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Abstract

Contract protocols which enable the scaling of the Bitcoin
network or increase the privacy of on-chain transactions
are constructed with multi-party contract transactions, which
must be negotiated, signed and broadcast by multiple partici-
pants according to protocol specification. We propose Bitcoin
Trace-Net as an automated and generalized formal verifica-
tion method for all contracting protocol types. Verification
without any specification of the underlying protocol can be
performed against a generalized contract correctness policy
at signing time. This generalization of signing safety enables
key management interoperability between different contract-
ing protocols, which in turn has the potential to improve both
scalability and privacy on the Bitcoin network.

1 Introduction

Although the expressiveness of the Bitcoin scripting language
is comparatively limited, it has nonetheless been successfully
used to construct multi-party contracting protocols which
increase both scalability and privacy of transactions on the
Bitcoin network. Well-known examples include the Lightning
Network [1] and Coinjoin [2] protocol variants. However,
because the protocol designs differ significantly and are de-
signed in an ad hoc manner, both contract verification and
generalized key management methods have been difficult to
generalize across protocols thus far. Furthermore, there have
been cases where the protocol specification itself has been
insufficiently verified and has led to vulnerabilities in subse-
quent implementations, as was the case with the Lightning
network [3].

Generalized contract verification at run-time is desirable
because it provides formal contract verification across all
protocol types. It also allows key management to be decou-
pled from the specifics of any protocol logic. A generalized
key management implementation can thereby check contract
transactions at signing time and ensure these correctly adhere
to a generalized signing policy, as depicted in figure 1.

Contracting Contracting Contracting
Protocol A Protocol B Protocol C
P
Generated roposed Endorsed
. Contract Contract
Script-Locks .
Templates Transactions

®

Contract verification against a
Generalized Signing Policy

Generalized Key Manager

Figure 1: Trace-Net enables automated contract verification at
signing time against a generalized signer policy, allowing key
management to be generalized across different contracting
protocols.

Multi-party contract protocols are currently supported with
dedicated key management implementations. However, in or-
der to share liquidity between protocol clients, funds must
either be transferred on-chain between wallets or secret keys
must be shared between applications: Both options are unde-
sirable because they result in unnecessary on-chain transac-
tions or risk the potential exposure of private keys.

In this paper, we propose a formalism named Bitcoin Trace-
Net, which enables the generalized evaluation of contract
safety of any contracting protocol at run-time. Bitcoin Trace-
Net models are constructed from a set of proposed Bitcoin



transactions before signing, as shown in step 2 of figure 1.
Such a model describes the possible contract state-space in
its entirety, allowing for analysis of all feasible contract ex-
ecution paths. Trace-Net contract execution traces express
the properties we wish to verify to ensure a contract is safe
according to a predefined signing policy.

Towards this goal we accept a necessary compromise in the
expressiveness of Bitcoin script, by limiting our usage to a Bit-
coin script subset encoded by a template language for which
static analysis can be automated. Miniscript [4] [5] [6] [7] is
a recently proposed template language for Bitcoin script and
we restrict Trace-Net verification to contracts which feature
Miniscript compatible output scripts. Such a statically analyz-
able template language is necessary for automated contract
verification, because automating the determination of all sat-
isfaction paths for every possible Bitcoin script is not known
to be feasible.

1.1 Related Work

Contract verification methods of smart contracts which can
be executed on the Ethereum EVM have been demonstrated
with symbolic execution [8], theorem proving [9] [10] and
model-checking [11] [12] approaches . Given that contracts
in Ethereum are persistent objects which exhibit potentially
unbounded state-spaces, traditional software verification ap-
proaches can often be successfully applied. There have also
been efforts to specify Ethereum smart contracts as finite-
state automata [13], thereby formalising contract behavior
and safety.

Bitcoin contracts, however, are frequently constructed with
multiple script instances across different transactions, where
state computed from one script evaluation cannot be directly
carried over to subsequent child transactions. Furthermore,
the nature of Bitcoin script makes static-analysis difficult. Al-
ternative scripting languages developed for Bitcoin-like proto-
cols such as Simplicity [14] can be parsed at run-time, but are
generally incompatible with Bitcoin script today. However,
the recent introduction of Miniscript has made the automated
determination of script satisfaction paths possible, which cru-
cially enables the full contract state-space modeling proposed
by Trace-Net.

Trace-Net also adopts classical Petri Net language [15]
elements to model the execution of on-chain transactions.
The Petri Net formalism has previously been applied to derive
Bitcoin address ownership clusters [16], but not for modeling
Bitcoin contract states. Trace-Net models the availability of
unspent outputs in Bitcoin contracts with classical Petri Net
language elements, but extends this skeleton with additional
state and state transition rules to represent the full Bitcoin
contract state-space.

However, unlike related work which aims to formally ver-
ify smart contract designs, Trace-Net is designed to enable
automated verification of Bitcoin contracts at signing time

against a protocol-agnostic signing policy.

1.2 Introduction to Bitcoin Contracts

In this section we give a short overview of the construction,
update and execution of Bitcoin contracts, which are enabled
by Bitcoin script-locks, parent-child transaction structures
and transaction time-locks.
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Figure 2: An atomic swap contract allows two parties (A, B)
to swap ownership of coins. Both parties confirm funding
transactions which send funds to an output with two satis-
faction paths: A time-out and a swap path. The swap paths
of both funding transaction outputs feature the same hash-
lock, thereby atomically linking the two paths. The hash-lock
is generated by the initiating party (A), who confirms the
funding transaction first, and only reveals the message to the
counter-party (B) when executing the swap transaction #,qp. 4,
thereby enabling #,4p B

The scripting language of Bitcoin is a forth-like language
which manipulates the upper regions of primary and alterna-
tive script interpreter stacks during evaluation. Bitcoin script
is non-Turing complete but expressive enough to allow for ba-
sic computation and the construction of simple cryptographic
primitives. Table 1 shows a non-exhaustive list of possible
output script-locks expressible by a Bitcoin script instance.
An output script-lock is unlocked by its satisfaction when
the output is spent by a child transaction. Bitcoin script also
features non-looping flow-control, allowing for logical combi-
nations of script-locks and alternative script satisfaction paths.



Each Bitcoin output is currently encumbered with a single'
output script.

Script-Lock Type Satisfaction
Public Key Signature
Hash Digest Hash Preimage
After Timelock Minimum global time passed
Older Timelock | Minimum age of output passed

Table 1: Examples of output locks expressible in script.

Unlike a contract object in the Ethereum EVM, however,
a Bitcoin output script is only executed once when the
output is spent by a child transaction. It is not possible for
a single Bitcoin output script instance to experience more
than one state transition: It is either unspent or spent, the
latter requiring a child transaction with valid script inputs
which satisfy the specific sequence of script-locks. The child
transaction provides these script inputs in its input witness
fields.

Instead, multi-party contracting protocols with larger state
space designs must be constructed with multiple parent-child
transactions or with transactions atomically linked by cryp-
tographic primitives. Such parent-child designs generally in-
volve contract output scripts with multiple possible satisfac-
tion paths, each spendable by different input arguments.

This is shown in figure 2, which depicts an atomic swap
contract between two parties. We chose this contract type as
an example throughout this paper for its simplicity and rep-
resentativeness. An atomic swap enables two parties to swap
coins and features two funding contract transaction templates,
each featuring output scripts with two satisfaction paths: An
abort and a successful swap path. Both swap paths of the two
outputs feature the same hash-lock, which is generated by the
initiating party hashing a secret message. It also is the initiat-
ing party who must first confirm its funding transaction. Once
both funding transactions are confirmed, the broadcast of the
swap transaction by the initiating party will necessarily reveal
the hash message on-chain, thereby enabling the counter-party
to execute its swap transaction as well. If the initiating party
never executes its swap transaction and decides to wait and
confirm the abort transaction, so can the counter-party.

This example illustrates how a Bitcoin contract can be
constructed and updated through-out its life-cycle, thereby
representing a larger contract state than a single Bitcoin
script instance could achieve. We note that an atomic swap
with hash-locks provides only limited privacy gains, as the
two transactions can be correlated on-chain with its identical
hash-locks. Nonetheless, hash-locks are used to atomically
couple satisfaction paths in more complex protocols such as

IThe potential introduction of Bitcoin Taproot [17] [18] will enable mul-
tiple alternative script paths for each output, but the logical equivalent can
still be expressed by a single script.

in the Lightning Network. With the upcoming introduction
of the Schnorr [19] signature scheme with Bitcoin Taproot,
hash-locks can be replaced with adaptor signatures, which
allow for the atomic coupling of two different public key,
adaptor signature pairs. Since the adaptor signatures are
never revealed on-chain, such an atomic swap would be
entirely invisible to the on-chain observer. This script-lock
type can easily be adopted by Trace-Net with identical firing
semantics as hash-locks.

1.3 Introduction to Miniscript

Having provided an illustrative example of a multi-party
contract design in Bitcoin, we proceed to introduce a Bitcoin
script template language for which we can automate script
analysis to determine both output script safety and valid
satisfaction paths.

Miniscript is a template language which encodes a subset
of Bitcoin script and facilitates its analysis at run-time. As
a template language it is fully compatible with Bitcoin
consensus, but sacrifices a degree of expressiveness compared
to the full Bitcoin script language. Most importantly, however,
it is possible to determine the different satisfaction paths
for a given Miniscript encoded output script and what input
argument types are required for spending. These arguments
are provided by the witness data in the input of the spending
transaction, and must evaluate to a valid script interpreter
stack state to be valid. In Bitcoin, a consensus-valid script
interpreter stack state is one with a non-zero top element.

In effect, the Miniscript template language allows us to
parse for the information necessary to determine each unique
satisfaction path and reconstruct its valid input argument se-
quence, even if the script-locks in each satisfaction path were
not generated by the verifier. Each satisfaction path must have
at least one public key script-lock and may also include any
combination of Miniscript script-locks shown in table 2.

Miniscript Script-Lock Type Satisfaction
Public Key Signature
Public Key Hash Public Key + Signature
RIPEMD160 Digest RIPEMD160 Message
HASH160 Digest HASH160 Message
SHA256 Digest SHA256 Message
HASH256 Digest HASH256 Message
After Timelock Minimum global time
Older Timelock Minimum age of output
Required Input Data Byte literal

Table 2: Miniscript script-lock types.

In addition to script-lock types, Miniscript also features



boolean expressions which allow for the construction of al-
ternate satisfaction paths. This means that an output script
can encode multiple, alternate combinations of script-locks,
as shown in figure 3. We capture this notion in the follow-
ing definition: For a contract transaction output O; at index
J, we can define a function SatPaths which returns a wit-
ness encoding wy for each possible satisfaction path of the
Miniscript-encoded output O;.

e SatPaths(O;) := {wo,W1,...,wn}

e wy :=[(Locky, Typey), (Locko, Typey), ..., (Locky, Typey )]

SatPaths(0):
w, =[ (AT1, After Time Lock), (Key, , Public Key Lock) |

w, = [ (AT2 , After Time Lock), (KeyB , Public Key Lock) |

w,= [ (Key A> Public Key Lock), (KeyB , Public Key Lock) |

4T1, sig,
O=—[]—
o0 ATZ,sigB

Figure 3: An output O with a Miniscript compatible out-
put script can be statically analyzed for all its satisfaction
paths, denoted SatPaths(O). These satisfaction paths can be
encoded as witness encodings w and imply possible spending
transaction types.

Each witness encoding represents a unique output satis-
faction path in form of a sequence of script-locks and their
type. A contract participant who can satisfy every individual
script-lock of wy can therefore unlock wy, since the partici-
pant can independently produce a valid, satisfying witness
corresponding to the satisfaction path of wy. The sequence of
wy indicates the ordering of witness data elements required
for script satisfaction.

We note that the satisfaction of time-locks in a given wit-
ness encoding wy is not specific to any contract participant
and does not require the production of any satisfying transac-
tion witness data, as it simply implies a temporal constraint
on the confirmation of the transaction.

2 Bitcoin Trace-Net Overview

The Trace-Net formalism enables the automated analysis of
a set of unsigned transaction templates to be formally safe
for the contract verifier, before either participant endorses the
contract or contract update. Contract safety can initially be de-
fined as compliance with a generalized policy which denotes
an expected balance unilaterally with-drawable by the veri-
fying actor. This contract execution path must also be robust
against any possible withholding of data or broadcasting of
competing transactions by the counter-party. Section 3.1 de-
fines generalized policy dimensions enabled by the definition
of contract execution properties verifiable with Trace-Net.

Transaction templates are built from script-locks generated
by both actors negotiating the contract (See step 1 in figure
1). Before providing signatures and hash messages (preim-
ages) to the counter-party, each actor will formally verify
which potential contract execution paths are safe for the given
transaction templates.

0 0, 1
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The goal of a Trace-Net evaluation is the determination
whether an execution trace ¢ exists which begins at an initial
contract state zp and eventually leads to a safe final state z,,.
In the following subsections of section 2, we introduce the
firing semantics which determine which contract state tran-
sitions are fire-able at each contract state z and from which
actor they can be initiated by. This is necessary in order to
generate the entire contract state space (section 2.6), which
is then examined for the presence of safe contract execution
traces, as detailed in section 3.

2.1 Internal and External Actors

An actor in the Trace-Net model is a participant of a multi-
party contracting protocol. An actor generates public keys,
public key hashes, hash-locks, shared public keys and other
cryptographic primitives which function as output script-locks
with which the contract transaction templates are then con-
structed.

Each actors participating in a contract protocol generates
and controls a subset of the secrets which can satisfy or un-
lock script-locks featured in the negotiated contract transac-
tion templates and involved outputs. During the life-cycle of
a multi-party contract, transaction templates may be added
and secrets to individual output script-locks shared between
actors.

In Trace-Net, we only distinguish between the internal
and external actors. There may be more participants in a
contracting protocol, but the verifying actor can only defini-
tively distinguish whether a script-lock was locally generated
and whether the script-lock satisfaction was shared with an
external actor. In other words, the verifier must assume all



script-locks which it does not exclusively control are con-
trolled by a single external actor. Note, that the ability of
an actor to unlock a script-lock may change during the con-
tract life-cycle, as signatures are broadcast and hash messages
(preimages) are shared between actors.

Importantly, Trace-Net formalizes contract states in which
actors can produce a valid witness for a given contract trans-
action throughout the contract life-cycle. We can define
CanSat(w,actor) where actor € {int,ext} and w is a witness
encoding as defined in section 1.3:

1 iff actor can satisfyw

CanSat (w,actor) := i
0 Otherwise

We explicitly note that time-locks which are part of a witness
w encoding are not considered in the evaluation of
CanSat(w,actor) as they are not actor-specific.

The value of CanSat(w, actor) for a given w and actor can
change between contract states. The sharing of contract rele-
vant signatures and preimages between actors are considered
a contract transition type and defined in the following section.

2.2 Contract Transitions

We define three types of transitions in a Bitcoin contract
which imply a change in contract state when they are fired.

e ¢ - Off-chain Contract Transitions
e t - On-chain Contract Transitions

e d - Time Transitions

All transition types are atomic. e transition types are
fire-able anytime by the actor which generated the script-lock,
and represents the sharing of the script-lock satisfaction
with the counter-party. t transition types are fire-able by
the actor which can produce satisfying witnesses for all
inputs of the represented transaction. d type time transitions
represent the time delays which must pass to release time
script-locks. The remainder of this section details the firing
rules of off-chain transitions. Firing rules for on-chain and
time transitions are defined in subsequent sections 2.3 and 2.6.

An off-chain event transition occurs, when an actor directly
or indirectly” reveals information to the other, thereby giv-
ing the receiving actor the ability to unlock an output script
lock. Each off-chain transition is related to a specific output
script-lock in a contract and can only be fired once. Let us
consider a public key A in an output script generated by the

2The message/preimage to a hash-lock may be revealed on-chain when
an output is spent, therby implying the firing of an off-chain transition in a
contract featuring the same hash-lock.

internal actor. This script-lock can be satisfied by the internal
actor anytime, as it controls the secret key a. If the internal
actor shares the corresponding signature sig4 (¢) for the con-
tract transaction ¢t with the external actor, the external actor
can now also produce the satisfying witness element for that
transaction. This change in the external actor’s ability to un-
lock this specific script-lock implies a change in the contract
state, and is denoted with e’{Z () The superscript denotes the
internal actor who can fire this off-chain event transition. If a
signature is broadcast on-chain as part of a valid transaction,
the corresponding off-chain transition can no longer fire, as
the signature has been implicitly shared. Finally, each off-
chain contract transition can only fire one time, as previously
secret information can only be revealed once.

We can also consider a hash-lock digest in an output script
generated by the internal or external actor. If the hash-lock &
is generated by the external actor and its message shared with
the internal actor, the contract transition e, is fired. Unlike
a signature, a hash-lock is not bound to a specific transaction,

and can be featured in more than one output script.

Finally, we illustrate an off-chain contract transition for a
shared public key P which is created by adding public key
points P, and P,,,, each generated by the internal and external
actors respectively. P is featured as a output script-lock in
transaction ¢. Initially, neither actor has the full secret private
key. However, if an actor shares its half of the private key
secret, the other actor will be able to reconstruct the full secret
and obtain the ability to produce sigp(¢). An actor’s revealing
of its half of the shared public key P is represented by the

it int ext :
contract state transitions ey, and €loyp respectively.

We can now summarize the types of off-chain transition
types in the following table 3. We reiterate that each feasible
off-chain event transition for each unique output script-lock
can only fire once in the Trace-net model. Simultaneously,
an off-chain contract transition is fire-able in any contract
state where it has never been fired before. We also note that
additional script-lock types can be modeled with Trace-Net
but are omitted here, such as public key pairs which are atom-
ically linked with adaptor signatures enabled by the Schnorr
signature scheme.

Output Script-Lock Feasible Off-chain Transitions

Int. Public Key P in tx ¢ e’s’f; (1)
Ext. Public Key Pin tx ¢ et
sigp(t)_
1 1] Xl
Shared Public Key P Chevp Chevp
Int. Hash-lock A Cmsy
Ext. Hash-lock £ Crisa,

Table 3: Off-chain Contract Transition Types.



2.3  On-chain Contract Transitions

In this section we detail the Trace-Net firing rules for on-chain
contract transitions. Whilst off-chain and time transitions
provide determinisms which describe contract states in which
output script-locks can be satisfied by actors, we must also
introduce a model which describes the availability of unspent
outputs on the Bitcoin block-chain. To this end, Trace-Net
adopts a classic Petri Net skeleton to capture the state and
fire-ability of on-chain transitionsgit based on the availability
of unspent outputs.

2.3.1 Petri Net Output State Model

There are four classical Petri-Net elements [15] adopted
by the Trace-Net skeleton model: Places, tokens, arcs and
on-chain transitions, as shown in figure 4. Tokens can only
exist in places. Each on-chain transition is connected to at
least one place with directed arcs. Arcs pointing from a place
to an on-chain transition reflect transaction inputs and are
denoted input arcs arc(p,t). Arcs pointing to places represent
transaction outptus and are denoted output arcs arc(z, p). A
given place p can only connect to a single input and single
output arc at most and represents a transaction output. The
Trace-Net skeleton (7, F, P) represents the sets of Petri Net
transitions, arcs and places respectively for a given Bitcoin
contract under evaluation.

When an on-chain transition fires, the input arcs of the
fired transition each consume a token from their connected
place. Simultaneously, each transition output arc will produce
a token to its connected place during firing. Each place
representing a transaction output Out adopts the output
amount and witness encodings SatPaths(Out).

The availability of confirmed and unspent outputs are mod-
elled by tokens. The place marking m is defined as the number
of tokens currently present in the set of places P.

m(p) ={0,1},where p € P

It is a necessary condition for the firing of an on-chain
transition that connected input arcs consume from places
populated by tokens. A Bitcoin transaction can only be
confirmed if it is spending unspent transaction outputs: A
resource modelled by availability of tokens in places
connected to by a transitions input arcs. ¢t~ denotes the
required token availability for ¢ to fire:

- 1 ifarc(p,t)€F
1o if arc(p,t) ¢ F

We denote the token availability requirement for the firing of
on-chain transitions as follows:

Classical Petri Net components

o — 1 ®

(On-chain) Token
Transition (in a place)

Place Arc

Classical Petri Net firing rule

| o | | o
t=(1,1,0) t=(1,1,0) t=(1,1,0)
m=(1,0,0) m=(1, 1,0) m=(0,0, 1)
mzt m>t mzt

t cannot fire t can fire t cannot fire

Figure 4: Classical Petri Net components consist of places,
arcs, transitions and tokens. The classical Petri Net firing rule
denotes that a transition can only fire if its input arcs are
connected to places populated with tokens.

m2>t

However, the Trace-Net skeleton (7', F, P) does not yet en-
code the possible satisfaction paths implied by each output
script. Since a Bitcoin transaction output script can be sat-
isfied with multiple satisfaction paths, we define each input
arc to model the potential spending along a specific satisfac-
tion path of an output. The possible spending along different
satisfaction paths of a single output is modeled by different
on-chain transitions in the Trace-Net model. It is possible
they have the same transaction hash (txid) if they only differ
in witness data.

By extension, a given place representing an output with
multiple satisfaction paths should feature multiple input arcs
from different on-chain transitions, each representing a single
satisfaction path and respective witness encoding w. For a
given on-chain transition ¢, the vector of all witness encodings
assigned to its respective input arcs is given by large W(¢).
The index in the set W () represents the respective input
index.

W(t) := {wo,w1,...,w;}

Since each input arc of an on-chain transition can only
connect to a single place and be assigned to a single associated
witness encoding, the following must hold for all places p
and 7 in a Trace-Net.



| SatPaths(out(p)) "W (t) |< 1

An input arc only represents a single, unique satisfaction
path in order to model the spending of different satisfaction
paths with different on-chain transitions. A satisfaction path
that only features public keys generated by a single actor
implies a sweep transition, which moves the output funds to a
destination determined by the single signing actor. This holds
true because only signatures are the only satisfaction elements
which can commit the outputs of a transaction. This notion is
reflected in the creation of sweep transitions during Trace-Net
model generation in subsequent section 2.5.1.

2.3.2 On-chain Contract Transition Markings

On-chain contract transition markings are applied to input
arcs and transitions in the Trace-Net skeleton and express ad-
ditional contract state governing an actor’s ability to produce
valid witness data. For an on-chain transition to be fire-able
by a single or both actors, all markings must have released
the respective on-chain transition. We define the following
transition marking types.

® hyger(t,i) - Input arc delay marking
® lafier(t,1) - Input arc time marking
® Waeor(t) - Transition witness marking

holaer(t, i) markings exist for each input arc connected to a
transition and reflects the number of confirmed blocks since
the confirmation of the output it is spending. We provide a
recursive definition of i/ ,,.(¢,i), which is the delay marking
of input arc (t,i) after a time delay of d:

holder(tvi) +d lff m 2> t,'_
0 iff m¥ it

Note that the h,4.,(t,i) delay marking does not begin to
increment before the connected place is populated with a to-
ken. For an input arc delay marking at index i to release its
on-chain transition ¢, it must increment beyond an earliest
firing time e f7,;4¢r(f,1), which in turn is determined by the
presence of an older time-lock in the associated output satis-
faction branch encoded by W (z)[ i ] or W(z);. In the absence
of an older time-lock, ef?y4.,(2,i) is set to 0.

The hqfrer(t,7) input arc time marking simply holds the
value of the chain height at the time of evaluation. It releases
the on-chain transition at the earliest firing time which is
determined by the after time-lock of the output its input arc is
connected to. In absence of an after time-lock, ef7, - (t,1) is
set to 0.

Finally, the wyor(t) transition witness marking describes
which actor is capable of potentially firing this on-chain tran-
sition by independently producing the satisfying witness data

h/older(t7 l) =

without any additional communication between the actors.
Since each input arc implies a single, specific witness en-
coding in the Trace-Net model, wy,,(¢) denotes which ac-
tors can satisfy all associated witness encodings of its input
arcs for a on-chain transition . We expand our definition of
CanSat(w,actor) to the entire set of assigned witness encod-
ings W (z) of a transition ¢:

1 iff CanSat(w,actor) forw e W(t)

CanSat(t,actor) := )
0 otherwise

We can now express the definition of the transition witness
marking w0 (¢) in the following form:

int iff CanSat(t,int) AN— CanSat(t,ext)
Jext if f -~ CanSat(t,int) A CanSat(t,ext)
Wactor (1) = int,ext iff CanSat(t,int) \CanSat(t,ext)
f if f — CanSat(t,int) A— CanSat (t,ext)

‘We have now defined all firing rules for on-chain transac-
tions. A transition ¢ can fire if its pre-places are populated,
and all input arc and transition markings have released.

e m>t

® Noger(t,i) > eftoqer(t,i) for all input indices i
® Nafier(t,0) > eftagier(t,i) for all input indices i
® Wacror(t) # 1

If the above requirements are all satisfied, the actor(s)
which can fire the transition ¢ are given by wgor(f).

2.4 Trace-Net Contract State

The full contract state can now be described with the following
tuple z:

7= (ma hotder haftera Wact()r)

We summarize the general relationship between the dif-
ferent contract transition types and contract state: The state
of unspent outputs is described by place marking m, which
changes when an on-chain transition fires. Both chain-state
and time transitions affect the state of input arc markings
Notder, hafrer- Finally, the on-chain transition marking wyesor
tells us which actors can currently produce the valid witness
data for a given on-chain transition at a given contract state
z. The state of w,,, is affected by the firing of off-chain
transitions of type e. The firing of an on-chain transition al-
ways implies that the firing of off-chain transitions related
to the script-locks it satisfies can no longer fire: These are
revealed to the external observer during transaction broadcast.
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Figure 5: This illustrates a Trace-Net model of an atomic swap initiated by the internal actor. Input arc and transition markings
are overlayed on top of the Trace-Net skeleton. The state shown above represents the contract state z imminently after the
confirmation of the internal actor’s funding transaction. Note the chain-height is 20 at time of evaluation, and that abort delays

are set to 15 and 10 blocks respectively.

An example of a contract state is depicted in figure 2. This
represents the contract state of an atomic swap initiated by the
internal actor after the contract has been unilaterally funded
by the verifying party.

2.5 Trace-Net Model Generation

‘We now detail how a Trace-Net contract model is generated
from a set of Bitcoin contract transaction templates C and the
individual satisfaction paths of W (¢x) associated with each
transaction template input. The generation of a Trace-Net
skeleton consisting of places P, transitions 7 and arcs F is
described in algorithm 1.

Trace-Net model generation reflects the definitions and
rules described in section 2.3.1. For each transaction template
in contract C, a place and input arc are constructed for every
input and its previous output (lines 6, 7 of algorithm 1). This
place is generated with the amount and satisfaction paths of
the previous output out;, the spending input is referencing.
The input arc is associated with a witness encoding Wz, (2x),
representing the intended satisfaction path for the transition,
which in turn implies its ef7,/4er and eft, e, values. W (1x)
encodes intended satisfaction paths for the transition input
arcs and determines the script-locks under evaluation by tran-
sition marking wgcyor (£).

Furthermore, an output arc and place is generated for each
transaction template output amount. The place is associated
with the amount and set of satisfaction paths (line 11 of
algorithm 1) of the transaction output it is representing.

2.5.1 Sweep Transitions

The generation of a Trace-Net model in algorithm 1 also
includes the generation of sweep transitions (lines 17-33),
which are not explicitly represented in the contract transac-
tion template set C. For each satisfaction path of each place
modeled in a Trace-Net model which only features signature
script-lock types generated by a single actor (lines 19, 25),
we must model an additional, implied sweep transaction. This
single-signer satisfaction path may include other script-locks,
but since signatures are the only witness element type which
endorse and commit all elements of the transaction, it is the
signing actor who ultimately determines the destination of
a single-signer transaction. In algorithm 1, IntSatPath and
ExtSatPath are modelled to represent generic output satis-
faction paths controlled by the internal and external actor
respectively.



Algorithm 1 Trace-Net Model Generation
1. PT,F:=0,0,0

2: for alltx € C do

3 t ;= transition

4 AddttoT

5 for all in,idx € tx do

6: p := place(amount (outy, ), Sat Paths(out;y,))
7 arciy, := arc(p,t) with Wiy, (tx)

8 P:=PU{p}

9 Add arcj, to F

10:  end for

11:  for all our € tx do
12: p := place(amount (out),Sat Paths(out))
13: arcoy = arc(t,p)

14: Add p,arcyy to P,F

15:  end for

16: end for

17: for all p € P do
18:  for all w € SatPath(p) do

19: if all w signatures are internal then

20: t :=transition

21: Dint := place(amount (p), IntSatPath)
22: arciy = arc(p,t) with w

23: arcoy 2= arc(t, Pint )

24: Add 1, pins,arciy,arcoy to T, P, F

25: else if all w signatures are external then
26: t :=transition

27: Pext := place(amount (p), ExtSatPath)
28: arciy == arc(p,t) with w

29: arcoy 2= arc(t, Pext)

30: Add 1, pexs,arcip,arcoy to T, P, F

31 end if

32:  end for

33: end for

2.5.2 Initial Contract State

Determination of the initial contract state zq is implied by the
on-chain state of outputs, the height of the block-chain and
current ability of actors to satisfy the satisfaction paths for
each input arc in the contract model at the time of contract
verification. Figure 6 illustrates the partial state-space of an
atomic swap contract initiated by the internal actor. The ini-
tial state at verification time in this example is imminently
after the generation of contract transaction templates, before
funding of the contract has occurred.

2.6 Contract State Space

Let N = (P, T, F) be our Trace-Net skeleton and z its initial
state. We have now defined all transition types and their

firing rules, so that at each state z, we can determine which
on-chain, off-chain or time-transition can safely be executed.
The reachability graph RG(N,zo) = (W,E) is a directed
graph with the set of vertices W, and edges E. RG(N, zp) is
generated with algorithm 2.

Algorithm 2 Contract State Space Generation
1: WE :={z0},0

2: forallze W do
3:  for all non-time 0 fire-able in z do

4 Compute 7' such that z R

5 Add 7 and (7,6,7) to W, E

6: end for

7. for all on-chain ¢ fire-able in z after min. delay d do
8 Compute 7' such that z % 7/

9 Add 7 and (z,d,7') to W,E
10:  end for
11: end for

Algorithm 2 exhaustively generates the contract state space
reachable from an initial state zy by recursively computing
all child states directly reachable via contract transitions fire-
able in the parent state. The time delay transition is only
fired in a state where no on-chain transitions are fire-able
and an additional condition is true: A child-state with at least
one fire-able transition must be reachable with a minimal
time-transition d. The time-transition delay is chosen to be
minimal, in order to reflect the transaction execution order
enforced by contract time-locks. Figure 6 illustrates a contract
state space example. It shows the partial reachability graph for
an atomic swap contract initialized by the verifying, internal
actor.

A feasible contract run ¢ will traverse the reachability
graph RG(N) from zq until a terminal state z,, is reached, from
which no further transitions can be fired.

0 6,—1
G:ZO—Q?Zln-Zn—l g Zn

Contract verification considers the set of feasible contract
runs and determines whether they lead to a state which returns
the correct internal balance and can be unilaterally executed
by the internal actor.

3 Contract Safety

A terminally safe state z; is one in which the marking m;
represents the expected confirmed balance amount spendable
by the internal actor. In other words, the contract in state z; is
closed if the expected contract balance is spendable from out-
puts which exclusively feature /ntSatPath satisfaction paths.

The goal of contract state verification with Trace-Net is
to exhaustively assess whether a contract in a given state
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Figure 6: A partial reachability graph for our atomic-swap contract example is shown above. The contract is being evaluated for
its initial state zp, before any funding transaction has been executed. Each contract execution trace shown is denoted with the

outcome of its execution.
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Figure 7: A safe contract exists at state z; if an internal actor
can unilaterally execute a path which leads to a terminally safe
state (z4,24, 2y ). This path must also be safe against competing

transitions fired (1{},#5¥) by the external actor.
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z; can be safely closed by the internal, verifying actor. The
safe contract closing trace G5 beginning at state z; must be
unilaterally executable. Furthermore, such a contract closing
trace must be robust against competing actions by the external
actor. A safe contract closing trace o fulfills the following
criteria:

1. Reaches a terminally safe state z; in RG(N, zo) from z;.

2. Each transition in 6; must be an internally fire-able on-
chain transition " or delay d.

3. If trace o, includes an intermediary state z* which fea-
tures on-chain transitions % fire-able by the external
party, these alternative transitions must lead to states z**
in RG(N,zo) with at least one safe contract trace begin-
ning at z**.

States in criteria (3) can be interpreted as states for which
there exists a race condition between transitions fire-able by
different actors. In such a case, contract verification must en-
sure that a safe contract closing run can be executed from the
subsequent states resulting from each of the race transitions.
This ensures that the internal party can always execute a safe
contract trace even if the unilateral run has been interrupted
by an external party (Figure 7).

Throughout the life-cycle of a contract, actors may nego-
tiate to collaboratively transition to different contract states.



The internal actor must verify that each new contract state is
a safe state z; with a safe contract closing trace G;.

3.1 Generalized Signing Policies

Trace-Net enables the definition of protocol-independent and
generalized signing policies for a key management applica-
tion which manages script-lock secrets used in a contract.
Generalized signing policy dimensions which can be verified
and enforced with Trace-Net verification include:

o Implied transfer of funds.

e Worst-case number of on-chain transitions required to
withdraw funds from contract.

e Worst-case contract execution duration required to with-
draw funds from contract.

Generalized signing policies may also include permitted
levels of change to the criteria above during a contract update.
For example, a contract update may increase the worst-case
number of on-chain transactions required to close the contract,
thereby increasing the projected transaction fee cost with the
update.

Currently, key manager policies are implemented using con-
tract transaction template matching, and are specific to a given
contract protocol. Although this allows for secret keys to be
managed separately from the contract template generating
application, it has the disadvantage that contract types cannot
be easily combined for better interoperability, efficiency or
privacy. For example, it may be advantageous to combine a
payment channel commitment state transaction with features
from a coin-join transaction, in order to obfuscate coin own-
ership or payment-channel closing events. Enforcement of
signing policies across non-standard contract types is only
possible if the contract verification is conducted in a general-
ized manner, as we have demonstrated with Trace-Net.

We note that the introduction of a generalized signing pol-
icy implementations also introduces a novel design space for
interactive protocols: Contract generation and secure signing
can now be decoupled. A participating contract participant
may not need to run a specific protocol implementation to
be able to securely verify and sign contracts, but instead can
verify any received contract proposal against an internal sign-
ing policy before endorsing the contract. This suggests the
possibility of higher-order contracting protocols, in which
general contract policies and their execution trace properties
are negotiated between untrusting actors, rather than explicit
contract transaction templates.

4 Conclusion

We have introduced a novel formal method to automate verifi-
cation of multi-party Bitcoin contracts with transaction out-
puts featuring Miniscript. A key manager can automatically
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verify the relevant state space of a given Bitcoin contract or
contract update, and ensure that the expected contract balance
can be safely withdrawn by the contract verifier. This is a
first step towards generalized key management systems which
can safely consolidate signing functionality across different
multi-party contracting protocols, enabling higher protocol
interoperability and the potential to improve scalability and
privacy.
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