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We study prediction of chaotic time series when a perfect model is available but the initial con-
dition is measured with uncertainty. A common approach for predicting future data given these
circumstances is to apply the model despite the uncertainty. In systems with fold dynamics, we
find prediction is improved over this strategy by recognizing this behavior. A systematic study of
the Logistic map demonstrates prediction of the most likely trajectory can be extended three time
steps. Finally, we discuss application of these ideas to the Rössler attractor.
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Development of methods for prediction and character-
ization of time series continues to be an active area of
research [1–3]. In particular, methods developed for an-
alyzing chaotic dynamics have an increasing number of
applications. Some representative examples include pre-
diction of epileptic seizures [4], analysis of population dy-
namics in ecology [5], prediction of equipment failure [6],
and understanding error in weather prediction [7, 8].
Much of the fundamental research on chaotic time se-
ries focuses on two general ideas. The first is inference
of model parameters for prediction of future data [9–11].
In general this is effective for short-term description of
the system. The second approach focuses on estimation
of average quantities or an invariant measure for classifi-
cation of long-term behavior [12, 13].

We propose an extension of these viewpoints by in-
corporating ideas from both short and long-term ap-
proaches. We treat the initial condition as a measure-
ment with uncertainty, resulting in an initial probability
density function ( pdf ). While propagation of a prob-
ability density with underlying chaotic dynamics has
been studied analytically [14, 15], a direct connection
to prediction of time series has not been made to our
knowledge. Our goal is to use an understanding of
pdf dynamics to indentify the most probable trajectory.

We find prediction of a trajectory using these ideas to
be very effective in systems with fold dynamics. Two
well known examples of chaotic systems with this behav-
ior are the Logistic map [16] and Rössler attractor [17]. A
perfect model, using an initial condition measured with
uncertainty, will not accurately describe the most prob-
able trajectory beyond the short-term in these systems.
The evolution of the initial pdfwill develop new peak(s)
due to the fold dynamics. These peaks are generally not
related to images of the measured value and prediction
of a trajectory begins to fail. Recognition of this effect is
the key to extending prediction of a trajectory into the
medium-term regime.

This Letter is organized as follows. First, we describe
a general one dimensional map and the properties nec-

essary to produce fold dynamics. Next, we introduce a
model of measurement with uncertainty which produces
an initial pdf . We then consider evolution of an en-
semble of trajectories consistent with this measurement.
This material motivates the proposed prediction method
and a systematic numerical study of our approach verifies
its effectiveness. Finally, the extension of these ideas are
discussed for higher dimensional systems. In particular,
we discuss the application of the proposed method to the
Rössler attractor.

To illustrate the basic ideas of our method, we focus
on a 1-dimensional map

xn+1 = f(xn, a). (1)

We require f(x, a) be differentiable on its domain
with one or more critical points, xi

c, which must satisfy
f ′(xi

c, a) = 0 and f ′′(xi
c, a) 6= 0. As an example we in-

troduce the Logistic map, defined f(x, a) = ax(1 − x),
where a ∈ [0, 4] and x ∈ [0, 1]. For this map, we have
f ′(xc, a) = 0 at xc = 1/2, and f ′′(xc, a) = −2a.

The first step in prediction, given a model of the dy-
namics, is specification of an initial condition. We pro-
pose the following model for measurement. The relation-
ship between the true initial state, x, and the measured
value, m, is given by m = x + r. The uncertainty in
the measurement is reflected by r, with probability den-
sity ρ(r). We will use a unimodal function, such as the
normal distribution with mean zero and small variance.
This choice is designed to model random, non-systematic
uncertainty. The resulting form is a distribution consis-
tent with the measured value and type of uncertainty as-
sumed. To ease future notation, we will write this initial
pdf as ρ0(x).

The range of possible trajectories which can be fol-
lowed by an initial condition with measurement uncer-
tainty are investigated by constructing an ensemble. The
first step is to generate a set of nd initial conditions,
{xj |j = 0, 1, . . . , nd − 1}, consistent with the type of
measurement uncertainty assumed above. The time evo-
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lution of each xj with Eq. (1) is used to produce the set
of possible trajectories, {f (n)(xj , a)}. We use the nota-
tion f (n)(x, a) to indicate n applications of the map to
x.

A histogram is constructed from the ensemble to pro-
vide a coarse-grained approximation of the pdf , ρn(x).
The region of interest is divided into nb equally sized
bins labeled Bi = [xmin + iWi, xmin + (i + 1)Wi),
where i = 0, 1, . . . , nb − 1. The width of each bin is
Wi = (xmax − xmin)/nb, where xmin and xmax are the
minimum and maximum of {f (n)(xj , a)} for all xj and
n. In this way, the bins cover the region of interest,
∪iBi = [xmin, xmax]. The complete histogram at time n
is given by

Hn(x) =

nb−1
∑

i=0

Hn,i 11Bi
[x], (2)

where the estimated probability density for Bi at time n
is

Hn,i =
nb

nd

nd−1
∑

j=0

11Bi
[f (n)(xj , a)]. (3)

In the above equations, 11Bi
[x] = 1 if x ∈ Bi and is zero

otherwise. The value given in Eq. (3) is associated with
the center of the bin, given by xi = xmin + (i + 1/2)Wi.
The path followed by the largest fraction of the ensemble
identifies the most-likely trajectory at each time step and
is associated with the bin with largest probability density,
Hn,i.

Fig. (1) provides an illustration of typical dynamics
for the Logistic map at a = 3.80, a value which produces
chaotic dynamics. For this example, the ensemble of ini-
tial conditions is distributed as xj ∼ N(m0, σ0), where
m0 = 0.91 and σ0 = 5 × 10−3. The values nd = 106

and nb = 103 were used in construction of the ensem-
ble and histogram. In the short-term regime, n ≤ 3
in this example, the histogram remains approximately
normal and the most likely value for x is accurately de-
scribed by images of the measured value, f (n)(m0, a).
We also note the standard deviation increases with time,
σn+1 ≈ |f ′[f (n)(m0, a), a]|σn, reflecting a growth in the
uncertainty of the most likely value.

At n = 3 there is a significant probability the measured
value will be near the critical point (a quantitative test
will be introduced below). A new peak in the histogram
is created at the image of the critical point, f(xc, a), at
the next time step. For time 4 ≤ n ≤ 7, following this
new peak accurately describes the most likely trajectory.
By time n = 7, the path followed by m0 has an error
equal to approximately twenty percent of the attractor
size.

The origin of the new peak can be understood by intro-
ducing the Frobenius-Perron operator, which describes
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FIG. 1: An example of evolution of an initial condition with
uncertainty. The underlying map dynamics are governed by
the Logistic map at a = 3.80, resulting in chaotic dynamics.
At each time step a histogram is shown along with the trajec-
tory of the initial measurement, f (n)(m0, a) (gray triangle),
and the most likely trajectory (black circle). At time n = 7

the error in prediction produced by following f (n)(m0, a) is
approximately twenty percent of the attractor size.

the time evolution of a probability density driven by map
dynamics. For the noise-free map dynamics, as described
in Eq. (1), a general form for the operator can be written

ρn+1(x) =
∑

j

ρn[f
(−1)
j (x, a)]

|f ′[f
(−1)
j (x, a), a]|

. (4)

The sum is over all inverses j of the map given by

xn = f
(−1)
j (xn+1, a). The requirements for Eq. (1) have

clear implications for the resulting evolution of the prob-
ability density. The denominator in Eq. (4) can be equal
to zero. As a result, if the probability density overlaps
a critical point at time n a singularity will be created at
time n+1. This is the origin of the new peak in Fig. (1).
As discussed in [18], the ill-behaved singularity in an ex-
act mathematical treatment appears as a smoothed peak
in a histogram which reflects measurement with finite
resolution.

The key to extending prediction is to recognize cases
when the probability density near the critical point(s)
is sufficient to create a new peak. For this purpose, we
define a ratio

Ri
n =

∫

x∈n[f(xi
c
,a)]

dx ρn+1(x)
∫

x∈n[f(µn,a)]
dx ρn+1(x)

. (5)

This ratio compares the probability associated with a
small region near the image of the critical point, which we
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label n[f(xi
c, a)], to the probability in a small region near

the image of the current most probable state, n[f(µn, a)].
Motivated by the observations in Fig. (1) and knowl-

edge of the probability density dynamics given in Eq. (4),
we propose the approximation ρn(x) ≈ N(x;µn, σn).
This is not meant to be an accurate representation of
the true probability density. Rather, this approximation
serves as a tool for recognition of folds which will create
new peaks. In this spirit, the dynamics of the most likely
point, µn, and standard deviation of the density, σn, are
given by

µn+1 =

{

f(µn, a) Ri
n < 1

f(xi
c, a) Ri

n ≥ 1,
(6a)

σn+1 = |f ′(µn, a)|σn. (6b)

We set the initial values to reflect the measurement
with uncertainty, µ0 = m0 and σ2

0 reflecting the variance
in ρ(r0). We expect that this approximation is only ef-
fective in the short and medium-term regimes, reflected
by a small value for σn. In practice, the presence of mul-
tiple pronounced peaks in the histogram reflects the end
of meaningful trajectory prediction.

For application of Eq. (6), a reasonable approximation
for Ri

n must be found. We consider a linear expansion of
Eq. (1) about the current maxima, f(x, a) = f(µn, a) +
(x− µn)f ′(µn, a) +O[(x − µn)2]. The probability in the
region n[f(µn, a)] = [f(µn, a) − ∆x/2, f(µn, a) + ∆x/2]
can be found by assuming uniform density in the region
of interest and its pre-image. We find the denominator
of Eq. (5) is approximately [ρn(µn)∆x]/|f ′(µn, a)|.

Near one of the critical points, a quadratic expan-
sion of Eq. (1) must be used, f(x, a) = f(xi

c, a) +
1/2(x − xi

c)
2f ′′(xi

c, a) + O[(x − xi
c)

3]. As in the above,
we consider the probability associated with the neighbor-
hood n[f(xi

c, a)]. If xi
c is a local maxima, this region is

n[f(xi
c, a)] = [f(xi

c, a) − ∆x, f(xi
c, a)]. Again, we assume

a uniform density in the region of interest and its pre-
image. With these approximations we find the numerator
in Eq. (5) is approximately 2

√

(2∆x)/|f ′′(xi
c, a)|ρn[xi

c].
Combining these results, we obtain

Ri
n ≈ 2|f ′(µn, a)|

√

2

∆x|f ′′(µn, a)|

ρn[xi
c]

ρn[µn]
. (7)

In application of this result, ∆x should be set equal
to measurement resolution in experiment and bin size in
ensemble simulation. We also employ the approximation
discussed above, ρn(x) ≈ N(x;µn, σn)

One hundred ensemble simulations were performed to
test the effectiveness of Eq. (6) and Eq. (7) using the
Logistic map. For each simulation a uniform random
value on the unit interval was generated, xr = rand[0, 1].
Next, the map was applied for five hundred time steps to

1 2 3 4 5 6
0

1

2

3

4

5

6

7

-  A
 m,n

-  A
 i,n

Pr
ed

ic
tio

n 
ac

cu
ra

cy

n (post spike time)

FIG. 2: Prediction accuracy of the proposed algorithm for
100 simulations. Post spike time n = 1 corresponds to the
first fold in the probability density. Data provided shows the
median accuracy with bars which indicate the (10th, 90th)-
percentiles.

ensure a typical value on the attractor and the measured
value set, m0 = f (500)(xr, a). Finally, a set of nd =
2 × 106 initial conditions were generated using a normal
distribution, xj ∼ N(m0, σ0), where σ0 = 5 × 10−3.

At each time step the most likely trajectory, corre-
sponding to the bin with the largest probability den-
sity as given in Eq. (3), is obtained and given the value
hn = xi. For our purposes, the value of hn is considered
to be the true most likely trajectory. Two methods of
predicting this value are considered: (1) the image of the
initial most likely point, f (n)(m0, a), and (2) the results
of our method, µn as given in Eq. (6a).

We define two values which provide a numerical mea-
sure of the prediction accuracy

Ai,n = − log10 |f
(n)(m0, a) − hn| (8a)

Am,n = − log10 |µn − hn|. (8b)

Ai,n describes the accuracy obtained by iterating the
measured value with a perfect model and Am,n the ac-
curacy from application of Eq. (6). In this form, these
values reflect the number of decimal places of accuracy
for each approach. As a result, larger values reflect a
more accurate prediction.

Fig. (2) provides the results of 100 simulations per-
formed for the Logistic map at a = 3.80. Only data for
post spike time, which starts when the first fold occurs in
each simulation, are provided. Before the first fold (not
shown), the predictions for f (n)(m0, a) and µn are exactly
the same. A value of Ai/m,n ≈ 4, demonstrates predic-
tion accuracy representative of the histogram resolution,
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FIG. 3: An example of folding of the probability density in
the Rössler attractor. Each time x reaches a local maximum
in its dynamics a histogram of the ensemble is shown. The
most likely trajectory (black circle) and the path of the initial
measurement (gray triangle) are also provided.

n−1
b = 10−4. For each prediction method, the median ac-

curacy and bars which show the (10th, 90th)-percentiles
are provided. The results demonstrate increased predic-
tion accuracy for the proposed method, Am,n ≥ Ai,n, for
three time steps in 87 of 100 trials conducted.

Next, we discuss two areas of concern regarding the
results presented to this point. It is natural to ques-
tion the application of these ideas in the presence of
noise, for example by modifying Eq. (1) to read xn+1 =
f(xn, a) + ǫN(0, 1). We find this does not affect the re-
sults presented here for reasonable noise levels, ǫ < 10−3.
Above this level, the noise is sufficient to smooth peaks
created by folding and the property we exploit is no
longer relevant.

Finally, we address the application of these ideas to a
more complicated system. In particular, can the same
ideas be used in a system of ordinary differential equa-
tions? When we consider the return map generated by
the sequence of maxima from one of the variables, often
called the Lorentz map, we sometimes find a unimodal
shape. An example is the Rössler attractor, given by
the equations dx/dt = −y − z, dy/dt = x + ay, and
dz/dt = b + (x − c)z. If we consider a return map for
the sequence of maxima in the x-dynamics, we find the
desired properties.

In Fig. (3) we see the evolution of an ensemble of
nd = 50 000 trajectories obtained by 4-th order Runge-
Kutta with values a = 0.2, b = 0.2, c = 5.7, and
dt = 0.01. As in our analysis of the Logistic map, an
ensemble consistent with an initial condition with uncer-
tainty was generated after iterating a random initial state

onto the attractor. Each time the x-dynamics reached
a maxima, a histogram was created from the ensemble.
Folding dynamics are clearly present in the ensemble and
we note the most likely trajectory and the evolution of
the initial measured value do not agree beyond the short-
term. We expect application of the methods we have
introduced to extend prediction in this case as well.

In this Letter we have demonstrated that knowledge
of ensemble dynamics can be used to extend prediction
when there is uncertainty in measurement of the initial
condition. A fold can be detected and this informa-
tion used to adjust the predicted trajectory appropri-
ately. Application to the Logistic map demonstrates the
effectiveness of this method and preliminary results using
the Rössler attractor demonstrate the potential for ap-
plication of these ideas to systems of ordinary differential
equations.
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