
G. Hagedorn Component Framework Draft 0.3

 1

– Diversity Workbench –
A biodiversity component framework

Draft Version 0.3

by G. Hagedorn
10. December 2002

Preface

As the version number '0.3' indicates, this publication is a preliminary draft containing frag-
ments for discussion. It has been made publicly available to facilitate the discussion about an
internationally accepted, public component framework definition for biodiversity information.
I appreciate any feedback and criticism!

Table of contents
Introduction .. 1
Current practices .. 2
Levels of modularization.. 4
Proposed modular interface components ... 6
Design Principles.. 8
Interface implementation issues ... 9
Interfaces, code classes, and content instances .. 10
Versioning components of the framework ... 12

Introduction

The Diversity Workbench is conceived as a set of applications and components for building
and managing biodiversity information, each of which concentrates on a particular domain of
biodiversity information and each of which can provide services as a component to the other
components.

The focus of development in biodiversity informatics is generally on applications for infor-
mation building. This is a peculiar contrast to many other fields of applied informatics, where
information retrieval and application are at the center of research and where the basic infor-
mation is readily available. Perhaps 60-80 percent of biodiversity information is not only not
digitized, but not available at all (see Fig. 1), and the efficiency of biodiversity research must
be increased to fill the knowledge gap.

The modularization of applications dealing with biodiversity information into exchangeable
components is a demanding task. Given the complexity of biodiversity information, it is,
however, an essential prerequisite to allow the successful implementation of adequate infor-
mation systems with the limited resources that are available.

G. Hagedorn Component Framework Draft 0.3

 2

Bacteria

Plants

"Algae"

Fungi

Nematodes

Molluscs

Arachnids

Viruses
Others

Chordates

"Protozoa"

Insects

Figure 1. Species diversity of major groups. The area of the segments indicates the esti-
mated total number of species living on earth. The area of the darker colored inner seg-
ments indicates the number of known species. For example, only ca. 5% of fungi, 10% of
algae, 11.5% of insects are already known, but ca. 96% of chordates and 84% of
(higher) plants.

The following attempts to define what is understood under a component framework.

 Definition: A component framework is a concept used to subdivide a complex

information landscape into modular information models that interact through defined

interfaces. The Diversity Workbench is an attempt to implement such a framework for

the field of biodiversity information.

This document attempts to inform about some of the requirements identified, and the strate-
gies chosen. It is currently by no means comprehensive, but provides fragments for a future,
more comprehensive documentation.

Current practices

Substantial efforts are made in various groups to build biodiversity information applications.
The following diagram (Fig. 2) displays a personal estimate of the author about the develop-
ment focus of a selected applications. The estimate should by no means be seen as an objec-
tive comparison. Only in the cases of DiversityWorkbench, BioLink, Specify
PANDORA/Pankey, and Nomencurator could the information model be studied, the remain-
ing models were not available to the author. Neither should the exclusion of some develop-

G. Hagedorn Component Framework Draft 0.3

 3

ments be considered a statement that it is less important; it may simply be less well known to
the author. And finally, in the case of the Workbench components the quality of the informa-
tion model is not related to actual release stability of applications; for example, for Diversity-
Taxonomy (names, synonymy, and taxonomy) no application exists at all.

IPR / User-
Documen-

tation

Selected data domains and possible application components:

Publications/
References

Names, Tax.,
Synonymy

Specimen
Collections

Descriptions/
Identification

Geograph.
Gazetteer/

GIS

Resource
Managem.

(images etc.)

 Diversity Workbench applications (Hagedorn, Germany)

PANDORA / Pankey (Pankhurst, UK)

SysTax (Hoppe, Germany)

Platypus (Australia)

Specify (Beach, USA)

BioLink (Shattuck, CSIRO Australia)

Modular application components

Monolithic applications (as perceived from the outside)

BIOTA (Colwell, USA)

LucID v. 2 (Thiele, Australia)

Nomencurator (Ytow, Japan)

Fig. 2: Selected biodiversity informatics information building applications and with an
estimate about their development focus. (Abbreviations: IPR = Intellectual Property
Rights, GIS = Geographical Information Systems.)

The intention of the comparison is to show that different development teams focus on differ-
ent aspects of biodiversity informatics. In addition, each team also has the burden to imple-
ment minimal-requirement versions of most other aspects. The benefit of an accepted public

G. Hagedorn Component Framework Draft 0.3

 4

component framework would be that each development team continues to concentrate on its
primary topic, but then can use each others efforts to provide the remaining infrastructure. If a
common framework and interface definitions exist, the components would be interoperable
and exchangeable. The concentration on a single domain would lead to higher quality
products.

Furthermore, data would no longer have to be duplicated in several applications if multiple
applications are required within an institution. This is currently the case if one application is
used to manage the specimen collection and another for taxonomic research, but both carry an
internal minimal literature reference component.

Currently, most applications are constructed monolithic and completely are non-interoperable.
The term monolithic is used here in the sense that they completely hide the internal complex-
ity (which may or may not be modularly designed in the source code) and present themselves
to the outside with a single interface.

Some application suites have a visibly modular component design, notably DiversityWork-
bench and BioLink. However, they do not use a common framework or interface definitions
and consequently are not interoperable among each other.

Levels of modularization

Modularization of biodiversity information software can be achieved on three different levels:

Modularization of data storage

The complex field of biodiversity informatics includes information about the naming of
organisms, the descriptions of organisms (properties useful for identification as well as other
properties), the geographic distribution of organisms and interaction of organisms. Further,
bibliographic, historic, geographic, and resource management data (including natural history
collections as well as digital information collections) must be managed. Rather than creating
highly complex, integrated information models (monolithic models), the information models
should be created separately for each domain of biodiversity information and the interactions
between these models should be defined.

Current development: The analysis how to subdivide the complex information into
modular information models has begun in the context of the BIOLOG funded German
GLOPP project. This needs to be continued. The resulting models should be readily
understandable and should minimize the interaction between components.

G. Hagedorn Component Framework Draft 0.3

 5

Modularization of functionality and code

The programming code that acts upon each domain of biodiversity information for which a
modular information model should also be created as a component. Normally the code itself
will have a internal modular structure. The "component module" will correspond rather to a
JAVA package or a .NET assembly, consisting of multiple internal modules.

To allow the interaction between components, an object model should be created to access,
manipulate, and analyze the biodiversity data. The object model can provide a uniform pro-
gramming interface to obtain information from linked information models. To reduce the
design complexity and allow as many implementation choices as possible, the component
framework model should only define interface classes for components.

Using an abstracted simplified object oriented programming interface will generally be pref-
erable to accessing the data of the various information models directly (e.g. through ODBC or
JDBC interfaces). However, for certain analyses a direct linking of the data using database
functionality rather than object oriented programming models will be desirable. Pure object
oriented models, at least those without multiple inheritance, enforce a hierarchical view on the
data, that is not always appropriate to the multidimensional reality of biodiversity data. A
relational database can usually handle multidimensional data considerably better than current
object oriented models.

Example: The Taxonomy application could call a reporting method in the Reference
management application to provide an xhtml formatted reference citation in a specified format
for a reference ID that has been stored together with taxonomic information.

Current development: The modularization and generation of simple object oriented
interfaces has started in the GLOPP project in an ad-hoc mode. It needs to be carefully
analyzed and redesigned to become a stable model. The design of comprehensive
object oriented models for the entire field of biodiversity information has also started
in an other project (see e. g. the models by Guillaume Rousse,
http://lis.snv.jussieu.fr/~rousse/recherche/index.html).

Modularization of components or applications

Using a detailed object model allows often very intricate interactions between components.
However, it also ties components very tightly together and requires detailed knowledge about
each component.

The problem with this is technology change and the evolution of information models. It is my
believe that information models (relational models as well as object models) will need con-
tinuous refinement for at least another decade. Enforcing a detailed compatibility model for
all attempts to implement a given domain of biodiversity information in a way that it can co-
operate with other applications and components is therefore considered undesirable. It is

G. Hagedorn Component Framework Draft 0.3

 6

unlikely that two implementations of, for example, the bibliographic reference management
component will be able to present the same detailed object oriented interface.

Componentization is a proven technique for improving application manageability, by isolating
technology change. Components allow incremental rather than all-at-once redesign or bio-
diversity information application that cooperate in a component framework (e. g., the
DiversityWorkbench).

Every effort should be made to minimize the interface definition that is required for compo-
nents to interact in the framework. For some components this can be achieved through an
object oriented interface that does not include a user interface component. An example might
be User documentation or a geographical gazetteer. Many components will, however, have
complex data structures that need to be accessed by the user through a query interface. Such
an interface usually requires detailed knowledge about the underlying data structures.

Example: The Taxonomy application could directly call the Reference management applica-
tion to ask the user to select the appropriate reference. The potentially complex query, as well
as the potential need to enter a new reference if the reference in question is not yet in the
database, can be handled internally by the Reference management application. The interface
needs only concern itself with the returned ID number of the selected reference, or with
cancellation of the dialog.

Current development: The Diversity Workbench uses the approach of using user
interface components in the current implementation. However, the current implemen-
tation works only because all components of the Diversity Workbench are based on
the same development tool. Much work is necessary to generalize this approach, to
define the interface in a rigorous way rather than ad-hoc. It is envisaged that the inter-
action could be implemented through the use of xml-SOAP remote procedure call
mechanisms, and that it is potentially possible to define interactions between user
interfaces that employ html forms.

Attempt of definition for component:

 Definition: A component is defined here as a combination of data storage and appli-

cation code, that can largely be used independently of other components (although it

may require the service of certain other components).

Proposed modular interface components

Figure 2 above already uses a selection of data domains to define and delimit interface
components. The following diagram (Fig. 3) shows further examples of reusable and
interoperable interface components for biodiversity information retrieval, building and appli-

G. Hagedorn Component Framework Draft 0.3

 7

cation. Note that a given application will often provide many interfaces (e. g. all of specimen
collection management and look-up thesauri).

Also, applications do not need to follow the interface model internally. As long as it provides
all the interfaces defined in the Workbench framework for the components it encompasses,
the internal implementation is irrelevant, and it can function as multiple components in regard
to other applications. For example, an application may integrate Nomenclature, Synonymy,
and Taxonomic hierarchy. The definition of small interface classes is intended to allow flexi-
bility in the choice of implementations for both service providers and service consumers (see
"Interface implementation issues", p. 9).

Information building

Information
application

Information retrieval

IPR / User-
Documen-

tation

Publications/
References

Nomen-
clature

Specimen
Collections

Morpholog.
descriptions

Geograph.
Gazetteer

Resource
Managem.

(images etc.)

Synonymy

Taxonomic
hierarchy

Identification

= special error tolerant
query interface!

Phylogenetic
analysis

Preservation
management

Loan
Management

User
access
control

GIS
analysis

Login (queries) (queries)(queries) (queries) (queries)

Journal
thesaurus

Book abbrev.
standard TL2

Exsiccata
thesaurus

Molecular
descriptions

Potential
distribution

Biotech-
nology

Nature
conservation

Fig. 3: Examples of components for biodiversity information retrieval, building and
application.

The components shown in Fig. 3 are only examples. The definition of a complete component
framework is so far neither completely analyzed, nor are formal interfaces defined in cases
where the analysis already occurred for the purpose of developing the DiversityWorkbench
components. Until substantial discussion between different groups has occurred and separate
implementations have tested issues of interoperability, the framework will constantly evolve.
The current development of the DiversityWorkbench by G. Hagedorn and coworkers is shown

G. Hagedorn Component Framework Draft 0.3

 8

in Fig. 4. The various components are in different stages of development and serve as a test-
ing environment rather than as stable application components.

Diversity
Users

Diversity
References

Diversity
Taxonomy

Diversity
Collection

Diversity
Descriptions

Diversity
Gazetteer

Diversity
Resources

Identify

Diversity
Cultures

Diversity
Exsiccatae

Diversity
Indexing

Diversity
Ecology

Diversity
NameVariants

Fig. 4: Some DiversityWorkbench components currently under development.

Design Principles

The following principles outline some of the design principles that apply to all information
models for components of the DiversityWorkbench component framework. Each component
should:

• define one or several primary object types or classes

• provide a public, machine-readable, permanent object identifier (primary key) to these
objects

• provide a unique human-readable object description (which may change as the underlying
object data are modified and can therefore not be used as the primary object identifier)

• provide a minimal interface definition for public objects ('black box')

• document an internal object or entity-relationship model

Components using the internal model rather than the interface would be not exchangeable.
However, properly implemented, the base functionality would be framework compatible and
extended functionality would only work with specific component implementations.

Further, to guarantee the scientific quality of data, each component should:

• cite each piece of information from a published source (including natural history collec-
tion objects) or attribute direct statements to a person responsible for data entry (in effect
making the database the primary place of information).

• contain published information as close as possible to the original source (obvious general
spelling errors may be corrected, but no changes should be introduced requiring interpre-
tation or specific background knowledge)

G. Hagedorn Component Framework Draft 0.3

 9

• separate original information from interpretation (e. g. changing misapplied or synonym
names to accepted names)

• allow an unlimited number of (possibly contradicting) interpretations to support the on-
going refinement of information interpretation by several generations of researchers

Interface implementation issues

The component framework model is a model of interface classes. It can be used as a reference
model to make decisions about the modularization of domain logic and information models
for persistent storage, but it does not enforce it. For example, the internal implementation of
the Nomenclature, Synonymy, and Taxonomic Hierarchy interface classes may either be
modular or monolithic. As long as the interface components are implemented according to the
framework model, this does not make a difference to another component consuming a syno-
nymization service from Synonymy (see Fig. 5).

A

B

Fig. 5: A) The internal implementation follows the interface component model. B) The
internal implementation is monolithic, but implements separate interface classes. For an
external consumer of component services both implementation variants function identi-
cally. Interface classes are orange, implementation classes green.

If the internal modularization does follow the component framework model and several com-
ponents are developed together, the developer still has several implementation choices. It will
generally be advisable to use those methods defined in the framework also internally, to avoid
duplicate interface implementations and testing. However, if for example, the normal com-
munication between components is based on xml SOAP, the same methods can also be used
by communication methods that are native to the development tools used (Fig. 6).

G. Hagedorn Component Framework Draft 0.3

 10

XML SOAP communication

Native object model communication

Fig. 6: The implementation may use the component model for part of the internal
communications, but may use a different communication layer. In the example, the
external communication occurs through xml-SOAP, but the internal communication
through a native method (blue connections). Interface classes are orange, implementa-
tion classes green; compare also Fig. 5.

Furthermore, it is possible to implement additional interfaces providing methods that are not
exposed through the framework interface model. As discussed above, the framework attempts
to treat components as "black boxes", hiding internal complexity and allowing for a variety of
different solutions to a problem. However, communication within components developed by
the same team may wish to exploit detailed knowledge of the internal object model of the
components.

Care must be taken in this case, that the additional methods are either optional, or that it is
well documented that certain components are exchangeable only as a package. For example,
consider again the application implementing several taxonomical components (Nomenclature,
Synonymy, and Taxonomic Hierarchy), requiring services from a literature reference compo-
nent. The reference component may only need part of this functionality and any combination
between implementations of these components may be possible. However, it may not be pos-
sible to exchange the nomenclature component of the combined taxonomic application with a
better nomenclature component.

A good design would derive the rich interface classes from the minimal interface classes de-
fined in the component framework. Consumers of the interface could then provide polymor-
phic variable, testing whether the basic or the extended interface is present.

Interfaces, code classes, and content instances

The Workbench model assumes that compatible components can be freely combined to pro-
vide a working environment. These components must identify themselves in multiple ways.
They must identify:

G. Hagedorn Component Framework Draft 0.3

 11

• the component framework (e. g. "DiversityWorkbench"),

• the component interface class (e. g. component for "Reference management", "Resource
management", or "Collection management"),

• the implementation (application or component developers signature)

• the content instance (implementations of a component may be used by multiple projects
and filled with different content)

Diversity Workbench

Component
classes
(interface definition)

Component or
application
implementations

Content
instances
(e. g. federated
databases)

Fig. 7: Multiple implementations and multiple content instances for each component are
possible within a component framework.

Figure 7 illustrates these levels. The framework and the possible interfaces classes would be
fixed by the definition of the component framework itself. They are only tested to verify the
compatibility (esp. if different versions of the framework exist). However, multiple imple-
mentations and content instances can coexist within the framework. For these both a signature
and versioning support must be provided.

A signature defines the identity of a component. The implementation signature and version
are irrelevant if only the base functionality of the component framework is used. In this case
only the framework identity and version needs to be tested. However, if implementation-
specific extended functionality is used by a consuming component (see "Interface
implementation issues", p. 9 above), both must be tested.

In contrast, the content signature is always relevant to verify the identity of the an object
identifier that needs to be resolved. The same object identifier may exist in multiple content
instances and may refer to different objects. Object identifiers that are globally unique among
all content instances would require communication between multiple content instances and a

G. Hagedorn Component Framework Draft 0.3

 12

central registry to do so. This is considered undesirable. However, the combination of the
signature value of a content instance and an object ID is assumed to provide a globally unique
object identifier. To achieve this a global registry of content instance signatures is desirable in
the longer run, but choosing random signature IDs will also provide an acceptable level of
uniqueness.

Example: To refer, for example, from a taxonomic component to a reference defined in a
literature or citation reference component, the following data items about the reference object
are stored in the taxonomic component:

• a technical object identifier representing the reference

• a human-readable description of the reference that may be cached by the taxonomic
component to provide a fast overview report, esp. for screen display

• the signature of the content instance from with the object identifier is derived.

Note that the reference detail (page number, figure or table number) is not linked to the refer-
ence component, but directly stored within the taxonomic component. A validation method
for common mistakes (at least in the case of simple page numbers) can easily be implemented
if this is desired.

Versioning components of the framework

Most components will have a persistent storage component that is managed separately from
the application logic in a database management system. Although this separation has many
advantages, it also complicates the versioning. Data components can have three different ver-
sion numbers:

• The version for the application logic of the component

• The version of the schema or information model used to store the data

• The version of the content in the database

In practice, the second level will normally not be of interest to the consumer. The compati-
bility of the application code and the information model will automatically be tested during
the initialization of the component interface, using signature and version information for both
parts. Note that the signature of the code and the information model is required to be identical
in the current DiversityWorkbench implementations of the Workbench model.

However, components that want to utilize another component need to be aware of the inter-
face definition compatibility and of the content signature and version.

G. Hagedorn Component Framework Draft 0.3

 13

Forward and backwards version compatibility

If components shall interact freely, it is necessary that the interface definitions are forward
and backwards compatible. The following example illustrates the problems.

Both the collection and the references component consume services from the geographical
gazetteer component. The initial situation may be that all 3 components are in version 1:

Diversity References Diversity Gazetteer Diversity Collections
Version 1.0 Version 1.0 Version 1.0

A few months later, the collections component is upgraded to a new version, which requires
the version 2 of the gazetteer as well. A new version of the references component is, however,
neither available nor required based on the reference component itself:

Diversity References Diversity Gazetteer Diversity Collections
Version 1.0 Version 2.0 Version 2.0

Ideally, the references component should now still be able to interact with the interface of the
Gazetteer.

Proposed solution providing forward and backwards version
compatibility

The solution that was chosen to provide for this functionality is based on two concepts:

Firstly, each component provides a primary interface class that may be extended through the
use of additional properties or methods, but which is never changed. Also, the base interface
class will never change its name (to avoid namespace conflicts, the name is based directly on
the component name, with "interface" appended, e. g. "GazetteerInterface"). This primary
component interface mainly provides basic information about a component (component name,
version, identity signatures, copyright information, initialization success and errors, etc.).
Most of these methods are generic to all components and derived from an abstract class in the
framework.

Secondly, any complex methods which are more likely to change are provided through
version specific derived interface classes. The version number is part of the class name. For
example, the Gazetteer may provide information about a geographical name through a class
Gazetteer10_GeoName. The version-specific classes can be accessed and instantiated through
the use of methods provided in the base interface class.

If a new version of the Gazetteer provides additional functionality, the developer has two
options:

G. Hagedorn Component Framework Draft 0.3

 14

a) to extend the Gazetteer10_GeoName through the use of additional properties or methods
without changing existing properties or method
b) to introduce a new class Gazetteer20_GeoName, while preserving the
Gazetteer10_GeoName class for the purpose of backward compatibility.

In the first case, the programming of Diversity Collection does not need to be upgraded, but
the application must test the version number of the Diversity Gazetteer to make sure that the
additional methods are available. The Interface provides a standard method
InitializeOnlyWithMinimumVersion to prevent initialization for any interface that has a
smaller version number.

In the second case, the new interface can be redesigned and old errors or shortcomings can be
prevented. However, all components that use this interface must be adapted to use the new
functionality.

Note that the version number in the interface classes is thus not necessarily identical with the
version number of the component. It should rather be read as "Interface introduced starting
with version X.x".

Information model for persistent storage of interface version and
compatibility information

The following information model describes a proposal for two entities to hold versioning and
compatibility information:

(Note: the entities shown below are used by existing DiversityWorkbench components. They
use the term "module" as a synonym of "component", something that should be changed when
designing a public standard.)

G. Hagedorn Component Framework Draft 0.3

 15

WorkbenchInterfaceDescription

This entity contains two records, describing the title, version number, and description of schema (= information
model) and content (= data collection) of a database component (Workbench Framework 1.0).

Attributes and indices of the entity
'WorkbenchInterfaceDescription'

Name Type Description / Default value & validation Rqrd./Index

Type Text Only two records possible: 'Content' (defined
by the user) and 'Schema' (= information
model, defined by developer, must be
compatible with the application).
Default value: "Content"; Validation rule:
"Schema" Or "Content"

R I (P)

Values currently
restricted to:

Content

MajorVersion Long The major version number of the schema or
content data collection. Example: '2' for
version 2.1.
Default value: 1

R -

MinorVersion Long The minor version number of the schema or
content data collection. Example: '1' for
version 2.1.
Default value: 0

R -

Revision Long The revision version number of the schema
or content data collection. Example: '5' for
version 2.1.0005. Displayed only if > 0.
Default value: 0

R -

VersionSuffix Text An optional string to identify special
versions. Examples: 'beta', 'rc' = release
candidate, etc.
Validation rule: Is Null Or Not (Like ' *' Or
Like '* ' Or Like '* *' Or Like '*' & Chr(10) &
'*' Or Like '*' & Chr(13) & '*'), validation
message: Do not start or end with a blank
and do not include double blanks or new line
characters!

- -

Examples
values (any

other values
may be added):

beta = testing version
rc = release candidate
rc-1
rc-2 = second rc
alpha = unfinished component
sr-1 service release 1
sr-2 service release 2

Signature Long A number that uniquely identifies a schema
or content data collection (used by other
components to identify object identifiers as
belonging to this data collection; content
signature values must be 1-524287, schema
1-4095).
Default value: CLng(Rnd()*524287),
validation message: The content signature
must be between 1 And 524287.

R -

G. Hagedorn Component Framework Draft 0.3

 16

Attributes and indices of the entity
'WorkbenchInterfaceDescription'

Name Type Description / Default value & validation Rqrd./Index

Title Text A title for the schema or content data
collection. Example: 'Mycological Literature
collected by the Mycology.Net initiative'.
Validation rule: Not (Like ' *' Or Like '* ' Or
Like '* *' Or Like '*' & Chr(10) & '*' Or Like
'*' & Chr(13) & '*'), validation message: Do
not start or end with a blank and do not
include double blanks or new line characters!

R -

Description Memo An optional description of the entire
information schema or data collection (will
be displayed in the 'About' dialog box).
Validation rule: Is Null Or Not (Like ' *' Or
Like '* ' Or Like '* *' Or Like '*' & Chr(10) &
'*' Or Like '*' & Chr(13) & '*'), validation
message: Do not start or end with a blank
and do not include double blanks or new line
characters!

- -

CopyrightStatement Text A copyright statement concerning the data.
Validation rule: Is Null Or Not (Like ' *' Or
Like '* ' Or Like '* *' Or Like '*' & Chr(10) &
'*' Or Like '*' & Chr(13) & '*'), validation
message: Do not start or end with a blank
and do not include double blanks or new line
characters!

- -

PublicLicense Text Type of public licence (none, GPL, LGPL,
etc.).
Default value: "GPL"

- -

Values currently
restricted to:

None No public license
GPL GNU General Public License Vers. 2
LGPL Lesser General Public License for code libraries

Authors Text A list of author(s).
Validation rule: Is Null Or Not (Like ' *' Or
Like '* ' Or Like '* *' Or Like '*' & Chr(10) &
'*' Or Like '*' & Chr(13) & '*'), validation
message: Do not start or end with a blank
and do not include double blanks or new line
characters!

- -

AuthorsAddress Text An address applying to the Authors and
Copyright statements.
Validation rule: Is Null Or Not (Like ' *' Or
Like '* ' Or Like '* *' Or Like '*' & Chr(10) &
'*' Or Like '*' & Chr(13) & '*'), validation
message: Do not start or end with a blank
and do not include double blanks or new line
characters!

- -

AuthorsURL Text A URL web address applying to the Authors
or the database content.
Validation rule: Is Null Or Not (Like ' *' Or
Like '* ' Or Like '* *' Or Like '*' & Chr(10) &
'*' Or Like '*' & Chr(13) & '*'), validation
message: Do not start or end with a blank

- -

G. Hagedorn Component Framework Draft 0.3

 17

Attributes and indices of the entity
'WorkbenchInterfaceDescription'

Name Type Description / Default value & validation Rqrd./Index

and do not include double blanks or new line
characters!

Index name: Attributes & index properties

PrimaryKey: Type (Primary key; Unique values)

WorkbenchInterfaceCompatibility

Documentation of version compatibility between the current module and other modules. Must be manually filled
after appropriate testing.

Attributes and indices of the entity
'WorkbenchInterfaceCompatibility'

Name Type
Description / Default value &
validation Rqrd./Index

ComponentName Text The name of a component that is
used together with the current
component.

R I (U)

ComponentSignature Long A unique number defining a
component of the
DiversityWorkbench or compatible
applications.

R I(PM)

VersionMajor Integer The major number of the version
(before the period).
Default value: 0

R I(PM)

VersionMinor Integer The minor number of the version
(after the period).
Default value: 0

R I(PM)

ComponentIsCompatible Boolean True if the application module is
compatible, False if incompatible.
Default value: True

R -

ComponentIsRequired Boolean False if the module may be
missing, True if presence of
module is required.
Default value: True

R -

TestResponsible Text The name of the developer who
tested compatibility between
module containing this table and
the module with ModuleName.

R -

TestDate Date/Time The date when compatibility was
tested.
Default value: Now()

R -

Index name: Attributes & index properties

ComponentName: ComponentName (Unique values)

PrimaryKey: ComponentSignature; VersionMajor; VersionMinor
(Primary key; Unique values)

G. Hagedorn Component Framework Draft 0.3

 18

Footnotes: The following abbreviations have been used in the tables: R: It is required to enter data in this field.
I: The field is indexed to enable faster searching. Different types of indices are denoted by additional letters in
parentheses: P = attribute is part of the primary key (values in the index must be unique), U = values in the index
must be unique, N = Null values are ignored in the index, M = the index contains more than one attribute, + =
the attribute is involved in more than one multiple-field index. The names of attributes that are part of the
primary key are underlined in the first column.

Attribute names of system fields and logging fields (record creation or updating) are enclosed in square brackets:
[].

Data types: 'Text (255)' indicates a text of varying length for which no specific design restrictions have been
formulated. 255 characters should be read as a proposed technical maximum limit, that can be changed if
required by the database management system. In contrast, 'Memo' is explicitly defined as text of unlimited
length. All text is Unicode text. Numeric types: BigInt = 8 byte integer, Long = 4 byte integer, Integer or Int =
2 byte integer, Byte = 1 byte integer. A + (e.g. Byte+) indicates that the integer is unsigned and only positive
values are allowed.

Footnotes: The following abbreviations have been used in the tables: R: It is required to enter data in this field.
I: The field is indexed to enable faster searching. Different types of indices are denoted by additional letters in
parentheses: P = attribute is part of the primary key (values in the index must be unique), U = values in the index
must be unique, N = Null values are ignored in the index, M = the index contains more than one attribute, + =
the attribute is involved in more than one multiple-field index. The names of attributes that are part of the
primary key are underlined in the first column.

Attribute names of system fields and logging fields (record creation or updating) are enclosed in square brackets:
[].

Data types: 'Text (255)' indicates a text of varying length for which no specific design restrictions have been
formulated. 255 characters should be read as a proposed technical maximum limit, that can be changed if
required by the database management system. In contrast, 'Memo' is explicitly defined as text of unlimited
length. All text is Unicode text. Numeric types: BigInt = 8 byte integer, Long = 4 byte integer, Integer or Int =
2 byte integer, Byte = 1 byte integer. A + (e.g. Byte+) indicates that the integer is unsigned and only positive
values are allowed.

G. Hagedorn Component Framework Draft 0.3

 19

The following SQL code creates these tables:

/*=== Table: WorkbenchInterfaceDescription ===*/
/* This entity contains two records, describing the title, version number, and description of
schema (= information model) and content (= data collection) of a database component
(Workbench Framework 1.0). */
/* Type: Only two records possible: 'Content' (defined by the user) and 'Schema' (=
information model, defined by developer, must be compatible with the application). */
/* MajorVersion: The major version number of the schema or content data collection. Example:
'2' for version 2.1. */
/* MinorVersion: The minor version number of the schema or content data collection. Example:
'1' for version 2.1. */
/* Revision: The revision version number of the schema or content data collection. Example:
'5' for version 2.1.0005. Displayed only if > 0. */
/* VersionSuffix: An optional string to identify special versions. Examples: 'beta', 'rc' =
release candidate, etc. */
/* Signature: A number that uniquely identifies a schema or content data collection (used by
other components to identify object identifiers as belonging to this data collection; content
signature values must be 1-524287, schema 1-4095). */
/* Title: A title for the schema or content data collection. Example: 'Mycological
Literature collected by the Mycology.Net initiative'. */
/* Description: An optional description of the entire information schema or data collection
(will be displayed in the 'About' dialog box). */
/* CopyrightStatement: A copyright statement concerning the data. */
/* PublicLicense: Type of public licence (none, GPL, LGPL, etc.). */
/* Authors: A list of author(s). */
/* AuthorsAddress: An address applying to the Authors and Copyright statements. */
/* AuthorsURL: A URL web address applying to the Authors or the database content. */
CREATE TABLE WorkbenchInterfaceDescription (
 Type NATIONAL CHARACTER VARYING(7) NOT NULL PRIMARY KEY DEFAULT 'Content',
 MajorVersion INTEGER NOT NULL DEFAULT 1,
 MinorVersion INTEGER NOT NULL DEFAULT 0,
 Revision INTEGER NOT NULL DEFAULT 0,
 VersionSuffix NATIONAL CHARACTER VARYING(20) NULL,
 Signature INTEGER NOT NULL DEFAULT CLng(Rnd()*524287),
 Title NATIONAL CHARACTER VARYING(255) NOT NULL,
 Description NATIONAL TEXT NULL,
 CopyrightStatement NATIONAL CHARACTER VARYING(255) NULL,
 PublicLicense NATIONAL CHARACTER VARYING(20) NULL DEFAULT 'GPL',
 Authors NATIONAL CHARACTER VARYING(255) NULL,
 AuthorsAddress NATIONAL CHARACTER VARYING(255) NULL,
 AuthorsURL NATIONAL CHARACTER VARYING(255) NULL
);
/*=== Table: WorkbenchInterfaceCompatibility ===*/
/* Documentation of version compatibility between the current module and other modules. Must
be manually filled after appropriate testing. */
/* ComponentName: The name of a component that is used together with the current component.
*/
/* ComponentSignature: A unique number defining a component of the DiversityWorkbench or
compatible applications. */
/* VersionMajor: The major number of the version (before the period). */
/* VersionMinor: The minor number of the version (after the period). */
/* ComponentIsCompatible: True if the application module is compatible, False if
incompatible. */
/* ComponentIsRequired: False if the module may be missing, True if presence of module is
required. */
/* TestResponsible: The name of the developer who tested compatibility between module
containing this table and the module with ModuleName. */
/* TestDate: The date when compatibility was tested. */
CREATE TABLE WorkbenchInterfaceCompatibility (
 ComponentName NATIONAL CHARACTER VARYING(64) NOT NULL UNIQUE,
 ComponentSignature INTEGER NOT NULL,
 VersionMajor SMALLINT NOT NULL DEFAULT 0,
 VersionMinor SMALLINT NOT NULL DEFAULT 0,
 ComponentIsCompatible BIT NOT NULL DEFAULT 1,
 ComponentIsRequired BIT NOT NULL DEFAULT 1,
 TestResponsible NATIONAL CHARACTER VARYING(255) NOT NULL,
 TestDate DATETIME NOT NULL DEFAULT current_timestamp,
 PRIMARY KEY (ComponentSignature,VersionMajor,VersionMinor)
);

