. & N. Ericsson (1991) An econometric analysis of the UK money demand in “Monetary
Trends in the United States and the United Kingdom” by Milton Friedman and Anna Schwartz.
American Economic Review 81, 8–38.

Hendry, D.F. & G.E. Mizon (1978) Serial correlation as a convenient simplification, not a nuisance:
A comment on a study of the demand for money by the Bank of England. Economic Journal 88,
549–563.

Hendry, D.F. & J.F. Richard (1983) The econometric analysis of economic time series. International
Statistical Review 51, 111–163.



NONLINEAR ERROR CORRECTION MONEY DEMAND 37

Herrndorf, N. (1984) A functional central limit theorem for weakly dependent sequences of random
variables. Annals of Probability 12, 141–153.

Johansen, S. (1992) Cointegration in partial systems and the efficiency of single-equation analysis.
Journal of Econometrics 52, 389–402.

Johansen, S. (1995) Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford:
Oxford University Press.

Judd, J.P. & J.L. Scadding (1982) The search for a stable money demand function: A survey of the
post-1973 literature. Journal of Economic Literature 20, 993–1023.

Kwiatkowski, D., P.C.B. Phillips, P. Schmidt & Y. Shin (1992) Testing the null hypothesis of stationarity
against the alternative of a unit root. Journal of Econometrics 54, 159–178.

Laidler, D.E.W. (1969) The Demand for Money: Theories and Evidence. Scranton, PA: International
Texbook.

Lo, A.W. (1991) Long-term memory in stock market prices. Econometrica 59, 1279–1313.
Longbottom, A. & S. Holly (1985) Econometric Methodology and Monetarism: Professor Friedman

and Professor Hendry on the Demand for Money. Discussion paper 131, London Business
School.

Marmol, F., A. Escribano & F. Aparicio (2002) Instrumental variable interpretation of cointegration
with inference results for fractional cointegration. Econometric Theory 18, 646–672.

Phillips, A.W. (1954) Stabilization policy in a closed economy. Economic Journal 64, 290–
323.

Phillips, A.W. (1957) Stabilization policy and the time-forms of lagged responses. Economic Journal
67, 265–277.

Phillips, P.C.B. (1987) Time series regression with a unit root. Econometrica 55, 277–301.
Phillips, P.C.B. (1991) Optimal inference in cointegrating systems. Econometrica 59, 283–306.
Phillips, P.C.B. & B.E. Hansen (1990) Statistical inference in instrumental variable regression with

I (1) Processes. Review of Economic Studies 57, 99–125.
Phillips, P.C.B. & M. Loretan (1991) Estimating long-run economic equilibria. Review of Economic

Studies 59, 407–436.
Rosenblatt, M. (1978) Dependence and asymptotic independence for random processes. In

M. Rosenblatt (ed.), Studies in Probability Theory. Washington, D.C.: Mathematical Association of
America.

Sargan, J.D. (1964) Wages and Prices in the United Kingdom: A Study in Econometric Methodology.
In P.E. Hart, G. Mills & J.K. Whitaker (eds), Econometric Analysis for National Economic Planning,
Colston Papers, Vol. 16.

Scott, A. (1996) Consumption Credit Crunches and Financial Deregulation. Applied Economics Dis-
cussion paper 181, University of Oxford.

Shin, Y. (1994) A residual based test for the null of cointegration against the alternative of no cointe-
gration. Econometric Theory 10, 91–115.

Silverman, B.W. (1985) Some aspects of the spline smoothing approach to nonparametric regression
curve fitting. Journal of the Royal Statistical Society Series B 47, 1–52.

Stock, J.H. (1987) Asymptotic properties of least Squares estimation of cointegrating vectors. Econo-
metrica 55, 1035–1056.
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APPENDIX A

DEFINITION A.1 (α-MIXING). Let νt be a sequence of random variables. Let �t
s ≡

σ (νs, . . . , νt ) and define

αm ≡ supt supA∈�t −∞,B∈�∞
t+m |Prob(A ∩ B) − Prob(A)Prob(B)|.

Then νt is α-mixing (strong-mixing) if and only if αm → 0 as m → ∞.

DEFINITION A.2 (φ-NED). Let νt be a sequence of random variables with E(ν2
t ) < ∞

for all t and define
φm ≡ supt

∣∣νt − Et+m
t−m (νt )

∣∣
L2

,

where Et+m
t−m (νt ) = E(νt/ηt−m, . . . , ηt+m) and | · |L2 = E1/2| · |2. Then, νt is φ-near epoch

dependent (φ-NED) on an α-mixing sequence ηt if and only if φm → 0 as m → ∞.

Proof of Theorem 1. For Xt to be I (1) both yt and qt must be I (1). By equa-
tion (1b), it is clear that �qt is φ-NED on the α-mixing sequence εqt and therefore it is
I (0). Assuming, without loss of generality, that p < r , and adding and subtracting α′�qt

from (1a), we get

�zt = a1�zt−1 + · · · + ap�zt−p + (b′
0 − α′)�qt + (b′

1 + α′)�qt−1 + · · ·
+ (b′

1 + α′)�qt−r + f (zt−1, γ ) + εyt . (A.1)

Provided that condition (ii) is satisfied, the order of integration of zt is not I (2) or higher
because even if f (zt−1, γ ) = 0 in (A.1), zt is at most I (1). Therefore, zt could be φ-NED
or I (1) depending on f (zt−1, γ ). Under assumption (ii), the order of integration of zt from
(A.1) is the same as the order of integration of

�zt = (b′
0 − α′)�qt +(b′

1 + α′)�qt−1 + . . . + (b′
1 + α′)�qt−r + f (zt−1, γ ) + εyt . (A.2)

From the main theorem of Escribano and Mira (2002), after writing the model (A.2) in
companion form and doing some algebra, it is not difficult to show that since �qt is φ-NED
on the underlying sequence εqt , and εyt is α-mixing, then, under moments condition (v), zt

is φ-NED if −1 < (dzt/dzt−1) < 1.
Part (b) of the theorem requires that zt be φ-NED, and therefore we have to check that

this condition on dzt/dzt−1 is satisfied. From equation (A.2),

(dzt/dzt−1) = 1 + d f (zt−1, γ )/dzt−1 (A.3)

and −1 < (dzt/dzt−1) < 1 if and only if −2 < d f (zt−1, γ )/dzt−1 < 0, which is condi-
tion (iv).

Furthermore, from the cointegrating relationship (1c), yt must be I (1) since it is the sum
of an I (1) term and a φ-NED term.

Therefore, all the elements of Xt are I (1) and yt and qt are cointegrated. �

Proof of Theorem 2. See Theorem 6.5.4 of Baker and Graves-Morris (1996). �

Proof of Theorem 3. Immediate from Escribano and Mira (1996) by realizing that a
linear function is always Hadamar differentiable. �
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APPENDIX B

B.1. DATA

RS: UK short-term interest rate (Treasury-Bill rate, fraction p.a.), from [1]–[5].
RL: UK long-term bond rate (fraction p.a.), from [1]–[4].
RNa: Opportunity-cost of holding money measured as (RS ∗ Ha/Ma)/0.25, from [9].
E : Sterling Pound/Dollar effective exchange rate, from [1]–[3], [5].
P: UK population corrected for departure of Southern Ireland, from [4] and [7].
IC: UK Nominal Net National Income (IC = I ∗ P), from [1]–[3], [8].
I : UK Real Net National Income, 1929 prices, from [1]–[3], [8].
P: Implicit Deflator of UK Net National Income, 1929 prices, from [1]–[3], [8].
M : UK money stock, from [1]–[5].
H : UK high-powered money, from [1]–[3], [6].
D1 + D3: Dummies for both world wars (WWI for 1914–1918 and WWII 1939–1945),

from [1]–[3].
Dc: Dummies for both the period of Financial and Credit Deregulation in UK

(first period from 1971 to 1975, and the second period from 1986 to 1989),
from [1]–[3], [10].

D4Drs: Product of dummy for first credit deregulation period (1971–1975) and the
first differences of the logs of UK short-term interest rate, from [1]–[3].

[1] Friedman and Schwartz (1982).
[2] Attfield et al. (1995).
[3] Ericsson et al. (1998).
[4] Bank of International Settlements (BIS) Database.
[5] Eurostat Database.
[6] Bank of England.
[7] Feinstein (1972).
[8] UK Office of National Statistics (ONS).
[9] Hendry and Ericsson (1991).

[10] Scott (1996).

All the data are rescaled as in Hendry and Ericsson (1983, 1991) and Ericsson et al. (1998)
to compensate for the Southern Ireland effect, 1861–1919. See Friedman and Schwartz
(1982, pp. 110–121).

B.2. MEASURES OF MONEY

UK money stock: Because of the changes in the institutional framework and in the defini-
tions of monetary aggregates (M2, M3, and M4), we do not have a single measure of money.
Therefore, our money stock has been constructed using M2 money data from Friedman and
Schwartz, from 1878 to 1967; from 1968 to 1986 we have used M3 rescaled, and from
1987, M4 rescaled.

UK high-powered money: Attfield et al. (1995) spliced M0 onto Friedman’s and Schwartz’s
measure of high-powered money H in 1975.
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B.3. OPPORTUNITY COST OF HOLDING MONEY

We use two different measures of the opportunity cost of holding money. RS is the short-
term interest rate. Friedman and Schwartz (1982) used a fraction of RS, denoted RN and
calculated as (H/M) ∗ RS. This implies that all components of M except for high-powered
money H earn interest at the rate RS. If H/M were nearly constant, the results would be
unaltered. However, as Ericsson et al. (1998) showed, the results are little affected by
the election of interest rate, and neither RS nor RN is a good proxy for the opportu-
nity cost. Therefore, they propose to use RN a as an alternative measure of the oppor-
tunity cost, defined as RN a = RS ∗ (H a/Ma)/0.25, whereas H a and Ma denote actual
values.

Figure B.1 shows the time-series H/M (HM rescaled for definitional changes in M and
H ) and H a/Ma (HAMA not rescaled). These ratios are almost identical over the period
prior to 1970. However, from 1970 to 2000, both measures experience different important
drops. As was well explained by Ericsson et al. (1998), the two largest drops occur from
the following redefinitions:

• In 1976, when H passed to be high-powered money to M0.
• In 1987, as M switched from M3 to M4.

The principal difference between H/M and H a/Ma begins in 1970. H/M increases over
1976 to 1978 whereas H a/Ma descends. And, from then to the end, they preserve an
increasing differential.

RS does not incorporate the institutional and definitional changes, which have happened
since 1975. Therefore, Ericsson et al. (1998) proposed RN a , called RNA, in Figure B.2, or
RN as the most suitable measures of opportunity cost. Figure B.2 plots these time series.
They finally chose RN a instead of RN since it better takes into account the changes, since
the data are not rescaled.

FIGURE B.1. Plots of H/M and H a/Ma .
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FIGURE B.2. Plots of RN and RN a .

B.4. VARIABLE TRANSFORMATIONS

Lowercase variables are in logs, x = log(X), rna = log(RN a), (m − p − i) =
log(M/P I ), etc.

�i xt = xt − xt−i

�xt = xt − xt−1

�2xt = �xt − �xt−1

Ut = OLS residuals from the regression of (m − p − i)t on RN a
t and a constant

(1878–2000)
U 2

t = UtUt

U 3
t = U 2

t Ut

ut = OLS residuals from the regression of (m − p − i)t on rna
t and a constant

(1878–2000)
u2

t = ut ut

u3
t = u2

t ut

D(Ut > 0) = (1 if Ut > 0, 0 otherwise)
D(Ut ≤ 0) = 1 − D(Ut > 0).


