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Introduction

We all know the theorem Pythagoras demonstrated about right triangles, which when simply put in mathematical
language, saysl21 + l22 = h2, wherel1,2 are the lengths of the two legs of the right triangle, andh is the length of the
hypotenuse. The French mathematician, J. P. de Gua de Malves, generalized in three dimensions what is now known as
de Gua’s Theorem, which says,“The square of the area of the base (i.e., the face opposite the right trihedral angle) of
a trirectangular tetrahedron is equal to the sum of the squares of the areas of its other three faces.”A tetrahedron has
four vertices, four facets, and six edges. A trirectangular tetrahedron has three of the six edges coming to one vertex
as mutually orthogonal. De Gua’s Theorem tells us, that since one vertex cuts three facets, the sum of the squares of
the areas of the three facets that borders theright vertex, will equal the square of the area of the fourth facet.

Logically (or perhapsillogically per some people), we expect the statement of Pythagoras to be generalized even
further to the higher dimensional analogs of right triangles. And here, I shall demonstrate a proof of the following
theorem:

Given aN -rectangularN -dimensional simplex, the square of the(N − 1)-content of the facet opposing
the right vertex will equal the sum of the squares of the(N − 1)-contents of the remaining facets.

The Theorem

The theorem cannot be easily understood without the proper terminologies. One of the most important terms in the
statement of the theorem issimplex. As its name suggests, a simplex is the simplestN -dimensional hyper-solid that
can be formed, or, it is theN -dimensional hyper-solid with the least(N − 1)-facets. Some well known properties of
simplex include:

• For anN -simplex, it has N+1!
(N−j)!(j+1)! orN -Choose-j j-dimensional constituents. For example, a2-D simplex,

or a triangle, has three0-D objects (or points or vertices), and three1-D edges. For a3-D simplex, there are four
0-D vertices, six1-D edges, and four2-D facets.

• The content of aN -simplex can be given easily be the Cayley-Menger Determinant (see the next section for
discussion).

• Every vertex is connected to every other vertex. And as a consequence, every vertex hasN edges converging on
it.

Thecontentcan be thought of as the hyper-volume of a hyper-solid. It is the amount of theN -D space contained in
theN -D object. And in our discussion, the termfacetwill be used to mean the(N − 1)-dimensional objects that form
theN -dimensional object in question.

The termN -rectangulardefines the “right” vertex of the simplex. For a simplex to beN -rectangular, it means that
there exist one vertex of the simplex such that all edges converging on it are pair-wise orthogonal, and such a vertex

1



will be denoted as theright or right anglevertex of the simplex. To help establish a mental picture, a 2-dimensional
2-rectangular figure is the right triangle, and a 3-dimensional trirectangular figure is the object removed when you
shave a corner off a cube. Analogous to that, anyN -dimensionalN -rectangular simplex isonecorner of anN -cube.
Furthermore, it is easily seen that thenon-opposingfacets (theopposingfacet being the one opposite the right vertex)
of aN -D N -R simplex are all themselves(N − 1)-D (N − 1)-R simplex.

The Cayley-Menger Determinant

TheCayley-Menger Determinantgives a way of calculating theN -content of aN -simplex.

Define the(N + 1) by (N + 1) matrixB by: Blm = ‖vl − vm‖22
and define its companion matrix̃B by:

B̃ =


0 1 · · · 1
1 B11 · · · B1,N+1

...
...

...
...

1 BN+1,1 · · · BN+1,N+1


wherevλ are theN + 1 vertices of the simplex, and‖vl − vm‖2 denotes the two dimensional distance between the
two vertices.

In that case, the following equation gives the content of the simplex:

V 2 =
(−1)N+1

2N (N !)2
det(B̃) (1)

Now that I am done witht the background stuff, we shall get on to the proof . . .

Proof

Let Γ be the collection (or set) that contains all and only all of the facets of ourN -rectangularN -simplex. ThenΓ
containsN + 1 objects, all of which are(N − 1)-rectangular(N − 1)-simplex. Letπ : Γ → VΓ be a function that
maps eachγ ∈ Γ to its corresponding contentVγ ∈ VΓ. Also, letα ∈ Γ denote the opposing facet.

Then our theorem says: ∑
γ∈Γ

V 2
γ = 2V 2

α

or, in a different form: ∑
γ∈Γ,γ 6=α

V 2
γ = V 2

α (2)

Now, it is obvious that the content of aj-rectangularj-simplex can be written as aj-Integral over thej-orthogonal
edges, and from which we arrive at the conclusion that let{ei}j1 be the length of the orthogonal edges, we get

V =
∏j
i=1 ei
j!

(3)

By combining equations 1, 2, and 3, and lettingvα be the right angle vertex the theorem is shown to be equivalent to
the statement that:
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(−1)N

2N−1
det(B̃α) = (

N∏
i=1

‖vi − vα‖22)(
N∑
j=1

1
‖vi − vα‖22

) (4)

where{vi}N1 are the otherN vertices of the simplex. And if we choose the coordinate system such thatvα is at the
origin, and all the orthogonal edges are on the axis, we can simplify that equation to:

(−1)N

2N−1
det(B̃α) = (

N∏
i=1

‖vi‖2)(
N∑
j=1

1
‖vi‖2

) (5)

and that
Bα,(l,m) = ‖vl − vm‖22

=
{
‖vl‖2 + ‖vm‖2 , l 6= m
0 , l = m

Therefore, proving the generalized pythagorean theorem is equivalent to showing that equation 5 is true inN -
dimensional space.

Now, in the purely algebraic calculation, it is possible to isolate an individual term. Since the ordering of the edges
should not affect the solution of the problem, we can apply the Axiom of Choice and single out the edgev1. Now we
can evaluate the determinant and listall the terms that does not containv1. By the Axiom of Choice, we can see that
if all the terms on the left hand side of equation 5 that does not containv1 is equal to that on the right hand side, then
the equation must hold.

Since the determinant is a multilinear operation on the row vectorand the column vectors, the following is true:

det(B̃) = det(β0, β1, . . . , βN )

whereβ0 = (0, 1, 1, 1, . . .)
β1 = (1, 0, ‖v1‖2 + ‖v2‖2, ‖v1‖2 + ‖v3‖2, . . . , ‖v1‖2 + ‖vN‖2) etc.

Soβ1 = β′1 + β′′1 , where
β′1 = (1, 0, ‖v2‖2, ‖v3‖2, . . . , ‖vN‖2) and
β′′1 = (0, 0, ‖v1‖2, ‖v1‖2, . . .)

and therefore

det(B̃) = det(β0, β
′
1 + β′′1 , . . . , βN )

= det(β0, β
′
1, . . . , βN ) + det(β0, β

′′
1 , . . . , βN )

By the definition ofβ′′1 , all the terms in the second determinant are either 0 or contains‖v1‖2. So in our effort to ignore
all such terms, we can safely discard that.

Performing the similar operation on the column vectors gives us the following, that the determinant without anyv1

terms, denoted bydet(B̄) is:

det(B̄) = det


0 1 1 . . . 1 1
1 0 ‖v2‖2 ‖v3‖2 . . . ‖vN‖2
1 ‖v2‖2 0 ‖v2‖2 + ‖v3‖2 . . . ‖v2‖2 + ‖vN‖2
...

...
...

...
1 ‖vN‖2 ‖vN‖2 + ‖v2‖2 . . . ‖vN‖2 + ‖v(N−1)‖2 0

 (6)

Anotherr property of determinants is that you can add or subtract one row from others without effecting the value of
the determinant. Which we can write as
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det(B̄) = det(β0, β
′
1, β2, . . . , βN )

= det(β0, β
′
1, β2 − β′1, . . . , βN − β′1)

= det


0 1 1 . . . 1 1
1 0 ‖v2‖2 ‖v3‖2 . . . ‖vN‖2
0 ‖v2‖2 −‖v2‖2 ‖v2‖2 . . . ‖v2‖2
...

...
...

...
0 ‖vN‖2 ‖vN‖2 . . . ‖vN‖2 −‖vN‖2


And doing it again with the column vectors, we get

det(B̄) = det


0 1 0 . . . 0 0
1 0 ‖v2‖2 ‖v3‖2 . . . ‖vN‖2
0 ‖v2‖2 −2‖v2‖2 0 . . . 0
...

...
...

...
0 ‖vN‖2 0 . . . 0 −‖vN‖2

 (7)

Which by simple inspection and some simple algebra can be demonstrated to be

det(B̄) = (−1)N2N−1(
N∏
i=2

‖vi‖2)

which is equal to the right hand side of equation 5 without the terms that containsv1.

Q. E. D.
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