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Preface
The motivation for composing this book has come from the need to fill the
gap in the literature and provide a comprehensive treatment of the classical
and shear deformation theories of beams and axisymmetric circular plates in
one volume. The book is a compendium of all related works by the author
and his colleagues on the subject over his lifetime. The book contains detailed
derivations of the governing equations, analytical solutions, variational solu-
tions, and numerical solutions (FEM) of the classical and shear deformation
theories of beams and axisymmetric circular plates. The readers and users
will benefit to have such a comprehensive book available in the literature as a
reference for finding the governing equations, analytical and numerical solu-
tions of bending, vibration, and buckling for problems with various boundary
conditions.

In this present book, classical and shear deformation theories are pre-
sented, accounting for through-thickness variation of two-constituent func-
tionally graded material, modified couple stress (i.e., strain gradient), and the
von Kármán nonlinearity. Analytical solutions of the linear theories and finite
element analysis of linear and nonlinear theories are included.

Chapter 1 is devoted to a brief review of mechanics preliminaries that in-
clude vectors and tensors, summation convention, governing equations of solid
mechanics, an introduction to functionally graded materials (FGMs), and the
modified couple stress model. A reader familiar with these may skip this chap-
ter but it is recommended that a casual walk through the chapter is beneficial
to see the notation used. Chapter 2 deals with the concepts of work and en-
ergy, strain energy, and virtual work, and elements of the calculus of variations
and variational principles of solid and structural mechanics. These ideas are
useful in the development of variationally consistent theories of beams and
plates and their solution by direct variational methods such as the Ritz and
Galerkin methods.

The main thesis of the book begins with Chapter 3, which presents a de-
tailed discussion of the classical beam theory (CBT), including kinematics,
constitutive models, and governing equations of motion. The governing equa-
tions of plate strips (i.e., cylindrical bending of plates) are also discussed. The
chapter also contains analytical and numerical solutions of the linearized equa-
tions. Analytical solutions include solutions by direct integration as well as the
Navier method. The Ritz and other variational methods are introduced in this
chapter and illustrated by their applications to CBT. Chapters 4 and 5 fol-
low the same sequence of developments for first-order (TBT) and third-order
(RBT) theories, respectively, of beams. A major feature of these chapters is
the development of the algebraic relationships between the solutions of the
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TBT and CBT and RBT and CBT. That is, if one has the analytical solution
of a beam problem using the CBT, the relationships allow one to obtain the
solutions of the same problem by the TBT and RBT models.

Chapters 6–8 are dedicated to the classical, first-order, and third-order the-
ories of axisymmetric circular plates, following the same sequence of steps (i.e.,
derivation of equations, analytical and variational solutions, and relationships
between classical and shear deformation theories).

Finally, finite element formulations and numerical solutions of beams and
axisymmetric circular plates, respectively, are presented in Chapters 9 and 10.
These chapters contain extensive theoretical results in the form of weak-form
development, finite element models, tangent stiffness coefficient derivations,
and numerical results for linear and nonlinear analysis of beams and circular
plates. To keep the size of the book within reasonable limits, numerical results
in these chapters are limited to static bending analysis.

The major feature of the book is the comprehensive treatment (within the
scope of the book) of the subject matter. The readers never have to consult
another source to follow the developments; although many references are pro-
vided mostly to acknowledge the developments, it is not necessary to read
them to follow what is presented here. Of course, having a background in me-
chanics of materials, elasticity, and a first course on the finite element method
would help. Historical notes are included in several places to make it interest-
ing and derive some level of appreciation for those who have contributed to
the subject matter covered herein. Few exercise problems are also included,
but extensions and applications of the theories developed herein are possible.
For such tasks, this book is an excellent reference to researchers.

As already stated, many of the results included herein were obtained during
the course of the author’s lifetime in collaboration with his students, postdocs,
and colleagues around the world. For the reason of missing some, the names (a
large number) of these individuals are not listed here. Instead, a list of papers
coauthored with them on topics related to the subject matter are included at
the back of the book. The author is very appreciative of the friendship and
collaboration of all these colleagues over the years. The author is pleased to
acknowledge the help of Dr. Eugenio Ruocco, Dr. Praneeth Nampally, Mr. Ho
Yong Shin, and Ms. Alekhya Banki with the proofreading of the manuscript
prior to its publication. A book of this nature, full of mathematical statements,
is bound to have some typos and errors. The author requests the readers to
send any comments and corrections to jnreddy@tamu.edu.

J. N. Reddy
College Station, Texas

http://mechanics.tamu.edu

Anyone who has never made a mistake has never tried anything new.
Albert Einstein

http://mechanics.tamu.edu
mailto:jnreddy@tamu.edu
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List of symbols used

The meaning of various symbols used in the book for some important quanti-
ties is defined in the following table. The list is not exhaustive (ci and Ki are
constants used at various places).

Symbol Meaning

a Outer radius of a circular or annular plate

aij Coefficients of matrix [A] = A
A Area of cross section of a beam

Axx, Axz , . . . Axial and shear stiffness coefficients

b Inner radius of an annular plate; width of a beam cross section
Bxx Bending-stretching coupling stiffness

cf Modulus of elastic foundation per unit length

cv , cp Specific heat at constant volume and pressure, respectively
dΓ Surface element

dA Area element (dA = dxdy)
dΩ Area element (dΩ = dxdy) or volume element (dΩ = dxdydz)

Dxx, Dxz Bending and higher-order shear stiffness coefficients

D̄xx Effective stiffness coefficient, D̄xx = Dxx − αFxx,
Dexx Effective stiffness coefficient, Dexx = Dxx +Axy , Axy being

the stiffness coefficient due to couple stress; also, D̂xx = D̄xx − αF̄xx
D∗xx Effective stiffness coefficient, D∗xx = DxxAxx −BxxBxx
êi Basis vector in the xi-direction

(êr, êθ, êz) Basis vectors in the (r, θ, z) system
(êx, êy , êz) Basis vectors in the (x, y, z) system

(ê1, ê2, ê3) Basis vectors in the (x1, x2, x3) system

E Modulus of elasticity
E1, E2 Moduli of elasticity of a functionally graded structure

or an orthotropic material

Exx, Eyy , . . . Green strain components in rectangular Cartsian system;
Exx are the higher-order stiffness coefficient

Err, Eθθ, . . . Green strain components in cyndrical coordinate system

E Green–Lagrange strain tensor
f Body force vector

fx, fy , fz Body force components in the x, y, and z directions
Fxx, Frr, . . . Higher-order stress resultants

Fαi ,F
α Finite element force vectors

F Deformation gradient, F = (∇x)T

G Shear modulus

h Height of a beam or thickness of a plate; length of a finite element

Hxx, Hrr, . . . Higher-order stress resultants
I Second moment of area, I = bh3/12
I Unit second-order tensor

J Determinant of J (Jacobian)
Jn Bessel function of the first kind and of the nth order

J Jacobian (of transformation) matrix
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Symbol Meaning

k Extensional spring constant
kR Rotational spring constant

K Kinetic energy; bulk modulus

Ks Shear correction coefficient
K Finite element stiffness matrix

Kαβ
ij ,K

αβ Finite element stiffness submatrices

l, ` Material length scale used couple stress model
L Length of a beam

m Couple stress tensor

M Finite element mass matrix

Mαβ
ij ,M

αβ Finite element mass submatrices

Mxy Couple stress

Mxx,Mrr, . . . Bending stress resultants
n Index/exponent used in power-law model

n̂ Unit normal vector in the current configuration

ni ith component of the unit normal vector n̂
(nx, ny , nz) Components of the unit normal vector n̂

Nxx, Nrr, . . . Stretching stress resultants
Pxx, Prr, . . . Higher-order stress resultants

q Distributed transverse load per unit length

Qij Plane stress-reduced elastic coefficients
r Radial coordinate in the cylindrical polar system; r = |r|
r Position vector in cylindrical coordinates, x

(r, θ, z) Cylindrical coordinate system
R Outer radius of a circular plate

t Time

t Stress vector; traction vector
ti Stress vector on xi-plane, ti = σij êj
T Temperature
u Axial displacement

u Displacement vector

ur, uθ, uz Components of a displacement vector u in a cylindrical
coordinate system

ux, uy , uz Components of a displacement vector u in a rectangular Cartesian

coordinate system
U Strain energy of a body

U0 Strain energy density of a body

v Velocity, v = |v|
(v1, v2, v3) Components of velocity vector v in (x1, x2, x3) system

(vr, vθ, vz) Components of velocity vector v in (r, θ, z) system

v Velocity vector, v = Dx
Dt

vn Velocity vector normal to the plane (whose normal is n̂)

V Potential energy due to external loads; shear force
V1, V2 Material volume fractions for functionally graded material

Veff Effective shear force
VE Work done by external forces (= WE)
w Transverse displacement component

WE External work done by forces

WI Internal work stored in the body
x Position vector in the current configuration

(x, y, z) Rectangular Cartesian coordinates
(x1, x2, x3) Rectangular Cartesian coordinates (spatial)
(X1, X2, X3) Rectangular Cartesian coordinates (material)

Yn Bessel function of the second kind and of the nth order
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Greek symbols

Symbol Meaning

α Angle; parameter in time approximations scheme;

also, α = 4/3h2, h being the total height of the beam or plate
αT Coefficient of thermal expansion

β Heat transfer coefficient (also other uses); also β = 3α = 4/h2

γ Parameter in a time approximation scheme
Γ Total boundary

δ Dirac delta; variational symbol

δij Components of the unit tensor, I (Kronecker delta)
∆,∆ Increment; generalized displacement vector

ε Tolerance specified for nonlinear convergence
εij Infinitesimal strain components

εijk Alternating symbol

ζ, η Natural (normalized) coordinate
θ Angular coordinate in the cylindrical and spherical

coordinate systems

λ Lamé constant; eigenvalue
µ Lamé constant

ν, νij Poisson’s ratio; Poisson’s ratios for an orthotropic material

ξ Natural (normalized) coordinate
Π Total potential energy

ρ Mass density

σ Stress tensor
σij Components of the stress tensor in the rectangular

coordinate system (x1, x2, x3)

σrr, σθθ, σrθ, · · · Components of the stress tensor σ in the
cylindrical coordinate system (r, θ, z)

τ Shear stress
τ Viscous stress tensor

φ Angular coordinate in the spherical coordinate system

φi Hermite cubic interpolation functions
φx, φr Rotation functions

χ,χ Curvature and curvature tensor

ψ Warping function; stream function
ψi Lagrange interpolation functions

ω Angular velocity

ω Rotation vector
Ω Domain of a problem; natural frequency

Ω Spin tensor or skew symmetric part of the velocity

ωi Components of vorticity vector ω in the rectangular
coordinate system

Other symbols

Symbol Meaning

∇ Gradient operator (with respect to X)
∇x Gradient operator with respect to x

∇2 Laplace operator, ∇2 = ∇ ·∇
[ ] Matrix of components of the enclosed tensor

{ } Column of components of the enclosed vector
· Symbol for the dot product or scalar product
× Symbol for the cross product or vector product
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Table 1
Conversion factors

s = second; lb = pound; in = inch; ft = foot; hp = horse power;
kg = kilogram (= 103 grams); m = meter; mm = millimeter (10−3 m);

N = Newton; W = Watt; Pa = Pascal = N/m2;
kN = 103 N; MN = 106 N; MPa = 106 Pa; GPa = 109 Pa

Quantity US customary unit SI equivalent

Mass lb (mass) 0.4536 kg
Length in 25.4 mm

ft 0.3048 m

Density lb/in3 27.68× 103 kg/m3

Force lb (force) 4.448 N

Pressure or stress lb/in2 (psi) 6.895 kN/m2

Moment or torque lb in 0.1130 Nm
Power ft lb/s 1.356 W

hp (550 ft lb/s) 745.7 W

Note:
Quotes by various people included in this book were found at different web
sites; for example, visit:

http://naturalscience.com/dsqhome.html,
http://thinkexist.com/quotes/david˙hilbert/, and http://www.yalescientific.

org/.

The historical notes included in various footnotes can be found at different
websites, especially Wikipedia, https://en.wikipedia.org/.

This author is motivated to include the quotes for their wit and wisdom.
The author cannot vouch for the accuracy of the quotes or the historical notes.
The reason for the inclusion of the historical notes is to remind the readers
that we are “standing on the shoulders” of many giants before us.

A few words of caution about the Wikipedia. Most of the references cited
there belong to the authors who contributed to the subject matter, and they
are neither authoritative nor original contributions to the subject; some selfish
authors tried to promote their own work at the expense of not giving credit
to the original contributors. In addition, the readers should be very careful
in accepting what is found there as technically accurate. It is advised that
the readers consult the papers and books by well-known researchers on the
technical topic/subject.

If you are not willing to learn, no one can help you. If you are determined to
learn, no one can stop you. Zig Ziglar

http://naturalscience.com
http://thinkexist.com
http://www.yalescientific.org
https://en.wikipedia.org
http://www.yalescientific.org
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1 Mechanics Preliminaries
Minds are like parachutes. They only function when they are open.

James Dewar

1.1 GENERAL COMMENTS
Engineers of all types contribute to science and technology for the benefit of
mankind. They construct mathematical models, develop analytical and nu-
merical approaches and methodologies, and design and manufacture various
types of devices, systems, or processes. Mathematical models, engineering ex-
periments, and numerical simulations constitute the three main pillars of sci-
entific activity. Engineering analysis is an aid to designing systems for specific
functionalities, and they involve (1) mathematical model development, (2)
data acquisition by measurements, (3) numerical simulations, and (4) valida-
tion of the results in light of any experimental evidence. The most challenging
task for engineers is to identify a suitable mathematical model of the system’s
behavior. It is in this connection this book is composed to provide interested
readers with the theories and analyses of beams and circular plates. That
is, we develop appropriate mathematical models (i.e., governing equations)
for bending, buckling, natural vibration, and transient (to a limited extent)
analyses of beams and axisymmetric circular plates. The book contains an
up-to-date, relatively complete treatment of these specialized topics.

It is important to understand that all models, mathematical or experimen-
tal, are required to satisfy the laws of physics; beyond that, they are only
approximate representations of the actual system or process. There is no ex-
act model of anything we study, and we only build on what we know to make
them better for the intended purpose of the study. In particular, continuum
mechanics is not an exact science; as it stands now, it is not complete, and
it will never be complete as we explore new phenomena. However, continuum
mechanics is responsible for many advances in science and engineering, and
we continue to build on it and make it better. Thus, the theories and analy-
ses presented in this book for beams and axisymmetric circular plates form a
basis for future developments.

This chapter is devoted to a review of preliminaries from engineering me-
chanics. The review includes: vectors and tensors, the definitions of the Green–
Lagrange strain tensor, infinitesimal strain tensor, measures of stress, equa-
tions of elasticity, and stress–strain relations for plane stress problems, an
introduction to functionally graded materials, and an introduction to the
modified couple stress concept. These preliminaries are used in the coming

https://doi.org/10.1201/9781003240846-1


2 THEORIES AND ANALYSES OF BEAMS AND AXISYMMETRIC CIRCULAR PLATES

chapters to develop the theories of beams and axisymmetric circular plates.
Readers familiar with these may skip this chapter, but it is advised that they
browse through the chapter to understand the notation used.

1.2 BEAMS AND PLATES
Beams are structural members that have a ratio of length-to-cross-sectional
dimensions very large, say, 10 to 100 or more and subjected to forces, both
along and transverse to the length and moments that tend to rotate them
about an axis perpendicular to their length. When all applied loads are along
the length only, they are called bars (i.e., bars experience only tensile or com-
pressive stresses and strains and no bending deformation). Cables (or ropes)
may be viewed as a very flexible form of bars, which can only take tension and
not compression. Plates are a two-dimensional version of beams, with plate in-
plane dimensions much larger in order of magnitude than the thickness. Thus,
plates are thin bodies subjected to forces, in the plane as well as in the direc-
tion normal to the plane and bending moments about either axis in the plane.
Geometrically, plates can be used in different shapes: circular, rectangular,
triangular, rhombic, or polygonal. Ancient Egyptians, Greeks, Indus valley
civilizations, and Romans used beams and plates of various shapes in their
temples, monumental buildings, and tombs. Because of their geometry and
loads applied, the beams and plates are stretched and bent (by design, in in-
finitesimally small magnitudes) from their original shapes. Such members are
known as structural elements and their study constitutes structural mechan-
ics, which is a subset of solid mechanics. The difference between structural
elements and three-dimensional solid bodies, such as solid blocks and spheres
that have no restrictions on their geometric make up, is that the latter may
change their original geometry, but they may not show significant “bending”
deformation.

All deformable solids can be analyzed for stress and deformation using the
elasticity equations. However, the original geometry, induced deformation, and
stress fields can be predicted, for most practical engineering problems involv-
ing structural elements, with simplified theories in the place of the three-
dimensional elasticity theory. Beams (including frames), plates, and shells are
analyzed using structural theories that are derived from three-dimensional
elasticity theory by making certain simplifying assumptions concerning the
deformation (kinematics) and stress states in these members. The develop-
ment of such theories dates back to Leonardo da Vinci1, Galileo Galilei2,

1In his “Codice Atlantico,” Leonardo Da Vinci (1452–1519) made the first attempt
known to us to correlate bending deflection and geometry for a beam.

2The book “Discorsi e dimostrazioni matematiche intorno a due nuove scienze attinenti
la mecanica e i moti locali” by Galileo Galilei (1564–1642) is considered to be the first book
devoted to structural mechanics.
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Jacob Bernoulli3, and Leonhard Euler4. The first one is the Euler–Bernoulli
beam theory, a theory that is covered in all undergraduate mechanics of ma-
terials books. In the Euler–Bernoulli beam theory, the transverse shear strain
is neglected, making the beam infinitely rigid in the transverse direction. The
second one is popularly known as the Timoshenko beam theory [1, 2]5 which
accounts for the transverse shear strain (γxz). In a recent paper, Elishakoff [3]
pointed out that the beam theory that incorporates both the rotary inertia
and shear deformation as is known presently, with shear correction coefficient
included, should be referred to as the Timoshenko–Ehrenfest beam theory be-
cause the original paper published by Timoshenko had a coauthor by name
Paul Ehrenfest. In view of the fact that many people have contributed to
the development of shear deformation theories, Reddy [4] coined the phrase
first-order shear deformation theory. Unfortunately, most people do not read
original papers they cite, and errors in giving the due credit are propagated
from one writing to the next (consult the article by Reddy and Srinivasa [5]
for some misattributions and misnomers in mechanics).

All modern developments are dedicated to refinements to the above stated
theories, by expanding the displacements in terms of higher-order terms and
accounting for other non-classical continuum mechanics aspects (e.g., stress
and strain gradient effects and material length scales). For example, a general
higher-order theory is of the form

u = ux êx + uy êy + uz êz, (1.2.1)

where

ux =

m∑
i=0

ziφ(i)

x (x, t), uy = 0, uz =

p∑
i=0

ziψ(i)

z (x, t). (1.2.2)

Here φ(0)
x = u and ψ(0)

z = w denote the midplane displacements along the x and
z directions, respectively, and φ(i)

x and ψ(i)
x are the higher-order terms, which

can be mathematically interpreted as higher-order generalized displacements
with the meaning

φ(i)

x =
1

(i)!

(
∂iu1

∂zi

)
z=0

, ψ(i)

z =
1

(i)!

(
∂iu3

∂zi

)
z=0

. (1.2.3)

3Jacob Bernoulli (1655–1705) was one of the many prominent Swiss mathematicians in
the Bernoulli family. Jacob Bernoulli (1655–1705), along with his brother Johann Bernoulli
(1667–1748), was one of the founders of calculus of variations. Jacob Bernoulli and Daniel
Bernoulli (1700–1782) (son of Johann Bernoulli) are credited for initiating a beam theory.

4Leonhard Euler (1707–1783) was a pioneering Swiss mathematician and physicist who
put forward the theory in 1750: “Methodus inveniendi lineas curvas maximi minimive pro-
prietate gaudentes,” Leonhardi Euleri Opera Omnia Ser. I, 14, 1744.

5Stephan Prokofyevich Timoshenko (1878–1972) was a Ukrainian, Russian, and Amer-
ican engineer and academician, who is considered to be the father of modern engineering
mechanics.
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For a general third-order beam theory, we have m = 3 and p = 2 in Eq. (1.2.2).
The third-order beam theory of Reddy, derived from this third-order plate
theory (see Reddy [6]–[9] and Heyliger and Reddy [10]), adopts a displacement
field that is a special case of Eq. (1.2.1) and imposes zero transverse shear
stress conditions on the bounding planes (i.e., top and bottom faces) of the
beam to express the variables introduced with the higher order terms in terms
of the variables that appear in the Euler–Bernoulli and Timoshenko beam
theories.

In the remaining part of this chapter, we review some mathematical pre-
liminaries involving calculus of vectors and tensors, and equations of solid
mechanics that are useful in the sequel. The topic of vectors and tensors is
in itself a major subject, and books are devoted to its treatment. Here we
assume that the readers are sufficiently familiar with the subject, and we only
review some useful concepts. The equations of solid mechanics include the
strain–displacement relations, equations of motion in terms of stresses, and
stress–strain relations. Other mechanics preliminaries needed in this book,
such as the energy and variational principles (including the principles of vir-
tual displacements and the minimum total potential energy, and Hamilton’s
principle), are presented in Chapter 2. The principle of virtual displacements
plays a major role in the development of the governing equations of higher-
order beam and plate theories presented in this book.

1.3 VECTORS AND TENSORS
1.3.1 VECTORS AND COORDINATE SYSTEMS

The elementary notion of a vector as being one with “magnitude” and “di-
rection” is a geometric concept and applies to directed line segments. In the
broader context, vectors can be quantities, such as functions and matrices, and
satisfy the rules of vector addition and multiplication of a vector by a scalar.
The terms “magnitude” and “direction” take different meaning in different
contexts. Engineering examples of vectors are provided by displacements, ve-
locities, forces, heat flux, and so on; and they are endowed with a direction and
a magnitude. Note that entities like speed and temperature are scalars (i.e.,
they have only magnitudes but no directions). Stress as a measure of force
per unit area is a vector (stress vector) whereas representation of a stress ten-
sor requires not only a stress vector but also the specification of the area on
which it acts. In written or typed material, a vector or tensor is denoted by
a boldface letter, A, such as used in this book, and its magnitude is denoted
by |A| or just A.

We begin with an orthonormal Cartesian coordinate system (x1, x2, x3)
with the following orthonormal basis vectors:

{êx, êy, êz} or {ê1, ê2, ê3}. (1.3.1)
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Figure 1.3.1: Rectangular Cartesian coordinates.

The associated Cartesian coordinates are denoted by (x, y, z) = (x1, x2, x3).
The familiar rectangular Cartesian coordinate system is shown in Fig. 1.3.1.
We shall always use right-handed coordinate systems.

We can represent any vector A in three-dimensional space as a linear com-
bination of the orthonormal basis as

A = A1ê1 +A2ê2 +A3ê3. (1.3.2)

The vectors A1ê1, A2ê2, and A3ê3 are called the vector components of A,
and A1, A2, and A3 are called scalar components of A associated with the
basis (ê1, ê2, ê3). Also, we use the notation A = (A1, A2, A3) to denote a
vector by its components. Thus, the position vector R can be written as
R = x1ê1 + x2ê2 + x3ê3.

1.3.2 SUMMATION CONVENTION

Equation (1.3.2) can be expressed as

A =

3∑
i=1

Ai êi, (1.3.3)

which can be shortened, by omitting the summation symbol, and understand-
ing that summation over the range of the index is implied when an index is
repeated, to

A = Ai êi. (1.3.4)

The repeated index is called dummy index and thus can be replaced by any
other symbol that has not already been used. Thus we can also write

A = Ai êi = Am êm, and so on. (1.3.5)

It is convenient at this time to introduce the Kronecker delta δij and al-
ternating symbol εijk for representing the dot product and cross product of
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two orthonormal vectors in a right-handed basis system. We define the dot
product êi ·êj between the orthonormal basis vectors of a right-handed system
as

êi · êj ≡ δij =

{
1, if i = j, for any fixed value of i, j
0, if i 6= j, for any fixed value of i, j,

, (1.3.6)

where δij is called the Kronecker delta symbol. Similarly, we define the cross
product êi × êj for a right-handed system as

êi × êj ≡ εijkêk, (1.3.7)

where

εijk =


1, if i, j, k are in cyclic order

and not repeated (i 6= j 6= k),
−1, if i, j, k are not in cyclic order

and not repeated (i 6= j 6= k),
0, if any of i, j, k are repeated.

(1.3.8)

The symbol εijk is called the alternating symbol or permutation symbol.
In an orthonormal basis, the scalar product A·B and vector product A×B

can be expressed in the index form using the Kronecker delta symbol δij and
alternating symbol εijk as

A ·B = (Aiêi) · (Bj êj) = AiBjδij = AiBi, (1.3.9)

A×B = (Aiêi)× (Bj êj) = AiBjεijkêk. (1.3.10)

The Kronecker delta and the permutation symbol are related by the identity,
known as the ε-δ identity:

εijkεimn = δjmδkn − δjnδkm. (1.3.11)

Then the length of a vector in an orthonormal basis can be expressed as
A =

√
A ·A =

√
AiAi =

√
A2

1 +A2
2 +A2

3. Similarly, we have R2 = xixi.

1.3.3 STRESS VECTOR AND STRESS TENSOR

Consider the equilibrium of an element of a continuum acted upon by forces.
The surface force acting on a small element of area in a continuous medium
depends not only on the magnitude of the area but also upon the orientation
of the area. It is customary to denote the direction of a plane area by means of
a unit vector drawn normal to that plane (see Fig. 1.3.2). To fix the direction
of the normal, we assign a sense of travel along the contour of the boundary of
the plane area in question. The direction of the normal is taken by convention
as that in which a right-handed screw advances as it is rotated according to
the sense of travel along the boundary curve or contour (see Fig. 1.3.2). Let
the unit normal vector be given by n̂. Then the area can be denoted by s = sn̂.
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Figure 1.3.2: Plane area as a vector. Unit normal vector and sense of travel are
shown.

If we denote by ∆F(n̂) the force on an elemental area n̂∆s = ∆s located
at the position r (see Fig. 1.3.3), the stress vector is defined as

t(n̂) = lim
∆s→0

∆F(n̂)

∆s
. (1.3.12)

We see that the stress vector is a point function of the unit normal n̂, which
denotes the orientation of the surface ∆s. The component of t that is in the
direction of n̂ is called the normal stress. The component of t that is normal
to n̂ (or in the plane) is called a shear stress.

Figure 1.3.3: Force on an area element.

At a fixed point r = x for each given unit vector n̂, there is a stress vector
t(n̂) acting on the plane normal to n̂. To establish a relationship between t and
n̂ and introduce the stress tensor, we now set up an infinitesimal tetrahedron
in Cartesian coordinates, as shown in Fig. 1.3.4.

If −t1,−t2,−t3, and t denote the stress vectors in the outward directions
on the faces of the infinitesimal tetrahedron whose areas are ∆s1, ∆s2, ∆s3,
and ∆s, respectively, we have by Newton’s second law for the mass inside the
tetrahedron:

t∆s− t1∆s1 − t2∆s2 − t3∆s3 + ρ∆vf = ρ∆va, (1.3.13)

where ∆v is the volume of the tetrahedron, ρ is the density, f is the body
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Figure 1.3.4: Tetrahedral element in Cartesian coordinates.

force per unit mass, and a is the acceleration. Since the total vector area of a
closed surface is zero, we have

∆sn̂−∆s1ê1 −∆s2ê2 −∆s3ê3 = 0. (1.3.14)

It follows that

∆s1 = (n̂ · ê1)∆s, ∆s2 = (n̂ · ê2)∆s, ∆s3 = (n̂ · ê3)∆s. (1.3.15)

The volume of the element ∆v can be expressed as

∆v =
∆h

3
∆s, (1.3.16)

where ∆h is the perpendicular distance from the origin to the slant face.
Substitution of Eqs. (1.3.15) and (1.3.16) in Eq. (1.3.13) and dividing

throughout by ∆s reduces it to

t = (n̂ · ê1)t1 + (n̂ · ê2)t2 + (n̂ · ê3)t3 + ρ
∆h

3
(a− f).

In the limit when the tetrahedron shrunk to a point (to obtain the relation
at a point), ∆h→ 0, we are left with

t = (n̂ · ê1)t1 + (n̂ · ê2)t2 + (n̂ · ê3)t3 = (n̂ · êi)ti, (1.3.17)

which can be displayed as

t = n̂ · (ê1t1 + ê2t2 + ê3t3) . (1.3.18)

The terms in the parenthesis are to be treated as a dyad, called stress dyad
or stress tensor σ:

σ ≡ ê1t1 + ê2t2 + ê3t3. (1.3.19)
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The stress tensor is a point property of the medium that is independent of
the unit normal vector n̂. Thus, we have6

t(n̂) = n̂ · σ (ti = njσji) (1.3.20)

and the dependence of t on n̂ has been explicitly displayed. Equation (1.3.20)
is known as Cauchy’s formula, and σ is termed the Cauchy stress tensor.

It is useful to resolve the stress vectors t1, t2, and t3 into their orthogonal
components. We have

ti = σi1ê1 + σi2ê2 + σi3ê3 = σij êj (1.3.21)

for i = 1, 2, 3. Hence, the Cauchy stress tensor can be expressed in the rect-
angular Cartesian system using the summation notation as

σ = êiti = σij êiêj . (1.3.22)

The component σij represents the stress (force per unit area at a point) on a
plane perpendicular to the ith coordinate and in the jth coordinate direction
(see Fig. 1.3.5). The stress vector t represents the vectorial stress on a plane
whose normal coincides with n̂.

Figure 1.3.5: Definition of stress components in Cartesian rectangular coordinates.

1.3.4 THE GRADIENT OPERATOR

Let us denote a scalar field by φ = φ(x) = φ(x1, x2, x3), where x = (x1, x2, x3)
is a position vector of a typical point in space. The differential change in φ is
given by

dφ =
∂φ

∂x1
dx1 +

∂φ

∂x2
dx2 +

∂φ

∂x3
dx3. (1.3.23)

6In some books, σ is defined to be the transpose of that defined in Eq. (1.3.19); see
Reddy [11]. This is because Eq. (1.3.17) can be expressed, in view of the fact that n̂ · êi is
a scalar quantity that can be placed on the other side of the vector ti, making Eq. (1.3.18)
to become t = (t1ê1 + t2ê2 + t3ê3) · n̂ and t(n̂) = σ · n̂ = n̂ · σT.
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The differentials dx1, dx2, and dx3 are components of dx. Since êi · êj = δij ,
we can write

dφ = ê1
∂φ

∂x1
· ê1 dx1 + ê2

∂φ

∂x2
· ê2 dx1 + ê3

∂φ

∂x3
· ê3 dx3

= (dx1 ê1 + dx2 ê2 + dx3 ê3) ·
(

ê1
∂φ

∂x1
+ ê2

∂φ

∂x2
+ ê3

∂φ

∂x3

)
= dx ·

(
ê1

∂φ

∂x1
+ ê2

∂φ

∂x2
+ ê3

∂φ

∂x3

)
. (1.3.24)

Let us now denote the magnitude of dx by ds ≡ |dx|. Then ê = dx/ds is a
unit vector in the direction of dx, and we have(

dφ

ds

)
ê

= ê ·
(

ê1
∂φ

∂x1
+ ê2

∂φ

∂x2
+ ê3

∂φ

∂x3

)
. (1.3.25)

The derivative (dφ/ds) is called the directional derivative of φ, and it is the
rate of change of φ with respect to distance. Because the magnitude of this
vector is equal to the maximum value (by being along the vector dx) of the
directional derivative, it is called the gradient vector and is denoted by ∇φ:

grad φ = ∇φ ≡ ê1
∂φ

∂x1
+ ê2

∂φ

∂x2
+ ê3

∂φ

∂x3
. (1.3.26)

It is important to note that whereas the gradient operator ∇ has some
of the properties of a vector, it does not have them all, because it is an
operator. For instance, ∇ ·A is a scalar, called the divergence of vector A,
whereas A ·∇ is a scalar differential operator. Thus, the del operator does
not commute in this sense. The dot product of del operator with a vector is
called the divergence of a vector and is denoted by

∇ ·A ≡ divA =
∂Ai
∂xi

. (1.3.27)

If we take the divergence of the gradient vector, we have

div(grad φ) ≡∇ ·∇φ = (∇ ·∇)φ = ∇2φ. (1.3.28)

The notation ∇2 = ∇ · ∇ is called the Laplace operator. In the Cartesian
rectangular coordinate system, this reduces to the form

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
=

∂2φ

∂xi∂xi
. (1.3.29)

The curl of a vector is defined as the del operator operating on a vector by
means of the cross product [the ith component of (∇×A) is ∂Ak

∂xj
εjki]:

curl A = ∇×A = êj
∂

∂xj
× êkAk =

∂Ak
∂xj

(êj × êk) =
∂Ak
∂xj

εjki êi. (1.3.30)
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We also note that the gradient of a vector, ∇A, is a dyad (i.e., second-order
tensor) because it has two base vectors to represent it: ∇A = êj

∂Ai
∂xj

êi =
∂Ai
∂xj

êj êi. One should make note of the order of the base vectors7. The trans-

pose of ∇A is to interchange the basis vectors (∇A)T = ∂Ai
∂xj

êi êj .

Useful expressions for the integrals of the gradient, divergence, and curl of
a vector can be established between volume integrals and surface integrals8.
Let Ω denote a region in space surrounded by the closed surface Γ. Let dΓ
be a differential element of surface and n̂ the unit outward normal, and let
dΩ be a differential volume element. The following integral relations between
volume and surface integrals (or between area integrals and line integrals) are
proven to be useful in the coming chapters. In three dimensions, these relations
involve the gradient, curl, and divergence of field variables. The specific forms
are presented here.

Gradient theorem∫
Ω

∇ φdΩ =

∮
Γ

n̂φdΓ

[∫
Ω

êi
∂φ

∂xi
dΩ =

∮
Γ

êiniφdΓ

]
. (1.3.31)

Curl theorem (also known as Kelvin–Stokes’ theorem9)∫
Ω

∇×A dΩ =

∮
Γ

n̂×A dΓ

[∫
Ω

εijkêk
∂Aj
∂xi

dΩ =

∮
Γ

εijkêkniAj dΓ

]
.

(1.3.32)
Divergence theorem (also known as Green-Gauss’s theorem10),∫

Ω

∇ ·A dΩ =

∮
Γ

n̂ ·A dΓ

[∫
Ω

∂Ai
∂xi

dΩ =

∮
Γ

niAi dΓ

]
. (1.3.33)

The three theorems can be expressed in a single equation as∫
Ω

∇ ∗ F dΩ =

∮
Γ

n̂ ∗ F dΓ, (1.3.34)

7In some books the gradient operator ∇ is defined, different from that in Eq. (1.3.26),
as one with the backward operation: ∇A = (∂A/∂xj)êj = (∂Ai/∂xj) êi êj .

8The notion of surface integrals was introduced by Joseph-Louis Lagrange (1736–1813)
in 1760 and again in 1811 in the second edition of his Mécanique Analytique in more general
terms. He discovered the divergence theorem in 1762.

9Named after Lord Kelvin (1824–1907) and George Stokes (1819–1903).

10Carl Friedrich Gauss (1777–1855) used surface integrals while working on the gravi-
tational attraction of an elliptical spheroid in 1813, when he proved special cases of the
divergence theorem. George Green (1793–1841) proved special cases of the theorem in 1828
in “An Essay on the Application of Mathematical Analysis to the Theories of Electricity
and Magnetism.”
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where * is a gradient, curl, or divergence operation, and the field variable
is necessarily be a vector or tensor field when * denotes curl or divergence
operation.

The forms of a typical vector and its gradient, curl, and divergence in the
cylindrical coordinate system (see Fig. 1.3.6) are presented here for a ready
reference when we study circular plates.

Figure 1.3.6: Cylindrical coordinate system.

Cylindrical coordinate system (r, θ, z)

Position vector: R = r êr + z êz = xêx + yêy + z êz, (1.3.35)

Relation to (x, y, z) : x = r cos θ, y = r sin θ, z = z, (1.3.36)

êr = cos θ êx + sin θ êy, êθ = − sin θ êx + cos θ êy, êz = êz, (1.3.37)

∂êr
∂θ

= − sin θ êx + cos θ êy = êθ,

∂êθ
∂θ

= − (cos θ êx + sin θ êy) = −êr. (1.3.38)

All other derivatives of the base vectors of the cylindrical coordinate system
are zero. A typical vector u (such as the displacement), which is a function
of the coordinates, can be expressed in the cylindrical coordinate system in
terms of its components (ur, uθ, uz) as

u = ur êr + uθ êθ + uz êz. (1.3.39)

Then ∇ and its various operations on u are given by

∇ = êr
∂

∂r
+

1

r
êθ

∂

∂θ
+ êz

∂

∂z
, ∇2 =

1

r

[ ∂
∂r

(
r
∂

∂r

)
+

1

r

∂2

∂θ2
+ r

∂2

∂z2

]
,

(1.3.40)

∇ · u =
1

r

[
∂(rur)

∂r
+
∂uθ
∂θ

+ r
∂uz
∂z

]
, (1.3.41)
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∇× u =

(
1

r

∂uz
∂θ
− ∂uθ

∂z

)
êr +

(
∂ur
∂z
− ∂uz

∂r

)
êθ +

1

r

[
∂(ruθ)

∂r
− ∂ur

∂θ

]
êz,

(1.3.42)

∇u =
∂ur
∂r

êrêr +
∂uθ
∂r

êrêθ +
1

r

(
∂ur
∂θ
− uθ

)
êθêr +

∂uz
∂r

êrêz +
∂ur
∂z

êzêr

+
1

r

(
ur +

∂uθ
∂θ

)
êθêθ +

1

r

∂uz
∂θ

êθêz +
∂uθ
∂z

êzêθ +
∂uz
∂z

êzêz.

(1.3.43)

1.4 REVIEW OF THE EQUATIONS OF SOLID MECHANICS
1.4.1 GREEN–LAGRANGE STRAIN TENSOR

For most part, the measure of strain in solid mechanics is the Green–Lagrange
strain tensor11 defined by (see Reddy [11])

E = 1
2

[
(∇u) + (∇u)

T
+ (∇u) · (∇u)

T
]
, (1.4.1a)

where u(X, t) is the displacement vector of a material particle occupying loca-
tion X in the reference configuration (and the same material particle occupies
a location x = X + u in the deformed body), and ∇ is the gradient operator
with respect to X:

∇ = Ê1
∂

∂X1
+ Ê2

∂

∂X2
+ Ê3

∂

∂X3
= Êi

∂

∂Xi
, (1.4.1b)

where (Ê1, Ê2, Ê3) are the unit base vectors in the coordinate system
(X1, X2, X3). Clearly, the last term in Eqs. (1.4.1a) is nonlinear in the displace-
ment gradients. In terms of the displacement components (u1, u2, u3) referred
to the rectangular coordinates (X1, X2, X3), we have (see Fig. 1.4.1)

Eij = 1
2

(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂um
∂Xi

∂um
∂Xj

)
, (1.4.2)

where the summation on repeated (or dummy) index m over the range of
m = 1, 2, 3 is implied.

11There are several measures of strains. The most commonly used strain measures are:
the Cauchy–Green deformation tensor, C = FT · F; the Green–Lagrange strain tensor,
2E = C− I; and the Euler–Almansi strain tensor, 2e = I−F−T ·F−1. Here F denotes the
deformation gradient, FT = ∇x, and I is the unit second order tensor (see Reddy [11] for
details). George Green (1793–1841) was a British mathematical physicist and well-known
for Cauchy–Green tensor and Green’s theorem. Joseph-Louis Lagrange (1736–1813) was
an Italian mathematician and astronomer, later naturalized French. He made significant
contributions to analysis, number theory, and classical and celestial mechanics. Leonhard
Euler was succeeded by Lagrange as the director of mathematics at the Prussian Academy
of Sciences in Berlin.
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Figure 1.4.1: Notation used for the Green strain components in the rectangular
Cartesian coordinate system.

In expanded notation, the Green strain tensor components referred to the
rectangular Cartesian coordinate system (X1, X2, X3) in the reference (unde-
formed) configuration in terms of the displacement components (u1, u2, u3)
are given by

E11 =
∂u1

∂X1
+ 1

2

[(
∂u1

∂X1

)2

+

(
∂u2

∂X1

)2

+

(
∂u3

∂X1

)2]
,

E22 =
∂u2

∂X2
+ 1

2

[(
∂u1

∂X2

)2

+

(
∂u2

∂X2

)2

+

(
∂u3

∂X2

)2]
, (1.4.3a)

E33 =
∂u3

∂X3
+ 1

2

[(
∂u1

∂X3

)2

+

(
∂u2

∂X3

)2

+

(
∂u3

∂X3

)2]
,

2E12 =
∂u1

∂X2
+
∂u2

∂X1
+
∂u1

∂X1

∂u1

∂X2
+
∂u2

∂X1

∂u2

∂X2
+
∂u3

∂X1

∂u3

∂X2
,

2E13 =
∂u1

∂X3
+
∂u3

∂X1
+
∂u1

∂X1

∂u1

∂X3
+
∂u2

∂X1

∂u2

∂X3
+
∂u3

∂X1

∂u3

∂X3
, (1.4.3b)

2E23 =
∂u2

∂X3
+
∂u3

∂X2
+
∂u1

∂X2

∂u1

∂X3
+
∂u2

∂X2

∂u2

∂X3
+
∂u3

∂X2

∂u3

∂X3
.

The components E11, E22, and E33 are the normal (i.e., extensional) strains,
and E12, E23, and E13 are the shear strains.

By definition, the Green–Lagrange strain tensor is symmetric, Eij = Eji.
It is the measure often used in the large deformation analysis. It is a strain
measure that is “energetically conjugate” to the second Piola–Kirchhoff stress
tensor introduced in Section 1.4.2. As we shall see shortly, we will consider a
special case of E that is suitable for small strains but accounts for moderately
large rotations, as experienced in beams and plates.
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The Green–Lagrange strain tensor components in the cylindrical coordinate
system (r = X1, θ = X2, z = X3; see Fig. 1.4.2) are given by

Err =
∂ur
∂r

+ 1
2

[(
∂ur
∂r

)2

+

(
∂uθ
∂r

)2

+

(
∂uz
∂r

)2
]
,

Eθθ =
ur
r

+
1

r

∂uθ
∂θ

+
1

2

[(
1

r

∂ur
∂θ

)2

+

(
1

r

∂uθ
∂θ

)2

+

(
1

r

∂uz
∂θ

)2

− 2

r2
uθ
∂ur
∂θ

+
2

r2
ur
∂uθ
∂θ

+
(uθ
r

)2

+
(ur
r

)2
]
, (1.4.4a)

Ezz =
∂uz
∂z

+ 1
2

[(
∂ur
∂z

)2

+

(
∂uθ
∂z

)2

+

(
∂uz
∂z

)2
]
,

2Erθ =
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂r

∂ur
∂θ

+
1

r

∂uθ
∂r

∂uθ
∂θ

+
1

r

∂uz
∂r

∂uz
∂θ

+
ur
r

∂uθ
∂r
− uθ

r

∂ur
∂r

,

2Erz =

(
∂ur
∂z

+
∂uz
∂r

+
∂ur
∂r

∂ur
∂z

+
∂uθ
∂r

∂uθ
∂z

+
∂uz
∂r

∂uz
∂z

)
, (1.4.4b)

2Eθz =
∂uθ
∂z

+
1

r

∂uz
∂θ

+
1

r

∂ur
∂θ

∂ur
∂z

+
1

r

∂uθ
∂θ

∂uθ
∂z

+
1

r

∂uz
∂θ

∂uz
∂z
− uθ

r

∂ur
∂z

+
ur
r

∂uθ
∂z

.

Figure 1.4.2: Notation used for the Green strain components on a volume element
in the cylindrical coordinate system (r, θ, z); see Fig. 1.3.6. As indicated in Fig. 1.4.1,
Eξη is the strain on the plane perpendicular to ξ-coordinate and in the η-coordinate
direction, where ξ and η take on the symbols r, θ, and z. The notation shown here
for strains follows that of the stress components shown in Fig. 1.3.5.
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When the displacement gradients are small (say less than 1%), that is,
|∇u| << 1,

∂ui
∂Xj

<< 1,

(
∂ui
∂Xj

)2

≈ 0, for any i and j,

we may neglect the nonlinear terms in the definition of the Green strain tensor
E and obtain the linearized strain tensor ε, called the infinitesimal strain
tensor (Xi ≈ xi):

ε = 1
2

[
(∇u) + (∇u)

T
]

; εij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.4.5)

In expanded form in the rectangular coordinate system (x, y, z), the in-
finitesimal strain tensor components are

εxx =
∂ux
∂x

, εyy =
∂uy
∂y

, εzz =
∂uz
∂z

,

(1.4.6)

2εxy =
∂ux
∂y

+
∂uy
∂x

, 2εxz =
∂ux
∂z

+
∂uz
∂x

, 2εyz =
∂uy
∂z

+
∂uz
∂y

.

If one presumes that the strains are small and but rotations about the
y-axis of the material lines transverse to the x-axis are moderately large,
that is, the squares and products of ∂uz/∂x and ∂uz/∂y are not negligible
but squares and products of ∂ux/∂x, ∂uy/∂y, and ∂uz/∂z are negligible, the
strains resulting from the Green strain tensor components are known as the
Föppl–von Kármán strains12

εxx =
∂ux
∂x

+
1

2

(
∂uz
∂x

)2

, εyy =
∂uy
∂y

+
1

2

(
∂uz
∂y

)2

, εzz =
∂uz
∂z

, (1.4.7a)

2εxy =
∂ux
∂y

+
∂uy
∂x

+
∂uz
∂x

∂uz
∂y

, 2εxz =
∂ux
∂z

+
∂uz
∂x

,

2εyz =
∂uy
∂z

+
∂uz
∂y

.

(1.4.7b)

12They are named after August Föppl and Theodore von Kármán. August Otto Föppl
(1854–1924) was a professor of Technical Mechanics and Graphical Statics at the Technical
University of Munich, Germany. Theodore von Kármán (1881–1963) was a Hungarian-
American mathematician, aerospace engineer, and physicist. He received his doctorate un-
der the guidance of Ludwig Prandtl at the University of Göttingen, Germany in 1908.
He was invited to the United States by Robert A. Millikan to advise California Institute
of Technology (Caltech) engineers on the design of a wind tunnel. In 1930, he accepted
the directorship of the Guggenheim Aeronautical Laboratory at the California Institute
of Technology (GALCIT). His contributions include: theories of non-elastic buckling and
supersonic aerodynamics. He made additional contributions to elasticity, vibration, heat
transfer, and crystallography.
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In the cylindrical coordinates, the von Kármán nonlinear strains are

εrr =
∂ur
∂r

+ 1
2

(
∂uz
∂r

)2

, εθθ =
ur
r

+
1

r

∂uθ
∂θ

+
1

2

(
1

r

∂uz
∂θ

)2

,

εzz =
∂uz
∂z

+ 1
2

(
∂uz
∂z

)2

, 2εrθ =
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r
+

1

r

∂uz
∂r

∂uz
∂θ

,

2εrz =
∂ur
∂z

+
∂uz
∂r

, 2εθz =
∂uθ
∂z

+
1

r

∂uz
∂θ

+
1

r

∂ur
∂θ

∂ur
∂z

. (1.4.8)

1.4.2 THE SECOND PIOLA–KIRCHHOFF STRESS TENSOR

The Cauchy13 stress tensor σ (sometimes called “true stress”) introduced in
Eqs. (1.3.19) and (1.3.22) is the most natural and physical measure of the
state of stress at a point in the deformed body and measured as the force in
the deformed body per unit area of the deformed body. Since the geometry of
the deformed body is not known (and yet to be determined), the governing
equations must be written in terms of the known reference configuration14, say,
configuration at t = 0. This need gives rise to come up with a measure of stress
that can be calculated using the known reference configuration. One such
measure is the second Piola–Kirchhoff stress tensor15, which is a measure of
the transformed internal force (from the deformed to the undeformed body) per
undeformed area. It is a mathematical entity introduced for the convenience
of calculating stresses in a deformed solid.

The Green strain tensor E can be shown to be the dual (or energetically
conjugate) to the second Piola–Kirchhoff stress tensor S (see Reddy [11]) in
the sense that the strain energy density stored in an elastic body is equal to
the product of E and S and it is invariant (i.e., independent of the coordinate
system used). The second Piola–Kirchhoff stress tensor S and the Cauchy
stress tensor σ are related according to

ST = JF−1 · σT · F−T, σT =
1

J
F · ST · FT. (1.4.9)

where F is the deformation gradient defined by [11]

F = (∇x)
T

= I + (∇u)
T
. (1.4.10)

13Baron Augustin-Louis Cauchy (1789–1857) was a French mathematician, engineer, and
physicist who made pioneering contributions to mathematical analysis and continuum me-
chanics.

14We shall use the term configuration to mean the simultaneous position of all material
points of a body for any fixed time.

15Gustav Robert Kirchhoff (1824–1887) was a German physicist who contributed to
the fundamental understanding of electrical circuits, spectroscopy, black-body radiation
by heated objects, and theoretical mechanics.
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and J is the determinant of F, called the Jacobian of the motion. The de-
formation gradient F, in general, involves both stretch and rotation. In Eq.
(1.4.10), I denotes the second-order identity tensor (i.e., I = δij ÊiÊj ; see Fig.
1.4.1).

1.4.3 EQUATIONS OF MOTION

The principle of balance of linear momentum as applied to a deformed solid
continuum and expressed in terms of the Cauchy stress tensor σ gives

∇x · σ + f = ρ
∂2u

∂t2
, (1.4.11)

where ∇x is the gradient operator with respect to the spatial coordinate x oc-
cupied by the material particle X which was at location X in the undeformed
body (i.e., the displacement vector is u = x −X); f is the body force vector
measured per unit deformed volume; and ρ is the mass per unit deformed
volume. Equation (1.4.10) is not useful for the analysis of large deformation
because there the measure of the stress is the second Piola–Kirchhoff stress
tensor, S. Therefore, we express the equation of motion in terms of the second
Piola–Kirchhoff stress tensor S as

∇ · [S · (I + ∇u)] + f̂ = ρ0
∂2u

∂t2
, (1.4.12)

where ∇ is the gradient operator with respect to the material coordinate X, ρ0

is the mass density measured in the undeformed body and f̂ is the body force
per unit volume in the undeformed body. Clearly, the equations of motion
expressed in terms of the second Piola–Kirchhoff stress tensor are nonlinear,
and this (spatial) nonlinearity is in addition to any nonlinearity that may
come from the strain–displacement relations and constitutive relations.

1.4.4 STRESS–STRAIN RELATIONS

Due to the smallness of the thickness dimension in beams and plates, the
normal stress in the thickness direction, namely, σzz, is assumed to be small
and negligible compared to the in-plane stresses. More importantly, in the
case of an orthotropic material with different moduli in the material 1 and 2
directions (i.e., planes of material symmetry), the shear stresses are assumed
to be only function of their respective shear strains σij = Gij2εij (no sum on
repeated subscripts) for i 6= j = 1, 2, 3. Then the 3-D constitutive equations
resulting from the application of Hooke’s law16 must be modified to account for

16Robert Hooke (1635–1703) was an English scientist and architect and recently called
“England’s Leonardo.” Hooke’s law states that the force (F ) needed to elongate or compress
a spring by some distance (x) is linearly proportional to the distance, F = kx, where k is
the proportionality constant which is characteristic of the spring stiffness.
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this fact. The stress–strain relations obtained are termed plane-stress-reduced
constitutive equations, which are adopted for beams, plates, and shells, whose
thickness is very small compared to the other dimensions.

Here, we assume that the beam or plate material is characterized as or-
thotropic with respect to the (x, y, z) system (i.e., the material coordinates
coincide with the coordinates used to describe the governing equations). Then
we have σxx

σyy
σxy

 =

Q11 Q12 0
Q12 Q22 0

0 0 Q66

 εxx − αx ∆T
εyy − αy ∆T

2εxy

 ,

{
σyz
σxz

}
=

[
Q44 0

0 Q55

]{
2εyz
2εxz

}
,

(1.4.13)

where Qij are the plane stress-reduced elastic stiffness coefficients; αx and αy
are the coefficients of thermal expansion along the x and y directions, respec-
tively; and ∆T = T − T0 is the temperature increment from a reference state
T0. The elastic coefficients Qij are related to the six independent engineering
constants (E1, E2, ν12, G12, G13, G23) as follows:

Q11 =
E1

1− ν12ν21
, Q12 =

ν12E2

1− ν12ν21
, Q22 =

E2

1− ν12ν21
,

(1.4.14)
Q66 = G12, Q44 = G23, Q55 = G13.

Note that ν21 is computed from the following reciprocal relationship implied
by the symmetry of elasticity tensor (see Reddy [8] for details):

ν21 = ν12
E2

E1
. (1.4.15)

1.5 FUNCTIONALLY GRADED STRUCTURES
1.5.1 BACKGROUND

Functionally graded materials (FGMs) are characterized by the variation in
composition of two or more materials gradually over surface or volume, re-
sulting in a composite material that has desired properties. An FGM can
be designed for specific functionality and application. Most structures found
in nature – from sea shells, trees and plants, to organs of living bodies –
are multi-material graded structures, formed over millions of years, to satisfy
certain functionalities. In the modern times, the man-made FGMs were pro-
posed (see [12] and [13]) as thermal barrier materials for applications in space
planes, space structures, nuclear reactors, turbine rotors, flywheels, and gears,
to name only a few. As conceived and manufactured today, these materials
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are isotropic and non-homogeneous. In general, all the multi-phase materi-
als, in which the material properties are varied gradually in a predetermined
manner, fall into the category of functionally gradient materials. As stated
before, the functionally gradient material characteristics are present in most
structures found in nature, and perhaps, a better understanding of the highly
complex form of materials in nature will help us in synthesizing new materials
(the science of so called “biomimetics”). Such property enhancements endow
FGMs with material properties such as resilience to fracture. FGMs promise
attractive applications in a wide variety of wear coating and thermal shield-
ing problems such as gears, cams, cutting tools, high temperature chambers,
furnace liners, turbines, micro-electronics, and space structures.

A large number journal papers dealing with functionally graded beams and
plates have appeared in the literature and a critical review of these papers is
not a focus of this introduction to FGM structures [14] (also see, e.g., [15]–[41]
and references therein). A majority of these works considered two-constituent
FGM structures, and typically the material variation is considered through
the thickness of beams, plates, and shell structures. The works of Praveen and
Reddy [19] and Reddy [22] have also considered the von Kármán nonlinearity
in functionally graded plates.

With the progress of technology and fast growth of the use of nanostruc-
tures, FGMs have found potential applications in micro and nano scales in the
form of shape memory alloy thin films [42], atomic force microscopes (AFMs)
[43], electrically actuated actuators [44], and micro switches [45], to name a
few. The von Kármán nonlinearity may have significant contribution to the
response of micro- and nano-scale devices such as biosensors and AFMs [46].

A typical FGM represents a particulate composite with a prescribed distri-
bution of volume fractions of constituent phases. In the case of beams, plates,
and shells, the material properties are assumed to vary continuously through
the thickness. The effective properties of macroscopic homogeneous beams,
plates, and shells are derived from the microscopic heterogeneous material
distributions using homogenization techniques [14, 47, 48]. Several models,
like the rule of mixtures [19, 22], Hashin–Shtrikman type bounds [49], Mori-
Tanaka scheme [48, 50], and self-consistent schemes [51] are available in the
literature for determination of the bounds for the effective properties. Voigt
scheme and the Mori–Tanaka scheme [50] have been generally used for the
study of FGM plates and structures by researchers [35, 52].

1.5.2 MORI–TANAKA SCHEME

For those parts of the graded microstructure that have a well-defined contin-
uous matrix and discontinuous reinforcement, the overall properties and local
fields can be closely predicted by Mori–Tanaka estimates. The assumption of
spherical particles embedded in a matrix is considered. The primary matrix
phase is assumed to be reinforced by spherical particles of secondary phase.
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Mori and Tanaka [48, 50] derived a method to calculate the average internal
stress in the matrix of a material. This has been reformulated by Benveniste
[53] for use in the computation of the effective properties of composite ma-
terials. According to the Mori–Tanaka scheme, the effective elastic properties
of the FGM can be expressed as

K −K1

K2 −K1
=

1− V1

1 + V1
K2−K1

K1+
4
3G1

,
G−G1

G2 −G1
=

1− V1

1 + V1
G2−G1

G1+f1

, (1.5.1)

where

f1 =
G1(9K1 + 8G1)

6(K1 + 2G1)
, V2 = 1− V1, (1.5.2)

in which K and G are bulk modulus and shear modulus, respectively, and V
is the volume fraction of the material (the subscript 1 and 2 refer to materials
1 and 2, respectively). The bulk modulus K and shear modulus G are related
to Young’s modulus E and Poisson’s ratio ν, by the following equations:

E =
9KG

3K +G
, ν =

3K − 2G

2(3K +G)
. (1.5.3)

1.5.3 VOIGT SCHEME: RULE OF MIXTURES

There are two rule of mixture models to describe the effective mechanical prop-
erties of a composite comprising two elastically isotropic constituent phases:
the Voigt and Reuss models [54]. The Voigt model corresponds to axial loads
and the Reuss model to transverse loads.

Voigt scheme has been adopted in most analysis of FGM structures [18, 22,
25, 35, 37, 38, 39, 41]. The advantage of the Voigt model is the simplicity of
implementation and the ease of computation. According to Voigt scheme, the
effective property P of the composite of two phases is the weighted average
of the properties of the constituent phases:

P (z) = P1 V1(z) + P2 V2(z), V2(z) = 1− V1(z), (1.5.4)

where P1 and P2 represent the constituent material properties (e.g., modulus,
conductivity, and so on) of materials 1 and 2, respectively; and, V1 and V2

represent the volume fractions of materials 1 and 2, respectively, which may
vary with respect to thickness coordinate z.

1.5.4 EXPONENTIAL MODEL

The exponential model, which is often employed in fracture studies, is based
on the formula (see [29, 30])

P (z) = P1 exp

[
−α

(
1

2
− z

h

)]
, α = log

(
P1

P2

)
. (1.5.5)
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1.5.5 POWER-LAW MODEL

The variation of properties through the thickness is considered to be either
exponential (called E-FGM), as given in Eq. (1.5.5), or based on a power series
(called P-FGM), as presented in Eqs. (1.5.4) and (1.5.6), which covers most
of the existing analytical models.

The volume fractions of materials 1 and 2, V1 and V2 can be expressed in
the form of power law as (see Fig. 1.5.1)

V1(z) =

(
1

2
+
z

h

)n
, V2(z) = 1− V1(z). (1.5.6)

where n is the volume fraction exponent (termed here as the power-law in-
dex). Then the property P as a function of the thickness coordinate z is given
by Eq. (1.5.4). Fig. 1.5.2 shows the variation of the volume fraction of ceramic,

Figure 1.5.1: Geometry of a through-thickness functionally graded beam.

Figure 1.5.2: Volume fraction of material 1, V1, through the beam thickness for
various values of power-law index, n.
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V1, through the beam thickness for various values of the power-law index n.
Note that the volume fraction V1(z) decreases with increasing value of n. The
Power law is most popular because of its simplicity and algebraic nature.

Equations (1.5.4) and (1.5.6) can be combined to express a typical material
property variation through the beam height or plate thickness, h, as

P (z) = (P1 − P2)V1(z) + P2, V1(z) =

(
1

2
+
z

h

)n
. (1.5.7)

1.6 MODIFIED COUPLE STRESS EFFECTS
1.6.1 BACKGROUND

The increasing demand for safe, lightweight, and environmentally acceptable
structures has increased the need to investigate new structural configurations,
including cellular or architected beams and plates. Such structures offer higher
load-bearing capacity compared to their conventional counter parts. Computa-
tional models that take into account all architectural details are prohibitively
expensive, requiring nonlocal continuum theories which account for the struc-
tural details, without homogenizing the structure, are needed. The modified
couple stress theory of Mindlin [55], Koiter [56], and Toupin [57], and the
strain gradient theory of [58]–[61] provide examples of such nonlocal theories.
A more complete review of the early developments can be found in the paper
of Srinivasa and Reddy [62]. The strain gradient theory is a more general form
of the modified couple stress theory and the relationship between the modified
couple stress theory and the strain gradient theory can be found in the work
of Reddy and Srinivasa [63]. In recent years a number of attempts have been
made to bring microstructural length scales into the continuum description
of beams and plates. Such models are useful in determining the structural
response of micro and nano devices made of a variety of new materials that
require the consideration of small material length scales over which the neigh-
boring secondary constituents interact, especially when the spatial resolution
is comparable to the size of the secondary constituents. Examples of such ma-
terials are provided by nematic elastomers, carbon nanotube composites [64],
and CNT-reinforced environment-resistant coatings [65].

Microstructure-dependent theories are developed for the Bernoulli-Euler
beam by Park and Gao [66, 67], for the shear deformable beams and plates by
Ma, Gao, and Reddy [68]–[70], for the third-order theory of plates for bending
and vibration by Aghababaei and Reddy [71], and for vibration and buckling
of shear deformable beams by Araujo dos Santos and Reddy [72, 73]. In the last
two decades, Reddy and his colleagues [68]–[85] have published a large number
of papers dealing with linear and nonlinear bending of classical and first-
and third-order shear deformable beams and plates using the modified couple
stress theory. Some of these works have accounted for the the von Kármán
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nonlinearity and functionally graded (through the thickness) materials. The
von Kármán nonlinearity may have significant contribution to the response of
beam-like elements used in micro- and nano-scale devices such as, biosensors
and AFMs [46, 86].

1.6.2 THE STRAIN ENERGY FUNCTIONAL

Let u denote the displacement vector of an arbitrary point in the beam or
plate. The rotation vector ω is defined as

ω = 1
2 (∇× u) . (1.6.1)

Physically, ω denotes the macro-rotation at a point of the continuum. The
curvature tensor χ, which represents the rate of change of the rotation, is
defined as (assumed to be small):

χ =
1

2

[
∇ω + (∇ω)

T
]
. (1.6.2)

The modified couple stress theory is based on the hypothesis that the rate of
change of macro-rotations cause additional stresses, called couple stresses, in
the continuum. The modified couple stress tensor m is related to the curvature
tensor χ through the constitutive relations [55]:

m = 2G`2 χ, (1.6.3)

where ` is the length scale parameter (sometimes denoted by l) and G is the
shear modulus.

According to the modified couple stress theory, the strain energy potential
of an elastic beam of length a or circular plate of radius a can be expressed
as (see Section 2.2 for the concept of strain energy)

U =
1

2

∫
A

[∫ a

0

(σ : ε+ m : χ) dx

]
dA, (1.6.4)

where A is the area of cross section (for beam we set dA = dydz and for
circular plate we take dx = dr and dA = rdθdz), σ is the Cauchy stress
tensor, ε is the simplified Green–Lagrange strain tensor, m is the deviatoric
part of the symmetric couple stress tensor, and χ is the symmetric curvature
tensor defined in Eq. (1.6.2). In the coming chapters, these relations will be
specialized to various beam and plate theories.

1.7 CHAPTER SUMMARY
In this chapter, beginning with a short discussion of vectors and tensors and
the introduction of the Cauchy stress vector and Cauchy stress tensor, mea-
sures of Green strain tensor, infinitesimal strain tensor and the von Kármán
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strain tensor components are reviewed. The definition of the second Piola–
Kirchhoff stress tensor is introduced, but for small strains (as is the case with
the present study), it is indistinguishable from the Cauchy stress tensor. Then
the equations of motion of a deformable solid are presented, and stress–strain
relations for a linear elastic material are summarized.

In addition, an introduction to two-constituent functionally graded materi-
als is presented and various models of material gradation are reviewed. Then
the modified couple stress theory is briefly visited, and the pertinent equations
are summarized. Overall, the contents of this chapter will be utilized in the
coming chapters.

There are other nonlocal models [87, 88, 89, 92]. Among them the stress
gradient model (especially the differential model) of Eringen [89]–[93] has been
used to study beams and circular plates, and the topic is not included in this
book. Interested readers may consult [94]–[101] and references therein.

SUGGESTED EXERCISES
1.1 Establish the relations in Eqs. (1.3.41)–(1.3.43).

1.2 Verify the relations in Eqs. (1.4.4a) and (1.4.4b)

1.3 Establish the equation of motion in Eq. (1.4.12):

∇ · [S · (I + ∇u)] + f = ρ0
∂2u

∂t2
,

where ∇ is the gradient operator with respect to the material coordinate X, ρ0 is the
mass density measured in the undeformed body and f̂ is the body force per unit volume
of the undeformed body.

1.4 Establish the relations in Eq. (1.4.14) beginning with the strain–stress relations (Hooke’s
law) for the plane stress case (i.e., σ3 ≡ σ33 = 0): ε1

ε2
ε6

 =


1
E1

− ν21
E2

0

− ν12
E1

1
E2

0

0 0 1
G12


 σ1

σ2

σ6

 .

1.5 If the displacement vector is given by

u(x1, x2, x3) = [u(x1) + x3 φ(x1)] ê1 + w(x1) ê3,

determine the components of ω and χ.

If your theory is found to be against the second law of thermodynamics, I give you no hope;

there is nothing for it but to collapse in deepest humiliation. Arthur Eddington
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