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Abstract 

This document reports the up-to-date progress towards achieving smart E2E network slicing. 
It focuses on the preliminary design and prototyping of enabling technologies for E2E network 
slicing across network segments. Moreover, it provides initial investigations into the algorithm 
design of AI-based radio link control and RAN slice scheduler, as well as integration aspects of 
Management-Orchestration and Cognitive Plane development kit. Together, these enablers 
form basic building blocks for deeper integrations, technologically and algorithmically, 
between partners in future implementation of the targeting E2E slicing system. 

 

[End of abstract] 
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Executive summary 

Smart end-to-end (E2E) network slicing is essential to achieve resource-efficient network 
traffic control and satisfy the varied requirements in quality of service for diverse use cases in 
beyond 5G and 6G networks. This document presents the up-to-date advances in the EU 5G-
PPP 6G BRAINS project in the design and prototyping of the key enablers for smart network 
slicing over the E2E data path including the radio access network (RAN), edge, transport and 
core networks. Specifically, the following achievements can be highlighted: 

• Enablers for RAN and Core slicing based on the proven open-source 5G and beyond 
OAI platform including FlexRIC – a flexible and efficient Software Development Kit 
(SDK) that enables to build service-oriented RAN controllers, and FlexCN – a solution 
that brings programmability into the Core Network. 

• Enablers for network slicing over edge, transport and core networks (wired network 
segments). Different technical approaches are investigated for high-performance 
network slicing at the data plane by leveraging data plane programmability. The 
software-based approach explores the Linux Traffic Control and the Open Virtual 
Switch (OVS) schemes for low-cost implementation, whilst the hardware-based 
approach benefits from a programmable FPGA platform for accelerated processing. 
Experimental evaluation shows that the prototypes achieve data plane network slicing 
at the speed of close to 20 Gbps in the software-based approach (OVS) and under 
0.1ms delay for the prioritized slices in the hardware-based approach.   

• Initial algorithmic investigations into the possibilities of using Machine Learning for 
Radio Link Control and RAN Slice Scheduling, with interesting first insights in the case 
of Radio Link Control. 

• A Reinforcement Learning SDK named TheRLib, which assists the development process 
of the Cognitive Plane, currently being prototyped with practical first results.  

In summary, this deliverable helps establish a more concrete vision of work package 5 in terms 
of conceptual understandings of the components and what possibilities are there for 
integrations. Finally, it is noted that these components and investigations are subject to 
updates and revisions in the due course of the project, in line with the technical evolution in 
a research project. 
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1 Introduction 

Network slicing is a cornerstone technology in 5G and beyond networks to meet the diverse 
requirements of different vertical/industrial use cases such as those Industry 4.0 and beyond 
use cases defined in 6G BRAINS [D2.1]. 6G BRAINS envisions that 6G networks would expect 
to achieve advanced End-to-End (E2E) network slicing capabilities, especially Artificial 
Intelligence (AI) based Radio Access Network (RAN) slicing, and high-speed and flexible 
backbone network slicing across the Multi-access/Mobile Edge Computing (MEC), the 
Transport Network, and the Core Network by exploring advanced data plane programmability 
to truly guarantee the Service-Level Agreements (SLAs). 

This document reports the up-to-date progress towards achieving smart E2E network slicing. 
The scope of this deliverable mainly focuses on T5.1 and T5.2 in design and prototyping of 
enabling technologies for E2E network slicing, and additionally it provides initial investigation 
of the integration aspects considering E2E network slicing between T5.1 and T5.2, and the AI 
by design between T5.1 and T5.4. 

1.1 Objective of this document 

The objectives are listed below: 

• Advance the functional architecture defined in D2.2 (Section 4.1) with concrete 
technology selection; 

• Describe the technical details and experimental results of the design and prototypes 
related to E2E network slice control; 

• Promote open-source based technical approaches for advanced network slicing; 

• Present initial design and experimental results for the AI required to achieve smart 
network slicing; 

• Outline the initial integration consideration to achieve smart network slicing.  

1.2 Overall methodology  

The overall approach is to summarised as follows: 

• Network segment-specific control for fine-grained and optimised traffic engineering 
(D2.2 Section 2.1); 

• Advanced automation and Artificial Intelligence (AI) or Machine Learning (ML) support 
by design (D2.2 Section 2.1); 

• Design and prototyping based on proven realistic platforms especially open-sourced 
platforms such as OpenAirInterface (OAI), Mosaic5G including Flexible RAN intelligent 
controller (FlexRIC), Flexible Core controller (FlexCN), OpenVSwitch (OVS), NetFPGA 
etc. 

1.3 Structure of this document  

The rest of the document is organized as follows:  

• Section 2 provides the overall vision for 6G BRAINS E2E network slicing across the 
various network segments; 

• Section 3 presents the RAN control enablers and initial AI design for network slicing 
over the air; 
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• Section 4 describes the control enablers for the non-RAN segments; 

• Section 5 reports initial Integration towards E2E network slice control; 

• Section 6 concludes this document. 
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2 Overall E2E Network Slicing Vision 

Figure 1 illustrates the 6G BRAINS functional architecture for smart network slice control, 
management and orchestration. 

 

Figure 1. 6G BRAINS functional architecture for smart network slicing 

This deliverable focuses on the enabling technologies for the control of E2E network slices 
across the different network segments especially the essential RAN, MEC, Transport and Core 
Networks. As shown in Figure 1, these Control Plane enablers refer to the RAN Controller, MEC 
Controller, Transport Controller and Core Controller, addressing the network slicing in the 
corresponding network segments in the Data/Infrastructure Plane. Furthermore, it is noted 
that the monitoring functional blocks (Traffic, Resource, Topology Monitors) in the Monitoring 
Plane are primarily prototyped as either a part of the controllers or controller applications 
(Apps). 

In addition, this deliverable also reports the initial design of some of the enablers in the 
Cognitive Plane to provide AI capabilities to the RAN slice control. Specifically, in subsection 
3.5, we will algorithmically investigate a possible application of ML in enabling the RAN slicing 
use case of relaxed uRLLC, where the standard strict requirements of uRLLC are relaxed to 
allow higher multiplexing gains in the public network. Then, in subsection 5.2, we will specify 
the key components that are used to implement and deploy such ML. Together, they 
demonstrate a scalable example of the Cognitive Plane for E2E network slicing. 
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3 RAN Slice Control Enablers 

3.1 FlexRIC Overview 

FlexRIC is an SDK, consisting of a server library and an agent library with two optional 
extensions: controller-internal Applications (iApps) and communication interfaces. The 
objective of the SDK is to facilitate the realization of specialized SD-RAN controllers to target 
specific use cases, while being simple to use. FlexRIC does not support extra features 
endogenously following the zero-overhead principle. In its simplest form, the SDK can be used 
to implement an SD-RAN controller using an E2-compatible protocol, as it is shown in Figure 
2. 

 

Figure 2. The FlexRIC SDK consists of an agent and a server library 

The agent library is the basis to extend a base station with the agent functionalities. It provides 
an API to implement custom RAN functions, i.e., RAN functionality that can be monitored 
and/or controlled by applications, and comes with a bundle of pre-defined RAN functions that 
implement a set of service models (E2SM) that can be included. 

A controller is built through the server library, iApps, and optionally a communication 
interface. The server library manages agent connections, and routes messages between iApps 
and the agents. Through the iApps, it is possible to modularly build specialized controllers: 
based on the considered use case, iApps can implement service models themselves, or expose 
information to external Applications (xApps) via a northbound communication interface. In 
the latter case, xApps can control the RAN while being functionally isolated from the 
controller, which is the favored method of the reference O-RAN RIC, but bears a certain 
overhead. Finally, it is even possible to recursively expose an agent interface at the 
northbound by reusing the agent library, as shown in Figure 3. Such a virtualization layer 
delegates control to multiple (per-slice) controllers, each possibly operating on a different set 
of E2SMs, without controlling the network itself. This recursive property allows not only to 
compose various specialized controllers into a multi-service SD-RAN infrastructure but also 
abstract out the heterogeneity of the 4G/5G deployment topology. 
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Figure 3.  Using the FlexRIC SDK, different specialized controllers can be built 

The FlexRIC SDK provides an abstraction of the E2 interface via an internal representation of 
E2 messages, and the SDK handles the actual encoding and transport of the messages. It is 
therefore straight-forward to integrate FlexRIC with a pre-existing E2-compliant SD-RAN 
infrastructure. However, the standard mandates an encapsulation of ASN.1-encoded data 
inside of ASN.1 and its transport over the SCTP protocol, which may be inefficient in certain 
cases, for instance when the message size becomes large (case for monitoring information). 
Therefore, the SDK also supports to change both the encoding scheme and transport protocol 
allowing the integration of a vendor-specific, possibly more efficient E2 protocol for low-
overhead, real-time control. 
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3.2 FlexRIC SDK Architecture 

3.2.1 FlexRIC Agent 

The main design principle of the agent library relies on its easy integration into various base 
station implementations and deployment scenarios interfacing with an E2 controller, while at 
the same time providing additional functionality for handling multiple controllers in a multi-
service environment, which are detailed in the following. 

Agent Architecture 

The architecture of an agent using the FlexRIC SDK is shown in Figure 4. It consists of the agent 
library, and a user-plane implementation, such as a specific base station or a testing agent. 

 

Figure 4. The FlexRIC agent architecture and integration with a user plane implementation 

The agent library provides the necessary support to connect to a controller. It consists of a 
networking interface, the E2AP abstraction, a message handler, and a generic RAN function 
API. The E2AP abstraction provides an intermediate representation for the E2 protocol, 
relieving RAN functions from E2 protocol specificities (encoding and decoding). Further, the 
agent provides the generic RAN function API to implement RAN functions with custom service 
model-specific logic. This API defines callbacks for E2AP messages, i.e., (i) subscription 
requests (for new information subscription), (ii) subscription delete request (removal of 
subscriptions), and (iii) control messages (to trigger service-model-specific actions), which 
need to be implemented by RAN functions.  

Finally, we pre-defined service models for the considered use cases, namely slicing control and 
traffic control. The service models are tailored towards specific RAN layers (for statistics) or 
RAN control endpoints (for control) to easily integrate the agent library in disaggregated base 
stations, and expose a simplified API to the generic RAN function API, facilitating the 
integration with various base station implementations. 

The base station provides basic node information, such as the configured PLMNs and slices, 
and registers RAN functions according to the underlying node’s capability. Unlike what is 
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shown in Figure 4, not all RAN layers are present in a node for disaggregated base stations 
with CU and DU, and FlexRIC natively supports such disaggregation through the selection of 
the appropriate RAN functions. The base station uses the interface of pre-defined RAN 
functions to expose data and handle control messages, or it defines additional RAN functions 
using the generic RAN function API. 

The agent library is not tied to any existing cellular user plane implementation or RAT and is 
therefore inherently vendor-neutral and RAT-neutral, making it a reusable component for 
multi-vendor and multi-RAT scenarios. 

Multi-controller support at the agent library 

The agent library provides means to connect to multiple controllers. This becomes useful in a 
multi-service context, e.g., for “recursive” controllers that virtualize RAN control or base 
station hypervisors like Orion [1], which expose information to and allow control by multiple 
controllers while also providing isolation between them. 

The FlexRIC agent library enables multiple service controllers, as shown in Figure 5, and assists 
their handling through (1) management of additional controllers (setup, teardown, providing 
controller origin to RAN functions for message handling), and (2) a UE-to-controller 
association. 

 

Figure 5. The agent library handles multiple controllers 

The UE-to-controller association is used to indicate the UEs that are to be exposed to each 
controller. An active E2 subscription addresses all (or an indicated subset) of UEs. However, a 
given RAN function does not know a priori which UEs are to be exposed to a particular 
controller. Therefore, when handling messages, the agent is able to look up and reveal the 
UEs that belong to the corresponding controllers. 

The agent library associates every UE to the first controller, and provides no means for an 
automatic association of UEs to additional controllers, e.g., through 5G RRC slice identifiers 
(NSSAI). Rather, this has to be triggered through a controller based on information from an 
E2SM, as the agent might not always be capable to determine an association. Consider the 
example of a split base station with CU and DU, and a separate controller that is concerned 
with the DU and exposes a remote scheduling E2SM, as shown in Figure 5. When a new UE 
arrives and should be connected to the separate controller, its association depends on the 
selected PLMN of the UE, which is decoded in the CU. The agent of the DU therefore cannot 
infer such an association and needs to be assisted from the infrastructure controller about the 
arrival of this new UE, configuring the agent to expose the corresponding UE at the specialized 
controller. 
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Note that SLAs are not part of multi-controller management. In fact, SLAs are tied to specific 
E2SMs, which are not handled by the agent library as the underlying resources vary, e.g., 
resource blocks in MAC, queues in RLC/PDCP/SDAP, UE connections in RRC. Thus, a unified 
SLA that could be handled by the agent library is not possible. Therefore, the RAN function has 
to perform sufficient admission control upon subscriptions of the controllers, and handle any 
conflicts that might arise from their control operations. 

3.2.2 FlexRIC Controller 

FlexRIC permits to smoothly create specialized (service-specific) controllers. It consists of (1) 
the FlexRIC server library, providing means to communicate with agents using an E2AP 
abstraction, and (2) a controller specialization. 

Controller Specializations 

A controller specialization implements SD-RAN-related functionality, such as a generic SD RAN 
controller, or a “recursive” virtualization layer. The specialization is realized through internal 
applications (iApps), a communication interface, and external applications (xApps). 

The iApps implement specific controller behavior, either directly through E2SMs within the 
iApps themselves, or by providing platform services that can be leveraged by external 
applications (xApps). For this purpose, a controller specialization typically exposes a 
northbound communication interface using a custom protocol, such as a simple REST interface 
(e.g., FlexRAN [2]), the RMR library (e.g., O-RAN RIC), a message broker (e.g. Redis), or E2AP 
itself. 

An iApp uses the server library by subscribing for new agent connections. If it finds suitable 
RAN functions, it may use the included information to send a subscription. After this, it uses 
the event-based interface of the server library to interact with the agents.  

By leveraging the FlexRIC SDK as a basis, implementing new iApps, or extending and combining 
existing iApps, various controller designs can be realized. Additionally, it is also possible to 
implement a fully O-RAN compatible controller, where iApps implement platform functions as 
a basis to have xApps perform radio resource management through service models. 

FlexRIC Server Library 

The FlexRIC server library’s objective is to multiplex agent connections and dispatch E2AP 
messages. As the agent library, the server library abstracts the E2AP communication. The 
server library is designed as an event-driven/callback-driven system with minimal overhead 
that invokes applications only when there are new messages, unlike systems like FlexRAN that 
use polling.  

The RAN management functionality handles connection-related events such as an agent 
connection. Further, the RAN management functionality stores information in the RAN 
database (RAN DB), allowing to query information about the composition of the RAN network. 
For this purpose, the RAN management also merges agents that belong to the same base 
station (e.g., CU agent and DU agent) into the same RAN network function, facilitating base 
station control across agents, and provides events to signal when a complete RAN is formed 
from disaggregated entities.  

The subscription management’s task is to (i) keep track of existing subscriptions and (ii) route 
arriving subscription-related messages to the corresponding iApps. When an iApp requests a 
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new subscription directly or on-behalf of an xApp, it provides a set of callbacks that are called 
to inform the iApp about the subscription outcome, and to dispatch the corresponding 
indication messages. When a message arrives, the subscription management simply selects 
the iApp for which the message is sent and forwards it through the provided callback.  

It has to be pointed out that the server library itself does not implement any E2SM, and does 
not request any information from the agent by itself. Instead, iApps have to trigger service-
model-related communication (generally on behalf of xApps), and the server library provides 
the platform to multiplex messages between agents and iApps. 

3.2.3 E2 Protocol Abstraction 

We identified four orthogonal abstractions in O-RAN’s E2 specification.  

• The transport protocol, defined by O-RAN to be SCTP.  

• The encoding/decoding algorithms at the procedures (E2AP), defined by O-RAN to be 
ASN.1 PER.  

• The encoding/decoding algorithms at the E2SM, defined by O-RAN to be ASN.1 PER.  

• The semantics of E2AP, defined by O-RAN around subscriptions and control messages. 

For handling the transport protocol, we created a wrapper around a Linux networking socket 
to abstract the communication interface allowing to easily switch between different transport 
protocols. O-RAN uses SCTP, which is already used at various other layers in the RAN. 

For the encoding/decoding algorithms of the E2 procedures, such as Setup, Indication, or 
Control messages, we modeled an intermediate representation for all messages. In this 
manner, we are able to represent E2AP procedures without loss of information and 
independently of any particular encoding/decoding algorithms. To this end, we implemented 
the E2AP procedures using the O-RAN default ASN.1 PER (Packet Encoding Rules). However, 
we observed that ASN.1 PER optimizes for encoding size, making it computationally expensive, 
and it has been shown that replacing it in the core network can considerably increase the 
number of concurrent connections. Hence, we also implemented E2AP using Google 
Flatbuffers (FB), which is a serialization format designed for performance-critical applications 
that avoids superfluous allocation or copying steps. In scenarios where the wired bandwidth 
is scarce, ASN.1 presents better compression rates, while in scenarios where the CPU 
represents the bottleneck, Flatbuffers is preferred as it uses less resources. Due to its 
intermediate representation, FlexRIC is open for adding a new encoding/decoding algorithm, 
without having to modify its source code, which enables future implementations of 
encoding/decoding algorithms. 

Similarly, for the service models defined by O-RAN, ASN.1 PER is foreseen. FlexRIC allows 
custom encoding/decoding algorithms aiming to support future changes and with the same 
motivation as the abstraction for E2AP.  

Finally, we did not create an abstraction around the semantic of E2AP, as this would imply to 
completely redesign the protocol (e.g., making it stateless instead of the current stateful 
implementation that is achieved, for example through the setup request procedure). 

Table 1 lists the abstraction levels and possible combinations for some example controllers. 
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Table 1. Possible combinations of FlexRIC abstractions 

 

3.2.4 Implementation of the FlexRIC SDK 

The implementation of the FlexRIC SDK provides minimum, yet sufficient mechanisms to 
implement a service-specific controller. The agent and server libraries (SDK), including the E2 
abstraction, are roughly 10K lines of C11 code (we use generics to achieve compile time 
polymorphism), not using any external dependencies except for Flatbuffers and/or ASN.1, and 
dedicating more than 4K lines to the E2AP message encoding/decoding, where we 
implemented the most common 20 (out of 26) E2AP message handling in ASN.1, and 12 in 
Flatbuffers. We chose C as it is the de facto lingua franca in computer science, and therefore, 
an interface for another language can be implemented (e.g., through SWIG). Moreover, it can 
be smoothly integrated into nearly any programming language, contrary to other low-level 
programming languages (e.g., C++ or Rust). Lastly, we use the Linux-specific kernel system call 
I/O event notification mechanism epoll for handling sockets and subscription timeouts, in this 
manner achieving good scalability as the number of events grows. 

3.3 FlexRIC Performance Evaluation 

3.3.1 Overhead in the User Plane 

We measure the CPU usage introduced by the FlexRIC agent library and compare it to FlexRAN 
(LTE only). To this end, we export statistics measurement using the built-in statistics of 
FlexRAN and the integrated statistics E2SMs of FlexRIC at 1 ms frequency; in both cases, we 
enable all statistics for MAC, RLC, and PDCP (excluding HARQ), covering approximately the 
same data (PDCP/RLC packet and byte counters, MAC statistics such as CQI and used resource 
blocks, etc.). Note that both use different encoding schemes (i.e., Protobuf for FlexRAN, here 
Flatbuffers for FlexRIC); our purpose is to verify that FlexRIC incurs comparable overhead as 
FlexRAN, which was designed for real-time control. 

We measure the CPU usage over both LTE and NR (non-standalone mode, NSA) base stations. 
We used an RF setup with Ettus B210 radios for both cells. The LTE cell runs on an Intel Core 
i7 with 8 cores @ 3.2 GHz, uses a bandwidth of 5 MHz (25 RBs) and serves 3 UEs at MCS 28. 
The NR cell runs on an Intel Xeon Gold 6208U with 16 cores @ 2.9 GHz, has a bandwidth of 20 
MHz (106 RBs) and serves 3 UEs at MCS 20. Figure 6a shows that both FlexRIC and FlexRAN 
incur a small overhead. The relative overhead decreases when deploying FlexRIC over NR, due 
to a more demanding PHY. 
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Figure 6. Normalized CPU usage of FlexRIC and FlexRAN 

To analyze the overhead for more UEs, we used the “L2 simulator” of OAI, an emulation mode 
without the physical layer. Figure 6b shows that FlexRIC performs slightly better than FlexRAN 
especially for more UEs, and thus, FlexRIC is valid for the same scenarios where FlexRAN has 
been validated (e.g., real-time MAC scheduling).  

The results confirm the scalability of the FlexRIC agent library, achieving slightly better 
performance for many UEs (up to 1 % less CPU load for 32 UEs) due to more efficient encoding 
through Flatbuffers. 

3.3.2 Impact of E2AP/E2SM Encoding 

In the following, we evaluate the impact of two encoding schemes, Flatbuffers (FB) and ASN.1, 
for E2AP and the E2SM. E2 enforces a double encoding of messages: a first encoding pass is 
done for the “inner” E2SM, and then again for the “outer” E2AP. We modified the “Hello 
World” service model (HW-E2SM) provided by O-RAN to perform a ping by sending a control 
message to the RAN function, to which the agent responds with an indication message. To 
also study the impact of the E2SM encoding, we translated the E2SM 1:1 from ASN.1 to FB.  

To measure the Round-Trip Time (RTT), the iApp pings the agent every second for small (100 
B) and medium (1500 B) message payloads. The results in Figure 7a indicate that switching 
from all-ASN.1 to all-Flatbuffers encoding reduces the average RTT by roughly 25 % and 66 % 
for small and medium payloads, due to the encoding overhead of ASN.1. Using an ASN.1/FB 
(E2AP/E2SM) encoding even increases the round-trip time, since the larger FB E2SM message 
(for each FB message, we observe 30-40B overhead) needs to be encoded again by ASN.1 for 
E2AP. Thus, where ultra-low latency is required, FB might be preferable, especially for larger 
payloads, but networking delay (our Ethernet-based campus network has RTTs below 1 ms) 
would make this difference much less pronounced. 

 

Figure 7. Comparison of E2AP/E2SM encoding schemes 
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To put the RTT improvements into perspective, we measured the generated message signaling 
rate for a high ping rate (one packet every 1 ms, which is 4G’s transmission time interval). The 
results in Figure 7b indicate that switching from an ASN.1/ASN.1 to an FB/FB encoding 
increases the signaling rate by 80% for small payloads due to the overhead of FB; for large 
payloads, however, the signaling rate overhead is almost negligible. Comparing the “mixed” 
encodings, we see that the FB/ASN.1 encoding signaling overhead only slightly increases 
compared to ASN.1/ASN.1, whereas the ASN.1/FB combination does not decrease signaling 
load, rendering this combination useless. 

In conclusion, Flatbuffers encoding is useful for larger payloads and/or frequent message 
exchange under the assumption that the wired capacity is not the bottleneck at least for E2AP. 
On the other hand, if the wired capacity is the bottleneck or if infrequent, small messages are 
forwarded, ASN.1’s processing overhead in terms of CPU is balanced by a lower signaling 
overhead. In general, it might be preferable to use Flatbuffers in E2AP, as it only slightly 
increases signaling overhead while keeping round-trip times low. 

3.3.3 Scalability of the Controller 

Next, we evaluate the scalability of the FlexRIC server library in terms of CPU utilization and 
memory usage and compare it to FlexRAN. We use the FlexRAN controller specialization (in 
the following called simply “FlexRIC” to avoid confusion with the original FlexRAN controller), 
which employs a statistics iApp that saves incoming messages to an in-memory data structure 
like FlexRAN. We only consider the agent-to-controller direction, which typically carries more 
traffic than in the opposite direction, even for high-traffic scenarios such as remote 
scheduling. Both controllers are on an Intel Core-i7 machine with 12 cores at 3.2 GHz. As can 
be seen in Figure 8a, FlexRIC incurs only one tenth of the CPU usage of FlexRAN, due to using 
Flatbuffers instead of Protobuf. Also, FlexRIC organizes its internal data structure more 
efficiently, leading to reduced memory consumption. 

 

Figure 8. CPU usage at the controller 

To further understand the limitations of FlexRIC, we test using dummy test agents (not 
connected to any base station) that export the same statistics (in FB) as from a real base 
station, each agent emulating a connection of 32 UEs with a unique default bearer. Figure 8b 
shows the CPU utilization of FlexRIC over varying number of agents when using a FB or ASN.1 
encoding for E2AP. It is apparent that FB has around 4 times lower CPU usage than ASN.1. 
Since FB’s design avoids an explicit decoding step, reading directly from “raw” bytes, the 
subscription management in the server library can look up the corresponding subscription 
much faster, resulting in less CPU usage, directly translating to serving many more agents. This 
suggests that ASN.1 encoding on E2AP can become a limiting factor in terms of CPU, whereas 
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FB is rather limited by the network, as for 18 agents, the signaling reaches almost 700 Mbps. 
When reducing the message frequency to 10 ms, the FlexRIC SDK was furthermore able to 
handle around 100 agents (not depicted in the figures), confirming FlexRIC’s scalability. 

3.3.4 Comparison to O-RAN RIC 

The reference O-RAN RIC architecture relies on micro-services orchestrated by Kubernetes. 
The O-RAN architecture impacts the latency since it imposes two hops for messages (from 
xApp via “E2 termination” to agent). In the following experiment, we measured the round trip 
time with two distinct payloads (i.e., 100 B and 1500 B), between (i) a FlexRIC agent and a 
FlexRIC controller utilizing the E2SM-HW, and (ii) a FlexRIC agent and O-RAN RIC. In FlexRIC, 
we use a relaying controller to emulate two hops, which, unlike O-RAN RIC, is not imposed by 
FlexRIC but added to carry out a fair comparison. The relaying controller serves as a 
transparent relay for any E2 messages between any northbound controller and southbound 
agent. As it can be observed from Figure 9, O-RAN RIC increases the round-trip time by at least 
three times for small and two times for medium load compared to FlexRIC. Note that FlexRIC 
incurs less jitter for the round-trip time. 

In a second experiment, we sent 1500 B payload messages in a 1 ms interval and measured 
the incurred system load using iostat over 180 s. In essence, FlexRIC incurred 40 % less load 
(1,5 % vs. 2,5 % total system load). This finding confirms that O-RAN RIC imposes additional 
overhead by design for communication between xApps and RAN function even if not required, 
which might become a bottleneck. However, we acknowledge that the O-RAN RIC is designed 
for commercial deployments, where security is of high concern. 

 

Figure 9. E2AP round-trip times for two hops 



6G BRAINS H2020-ICT 101017226 Deliverable D5.1 

Page 26 of (84)  © 6G BRAINS consortium 2021 

3.4 Reinforcement Learning Radio Link Control Experimental Considerations 

The most important consideration in all simulations is the level of abstraction of the system 
being modeled and whether that provides a faithful model to obtain results that emulates the 
system under study sufficiently accurately enough to provide the required performance 
results to design and analyse system under study. The models under consideration are: (a) 
Traffic Traces, (b) Block Error Ratios against Signal to Noise Ratio for different Modulation and 
Coding Schemes (c) Digital Twin.  

3.4.1 Traffic Traces 

Wireshark was used to obtain four traffic traces, namely: Video LAN Client, ffMPEG, Industrial 
Programmable Logic Controller and Industrial Camera. The traces were filtered to obtain the 
relevant packet data required for network simulations for, namely:  

• VLC & ffMPEG video players: Packet Number, Packet departure time, source IP 
address, destination IP address, Protocol, Packet size, Packet arrival time and player. 

• PLC controller  
o Main PLC data: Packet Number, Packet departure time, Server MAC Address, 

Transmission Mode, Protocol, PacketSize, data in packets 
o Ancillary PLC data: Packet Number, Packet departure time, Server MAC 

Address, Destination MAC address, Protocol, PacketSize, data in packets 

• Industrial Video Camera: Packet Number, Packet departure time, source IP address, 
destination IP address, Protocol, Packet size 

Files of the traffic traces can be accessed and used directly in a network simulator but an event 
list is needed to harmonize the different departure times of packets and any other processes 
that may be occurring in the network simulation such as the departure time of slots within 5G 
Resource Blocks (RBs). A simplified schematic of this event list is shown in Figure 10. 

 

Figure 10. Event list to harmonise the times from different traffic traces and events 
occurring in network simulator 

Multiple instances of traffic can be generated by simply rotating the times of the traffic traces 
by different time offsets. Alternatively, a 2 State Markov Model, as shown in Figure 11, can be 
characterised and can be used for generating alternative traffic but it will never reproduce 
traffic that is as true to the traces from which it was characterised. It only provides traffic that 
has the same statistical parameters to the original traffic trace. It is characterised by 
subdividing time into slot intervals and recording the number of packets that have arrived in 
any interval. Slots within which one or more packets have arrived are ‘state 1’ burst period 
slots whereas slots where no packets have arrived are ‘state 0’ silent interval slots. The 
probabilities of transitioning between silent intervals and burst periods (P01, P10) or 
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remaining in silent intervals (P00) or burst periods (P11) can also be measured. Long term 
probability of being in state 1 (Pi1) or state 0 (pi0) can also be calculated and used to calculate 
mean bit rates. Table 2 presents the 2-State Model parameters for Video LAN Client, ffMPEG, 
Industrial Programmable Logic Controller and Industrial Camera traffic traces. 

 

Figure 11. 2-state Markov Model 
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Table 2. 2-State Model parameters for Video LAN Client, ffMPEG, Industrial Programmable Logic Controller and Industrial Camera traffic 
traces 

App 
Mean Mbps 
Peak Mbps 
Pkt Size bytes 

Slot time (ms) pi1 pi0 P11 P10 P00 P01 Probability Distribution of Number of Packet Arrivals in a Slot 

ffMPEG 
Mn: 0.824 
Pk: 1.65 
  
Mn Pkt Size: 1462 
Mn Pkt Size: 
456 
Min PktSize: 330 

1 0.026 0.974 0.747 0.253 0.993 0.007 

 

VLC 
Mn:  7.17 
Pk:22.8 
  
Pk Pkt Size: 1358 
Mn Pkt Size: 1358 
  
  

1 0.010 0.990 0.483 0.517 0.995 0.005 
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App 
Mean Mbps 
Peak Mbps 
Pkt Size bytes 

Slot time (ms) pi1 pi0 P11 P10 P00 P01 Probability Distribution of Number of Packet Arrivals in a Slot 

Industrial 
Camera 
(uplink) 
Mn: 414 
Pk: 5698 
  
Pk Pkt size: 65226 
Mn Pkt size: 11557 
  

1.0 0.467  
  

0.533 0.958 0.042 0.963 0.037 

 
Industrial 
Camera 
(downlink) 
Mn: 0.445 
Pk: 1.989 
  
Pk Pkt size: 67 
Mn Pkt size: 66 
  

1.0 0.232 0.768 0.947 0.053 0.984 0.016 
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App 
Mean Mbps 
Peak Mbps 
Pkt Size bytes 

Slot time (ms) pi1 pi0 P11 P10 P00 P01 Probability Distribution of Number of Packet Arrivals in a Slot 

Industrial 
Camera 
(uplink) 
Mn: 414 
Pk: 5698 
  
Pk Pkt size: 65226 
Mn Pkt size: 11557 
  

0.5 0.455 0.545 0.973 0.027 0.977 0.023 

 
Industrial 
Camera 
(uplink) 
Mn: 423 
Pk: 5648 
  
Pk Pkt size: 65226 
Mn Pkt size: 11557 
  

0.25 0.442 0.558 0.970 0.030 0.976 0.024 
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App 
Mean Mbps 
Peak Mbps 
Pkt Size bytes 

Slot time (ms) pi1 pi0 P11 P10 P00 P01 Probability Distribution of Number of Packet Arrivals in a Slot 

Industrial 
Camera 
(uplink) 
Mn: 415 
Pk: 6073 
  
Pk Pkt size: 65226 
Mn Pkt size: 11557 
  

0.125 0.291 0.709 0.479 0.521 0.786 0.214 

 
Programable Logic Controller 
(uplink) 
Mn: 19.27 
Pk: 141.28 
  
Pk Pkt size: 1203 
Mn Pkt size: 1203 
  

0.25 0.367 0.633 0.318 0.682 0.605 0.395 
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App 
Mean Mbps 
Peak Mbps 
Pkt Size bytes 

Slot time (ms) pi1 pi0 P11 P10 P00 P01 Probability Distribution of Number of Packet Arrivals in a Slot 

Programable Logic Controller 
(uplink) 
Mn: 19.26 
Pk: 181.70 
  
Pk Pkt size: 1203 
Mn Pkt size: 1203 
  

0.125 0.236 0.764 0.444 0.556 0.828 0.172 

 
Programable Logic Controller 
(uplink) 
Mn: 19.31 
Pk: 192.48 
  
Pk Pkt size: 1203 
Mn Pkt size: 1203 
  

0.0625 0.125 0.875 0.108 0.892 0.873 0.127 
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App 
Mean Mbps 
Peak Mbps 
Pkt Size bytes 

Slot time (ms) pi1 pi0 P11 P10 P00 P01 Probability Distribution of Number of Packet Arrivals in a Slot 

Programable Logic Controller 
(downlink) 
Mn: 0.000729 
Pk: 0.007799 
  
Pk Pkt size: 344 
Mn Pkt size: 174.8 
  

1.0 3.54 e-04 1.000 0.019 0.981 1.000 3.48 e-04 
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3.4.2 Channel Traces and Block Error Ratios 

A radio transmission model can be used to ascertain the effect of a radio channel on the 
Transport Block of a typical 5G/6G OFDM system shown in Figure 12. The model was used to 
measure the physical uplink shared channel (PUSCH) throughput of a 5G New Radio (NR) link 
over an uplink transport channel (UL-SCH). Matlab was used to simulate the 5G OFDM 
Transmitter at the User Equipment and Receiver at the gNB. 

The transmitter model includes PUSCH demodulation reference symbols (DM-RS tapped delay 
line (TDL)) propagation channel. At the transmitter a CRC code is generated and the CRC of 
the previous transmission is checked at the receiver to determine whether a retransmission is 
required by reporting back to the transmitter the unsuccessful transmission using the HARQ 
process. If that is not the case the transmitter generates new data for transmission. 

 

Figure 12. 5G/6G OFDM Transmitter and Receiver 

Matlab was used to simulate the 5G OFDM Transmitter and Receiver using a zero-forcing 
equaliser. The Graphical User Interface of the simulator is presented in Figure 13, and as it can 
be seen parameters such as Sub-Carrier Spacing, Transmission Mode, Bandwidth, QAM-Order, 
Radio Channel Type, Radio Environment, K-Factor, Speed of Mobile and SNR can be selected. 

Table 3. Simulation Parameters 

simParameters Parameter Value 
Number of 10ms frames (NFrames) 8 
NRB 52 
SubcarrierSpacing 15 
CyclicPrefix 'Normal' 
NTxAnts 1 
NRxAnts 2 
PUSCH.SymbolSet 0:13 
PUSCH.TransformPrecoding false 
PUSCH.PUSCHMappingType 'A' (slot-wise) 
PUSCH.DMRSTypeAPosition 2 (First DM-RS symbol position) 
PUSCH.Modulation 'pi/2-BPSK', 'QPSK', '16QAM', '64QAM', '256QAM' 
PUSCH.TargetCodeRate A range of values as defined in Table 4 
SNRIn -20dB to 25dB in 1dB steps 
channel.DelaySpread 30e-9 seconds 
channel.MaximumDopplerShift  10 Hz 

 

The system parameters are presented in Table 3, and as it can be seen parameters such as 
Number of Frames, Sub-Carrier Spacing, Number of Resource Blocks, QAM-Order, 
Demodulation Reference Signals position, Radio Channel Delay Spread and Doppler Shift, SNR-
In can be set. 
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Table 4. Modulation Orders, Code Rates and Spectral Efficiencies for different 5G 
Modulation and Coding Schemes 

 

 

The output of the radio transmission model is the Percentage Throughput (i.e. Block Error 
Ratio (BLER)) against Signal to Noise Ratio for different Modulation and Coding Schemes were 
measured for all the MCSs listed in Table 4, some plots of which is presented in  Figure 14 for 
a simulation run of 8 frames or 80 x 1ms slots. As it can be seen, the percentage throughput 
varies with SNR. The percentage throughput of all the Modulation Coding Schemes against 
SNR were saved on file as a Result5GNR-PUSCH.csv file. 
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Figure 13. Measured throughput of a radio channel against SNR for different Modulation 
and Coding Schemes 
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The performance of all the MCSs is summarised in Figure 14. 

 

Figure 14. Graph of Block Error Probability against ESNR for different CQI 

It can now be simply ascertained whether there has been a successful of an errored transport 
block during transmission using algorithm shown in Figure 15. 

 

Figure 15. Algorithm for calculating Successful or Errored Block Transmission 

3.4.3 Channel Traces from Digital Twin 

Ray Tracing simulations of an ultra-wideband 190 GHz double-directional 3D (dual-polarized) 
transmitter – receiver in a digital twin conference room, whose propagation was characterized 
by measurements, was used to capture the vertical-vertical, vertical-horizontal, horizontal-
vertical and vertical-vertical impulse responses at a grid of receiver positions from the 
transmitter [3]. 
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Figure 16. Pictures of the measured scenario: (a) view from RX1 towards TX1, (b) view 
from TX2 towards RX2, and (c) RT model. 

Since the successive impulse response measurements are recorded on the grid, there is no 
time coherence between successive impulse responses, as required by Resource Block (RB) 
Channel Estimator, which interpolates between Reference Subcarriers in the vertical 
frequency direction for OFDM symbols 0, 4, 7, 11 and then interpolates in horizontal time 
direction for each 4G subframe or 5G slot as shown in Figure 16 to obtain the Frequency 
Response of the RB. The assumption is that there is high degree of time coherence with OFDM 
symbols 1, 2, 3, 5, 6, 8, 9, 10, 12, 13. 

When the measured impulse response measurement for a single point of the grid is applied 
to all fourteen OFDM symbols in a RB then the equaliser works as expected as shown in Figure 
17 and Figure 18. When the measured impulse response measurement for the next point of 
the grid is applied to all fourteen OFDM symbols in a RB then there would be no time 
coherence between RBs. 

 

Figure 17. Received and Equalised 4-QAM constellations for SCS = 120 kHz, BW = 400MHz, 
QAM Order = 4-QAM, fc = 190GHz in conference room 
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Figure 18. Received Frequency Response and BER for RBs of Equalised 4-QAM 
constellations for for SCS = 120 kHz, BW = 400MHz, QAM Order = 4-QAM, fc = 190GHz in 

conference room 

The conclusion is that if digital twin model is to be used in network simulations, then realistic 
model of user mobility is also required. 
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3.5 Reinforcement Learning for Joint Slice Scheduling in the RAN 

In this section, we will first describe a practical RAN slicing scenario, model the problem, then 
propose a solution using Deep Reinforcement Learning (DRL). Our approach is to analyze a 
simple scenario to its fullest, addressing both its theoretical and practical concerns. 

3.5.1 The Scenario 

We hypothesize a scenario in which the owner of an amusement park, e.g., Disneyland, wants 
to have 4 RAN slices for 2 types of applications:  

• 1 slice for 3 tracking drones within the coverage area 

• 3 slices for various maintenance sensors of 3 games within the coverage area  

They want to negotiate the Service-level Agreement (SLA), together with a pricing scheme, 
with an MVNO operating nearby. This is the public RAN extension of the OnSite5G-Outposts  
joint-service currently provided by Verizon and Amazon [4], in which the MVNO’s key concern 
is whether they should admit these slices. Given that they already have profits with their 
general eMBB slice for 5G mobile subscribers, a degradation in this service may lead to a net 
profit decrease due to subscribers leaving the network. This leads to 3 questions: 

1. How should the MVNO price the slices? 
2. How to schedule these RAN slices to maximize expected profits? 
3. How to handle “shifts” in both the underlying slice traffic and the changing slice 

requirements i.e., being zero-touch? 

In this deliverable, we focus on answering Question-2, leaving Question-1 and Question-3 for 
future deliverables; this question can be (informally) stated as follows. 

Problem 1 (Profit-optimal Slice Scheduling) Schedule the PRBs between the UEs of different 
slices to maximize the expected profit of the MVNO. 

Firstly, we assume MVNO profits directly come from meeting the negotiated SLAs. Thus, in the 
modelling subsection-3.5.2, we will design an SLA Template and Profit Function that are 
commercially motivated. 

Secondly, our key contribution in solving this problem does not lie in the solution itself, but in 
the realistic efficiency of the solution. That is, we will analytically stress-test the solution’s 
theoretical basis in practical settings to improve its efficiency (subsection-3.5.3), then 
experimentally validate it against State-of-the-Art (SOTA) schedulers (subsection-3.5.4). 

Finally, although it’s tempting to optimize the profit performance over a time-horizon of 1 
year (to capture all possible variations in this amusement park), we propose to only consider 
an H-hour time horizon during training and rely on a distribution-shift handler to update the 
schedulers until infinity. This is equivalent to collecting multiple H-hour trajectories (with 
different initial states) until distribution shift and update. 

3.5.2 Problem Modelling 

For system modelling, let us consider a RAN system with one Base Station (BS) of n78 carrier 
(3300-3800Mhz) and one Bandwidth Part. It is configured with 30kHz subcarrier spacing, DD–
S-UU TDD format, and dynamic UL scheduling, as illustrated in Figure-19 and Figure-20. This 
corresponds to 273 PRBs and 0.5ms TTI. The reason for balancing between UL and DL is that 
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most vertical use cases asked for better UL QoS [5], which is also the case in our hypothetical 
scenario. 

 

Figure 19. DD-S-UU TDD format in NR 

 

 

Figure 20. Grant-based Transmission in Dynamic UL 

For objective modelling, 3 axioms and 2 properties were taken into account when designing 
our SLA Template and Profit Function. While the 3 axioms will stay relevant across 
deliverables, the 2 properties are subject to future changes to produce different re-
formulations of Problem-1 that are more commercially motivated. 

Axiom-1. SLA should be expressed in terms of UE-level QoS because in the end, it's the UEs, not 
the slice, that experience the quality of the network. 

Axiom-2. SLA should be expressed in terms of efficiency and fairness constraints, imposed on 
the QoS of each slice’s UEs. 

Axiom-3. SLA should be evaluated at per-frame granularity:  

• Smaller than that, vertical customers are recommended to install a private network.  

• Larger than that, vertical customers are recommended to use general 5G. 

Property-1. Unless the MVNO wants a strict admission policy at the cost of losing multiplexing 
(monetary) gains, the imposed SLAs should be soft and not hard. 

Property-2. Money earned and lost due to satisfactions of the SLAs represent the ultimate 
incentives of both parties. 

Using these 5 pillars, let us consider several definitions that illustrate our SLA Template and 
Profit Function. 

Definition 1 (UE-level Slice SLA) After each evaluation interval, P% UEs should have QoS, 
expressed in terms of throughput, latency, and reliability, being at least X. 

Following this definition, let us denote the SLA of a slice as (P, X). 
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Sub-definition 2 (Satisfaction Function of a Slice) Consider a slice with SLA of (P, X). At each 
evaluation interval, let p% be the the ratio of UEs that have QoS being at least X, then the 
satisfaction function of that slice is:  

• If p ≥ P%, the slice SLA is considered satisfied with SLA-defined monetary gains  

• Otherwise, the slice SLA is considered violated and no money is earned. 

We remark that in case of SLA violation, following the tradition of favoring the providers in 
cloud computing [6], we set the monetary gain to zero rather than negative. 

Definition 3 (SLA-aware Profit Function). The Profit Function of a RAN system at time t is: 

 

with (P, X)i is the SLA of slice-i as defined in definition-1; pi, t is the ratio of UEs meeting QoS of 
slice-i at time-t as described in sub-definition-2; and satisfaction(.) is the satisfaction function 
defined in sub-definition 2. 

3.5.3 Proposed Solution 

Why Deep Model-free RL? 

Firstly, RAN slice scheduling should be modelled as a sequential decision-making problem. This 
is because QoS is measured using the status of RLC queues and non-empty queues need to be 
serviced in the following timesteps. Such property eliminates the use of one-shot decision-
making methods such as supervised learning or contextual bandits, when “best” 
instantaneous actions are provided or need to be explored, respectively.  

Secondly, the rich and stochastic nature of the underlying traffic-channel variations 
discourage the use of rule-based and pure optimization methods. This is because rule-based 
methods assume optimality in explicitly describable rules, while pure optimization methods 
require the loss surface to stay the same while iterating on the control variables. 

This left us with 3 options: 

1. Predict several timesteps ahead, optimize the resource allocations then adapt (model-
predictive control) 

2. Adapting the resource allocations while learning the stochastic transition of the states 
(model-based RL) 

3. Learn the resource allocations purely through reward signals (model-free RL) 

We followed model-free RL simply because it is the most actively researched, allowing the 
reuse of ideas. Neural Networks (NN) is chosen for function approximation to meet the second 
challenge stated above. It is necessary to mention that there are other approaches such as 
game theory and genetic algorithms that are not yet explored due to time constraints.  

Finally, our chosen Deep model-free RL approach (DRL) is locally optimal (local with regards 
to the explored trajectories assuming no performance collapse), conditioned on the 
approximating State-Action-Reward Markovian, which will be checked in subsection-3.5.3. 
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Designing State-Action-Reward and Assumptions 

For the design of States, there are 2 non-trivial issues: 

1. How should we abstract the packet-based workloads to align with the slice-based 
rewards without losing too much information? 

2. How should we deal with the changing number of UEs per slice? 

We propose to build states using the following processed statistics of the RLC queues, 
separately between the DL and the UL (known by the BS via Buffer Status Reports (BSRs)):  

• Each state (both UL and DL) is a 2D image with RxC pixels 

• R rows represent the slices ordered by their imposed “slice-level workloads”;  
C columns represent each slice’s UE-percentiles ordered by current “UE-level 
workloads”; these “workloads” are computed heuristically 

• Each pixel represents the statistics of a UE with 3 channels: Queue Size (in bytes), 
Maximum RLC Expiry (in milliseconds), and Wideband CQI 

Intuitively, on the one hand, we use UE-level abstraction so that the DRL agent can optimally 
control UE-level QoS that determines slice-level rewards (while avoiding control overhead and 
learning spurious correlations). On the other hand, we use order statistics to deal with the 
changing number of UEs (while introducing local semantics that resemble an image). 

For the design of Actions, there are 2 issues that prevent us from doing typical joint-slicing 
(i.e., allocating PRBs directly to the UEs) with DRL: 

1. 0.5ms is a very low decision-making time that no model serving can meet (yet). A 
workaround is to implement the NN in C, but this means saying no to model update 
since adapting a C-based NN over time is challenging 

2. UL dynamic scheduling greatly complicates both the state and the action spaces of 
DRL-based joint-slicing 

However, to satisfy the UE-level Slice SLA defined in definition-1, controlling the number of 
PRBs allocated to each UE every TTI is recommended. Thus, we propose the use of Two-level 
Slicing with Configurable Packet Schedulers. This way, our control variables are per-frame re-
allocation of PRBs and re-configuration of packet schedulers to each slice, as follows: 

• We assign PRBs to slices using the first output layer with Softmax activation and size 
equal to the number of slices. 

• We configure the tc parameter (throughput evaluation interval) of each slice’s 
proportional-fair scheduler using the second output layer with Sigmoid activation and 
size equal to the number of slices. 

Intuitively, the first action allocates PRBs to the slices in proportion to their corresponding 
softmax ratios, the second action picks tc for each slice in proportion (of 10ms) to each slice’s 
corresponding sigmoid ratio. 

For the design of Rewards, it is simply the evaluated Profit Function (definition-3) after each 
scheduling frame. 
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With above designs, we can formulate our problem as follows: 

Problem 1* (Profit-optimal Slice Scheduling) Finding optimal parameters θ of the policy πθ 
under stochastic transition τ as 

 

with st and at are the observed state and taken action at frame-t; profit(.) is the profit function 
defined in definition-3; #PRBt and #PRBtotal are the number of allocated PRBs at time-t and the 
total number of PRBs, respectively. 

The sample efficiency of DRL in solving this problem depends on two “rules of thumbs”:  

1. Is our (State, Action) pairs closely approximate the modeled system? If so, are they 
Markovian?  

2. How varied are the observed rewards for each (State, Action) pair? The less varied, the 
faster convergence. 

Per the first rule, we condition on the following two assumptions (with the latter being 
reasonable by [7] and [8]):  

Assumption 1. From “premature” current states, the agent can estimate the true current 
states (and act optimally) using the true reward signal. 

Assumption 2. Traffic-Channel variations can be modeled with higher-order Discrete-time 
Markov Chains at per-frame granularity. 

Per the second rule, following the current status of OAI’s L2-SIM and [9], we condition on 
these assumptions (with the latter being reasonable in an urban setting).  

Assumption 3. All packets sent, both UL and DL, are observable using the RLC queues. All 
packet losses, both UL and DL, are due to deadline expiration and not bad channel quality.  

Assumption 4. The channel coherence time of all UEs exceed 10ms. 

We note that the rationales behind these assumptions are: 

• With assumption-1, we want to mitigate the delay difference between the time we 
sample our network state and the time we execute our scheduling action. With 
assumption-2, we want to ensure correctness in the policy training process. These can 
be satisfied with a suitable Neural Network design (discussed in subsection-3.5.3) and 
an appropriate state design like previously specified. 

• With assumption-3, we want to mitigate the effect of unobservable rewards due to the 
limited capability of OAI’s L2-SIM. With assumption-4, we want to ensure action 
consistencies between similar configurations of the proportional-fair scheduler. 

We further note that assumption-2 and assumption-3 corresponds to modelling errors and 
inherent noises, respectively. All can be further mitigated with probabilistic training 
techniques discussed in future deliverables. Therefore, we only have assumption-4 remains. 
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Designing Neural Network and Algorithm Selection 

Following our assumptions, the approximating MDP of Problem-1* is a DT-POMDP that is 
observable with partial history. This means the policy has to be derived using the 
approximating “beliefs” of the underlying true states. We propose to do this with local-
featured memory-full function approximators i.e., Convolutional-Recurrent Neural Networks. 
Intuitively, we’re trying to learn the temporal dependencies of the extracted local semantics 
between the workload-percentiles inter-slice and intra-slice, to decide PRBs assignments in 
terms of quantity and fairness, respectively. 

To deal with the difference between sampled states and before-action states, we add 1 fully-
connected layer after the CNN layers to linearly pre-process their kernels’ outputs. To deal 
with the possibly non-linear relationship between the final spatial-temporal features and the 
Values and Optimal Actions of the underlying “true” states, we also add 2 more fully-
connected layers after the RNN layers. 

For training algorithm, we propose the use of Deep Deterministic Policy Gradient (DDPG) due 
to our deterministic continuous action and DDPG being balanced between simplicity and 
sample efficiency. For exploration during training, we will use fixed scale independent 
Gaussian noise. 

3.5.4 Experimental Considerations 

For our RAN slice scheduler to be industrially ready, it needs to be realistically validated 
against promising existed RAN slice schedulers. To set up realistic experiments, we propose to 
build upon the traffic trace described in subsection 3.4.1 with two enhancements: 

1. Incorporate realistic distribution shifts and channel variations 
2. Replay this new traffic-channel trace on a real testbed, such as OAI’s L2-SIM  

For 1), we need to integrate a suitable long-term traffic trace and channel simulator into the 
original trace with appropriate Time Series techniques. For 2), we need to develop a real-time 
cognitive plane that talks to the OAI environment. Both are non-trivial tasks that needs further 
investigation and will be detailed in future deliverables. 

For the baseline RAN slice schedulers, we propose two candidates: 

• EDF [10] – A simple yet very robust rule-based RAN slice scheduler 

• OnSlicing [11] – A state-of-the-art ML-based E2E slicing algorithm that is very efficient 
yet rather complicated; we propose to use its RAN slicing adapted version 

We consider our experiment to be successful if we can develop a cognitive plane that is both 
simpler than EDF and has the multi-resource slicing capability of OnSlicing, but is more 
efficient than both EDF and OnSlicing on the proposed real-time test-bed. 
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4 Backbone/Core Network Slice Control Enablers 

Considering the overall E2E network slicing vision in the previous sections, this section further 
presents the 6G-BRAINS network slice control enablers for backbone network, including edge, 
core and transport segment. The aim is to investigate different hardware- and software-based 
enablers, complimentary to hybrid approaches (hardware and software) to provide network 
slicing in the context of the 6G-BRAINS framework.  

4.1 Overview of backbone segments network slicing 

 

Figure 21. Overall Vision 

The technical development towards 6G to update current 5G use cases (eMBB, URLLC and 
mMTC) are presented in this overall vision of the architecture. It is expected that in the 
incoming generation of mobile networks, new use cases that require extreme performance 
arise, as well as new combinations of requirements that are not contemplated in current 5G 
categories [12]. As can be seen in Figure 21, these 5G RANs consist of different antennas and 
DUs connected to Edge segment of the network, where CUs are allocated. The CUs bring 
network services, using NFV technologies, to the last-mile of the network providing better QoE 
to final users. These CUs also connect the network data plane between the RAN and the Core 
segment of the network. As depicted, the Edge segment is formed by a physical machine which 
contains three different NFVs, which act as isolated virtual network operators, sharing the 
same physical resources. 

The Core segment of the network, also shows a physical machine that contains all the different 
NFVs required by three independent network operators sharing the same physical 
infrastructure. In this network segment, traffic is received from the different CUs and it is 
processed in the UPF, which acts as a mobility anchor for the traffic of the 6G users and also 
relay the data to internet. The AMF/SMF are used to allocate the IP address and to manage 
the user sessions on the network. Finally, the UDM/AUSF are mainly in charge of the user 
registration, access authorisation, maintaining the network profiles and also, of authenticating 
servers and proving encryption keys. 

Hybrid software- hardware-based solution allocated in the edge, transport and core segment 
of the 6G architecture provide network slicing capabilities and complex data path which allows 
the classification and prioritization of overlay network traffic. In this context, Traffic Control 
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(TC), and OVS present network slicing capabilities in the kernel segment of the system, while 
SmartNICs, such as NetFPGA and Netronome, provide both network acceleration and network 
slicing in the hardware side. 

4.2 Hardware-based network slicing 

Hardware-based data plane programmability is explored in the vision of 6G-BRAINS project as 
a network slicing enabler based on Simple Sume Swith model [13] for P4-NetFPGA. These 
approaches are investigated and technically integrated with the NFV components of the 
architecture proposed in order to provide E2E, guaranteeing high reliability and low latency. 

4.2.1 NetFPGA Platform 

Figure 22 depicts an architectural design overview of the different components of the FPGA 
card and the main contributions of this research to provide a holistic and general idea of the 
components involved in the framework and the innovations associated. The architectural 
design presented in Figure 22 is divided into two different planes: Control plane and Data 
plane. The control plane has been prototyped for the Linux kernel, where a novel UWS Control 
API has been implemented to allow network administrators to configure the network control 
rules of the traffic processed by the NetFPGA card and therefore, to dynamically control the 
network slicing policies. The data plane represents the segment of the architecture 
implemented directly on the NetFPGA hardware card. The control and data communication 
channels have been represented in orange and blue respectively. These independent channels 
allow the exchange of data and control traffic between the card and the operating system of 
the computer by using a logical division of the PCI slot. 

 

Figure 22. NetFPGA data plane and network slicing implementation 

The control plane is based on two different architectural components, UWS Control API and 
the NetFPGA SUME_RIFFA driver [14]. The first is a NBI that has been designed to provide 
access to the novel control actions exposed by the NetFPGA. Aside from the control task, this 
REST API also produces monitoring information messages about traffic statistics, providing a 
comprehensive message format and simplifying the control of the network rules which are 
stored inside the hardware in TCAM, CAM and registers. Control plane also utilises the 
NetFPGA SUME_RIFFA driver, which is the driver implemented with the P4-NetFPGA project, 
providing support for four logical network ports detected in the linux kernel (nf0, nf1, nf2 and 
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nf3) allowing communication between the NetFPGA card and the kernel of the operating 
system using the DMA interface. 

In the data plane, the NetFPGA card is based on the open source P4-NetFPGA project [13] 
which provides a fully controllable data plane with P4 language support. This data plane 
consists of four different physical architectural components, divided into different wired FPGA 
modules connected and controlled through the operations exposed via NetFPGA Control API. 
The P4-NetFPGA project provides a pipeline with three different stages (parser, match/action 
and deparser), which have been significantly extended in this research to provide support for 
overlay networks. Additionally, a novel FPGA module has been designed, implemented and 
integrated in this P4 pipeline to provide network slicing support. The P4 language is used to 
perform the programmability of the data path. 

• Parser: Refers to the first NetFPGA stage, where network packets are received either 
from the physical ethernet network interfaces or from the PCI bus into the P4 pipeline. 
All different headers that need to be parsed require to be defined in this stage, 
indicating in detail all the different fields of the packet headers. In this stage, all 
headers of the network packets are classified and their values are extracted to use 
them in following stages. 

• Match/Action: Once the parsing is completed and the packet has been classified 
properly, this goes into the P4 pipeline Math/Action stage. This stage utilises the data 
extracted in the previous stage to access the entries of the control tables where rules 
are stored in order to determine if there is a match in the table. If so, the entry in the 
table has an action associated which is performed over such package. This is the only 
stage of the P4 pipeline that has access to the TCAM/CAM tables. 

• TCAM/CAM Tables: Memory structures where network control rules are stored and 
where the management of rules is undertaken. These memories are based in a 
key/action model, where the fields specified in the Match/Action stage are considered 
as keys, and if they match with the values of a rule inserted in the table, then an action 
is activated. CAM is based on an exact matching of the fields whereas TCAM uses 
ternary matching values allowing the usage of wildcards, to determine if an action is 
activated: 0, 1 or irrelevant. The set of actions is dependent on the purpose of the NIC, 
e.g., a drop action will allow firewalling capabilities, a change IP Source action will allow 
NAT-ing, and so on. 

• Deparser: This is the last stage of the P4 pipeline. At this point if the packet has not 
been dropped, it is reconstructed with the information that may have been modified 
during the previous stages and is forwarded to the network slicing module. 

• Network Slicing Module: This stage is located immediately after the P4 deparser stage. 
This network slicing module can also be referred to as the network slicing core. An 
internal core or module of the FPGA can be defined as a reusable unit of memory of 
design logic with defined behaviour. Every non-dropped packet goes through the 
Network Slicing Module. In this module, an advanced implementation of a double level 
of queues has been identified as an approach to provide network slicing support to the 
NetFPGA card. Each queue has a priority associated and the priority of every packet 
will be decided by the queue where such package is sent. This priority is defined by the 
values specified in the rules inserted in TCAM tables of the NetFPGA and it is applied 
to the outbound traffic. Once the packet is removed from the queue, it is sent to the 
to the kernel of the operating system through the DMA. 
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A basic solution of this approach was previously implemented in the H2020 EU project 
Slicenet, however in 6G-BRAINS an extended version of this solution is presented. This 
approach presents a larger parser and match/action stages, providing support for the use 
cases covered in this project. In addition, the NetFPGA API has been extended to provide 
support for new encapsulations protocols, such as EtherCAT required these novel uses cases. 
The set actions supported by this network slicing enabler for 6G-BRAINS project also been 
extended to support the copy of the QoS information between the different encapsulations 
of the overlay network traffic. 

4.2.2 NetFPGA Network Slicing Module 

Figure 23 shows a basic NetFPGA approach to achieve network slicing based on the isolation 
of the network flows for 5G networks. This network slicing implementation has been carried 
out by extending the basic NetFPGA data path, composed by parser, match/action and 
deparser stage. As can be seen, this implementation consists of 32 priority queues which are 
connected to the deparser stage through a demultiplexer. At the same time, the queues are 
connected to a deficit round robin arbiter, through a multiplexer, which forwards the network 
traffic to the DMA of the computer where the NetFPGA is located. The priority queue used by 
a packet is picked in the match/action stage via P4. For this purpose, the default 
implementation of the NetFPGA P4 module has also been changed in order to allow the user 
to select the priority queue using the P4 language. 

 

Figure 23. Basic NetFPGA Network Slicing Module implementation 

Although the network slicing implementation shown in Figure 23 demonstrates feasibility of 
the approach by providing real hardware-based isolation, it presents several problems. Firstly, 
with regard to the data path implementation, the previous solution does not provide multi-
tenancy support for virtualised 5G networks. Secondly, the implementation of the NetFPGA 
slicing module undertaken can cause failure of packet processing in the less priority queues. 
This is because, while high priority queues are processing packets, the less priority queues are 
waiting. And the third problem found is that if the same priority queue is assigned to different 
users and if such queue is suffering congestion, the traffic of the last senders will have to wait 
until the queue releases the previous packets received from other users. 
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In order to resolve the problems presented by the first NetFPGA-based network slicing 
approach, the implementation shown in Figure 24 has been carried out. This prototype 
consists of two nested levels of queues connected on one side to the deparser stage of the 
NetFPGA data path and on the other side with a deficit round robin arbiter which forwards 
the traffic to the DMA. As can be seen, the first level of queues consists of 8 round robin 
queues, each connected to 4 priority queues, where the queue 0 presents the lowest priority 
and queue 3 the highest. In summary, based on the implementation shown, this solution 
presented provides hardware-based data plane which allows network slicing, guaranteeing an 
E2E isolation of the network flows. This isolated channel can be created by user or tenant and 
user, among others, depending on the final use case of the application. This implementation 
is fully functional with 5G/6G networks with overlay networks support. 

 

Figure 24. Advanced NetFPGA Network Slicing Module implementation 

The pseudo-code shown in Figure 25 presents the algorithm implemented in the advanced 
network slicing module depicted in Figure 24. In this algorithm, the incoming packets from the 
physical ports are processed and sent through the DMA channel to the Central Processing Unit 
(CPU) of the computer, and vice versa. For the packets received from the physical ports, extra 
treatment is applied. In this case, if there is not a hit the TCAM table, the default action is 
applied. This default action uses the last three bits of the innermost source IP address to set 
the value of the output round-robin queues and the two bits 2-1 of the DSCP field of the IP 
header to set the value of the output priority queues. However, if there is a hit with a rule of 
the TCAM table, the values of the output priority and round-robin and extracted from the rule 
matched. At the production stage, this can be managed by the internal Dynamic Host 
Configuration Protocol (DHCP) management to smartly assign IP addresses based on the 
subscription type of the user and therefore, automatically prioritise the traffic of the users 
based on the IP addresses. 
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Figure 25. Match/Action pseudo-algorithm implementation for the management of the P4-
NetFPGA-based queues developed 

4.2.3 NetFPGA API 

This REST API is used for the communication between upper layers of the architecture and the 
hardware devices through the network driver. This section provides information about the 
different operations and actions exposed by this REST API and the structure of the messages 
exchanged. Table 5 shows the parameters required to add a new rule to a table implemented 
in hardware. The original 4-tuple (Source IP, Destination IP, Source Port, Destination Port) has 
been significantly extended to support 5G/6G scenarios and virtualised overlay networks with 
multi-tenancy. The keymask0 represents the Ethernet Type field and specifies the link layer 
header, such as 0x88A4 for EtherCAT protocol. The encapsulation headers required by these 
overlay scenarios, explained in previous sections, have been supported by the operations 
provided by this API. The implementation of this REST API presents support for several 
encapsulation headers in order to provide a generic northbound independent of the use case 
carried out. Table 6 describes the different encapsulation protocols that can be defined within 
the fields keymask9, keymask10 and keymask11 which must be supported by this northbound 
interface. Also, the values shown in this table represent the number used by the API to identify 
the different encapsulation protocols. The northbound interface refers to the Policy Charging 
Function (PCF) or control plane presented in Figure 1. This northbound interface allows the 
transmission of control traffic between the administrator of the network and the hardware 
device. 

Table 5. Parameters required to add a new rule to a table implemented in hardware 

Field Name Description 

Table_name Name of the table 

Address Position in the table 

keymask0 Ethernet Type 
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Keymask1 Inner/Overlay source IP 

Keymask2 Inner/Overlay destination IP 

Keymask3 Inner/Overlay source port 

Keymask4 Inner/Overlay destination port 

Keymask5 Flow Layer. It indicates the number of encapsulations of a packet 

Keymask6 ID of the first encapsulation header 

Keymask7 ID of the second encapsulation header 

Keymask8 ID of the third encapsulation header 

Keymask9 Protocol of the first encapsulation header 

Keymask10 Protocol of the second encapsulation header 

Keymask11 Protocol of the third encapsulation header 

Param1 First action parameter 

Param2 Second action parameter 

queue Priority queue 

action Action applied when a packet matches a rule 

 

Table 6. Values used in fields keymask9, keymask10 and keymask11 to identify different 
encapsulation protocols 

Encapsulation protocol Value 

VXLAN 1 

GTP 2 

GRE 3 

RTP 4 

MPLS 5 

VLAN 6 

R-GOOSE 7 
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EtherCAT 8 

 

Notice that, the proposed design is radically new with regards to traditional rules. It has a 
significantly enhanced flexibility, allowing the type of encapsulation protocol to be matched 
and defined as parameters which leads to several rule configuration possibilities. Thus, it has 
been decided to use ternary tables for this implementation. All the parameters described in 
Table 5 as keymaskX must contain the value of the field and the mask associated with this 
value. This allows the provision of a wider range of possibilities when configuring the traffic 
filtering by the rules. 

The field queue is the method used to control the network slicing innovation implemented, 
allowing the user to configure the hardware network slicing module which permits the 
prioritisation of the network traffic. Depending on the implementation, this module can be 
configured with different numbers and levels of queues in order to guarantee E2E network 
slicing and also a fair traffic distribution between the different queues. This fair distribution of 
the traffic is achieved by using the network slicing algorithm implemented in the NetFPGA. 
The algorithm contains a set of round-robin queues which allows an equal distribution of the 
low priority and high priority traffic between all the output priority queues. The field action is 
probably one of the most important of the add entry operation. This field allows the selection 
of the action which is applied over a network packet when it matches a rule inserted in the 
table. Table 7 shows the different actions exposed by this implementation. As can be seen, 
each action can require up to three different parameters which indicate: the information of 
the packet that is going to be overwritten (parameter 1); the outbound interface where the 
packet will be sent (parameter 2); or the queue where the packet will be sent (queue). 

Table 7. Values required to invoke the different actions provided 

Action Value Parameter 1 Parameter 2 Queue 

DROP 1 - Outer Interface - 

NOPE 2 - Outer Interface Queue ID 

L2 Outer redirect 3 Destination MAC (outer) Outer Interface Queue ID 

L3 Outer redirect 4 Destination IP (outer) Outer Interface Queue ID 

L2 Inner redirect 5 Destination MAC (inner) Outer Interface Queue ID 

L3 Inner redirect 6 Destination IP (inner) Outer Interface Queue ID 

Set Outer TOS 7 TOS (outer) Outer Interface Queue ID 

Set Inner TOS 8 TOS (inner) Outer Interface Queue ID 

Copy Outer to Layer 
TOS 

9 Layer Outer Interface Queue ID 

Copy Layer to Outer 
TOS 

10 Layer Outer Interface Queue ID 
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The field action is probably one of the most important of the add entry operation. This field 
allows the selection of the action which is applied over a network packet when it matches a 
rule inserted in the table. Table 7 shows the different actions exposed by this implementation. 
As can be seen, each action can require up to three different parameters which indicate: the 
information of the packet that is going to be overwritten (parameter 1); the outbound 
interface where the packet will be sent (parameter 2); or the queue where the packet will be 
sent (queue). Code below shows an URL example used to invoke add entry: 

http://192.168.1.15:5353/add?table_name=route_table&address=1& 

keymask1=0xc0bc008c/0xffffffff&keymask2=0xc0bc0002/0xffffffff& 

keymask3=0x138c/0xffff&keymask4=0x138c/0xffff&keymask5=0b011/0b111& 

keymask6=0x0445/0xffff&keymask7=0xd0d4/0xffff&keymask8=0x0060/0xffff& 

keymask9=0b001/0b111&keymask10=010/0b111&keymask11=100/0b111& 

param1=010101010101010101010101010101010101010101010101& 

param2=01&queue=100&action=0010 

4.2.4 Empirical Results 

This section depicts the empirical validation of the NetFPPGA-based framework described 
above. These charts present statistics about delay, jitter, and packet loss statistics when the 
NetFPGA is applying different QoS configurations to the traffic stemming from up to 512 users. 
Table 8 shows the settings of the number of traffic senders, the quantity of data sent in each 
slice, and more information about the traffic. The bars presented in each graph are the 
average of all the packets that are involved in each of the flows used in the experiment (per 
service). In fact, the experiment has been carried out five times and the values are the average 
of those five executions. 

Table 8. Pcaps modified to test the slicing in the experimental setup proposed 

Slice IPs (Users) Flows/Services #packets packet size pcap size (Gb) 

1 32 512 477696 1500 5.73 

2 64 1024 955392 1500 11.46 

4 128 2048 1910784 1500 22.93 

8 256 4096 3821568 1500 45.86 

16 512 8192 7643136 1500 91.72 

 

Figure 26 shows the delay achieved when network slicing is applied to the traffic transmitted 
by up to 512 users. The delay specifies how long it takes for a packet to travel across the 
network from one node to another and to return back. The number of users sending traffic in 
each slice is always 32. Thus, 32 users are sending traffic when only one flexible slice instance 
is configured and 512 users when 16 slices are configured (32 users in each slice). The graph 
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shows an exponential trend in the number of slices. It is clear that, overall, the delays 
measured in the five scenarios are fairly similar, always around 2 ms, in the queues that have 
been assigned the lowest priority (queue 0), associated to best-effort traffic. Nevertheless, 
the delays are reduced dramatically when the traffic is processed by queues that have been 
assigned higher priorities. With the increase of the priority, delays decrease. The importance 
is that different scenarios with different slices show exactly the same performance in terms of 
delay. It can be observed that packets processed by the queues 1, 2, and 3 have a maximum 
delay of 0.25 ms; in the same manner, the delays reached by queue 3 are always lower than 
0.1 ms. The chart represents the standard deviations of the delay in each case between all the 
packets submitted; the values are not, in any case, higher than 0.1 ms. Overall, these 
comparable delay results across different cases reveal high scalability of the proposed scheme 
in terms of the number of users per slice. 

 

Figure 26. Delay achieved when the number of flexible slice instances is increased 

The bar chart shown in Figure 27 presents the number of packet loss in each queue when the 
NetFPGA is working in a congestion scenario. Packet loss refers to packets that fail to reach 
their destination. Queue 0 has the worst values concerning delay, and it also has the highest 
rate of packet loss. These packets are discarded in the NetFPGA RIFFA driver when it is working 
under a stressful circumstance. Again, as can be observed, the solution proposed scales well, 
as the packet loss rate when only 32 users are sending traffic is quite similar to that when 512 
users are transmitting. It is clear that, in queue 0 (in the service with port 5000), almost 100% 
of packets are discarded when they are congested in the network, mainly for the performance 
of the software stack. However, the traffic with a higher QoS, transmitted by the others 
queues, is arriving with less than 1% of packets loss in queues 1 and 2 and with 0% of packet 
loss in queue 3, which has the maximum priority. 
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Figure 27. Packet loss achieved when the number of flexible slice instances is increased 

Figure 28 represents the jitter results in the communication between the NIC that is sending 
the traffic and the NetFPGA, which is receiving it. The jitter describes the variation in the delay 
of received packets. Although the jitter increases when there is congestion in the NetFPGA 
card, the graph shows high stability in the jitter performance for those services that are 
assigned to queues different to queue 0, which are those services sensitive to low latency and, 
thus, also to jitter variations. Again, notice how Figure 28 demonstrates the same performance 
between different network slices. 

 

Figure 28. Jitter achieved when the number of flexible slice instances is increased 

Table 9 shows the maximum values achieved by such slices which can be used as performance 
indicators by the solution proposed in terms of delay, packet loss and jitter. Notice that the 
values presented have been obtained in a scenario under congestion, so this also 
demonstrates the scalability of the implementation proposed. When modifying the number 
of users, rules and slices defined in the different testbeds analysed, a congestion has been 
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detected when the speed transmission exceeds 1.5 Gbps, mainly due to a lack of performance 
in the Linux driver. Also, the Linux kernel is not able to provide faster transmission than 
approximately 3 Gbps which is the reason why all tests have been executed with a maximum 
of 3 Gbps. This throughput refers to the transmission speed achieved in the E2E 
communication between the two different computers of the testbed, which represent the 
edge and core segments of the 5G architecture. As can be seen, the guaranteed maximum 
latency when queue 3 is being used is 0.13ms, with less than 0.2% packet loss and a maximum 
jitter value of 0.014ms. 

Table 9. Maximum value of delay, packet loss and jitter guaranteed in a congested 
scenario, where 512 users are transmitting traffic 

Queue Delay (ms) Packet Loss (%) Jitter (%) 

0 2.3624 88.97 0.94003 

1 0.25178 0.19632 0.02468 

2 0.20891 0.19601 0.01938 

3 0.13805 0.19552 0.01487 

4.3 Software-based network slicing 

4.3.1 Traffic Control (TC) 

Empowering the network system with E2E slicing capabilities implies being prepared for the 
heterogeneity that may exist among the different network devices distributed through a 6G 
architecture. Section 4.2 presents two different hardware-based approaches to achieve high 
performance with respect network slicing on the Backbone and Core Network segments. 
However, it would not be realistic to assume that the whole infrastructure will be 
commissioned with hardware-based network programmable devices (smartNics), especially 
in software-based architectures that leverage virtualised resources to perform Virtual 
Network Functions (VNFs). To cover the wide spectrum of network devices and system 
requirements that can be found along the E2E network slice data path segments, the 6G-
BRAINS framework considers hybrid enablers (hardware and software) to allow flexible 
network slice definitions. With respect to software approaches, Linux-based systems offer a a 
very rich set of tools for managing and manipulating the transmission of network packets   
traversing any given network interface. The Linux kernel packet scheduler is part of the Linux 
Kernel’s network stack and manages the transmit and receive ring buffers of all network 
interfaces. Traffic Control (TC) [15] is the user-space utility program used to configure the 
Linux kernel packet scheduler. TC represents the sets of queuing systems and mechanisms by 
which packets are received and transmitted on a network device system. This includes 
configuring which (and whether) network traffic flows to accept on the input of an interface 
and determining how to transmit them (order, rate, bandwidth limitations, etc.) on the output 
of an interface. Traffic shaping smooths the bandwidth requirements of traffic flows by 
delaying transmission packets when they are queued in bursts. The scheduler decides the 
timing for the transmitted packets. Quality of Service (QoS) capabilities are used to prioritise 
traffic based on service class. 6G BRAINS envisions to make use of the Linux network scheduler 
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to create data-plane slicing when the system resource is not equipped with higher 
performance programmable data-plane network devices such as those based on hardware 
acceleration or kernel bypass techniques, or in those scenarios where the link (L2) and 
network (L3) layers of a resource require to work together. Therefore, the Linux Network 
scheduler with advanced queuing disciplines and dedicated filtering expressions (covering 6G 
network traffic) is used to optimize and guarantee performance, improve latency, and 
increase usable bandwidth for some kinds of services with specific network requirements. 

4.3.2 Architectural design 

Figure 29 overviews the Linux Network Scheduler architecture for both senses, ingress and 
egress.  The correlation between traffic control elements and Linux components includes 
shaping elements (Linux classes), scheduling elements (Linux qdisc), classifying elements 
(Linux filters to perform the classification), and Policing elements (Linux policer that is part of 
the Linux filter). As depicted in Figure 29, the Slice Control Agent (SCA) uses the user-space 
application TC to configure these elements in a convenient way (depending on the use case) 
to create a dedicated queuing schema with specific requirements. After the configuration 
process, the SCA builds the filter that contains the classification predicate plus the policy and 
attaches it to the TC system so packets selected (matching) the classification algorithm will 
follow the same policy. 

 

Figure 29. Architecture of Traffic Control with network slicing support 

4.3.3 Queuing schema and filtering expressions 

The queuing schema, composed by different hierarchical levels of queuing disciplines (qdisc) 
and class elements may vary drastically depending on the slice definition and requirements 
on the data plane, while on the other hand, the filter (classifier + policy)  provides a convenient 
mechanism for gluing together several of the key elements of traffic control and is the most 
complex component in the Linux traffic control system. The packet structure requirements 
imposed by 6G visualised infrastructures adds an extra level of complexity making it 
impossible to leverage built-in classifiers to select packets based on their attributes. 
Nevertheless, the 6G BRAINS framework is equipped with the SCA that uses a data-plane 
abstraction service to hide the complexity to upper layers of the architecture to create 
queuing schemes and advanced filtering expressions while using a dedicated data-path agent 
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in its south-bound interface to handle technology dependent logic. Figure 30 illustrates an 
example of data-plane network slicing that assigns different Quality of Service (QoS) 
specifications defined in the queuing schema. To be precise, the scenario presented in Figure 
30 configures a hierarchical level of scheduling (qdiscs) and shaping processes (classes) to first 
add priority to specific service flows and later guarantee and limit the bandwidth usage. 

 

Figure 30. Example of a queuing schema in Traffic Control 

Figure 31 depicts an example of a filtering expression that aims to match attributes of the 
network packets traversing the interface with a specific criterion. Notice that since built-in 
classifier expressions of the TC tool do not cover the wide spectrum of network protocols 
(including encapsulation ones) that may be found in network traffic flowing through a 6G 
architecture, it is then used a customised bit-matching technique based on the u32 classifier 
[16]. 

 

Figure 31. Example of a filtering expression in Traffic Control 

ACTIONS: 
Set TX Priority (Latency & Packet Loss Probability) 
Set TX Max bandwidth allowed 
Set TX Min bandwidth warrantied 

CLASSIFIER: 
5G/6G Overlay supports (GTP),  
Edge/Core overlay support (VLAN, VXLAN, GRE, GENEVA),  
Nested Encapsulation Supported (MNVO, Infrastructure less) 
Industrial Support (Ethercat)  

SCALABILITY: 
1-2 Million packets per second (Mpps)  
Constant Latency & Packet Loss (SLA warrantied) 

TECHNOLOGY: 
Linux Kernel packet scheduler  

tc filter add dev ens2 parent 9000: prio 1 u32 match u8 0x00 0xff at 32 match u8 0x08 0xff 
at 33 match u8 0x00 0xff at 34 match u8 0x00 0xff at 82 match u8 0x00 0xff at 83 match u8 
0x00 0xff at 84 match u8 0x01 0xff at 85 match u8 0x11 0xff at 95 match u8 0x13 0xff at 
106 match u8 0x8c 0xff at 107 match u8 0x13 0xff at 108 match u8 0x8c 0xff at 109 match 
u8 0x60 0x7f at 115 flowid 1:1 
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4.3.4 Virtual Switch with Network Slicing Support (Based on OVS) 

The 6G BRAINS architectural design (described in deliverable 2.2) follows SDN paradigm, 
providing a decoupling of control and forwarding network capabilities. SDN technology allows 
a centralised view of the network status and network topology, enabling centralised control 
and enhanced dynamic programmability when compared to traditional networks. 
Furthermore, the adoption of SDN alongside with virtualisation and softwarisation 
technologies such as NFV or Network Slicing makes it possible to use COTS equipment instead 
of dedicated hardware and network devices traditionally deployed in mobile infrastructures, 
COTS equipment is cheaper than dedicated hardware thus leading to a significant reduction 
of both OPEX and CAPEX costs for infrastructure operators.  In this sense, there are many 
examples of well-known SDN controllers such us Floodlight [17], OpenDayLight [18], Ryu [19], 
Neutron [20], or ONOS [21], just to mention a few of the most widely known ones. This 
subsection provides the motivation and description of a novel virtual software switch with 
network slicing capabilities exposing an OpenFlow-based NBI to the above mentioned SDN 
controllers or to any other SDN controller with OpenFlow capabilities complying with the SDN 
paradigm. 

The approach presented in the previous subsections provides network slicing capabilities 
through the Linux traffic control module. However, this approach faces the significant 
limitations of the bottleneck generated by the networking stack of the Linux kernel. On the 
one hand, the Linux kernel networking stack provides many features, network capabilities and 
security mechanisms that make it robust and reliable. On the other hand, these features entail 
a complexity that results in a bottleneck when processing network traffic in terms of number 
of packets per second (PPS). Therefore, a different approach is required, shifting to an 
alternative data path where the stringent requirements demanded by 6G use cases in terms 
of scalability and QoS are fulfilled.  

In the context of the 6G BRAINS project and complementing the network slicing approach and 
solutions provided for hardware slicing (FPGA in Subsection 4.2) and for slicing in the Linux 
networking stack (Traffic Control in Subsection 4.3.1), this subsection introduces a novel 
Virtual Software Switch able to provide network slicing capabilities and enhanced 
programmability for the software data path. This Virtual Switch component, named UWS-OVS, 
is focused on providing network slicing capabilities in all the involved network segments that 
contain softwarised and/or virtualised VNFs, to be precise the software data path in the Edge 
and the Core network segments of the 6G network, those responsible for inter-connecting 
VNFs to the physical infrastructure. Such network slicing capabilities address the three 
different categories of traffic envisioned for 6G networks (eMBB, URLLC, mMTC) and also a 
concurrent combination of multiple of them running at the same time on the same 
infrastructure. The proposed solution also meets all the ambitious KPIs envisioned for 6G in 
terms of latency, bandwidth, density, scalability and reliability and all the challenges 
associated to achieve that purpose.  

Following SDN principles, the virtual switch provides the control and management layers with 
extended and enhanced network programmability and an abstraction of the underlying 
network infrastructure. The following subsections provide an overall view of the architectural 
design, its components (modules, APIs, data structures), their functionality as well as a brief 
discussion of how these different components interact together to deliver the advanced traffic 
control features demanded in 6G networks.  
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4.3.5 Architectural design of the UWS-OVS Software Datapath 

Figure 32 depicts the software data path architecture. It consists of six logical components 
that interact together to provide flexible fine-grained traffic control and network slicing 
capabilities and thus leading to meet the QoS requirements demanded by verticals and end-
users and agreed in SLAs. The implementation has been carried out by significantly extending 
the code of OpenVSwitch (OVS), a well-known software switch that is considered the de-facto 
standard in virtualised environments. Regarding the logical system architecture designed in 
6G BRAINS project and described in deliverable 2.2, the UWS-OVS component is part of the 
Data Plane, more precisely it is integrated as part of the wired Data Plane segment, i.e., MEC, 
transport and Core. Thus, it exposes a NBI to the Control Plane, using the OpenFlow protocol 
with UWS slicing extension profile to provide enhanced programmability of the Data Plane. 
The following is a short description of the functionality of each subcomponent of the UWS-
OVS:  

 

Figure 32. Architecture of the OVS-based Virtual Switch with network slicing support 

1. 6G Multi-tenant Classifier:  It is the entry point of the software data path. It receives 
the network traffic and performs a deep inspection of every packet. The design and 
development of this parser is a significant enhancement over the current state of the 
art.  It provides support for 5G/6G overlay networks (GTP), Edge/Core overlay support 
(VLAN, VXLAN, GRE, GENEVE), nested encapsulation and support for industrial 
environments (EtherCAT protocol).  A more detailed explanation about its functionality 
is provided in subsection 4.3.6. The classifier has been designed with a modular 
architecture where every module is responsible to inspect a network protocol.  There 
is re-entrance between modules. The re-entrance allows to optimise the parsing time 
whilst it is the mechanism for parsing overlay traffic with encapsulation and tunnelling 
protocols, allowing a deep inspection of the outer and inner headers. 

2. Slice Definition Table: This module keeps a database containing the definition of the 
network slices in form of OF rules. The left part of the rule is the flow definition 
matching the slice. The right part includes the ID of the slice assigned to each flow and 
the actions to be performed on the traffic before sending it to the network slicing core.  

3. Match Flow Action: This module compares the 6G flow key extracted by the 6G multi-
tenant parser with the entries in the slice definition table, seeking a slice matching the 
packet.  
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4. Actions and Slice Enforcer: This module performs the actions associated with each 
slice before sending it to the last module of the pipeline.  On each network interface 
or virtual port, a slice is created and set up using three parameters: Maximum Allowed 
Bandwidth (MAB), Minimum Guaranteed Bandwidth (MGB) and Priority.  The first two 
parameters define the bandwidth range committed and agreed with verticals and/or 
final users.  The third one, the priority of the slice, is used to set the delay and the 
likelihood of packet loss (reliability) for each slice. 

5. Network Slicing Core: This module is in charge of effectively enforcing the network 
slices in each of the network interfaces connected to the software data path, both 
physical and virtual.  

6. North Bound Interface: This interface is responsible for the communication between 
the Control Plane, i.e., the Slice Controller Agent (SCA), and the software data path. 
For this purpose, it exposes an Open Flow API. The Open Flow protocol has been 
significantly extended, adding new fields and actions to enrich the expressiveness of 
the predicate of the Open Flow rules and thus, allowing a flexible definition of data 
flows able to encompass all possible data paths in 6G.  

Regarding implementation details, the NBI runs as a daemon in user space. This daemon is 
also responsible for controlling the management of the OF tables. The Open Flow rules are 
kept in use space as a scalability mechanism. The rest of the architectural components are 
executed in kernel space as a kernel module integrating all their functionality. 

4.3.6 6G Multi-tenant Traffic Classifier 

Traditional traffic classifiers and based on 5-tuple including data about the outer L2/L3/L4 
headers of the packets (see Table 10). This approach is no suitable to offer a differentiated 
QoS in 6G networks where the physical infrastructure could be shared by different tenants 
and where tenants and end users’ information is encapsulated in the inner nested headers of 
the packets.  Therefore, to provide enhanced programmability capabilities, the first step is to 
carry out a deep inspection of the 6G network traffic and extract information about end users 
and tenants from the inner headers.  

Table 10. Open Flow fields for traditional 5-tuple based flow key 

Key flow field Length (Bytes) Description of the field 

ip_src 4 Source IP address from the outer IPv4 header 

ip_dst 4 Destination IP address from the outer IPv4 header 

udp_src 2 UPD source port from the outer IPv4 header 

udp_dst 2 UPD destination port from the outer IPv4 header 

ip_proto 1 Match the outer IPv4 protocol type (transport protocol) 

 

For this reason, as a major contribution, the outcome of the 6G multi-tenant classifier is a new 
extended 6G flow key which represents a significant improvement over the traditional 5-tuple-
based flow key provided by the OVS base version. The 6G flow key contains 17 new fields as 



Deliverable D5.1 6G BRAINS H2020-ICT 101017226 

© 6G BRAINS consortium 2021 Page 63 of (84)  

listed in Table 11 along with the length in bytes and the field description. The new meta-data 
extracted contains the required information to provide a flexible and fine-grained definition 
of network slices in 6G multi-tenant overlay networks. The new fields include information 
about the innermost overlay network in form of 6-tuple, the innermost DSCP value and 
information about the overlay networks. 

Table 11. New Fields included in the extended 6G flow key 

Key flow field Length 
(Bytes) 

Description of the field 

inner_ip_src 4 Source IP address in the inner IP4 header 

inner_ip_dst 4 Destination IP address in the inner IPv4 header 

inner_tos 1 Type of Service value (TOS) in inner IPv4 header 

inner_port_src 2 Source port in the inner UDP header 

inner_port_dst 2 Destination port in the inner UDP header 

inner_l3_protocol 2 Ethernet type of the inner layer 3 header 

inner_l4_protocol 1 IANA protocol number of the inner layer 4 header 

tunnel_type_1 1 Tunnel type of encapsulation level 1 

tunnel_type_2 1 Tunnel type of encapsulation level 2 

tunnel_type_3 1 Tunnel type of encapsulation level 3 

tunnel_type_4 1 Tunnel type of encapsulation level 4 

tunnel_type_5 1 Tunnel type of encapsulation level 5 

tunnel_key_1 4 Tunnel key of encapsulation level 1 

tunnel_key_2 4 Tunnel key of encapsulation level 2 

tunnel_key_3 4 Tunnel key of encapsulation level 3 

tunnel_key_4 4 Tunnel key of encapsulation level 4 

tunnel_key_5 4 Tunnel key of encapsulation level 5 

 

The 6G traffic classifier provides support for 8 different encapsulation and tagging protocols 
typically used in 6G multi-tenant networks as listed in Table 12.  For each nested encapsulation 
level (i.e., for each overlay network), the gathered information consists of the encapsulation 
protocol (tunnel_type_X in Table 11) and the tunnel ID (tunnel_key_x in Table 11). The 
protocol header field matching the tunnel ID depends on the encapsulation protocol used as 
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indicated in Table 12. Notice that the pair (VNI, TEID) identifies unequivocally a mobile user. 
The maximum number of nested encapsulations supported is 5. This design decision is a trade-
off between the overhead in matching time and flexibility to cope with all possible data paths 
expected in 6G. 

Table 12. Open Flow fields for traditional 5-tuple based flow key 

Encapsulation Protocol Value Tunnel key description  

VXLAN 1 VXLAN Network ID (VNI) 

GTP 2 Tunnel endpoint Identifier (TEID) 

GRE 3 GRE Key 

MPLS 4 MPLS Label 

VLAN 5 VLAN Identifier (VNI) 

NSH 6 Service Path Identifier (SPI) 

VXLAN-GPE 7 VXLAN Network ID (VNI) 

GENEVE 8 Virtual Network Identifier (VNI) 

 

4.3.7 UWS-OVS Virtual Software Datapath API 

The NBI interface exposed by the UWS-OVS component has been significantly extended over 
the base functionality supported by OVS, enabling an enhanced programmability of the 
software data path to the management and control layers. To this end, the Open Flow protocol 
has been extended with new fields allowing a fine-grained classification of the 6G network 
traffic. The novelty over the present state of the art is that the new fields include data from 
the inner encapsulated headers extracted by the 6G Classifier. This new information allows to 
classify, unambiguously identify and perform actions on data flows from tenants, end-users, 
or services regardless of the packet structure (number and type of encapsulations). 

The first stage in the creation of a slice is the provision of network resources that will enable 
a guaranteed service delivery to the network traffic matching the slice. To do this, the NBI API 
provides support though a REST API to manage the complete life cycle of a slice in the software 
data path: creation (resource provisioning), dynamic modification and deletion (resources 
releasing). Figure 33 shows an example of creation and deletion of one slice in the port vp120 
with ID 1000. This slice is configured with a Maximum Allowed Bandwidth of 50 Mbps, a 
Minimum Guaranteed Bandwidth of 25 Mbps and priority 1.  
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Figure 33. Creation and deletion of a slice in the software data path 

Once the network resources needed to ensure the QoS for the slice have been provisioned, 
the next step is to assign traffic to the slice. This is accomplished using Open Flow rules which, 
as mentioned above, has been extended with enhanced programmability. The NBI API offers 
the Slice Control Agent two mechanisms for programming the software data plane (i.e. two 
ways of inserting Open Flow rules: 

1. Using a REST API with the command line applications provided by OVS (as depicted in 
Figure 34). The functionality of the OVS command line applications have also been 
extended with the new fields and actions. 

2. Using a Linux socket for sending Open Flow packets containing the Open Flow rules to 
the UWS-OVS component. 

 

Figure 34. Software slicing architecture 

root@6g-brains:-$ uws-ovs --create-slice --id 1000  --iface vp120 --mba 50Mb --mbg 
25Mb --priority 1 
Slice ID 1000 created in interface vp120 
Maximum Bandwidth Allowed (MAB) set to 50Mb 
Minimum Bandwidth Guaranteed (MGB) set to 25Mb 
Priority set to 1 
root@6g-brains:-$ uws-ovs --delete-slice --id 1000 --iface vp120 
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4.3.8 UWS-OVS Virtual Software Datapath Empirical Results 

The UWS-OVS component has been validated using 5 realistic IoT use cases that have allowed 
to evaluate the system performance in scenarios where different verticals pose diverse 
requirements in terms of latency, data rate, reliability and scalability (number of IoT devices 
and number of slices). These use cases cope with the three ITU categories or a combination of 
them as depicted in Figure 35. These use cases are: Ambient monitoring in Smart Agriculture, 
Robot Control in Industrial Automation, Sound Analysis in Smart City, Video Surveillance in 
Smart Building and AR-VR Tactile Application in Manufacturing Industry. The characteristics 
and requirements of each one of the use cases are listed in Table 13. These five use cases are 
closely aligned with the definition of the 6G-BRAINS enabling use cases for which a detailed 
technical description can be found in section 4 of deliverable 2.1. The 6G-BRAINS use cases 
have been carefully selected and defined based on an analysis of the current trends in the 
adoption of 5G and B5G technology and the available market forecast for the coming years. 
The results achieved and discussed below are a first approach to the key aspects of the 
technological innovations expected in 6G BRAINS project as listed in section 2.2 of deliverable 
2.1 in terms of delay, reliability and peak data rate for the data plane software switches 
allocated in the Edge and Core network segments of the infrastructure. This proposed solution 
also allows a flexible definition of network slices for the software data plane in terms of multi-
tenancy and flows with different levels of granularity while providing support for industrial 
environments and IoT protocols which is another technological innovation to be accomplished 
in 6GBRAINS project. 

 

Figure 35. ITU category for every vertical oriented use case for evaluation of the UWS-OVS 
Virtual Software Datapath 
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Table 13 - Vertical oriented use cases for evaluation of the UWS-OVS Virtual Software 
Datapath: Characteristics, KPIs and traffic profile 

 

 

Figure 36 shows the system performance in terms of latency when ranging the number of 
verticals and the number of IoT devices per vertical for each use case. In the experiments 
carried out, each vertical has a dedicated slice, i.e., there is as many slices as verticals in every 
experiment. In the use case 1 (mMTC traffic), the maximum measured delay is 143 µs when 
handling with emulated traffic from 1000 smart farms equipped with 1000 IoT sensors each 
one. This means the system is able to successfully cope with the traffic from 1 million IoT 
devices simultaneously. Concerning use case 2 (URLLC profile traffic), the outcome of the 
experiments carried out shows a very low latency (133 µs for the worst case) and high 
reliability (0% packet loss). This result fulfils the strict requirements demanded by URLLC 
where high reliability and low latency are crucial KPIs. For use cases 3 and 4, the results 
gathered are beyond the requirements imposed by the verticals: maximum average delay of 
around 1 ms and 0% packet loss even when these use cases are tolerant to packet loss. Finally, 
use case 5 is the one demanding more severe requirements since its traffic profile is a hybrid 
URLLC/eMBB category. For this use case, the proposed solution is able to deliver the verticals 
requirements whilst being able to process a high bandwidth inherent to eMBB traffic: delay 
lower than 1 ms in the most stressful configuration with 24 verticals (slices) and 20 AR units 
per vertical, 0% packet loss and a total bandwidth of 19 Gbps. 

Therefore, to conclude, the gathered results evidence that the proposed UWS-OVS Software 
Datapath is able to satisfy the diverse QoS requirements imposed by the verticals for all the 
tested use cases. It is able to provide connectivity for up to 1 million IoT devices in mMTC 
traffic, achieve over 19 Gbps bandwidth in congested eMBB scenarios or ensure delays in the 
order of µs for critical-missions communications (URLLC), providing high reliability in all of the 
tested scenarios (0% packet loss ratio). 
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Figure 36. Scalability results for the UWS-OVS component. Average delay when ranging the 
number of slices (verticals) and the number of IoT devices per slice. It is given the 

maximum number of IoT per Slice, packets per second (PPS) transmitted and accumulated 
Tx bandwidth configured for each use case 
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4.4 FlexCN-based core network slicing 

5G is intended to deliver several benefits: high bandwidth/throughput, ultra-low latency 
communication, network slicing, and higher security. It opens up many new business 
opportunities for third-party partners. FlexCN is a solution that brings programmability to the 
Core Network. It creates a medium to allow users to manipulate the Core Network to satisfy 
the user’s requirements. 

Following its successor’s mission, LL-MEC, one of the purposes of FlexCN is enabling mobile 
network monitoring, control, and programmability while retaining compatibility with 3GPP 
and ETSI specifications. At the same time, we would like to achieve coordinated resource 
programmability in end-to-end slicing scenarios by leveraging SDN towards an appropriate 
allocation of resources, thus drastically improving the performance of slices. 

FlexCN could be used in many use cases that demand resource-hungry, content-rich services: 
low latency and high reliability. 

 

Figure 37. The FlexCN Architecture 

FlexCN composes of the following components: 

1. Southbound Interface: Is implemented using REST API to be 3GPP compatible. It takes 
responsibility for communication with the Core Network. For the 5G Core Network, 
the communication is realized by the exposure services of 5G core network 
components, where FlexCN plays the role of a client that sends requests to CN.   

2. FlexCN’s Core: Is the centralized manager of FlexCN to manage different tasks of 
FlexCN to ensure the communication between the northbound interface and sound 
bound interface.  
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3. iApps: iApps means internal apps; each iApp will serve a single functionality of FlexCN. 
This design decouples FlexCN’s functionalities into several independent components. 
It allows the building of specialized versions of FlexCN, depending on user needs. We 
should note that iApp could be extended to user-defined components to extend 
FlexCN functionalities. At the moment of writing, each Core Network component such 
as SMF or AMF is served by a single iApp. 

4. FlexCN’s Database/ FlexCN context: All the statistics of the Core Network are stored in 
this component. These statistics could be served later by the requests of xApps from 
the North Bound Interface. The communication between the Core and FlexCN context 
is standardized for each iApp due to the different needs of each iApp.  

5. Northbound Interface: Is responsible for the communication between the FlexCN and 
xApps. This could be realized through an SDK to simplify the communication process.   

6. xApps: An external component of FlexCN, the actual brain of the FlexCN ecosystem. It 
contains the user logic that is described in a higher-level language. xApp can monitor 
and control the Core Network through FlexCN. 

At the moment of writing, the northbound interface is implemented by a REST API as below 
and focuses on retrieving information from xApps. 

API Method URLs 

Get all the available information at 
the database 

GET http://FlexCN-URL:PORT/nxapp/v1/stats 

Get all the available information of 
UE has this IMSI at the moment of 
this request 

GET http://FlexCN-
URL:PORT/nxapp/v1/stats/:ueid 

Triggering the subscription of 
FlexCN for a network function 

GET http://FlexCN-
URL:PORT/nxapp/v1/trigger_subcribe/:ueid 

Note: The exact URL might change in the future to adapt to the requirements of users 

FlexCN faces several challenges. By following 3GPP standards, the feasible features are limited 
by the supported features of 3GPP’s Core Network. The last two challenges remain from its 
predecessor, LL-MEC: scalability with a large number of users and services and, finally, the 
flexibility of registering low latency applications and services to support time-critical control 
decisions, priorities, and deadlines. 

 

http://FlexCN-URL:PORT/nxapp/v1/stats
http://FlexCN-URL:PORT/nxapp/v1/stats/:ueid
http://FlexCN-URL:PORT/nxapp/v1/stats/:ueid
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5 Initial Integration towards E2E Network Slice Control 

5.1 Trirematics for the MANO of E2E Network Slicing 

Deploying and managing the lifecycle of mobile networks, especially in cloud native 
environments, is critical to provide the required Service Level Agreement (availability, fast 
deployment recovery, etc.). Trirematics is an evolution towards an Agile, Zero-touch, and 
Telco-grade Multi-X platform in cloud native environments. Trirematics can be considered as 
the lightweight platform for the management and orchestration (MANO) of E2E mobile 
networks in cloud native environments, while targeting the zero-touch concept as its ultimate 
goal. Trirematics is composed of the following components (as illustrated in Figure 38): 

5.1.1 Hydra – Supporting Heterogeneous Deployment 

One of the intrinsic features of Trirematics is that it can support heterogeneous deployment 
in different environments, like Kubernetes, Openshift, public, private, or even hybrid cloud. 
Generally speaking, Trirematics can support any type of deployment heterogeneity, from 
application-level (sandboxed applications like snap or containerized applications like docker 
and podman) to OS (ubuntu, centos, redhat, etc.); supporting the deployment from multiple 
vendors (i.e., multi-vendor deployment), or even different versions from the same vendor 
(i.e., multi-version deployment). Providing such deployment heterogeneity is highly important 
in order to support, basically, any applications (PNF/VNF/CNF) in different clouds which may 
require different levels of security and configuration. 

5.1.2 Infrastructure Resources and Mobile Network Resources 

In order to provide monitoring and optimization for the network as a whole, Trirematics focus 
on both types of resources: 

• Infrastructure resources for the objective of infrastructure optimization (CPU, 
memory, storage, networking, etc.). This can be done easily by many open-sourced 
projects like the Python client-library for Kubernetes that can be easily integrated later 
for machine learning purposes. 

• Mobile network resources (e.g., radio resources at RAN part, and data rate per user at 
CN), for the objective of optimal resource allocation. This can be done easily using RAN 
and Core Network controllers such as FlexRIC and FlexCN. 

Note that Triremative lays on the top of FlexRIC and FlexCN to provide the E2E slicing, as 
described later. 

5.1.3 Mon-X – The Monitoring Plane 

Observability is the core part of checking the health of the whole system (similar in spirit to a 
doctor). The objective of observability is not only to monitor some metrics of interest (e.g., 
CPU consumption over time), but also tracing and logging the applications in order to provide 
meaningful information about the health of the whole system, i.e., the infrastructure, the 
deployed mobile network, and the applications. This is of paramount importance in very 
dynamic and heterogeneous environments like deploying Trirematics in Kubernetes. 
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5.1.4 AI/ML – The Cognitive Plane 

Predictions and provisions of important decisions is the task of AI/ML. The decisions taken by 
AI/ML can be classified into two main classes: i) short decisions (i.e, decisions that need to be 
executed in small timescale) like radio resource scheduling, and ii) medium/long decisions 
(e.g., network slicing). Note that the first class (short decisions) will be executed directly 
through the interaction between the xApps (i.e., the applications implementing the AI/ML 
models) and the controllers like FlexRIC and FlexCN, while the second class (medium/long 
decisions) will be delegated to Auto-X. The delegation of these tasks to Auto-X is required to 
have a global optimization for the mobile network resources as well as the infrastructure 
resources, as illustrated in Figure 38. Note that, in many cases, there is a tight coupling 
between infrastructure and mobile network resource optimizations, e.g, changing the 
modulation and coding scheme (MCS) in the RAN part will also be translated into changing the 
CPU and memory consumption. Lastly, the AI/ML adopted in Trirematics follows the Machine 
Learning Operations (MLOPs) concept, in order to provide fast, efficient and reliable AI/ML 
models in production environments. 

 

Figure 38. Trirematics Architecture 

5.1.5 Athena – The Brain for Controlling Trirematics 

It is the brain of Trirematics, where all the decisions are executed on the whole system in order 
to achieve the ultimate goal of zero-touch. Auto-X interacts with the observability for the 
objective of detecting any abnormal behaviour in the whole system (infrastructure, services, 
and applications) and taking actions accordingly, i.e., self-healing and self-(re)configuration. 
In order to perform proactive actions, not only reactive ones, that are done based on the 
observability, Auto-X relies on the predictions done by AI/ML for both the infrastructure and 
mobile networks. Finally, Auto-X interacts with both the infrastructure/application 
orchestrator (like Kubernetes) and the mobile network controllers (like FlexRIC and FlexCN) to 
perform the right actions, targeting the zero-touch concept. 

5.1.6 GitOps for Continuous Integration 

Trirematics relies on Continuous Integration (CI) and Git Operations (GitOps) concepts to 
provide reliable applications within a short time (i.e., fast time-to-market). This can be done 
through automating the whole chain of production. 



Deliverable D5.1 6G BRAINS H2020-ICT 101017226 

© 6G BRAINS consortium 2021 Page 73 of (84)  

5.2 The Reinforcement Learning Training Library 

5.2.1 Training with TheRLib 

The Reinforcement Learning Library extends pre-existing work done at Thales for the purpose 
of training and analysing agents on industrial simulations as well as academic benchmarks. We 
name that library TheRLib, and it is further divided into multiple conceptual blocks that 
address all the elements of a Reinforcement Learning experiment. All those conceptual blocks 
take the form of standalone Python packages: 

• Therenv: The module responsible for agent-wise representation of environments. 

• Therconnect: The module responsible for connecting Therenv representations to 
industrial simulations, when necessary. 

• TheRLib: This module contains all the reinforcement learning related algorithms. From 
learning to logging. 

• Therutils: Therutils makes the connection between the algorithm, the environment 
and the neural networks. 

• Therbench: Therbench is responsible for the logging of benchmark data. 

• Therdash: Therdash is a web interface used to visualize results, training curves, neural 
network architectures and other useful data. 

In the following subsections, we will explain in more details all those modules and what role 
they play inside the global reinforcement pipeline. 

These modules will be used within the different components of the MA-DRL Scheme 
introduced in the D2.2 and D2.3 deliverables. In Table 14, we explain the contribution of the 
different TheRLib modules in the RL Components. 

Table 14 - TheRLib modules in the RL Components 

RL Component TheRLib 
module 

Contribution 

RL Agent 
Designer 

Therutils Software management of the algorithm’s, 
environments and neural networks’ configurations. 

Therbench Database management of training configurations and 
trained models. 

Therdash Visualization tools. For example, neural network 
architecture. 

RL Agent 
Training Host 

Therlib RL algorithm training and logging. Building blocks for 
RL algorithms (loss function, replay buffer, etc.). 

RL Engine Therbench Database management of training configurations and 
trained models. 

Therdash General training monitoring and visualization tools. 
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RL Policy 
Adapter 

Therutils Software management of the algorithm’s, 
environments and neural networks’ configurations. 

Therconnect Connection to specific deployment ecosystems, e.g., 
FlexRIC-based.  

Therenv Generic RL Environment representation. 

RL Reward 
Monitor 

Therconnect Connection to specific deployment ecosystems, e.g., 
FlexRIC-based.  

RL Simulator Therenv RL Environment representation, RL Environment data 
processing and execution wrappers. 

Resource 
Analytics 

Therconnect Connection to specific deployment ecosystems, e.g., 
FlexRIC-based.  

5.2.2 Therenv 

This module holds all the environment specific functions. It is mainly responsible to connect 
an RL agent to the real environment. From the creation of the environment object itself to the 
pre-processing and post-processing wrappers that surround its interaction with the agent. All 
the environments represented inside Therenv must oblige to a Gym-like interface. The 
environment is controlled through the following access points: 

1. reset(): The reset method prepares all the objects required to the simulation and 
constructs the initial state of the environment, which is returned by the function. 

2. step(action): Step takes an action, applies it on the simulation and returns the state, 
reward, done and info. Done refers to a Boolean value indicating whether the episode 
is over not while info contains additional simulation information that might be useful 
for debugging. 

3. render(mode): This method renders the environment and depending on the mode 
returns an image representation or interacts with a viewer to display the current 
simulation state. 

4. close(): Cleans everything to prepare the end of the simulation. 

As mentioned above, Therenv also contains a number of wrappers that hold the job of pre-
processing and post-processing simulation data. The core idea behind the wrappers is to 
streamline the pipeline so that the agent simply takes the state as an input and outputs an 
action without too many considerations on domain representations. Mainly: 

• Multi-processing Handling: This wrapper allows to structure parallel environments in 
the form of batch data. 

• Action pre-processing: It can be useful to change the “normal” action space of the 
simulation so that it is easier for the agent to handle. For instance, normalizing actions 
to be in the [0, 1] range instead of the “real” range. 

• State post-processing: A usual RL trick consists of adding the last action taken by the 
agent in the state space. It can also be useful to do one-hot encoding or other usual 
processing techniques. 
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Figure 39. Therenv's conceptual role in the RL pipeline  

5.2.3 Therconnect 

Therconnect is responsible for connecting Therenv representations to industrial simulations 
or specific deployment environments, when necessary. In the 6G-BRAINS project, we can 
consider a set of Control and Monitoring components used to provide actions, retrieve 
observation and reward data as an Industrial Simulation for Therconnect. 

The module manages the interoperability methods and protocols to provide commands to the 
targeted system and get data from it. If the components we are addressing already provide a 
Gym-like interface, the adaptations needed in Therconnect are minimal or non-existent. 

 

Figure 40. The connector is used to link python environment representations to industrial 
simulations 

5.2.4 TheRLib 

The Therlib module contains all the reinforcement learning related algorithms. Its design 
guidelines are to provide implementation of different state of the art RL algorithms in a 
modular fashion, while being agnostic to environment representations and agent deep neural 
network models. We focus on building blocks that are leveraged by different algorithms, such 
as agent memory management with Replay Buffer for off-policy algorithms, and Trajectory 
Rollout for on-policy algorithms. We also provide RL loss function implementations for 
algorithms that are faithful to the research papers’ formulations, such as Proximal Policy 
Optimization (PPO) [22], while adding as option well-known implementation tricks such as 
gradient clipping. We leverage these modular algorithmic building blocks as well as Therenv 
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multi-processing management to create training pipelines with several environments and/or 
agents. 

The second function of the Therlib module consists in logging the state of the RL agents 
throughout their training. The Database logger provides generic utility to: 

• Save and load Neural Network representations of the agents. 

• Save training related metrics, such as rewards, losses or environment-specific metrics. 

Thus, we can exploit those outputs for evaluation and visualization of the trainings, or as 
intermediate states in distributed training pipelines. 

 

Figure 41. TheRLib holds environment agnostic RL features 

5.2.5 Therutils 

We use Therutils to bridge the gap between the environments of Therenv and the 
reinforcement learning algorithms of TheRLib. It contains the neural network architectures 
dedicated to certain environments and training scheme options used for experiments. This 
library is a helper module that could be ignored in a minimalistic approach. However, it is very 
helpful to industrialize trainings. 

In the Figure 42 below, a typical training pipeline with TheRLib involves the Core Training Loop 
block, which uses: 

• Therutils sub-components to manage the configuration parameters and the RL agent 
neural network model. 

• A Therenv-based RL Environment.  

• A TheRLib-based RL algorithm implementation. 

• TheRLib-based model and data logging features. 
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Figure 42. Therutils logs neural network architectures and experiment parsers 

5.2.6 Therbench 

This module is used for non-regression testing throughout the research and development 
process. 

It manages a workplan on reference experiments with robust algorithm implementations on 
a set of RL environments from the research literature. These experiments’ agent models and 
training data are stored in a reference database. We also verify the reproducibility of 
experiments given that we have specified the relevant random seeds. 

 

Figure 43. Therbench is used to log experiments for non-regression testing 
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5.2.7 Therdash 

 

Figure 44. The dashboard is used to visualize experiments 

Therdash is a web interface that acts as a front-end to manage RL experiments performed 
with the TheRLib libraries described above. Similarly, we will use it to manage the RL trainings 
performed with the MA-DRL scheme during the course of the 6G-BRAINS project. 

As usual with web applications, Therdash architecture can be split between two parts: server-
side and client-side. The server-side part is now written in Python with the Flask micro-
framework. It acts as a glue between the client-side part, the trainings’ models and metrics 
data, and the TheRLib modules. The client-side part is a lightweight web server that uses 
HTML, CSS and JavaScript to manage the user interactions and the training data visualization. 
In the setup we describe here, the Therdash client-side and server-side are self-hosted in the 
local (industrial) network. It is not a Software as a Service we access over a cloud. 

We provide two main views in the Therdash web-interface. The first one is the control panel 
introduced by the Figure 45. It provides an overview of past and present RL experiments and 
links to the more detailed experiment view. In practice, this view is generated through a 
request to the Flask Server that queries the different entries of the experiments database. We 
can see on each row the experiment status, the experiment id that links to the detailed 
experiment view, a short description and the current and best score. An example naming 
convention for an experiment is “Experiment with algorithm on environment”, but it is free 
for the RL researcher to decide. Similarly, one can freely implement the score as the mean 
episode reward or a success percentage on a set of test episodes. 

The second major view is the experiment view that allows us to analyse the outcome of one 
RL experiment. It is organized with different sub-views represented as blocks within the 
Therdash part in Figure 44: 

• The Experiment Options views lists all hyper-parameters that were used during the 
training. These can be bound to the simulation environment, the training algorithm or 
the neural network model. 
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• The Neural Network viewer, represented in the Figure 47, provides a view of the Neural 
Network architecture of the RL agent model used in the training. 

• The Episode Viewer, represented in the Figure 48, allows us to select a particular state 
of the agent during the training, perform some test experiments on the RL 
Environment and visualize the outcome as a video, given that the RL Environment 
implements the render method. 

• The Training Graphs, represented in the Figure 46, help us visualize the evolution of 
metrics throughout the training. We also manage a dedicated view for pipelines such 
as Population Based Training (PBT) [23] that train multiple agents in parallel on the 
same problem. This particular algorithm manages a population of RL agents with 
varying hyper-parameters through an evolutionary strategy. Thus, the desired 
outcome is the best set of hyper-parameters or the best schedule of hyper-parameters 
for one particular RL algorithm on one particular RL environment. 

All our visualization sub-components are still a rough state, that we intend to refine during 
the course of 6G-BRAINS. Dedicated views based on Therdash will be especially useful for the 
RL Agent Designer and RL Engine components. 

 

Figure 45. The dashboard is used to monitor training experiments 
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Figure 46. We create graphs and log experiment data to follow the training process 

 

 

Figure 47. View of the DRL agent Neural Network architecture 
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Figure 48. Episode viewer of trained agents 

Web-API for training configuration and launching 

Currently, Therdash is only used as a visualization module. We want to improve the 
experiment design process by adding another module dedicated to the configuration and 
launching of experiments. 

Backend connector module 

Currently, the link between Therdash and the RL experiments is done through TheRLib. To 
allow more modularity in the training pipeline, we want to extract this communication 
module. In that way, it will possible to use different RL backends (RLlib, stable-baselines, etc.) 
with a shared visualization module: Therdash. This will prove useful to integrate agents that 
were trained beforehand by the 6G-BRAINS partners, with their own set of tools.  
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6 Conclusions 

In this deliverable, we have defined and describe the key components that enables an E2E 
Slicing integration between the partners of WP5. 

Technologically, we have defined and described: 

• FlexRIC and FlexCN as ways to bring programmability into the RAN and Core Network, 
respectively 

• Both hardware-based and software-based approach for high-performance network 
slicing over the Edge, Transport, and Core Network 

• Trirematics as a toolkit for both the deployment and management-orchestration of an 
E2E slicing system 

• TheRLib as a development kit for implementing a flexible and scalable cognitive plane 
of an E2E slicing system 

Algorithmically, we have explained our first investigations into the possibilities of using ML for 
Radio Link Control and RAN Slice Scheduling. 

With these key components and case studies laid out, we expect to have formed a shared 
conceptual understanding that facilitates deeper integrations in future deliverables. 
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