
Generic Wrappers

Martin Büchi1 and Wolfgang Weck2

1 Turku Centre for Computer Science,Åbo Akademi University,
Lemminkäisenkatu 14A, FIN-20520 Turku,

Martin.Buechi@abo.fi
2 Oberon microsystems Inc., Technoparkstrasse 1,

CH-8005 Zürich,
weck@oberon.ch

Abstract. Component software means reuse and separate marketing of pre-man-
ufactured binary components. This requires components from different vendors to
be composed very late, possibly by end users at run time as in compound-document
frameworks.
To this aim, we propose generic wrappers, a new language construct for strongly-
typed class-based languages. With generic wrappers, objects can be aggregated at
run time. The aggregate belongs to a subtype of the actual type of the wrapped
object. A lower bound for the type of the wrapped object is fixed at compile time.
Generic wrappers are type safe and support modular reasoning.
This feature combination is required for true component software but not achieved
by known wrapping and combination techniques, such as the wrapper pattern or
mix-ins.
We analyze the design space for generic wrappers, e.g. overriding, forwarding vs.
delegation, and snappy binding of the wrapped object. As a proof of concept, we
add generic wrappers to Java and report on a mechanized type soundness proof of
the latter.

1 Introduction

Component software enables the development of different parts of large software systems
by separate teams, the replacement of individual software parts that evolve at different
speeds without changing or reanalyzing other parts, and the marketing of independently
developed building blocks. Components are binary units of independent production,
acquisition, and deployment [30].

Component technology aims for late composition, possibly by the end user. Com-
pound documents, e.g. a Word document with an embedded Excel spreadsheet and a
Quicktime movie, as well as Web browser plug-ins and applets are examples of this.
Late composition is a major difference between modern components and traditional
subroutine libraries, such as Fortran numerical packages, which are statically linked by
the developer.

Flexible late composition is one goal, prevention of unsafe compositions leading to
system failures is the other. Static safety assertions are especially important for software
components that are composed by third parties because systematic integration testing
by the component developer is practically impossible. Where compile-time checks are

Elisa Bertino (Ed.): ECOOP 2000, LNCS 1850, pp. 201–225, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

202 M. Büchi and W. Weck

impossible, as early as possible run-time detection of errors facilitates systematic testing
and debugging. Type systems can make certain safety guarantees, but they often do so
at the price of reduced flexibility.

In this paper we present an inflexibility problem in class-based languages and pro-
pose a new solution that partly borrows from prototype-based languages yet retains
the possibility for maximal static and as-early-as-possible run-time error detection and
modular reasoning.

Late composition is most pressing for items defined by different components, which
may themselves be combined by an independent assembler or even by the user at run-
time. Component standards such as Microsoft’s COM [25], JavaBeans [29], and CORBA
Components [21] are on the binary level. Components can be created in any language
for which a mapping to the binary standards exists. However, binary standards are most
easily programmed to in languages that support the same composition mechanisms.
Furthermore, only direct language-level support can provide the desired machine check-
able safety using types. Hence, composition mechanisms in programming languages are
relevant, even though components are binary units.

The mechanism suggested in this paper is partly inspired by COM’s aggregation, but
it doesn’t yet have an exact equivalent in any of the aforementioned binary component
standards.

Overview. Section 2 illustrates with examples a problem of existing composition me-
chanisms and defines the requirements for a better solution. In Sect. 3, we show why
existing technology does not sufficiently address these requirements. We introduce ge-
neric wrappers as a solution to the aforementioned problems in Sect. 4. Next, we discuss
the design space for generic wrappers in Sect. 5 and the interplay with other type me-
chanisms in Sect. 6. As a proof of concept we add generic wrapping to Java in Sect. 7
and report on a mechanized type soundness proof of the extended language in Sect. 8.
Finally, Sect. 9 points to related work and Sect. 10 draws the conclusions.

2 The Problem

In this section, we describe some applications that cannot be satisfactorily realized with
existing composition mechanisms. We also introduce some terminology, and distill a set
of requirements.

2.1 Examples

We illustrate the problem with examples in the realm of compound documents. Embed-
ded views in compound documents for on-screen viewing, such as an Excel spreadsheet
in a Word document, may be so large that they require their own scroll bars. Likewise,
the user may want to add borders or identification tags to embedded views. It is even
possible, that a user wants several such decorators added to the same embedded view.

There may exist different scroll bars from different vendors, which don’t know all
the other decorator or embedded view vendors. Decorators are typical examples of
third-party components that users want to select to meet their specific needs. One user
may want proportional scroll bars, another may like blinking borders to draw the boss’

Generic Wrappers 203

p instanceof BorderWrapper == true

but
p instanceof TextView == false

BorderWrapper

IView p

TextView

IView wrappedView

Fig. 1.The wrapper is not fully transparent to clients of the embedded view

attention to the excellent sales figures, and still another may require immutable 128-bit
identification tags.

In a compound-document framework similar to Java Swing or Microsoft OLE, let
IView be the interface implemented by all classes whose instances can be displayed on
screen and inserted into containers. Typical examples of classes implementingIView are
TextView, GraphicsView, SpreadsheetView, andButtonView.

One way to implement decorators is with wrappers [9, Decorator Pattern]. A border
wrapper is itself a view, that is it implements theIView interface. Hence it can itself
be inserted into a compound document container. Furthermore the wrapper contains a
reference of typeIView to a wrapped view, which in a specific instance may be aTextView.
The wrapper forwards most requests to the wrapped view, possibly after performing
additional operations such as drawing the border.

Unfortunately, this approach has a serious disadvantage. If we wrap a border around
a TextView, then the aggregate is only aBorderWrapper, but not aTextView with all of
the latter’s methods (Fig. 1). Hence, a spell check operation on all embedded text views
in a document will not recognize a borderedTextView as containing text, unless it knows
how to search inside wrappers from different manufacturers.

A standard interface, likeIViewWrapper to be implemented by all view wrappers
could ease the problem of searching inside different wrappers:

interface IViewWrapper {
IView getWrappee();

}

However, instead of a simple type test, the spell checker would have to loop through
all the wrappers:

IView q=p;
while (!(q instanceof TextView) && q instanceof IViewWrapper) {

q=((IViewWrapper)q).getWrappee();
}
if (q instanceof TextView) {. . .;}

This solution is cumbersome for several reasons: First, it requires 5 lines of code
instead of a simple type test. Second, it only works if there is a unique standard for

204 M. Büchi and W. Weck

wrappers, such asIViewWrapper. Third, it doesn’t let the wrapper maintain invariants
ranging over both itself and the wrapped object because clients have direct access to the
latter.

Support for certain common kinds of wrappers may also be built into the wrapped
objects. For example,JComponent, the correspondence to ourIView in Java Swing,
supports borders as insets. However, identification tags and other kinds of wrapper that
were not previewed by the Swing designers are left out.

As a second example, let us consider a forms container that requires all its embedded
views to implement the interfaceIControl. Assume thatButtonView implementsIControl
and thatBorderWrapper doesn’t. Hence, a borderedButtonView cannot be inserted into
a forms container: The type system rightfully prevents us from passing aBorderWrapper
wrapping aButtonView as the first parameter to the methodinsert(IControl c, Point pos).
Passing just the wrappedButtonView as parameter toinsert is not a solution, because we
would loose the border. The only workaround is to change the type of the first parameter
of insert to IView and test that the actual parameter implementsIControl or wraps an
object that does so.

2.2 Terminology

We use the following terminology: A wrapped object is called awrappee. A wrapper
and a wrappee together are referred to as anaggregate. The declared type of a variable
is referred to asstatic(compile-time)type. The type of the actually referenced object is
called the variable’sdynamic(actual, run-time)type. Likewise, we distinguish between
the static (declared, compile-time) and thedynamic(actual, run-time)wrappee type.
For example, for an instance ofBorderWrapper, declared to wrap anIView, and actually
wrapping aTextView, the static wrappee type isIView and the dynamic wrappee type is
TextView.

In discussions, we use the notationC.m to refer to the implementation of instance
methodm in classC. The subtype relation is taken to be reflexive; e.g.,TextView is a
subtype of itself.

Except where otherwise stated, the discussion in the first 6 sections applies to most
strongly-typed class-based languages such as Java [10], Eiffel [17], and C++ [28]. For
simplicity, we use Java terminology throughout the paper. A Java interface corresponds
to a fully abstract class in Eiffel and C++.

2.3 Requirements

From the above examples we can distill a number of requirements for a wrapping me-
chanism. Numbers in parentheses refer to the summary of requirements in Fig. 2.

The user wants to select which border to wrap around which view. At compile time,
the implementor ofBorderWrapper doesn’t know whether an instance of her class will
wrap aTextView, aGraphicsView, or any other view that might even be only implemented
in the future. Thus, the actual type and instance of the wrappee must be decidable at run
time (1). Furthermore, wrappers must be applicable to any subtype of the static wrappee
type (2).

An aggregate of aBorderWrapper wrapping aButtonView should be insertable into
a controls container, even though only the wrappee implements the interfaceIControl.

Generic Wrappers 205

1. Run-time applicability.The actual type and instance of the wrappee must be decidable at run
time.

2. Genericity.Wrappers must be applicable to any subtype of the static wrappee type.
3. Transparency.An aggregate should be an element of the wrapper and the actual wrappee type.
4. Overriding.Wrappers must be able to override methods of the wrappee.
5. Shielding.A wrapper should be able to control whether clients can directly access the wrappee.
6. Safety.The type system should prevent as many run-time errors as possible statically and

signal errors as early as possible at run time.
7. Modular reasoning.Modular reasoning should be possible in the presence of wrapping.

Fig. 2.Requirements for a Wrapping Mechanism

Therefore, an aggregate should be an element of the actual wrappee type (3). This also
implies that all methods of the wrappee can be called by clients and that they can make
these calls directly on a reference to the wrapper.

Upon callingpaint on an aggregate of aBorderWrapper and aTextView, the border’s
paint method should be executed. The latter first draws the border and then calls the paint
method of the wrapped view with an adapted graphics context. Thus, wrappers must be
able to override methods of the wrappee (4).

If clients can have direct references to the wrappee, they can call overridden methods.
For example, a client could call the paint method of the embedded view with the graphics
context (dimensions) of the whole aggregate. Hence, a wrapper should be able to control
whether clients can directly access the wrappee (5).

Early detection of errors has already been identified as general requirements for
component-oriented programming. We restate it here as an explicit requirement (6) for
the purpose of assessing composition mechanisms.

The possibility for modular (component-wise) reasoning is another key requirement
(7) for any mechanism targeted at component-based programming because of the inde-
pendent development of components [30].

Finally, it is desirable that classes are not required to follow any coding standards
for their instances to be wrappable. Otherwise, instances of classes programmed to
different standards and of legacy classes are left out. Since certain coding standards can
be established, as shown by JavaBeans, and since certain automatic rewriting —even of
binary code— is possible, we consider this as a nice-to-have feature, but do not make it
a formal requirement.

3 Why Existing Technology Is Insufficient

In this section we show why existing technology fails to address the above requirements.

Inheritance.Feature combination by multiple inheritance creates specialized combina-
tion classes, such asBorderedTextView andBorderedGraphicsView. Thus, it combines
the functionality of the wrapper and the wrappee into a single object. However, combi-
nations can only be made at compile time by a vendor having access to both the border

206 M. Büchi and W. Weck

Requirement

 Technology R
un

-ti
m

e
ap

pl
ic

ab
ilit

y
(1

)

G
en

er
ic

ity
 (2

)

Tr
an

sp
ar

en
cy

 (3
)

O
ve

rri
di

ng
 (4

)

Sh
ie

ld
in

g
(5

)

Sa
fe

ty
 (6

)

M
od

ul
ar

re
as

on
in

g
(7

)

Inheritance (b) ✔ ✔ n/a ✔ (c)
Parameterized mix-ins (b) ✔ ✔ n/a ✔ (c)
Containment ✔ (b) (d) (d) (e) ✔

Specialized wrappers(a) (f) (b) ✔ ✔ ✔ ✔ ✔

Bottleneck interface ✔ ✔ ✔ ✔

Dual interface ✔ (b) ✔ ✔ (e)
Delegation in prototype-based languages ✔ ✔ n/a ✔ ✔

(a) If only used with specific type, otherwise like containment. (d) Either full functionality availability or overriding and shielding.
(b) Yes, but with exceptions due to signature clashes. (e) Type safety for static wrappee type.
(c) Limited due to tight coupling. (f) Type determined at compile time.

Fig. 3.Properties of Existing Technologies

and the view. Run-time feature composition, e.g., in compound documents, is impossi-
ble with inheritance. Hence, inheritance fails requirement (1). The modular reasoning
requirement (7) is not fully satisfied because of the close coupling between super- and
subclass, leading to the semantic fragile base class problem [19].

Mix-ins make it easier to create different combinations, even in single inheritance
languages. However, combinations must be made at compile time. Thus, mix-ins also
fail the requirement of run-time applicability (1).1

Containment.The containment approach, also known as the decorator pattern [9], has
already been sketched along with the presentation of the example in Sect. 2.1. It’s main
problem is that the aggregate is not a subtype of the actual wrappee. Thus, it fails the
transparency requirement (3).

Specialized wrappers can be created at compile time for specific known wrappee
types. However, specialized wrappers aren’t of much help in a component market with
mutually unaware vendors.

Bottleneck and dual interfaces, i.e., a single message handler method, are variations
of the containment approach. They make the full functionality of the actual wrappee
available through the wrapper, but lose the benefits of the static type system. Thus, they
fail both the safety (6) and the transparency (3) requirements.

Delegation in prototype-based languages.Prototype-based languages, such as Self [31],
use a parent object to which the receiving object delegates messages that it does not
understand itself. A bordered text view could be implemented by a border object with
a text view parent. Due to the lack of (static) typing and because of the possibility to
reassign the parent object at any time, prototype-based languages fail the requirements
of safety (6) and modular reasoning (7) [9].

1 Most genericity mechanisms, such as GJ, do not support mix-ins because they do not allow the
type parameter to be used as a supertype of the parameterized type.

Generic Wrappers 207

Summary.We conclude that none of the existing technologies gives a satisfactory so-
lution to the problem at hand. Figure 3 summarizes the results. Less common solution
approaches are described in Sect. 9. More detailed refutations appear in [4].

4 Generic Wrappers

To solve the problem stated in Sect. 2, we introduce generic wrappers. Generic wrappers
are classes that are declared to wrap instances of a given reference type (class, interface)
or of a subtype thereof. Like anextends clause to specify a superclass, we use awraps
clause to state the static wrappee type. This also declares the wrapper class to be a
subtype of the static wrappee type. For example, the declaration

class LabelWrapper wraps IView {. . .}

states that each instance of the classLabelWrapper wraps an instance of a class that
implementsIView. The declaration makes classLabelWrapper a subtype ofIView. Thus,
instances ofLabelWrapper can be assigned to variables of typeIView andLabelWrapper
has all public members (methods, fields) ofIView.

To assure that this subtyping relationship always holds (and thereby that forwarding
of calls never fails) must instances ofLabelWrapper always wrap an instance of a subtype
of IView —already during the execution of constructors. Hence, the wrappee must be
passed as a special argument (in our syntax delimited by<>) to class instance creation
expressions:

TextView t = . . .; IView v = new LabelWrapper<t>(. . .);

The compiler checks that the declared type of variablet is a subtype of the static wrappee
type. The wrapper class instance creation expression throws an exception if the value of
t is null or if t were an expression and its evaluation throws an exception. In both cases,
no wrapper object is created and the value ofv remains unchanged.

The particularity of generic wrappers is that their instances are not only of the static,
but also of the actual wrappee type. For example, aLabelWrapper wrapping aTextView
is also of the latter type and not just of typeIView. Hence, such an aggregate can be
assigned to a variable of typeTextView and the latter’s methods can be called on it. In the
following program fragment, which is based on the definition ofLabelWrapper above,
the type test returns true and the cast succeeds:

IView v = new LabelWrapper<new TextView()>(. . .);
TextView t2; if (v instanceof TextView) {t2=(TextView)v;}

Methods declared in the wrapper override those in the wrappee analogously to over-
riding in subclasses.

In constructors and instance methods of generic wrappers, the keywordwrappee
references the wrappee. It can be treated like an implicitly declared and initialized final
instance field. Hence, wrappers can call overridden methods of the wrappee using the
keywordwrappee corresponding tosuper for overridden methods of superclasses. For
example, thepaint method ofBorderWrapper might look as follows:

208 M. Büchi and W. Weck

public void paint(Graphics g) {
. . .; // paint border
wrappee .paint(g1); // paint wrapped view with adapted graphics context

}

Preliminary evaluation.Although this basic definition still leaves many aspect open,
we can evaluate which requirements (Fig. 2) it fulfills independently of how the details
are fixed. The actual type and instance of the wrappee can be decided upon at run time.
Hence, requirement (1) is satisfied.

Wrappers are applicable to a all of the static wrappee type’s subtypes, for which no
unsound overriding would occur. Thus, the genericity requirement (2) is mostly fulfilled.

As defined above, instances of generic wrappers are members of the actual wrappee
type. Therefore, the transparency requirement (3) is satisfied.

The fulfillment of the shielding (5) and modular reasoning (7) requirements cannot
be judged without fixing more details.

The compiler ensures that an aggregate is always of the static wrappee type and,
thereby, that all calls to methods of the static wrappee type will succeed. Run-time tests
can be used to check whether the aggregate is of a certain type. Only insufficiently
guarded casts may fail. Calls to methods of the actual wrappee type always find a
matching method. Hence, the type system fulfills the safety requirement (6) by preventing
as many run-time errors as possible statically and signaling errors as early as possible at
run time.

5 Design Space for Generic Wrappers

The basic definition of generic wrappers in the previous section leaves many aspects
open. In this section, we investigate the design space for generic wrappers.

The time of binding has a major influence on the design space of generic wrappers
as compared to inheritance. With inheritance, the superclass is bound at compile time.
With generic wrappers the actual type and instance of the wrappee first become known
at wrap time, that is, run time. Later binding brings flexibility, but means that certain
compatibility checks asserting type soundness and, thereby, the success of all method
lookups have to be delayed (Fig. 4). A notable feature of generic wrappers is that an
existing wrapper object can be wrapped again. Thus, it remains always possible to add
new functionality to an aggregate.

Dynamic linking partly blurs this distinction. The name of the superclass is fixed at
compile time, but the actual version and, therefore, the members and their semantics are
not known until load time. For example in Java, the loading of a class may be delayed until
an instance thereof is created. In this case, the compatibility with the used superclass is
checked as late as the compatibility between a wrapper and the actual wrappee type.Thus,
dynamic linking postpones compatibility checking to run time without fully exploiting
the flexibility thereof.

5.1 Overriding of Instance Methods

Overriding of instance methods in subclasses is governed by certain rules to guarantee
both type and semantic soundness. The same rules extend to overriding of methods

Generic Wrappers 209

at users’ sites

class inheritance

generic wrappers

prototype-based

compile load wrap method invocation

tim
e

per class per instance

at developers’ sites

class inheritance
with dynamic linking

nothing fixed: any method call may fail, further methods may be added

minimal supertype fixed: method calls will succeed if matching implementation bound

supertype implementation fixed: method calls will succeed, no further methods can be added

Fig. 4.What Is Asserted to Hold from Where on?

of the wrappee by methods of the wrapper. For example to guarantee type soundness
in Java, the overridden method must not be final, the return type of the overriding
method must be the same as that of the overridden method, the overriding method
must be at least as accessible, the overriding method may not allow additional types of
exceptions to be thrown, and an instance method may not override a class method. To also
guarantee semantic soundness, the overriding method must be a behavioral refinement
of the overridden method [1].

Although the actual type of the wrappee isn’t known until wrap time, we can perform
certain checks at compile time. We can check that overriding of methods of the static
wrappee type by methods of the wrapper respect the above rules. Any violation of the
type rules would necessarily also lead to a violation in combination with any actual
wrappee type, i.e., a subtype of the static wrappee type.

Because the actual wrappee may have more methods than the static wrappee type,
overriding conflicts may nevertheless occur at wrap time, i.e., when the combination of
the wrapper and the wrappee first becomes visible. In Fig. 5, three overriding conflicts
occur when wrapping an instance ofA in anAWrapper. The methodsA.m anA.o would
be overridden by semantically incompatible ones andAWrapper.n cannot overrideA.n
because they have different return types.

Below we discuss two approaches to this problem. The first checks type soundness at
wrap time and throws an exception if wrapping would be type unsound. To decrease the
probability of unsound overriding, we suggest a number of coding conventions. The se-
cond approach avoids wrap-time type problems by relying on a different form of method
lookup and subsumption. We conclude with a short refutation of static approaches.

In this section we assume that there are no final classes and no method header
specialization in subtypes (overriding non-final with final methods, overriding with re-
stricted exceptionthrows clauses and higher accessibility, as well as covariant return
type and contravariant parameter type specialization) in our language. The interaction

210 M. Büchi and W. Weck

interface IA {
int m(); // return 0 or 1

}

class AWrapper wraps IA {
public int m() {return 0;};
public void n() {. . .};
public int o() {return 0;};

}

class A implements IA {
public int m() {return 1};
public int n() {. . .};
public int o() {return 1};

}

IA a=new A();
AWrapper w=new AWrapper<a>();

Fig. 5.Overriding Example

of final classes and method header specialization with generic wrappers is discussed in
Sect. 6.2.

Wrap-time tests and coding conventions.At wrap time, we can automatically check
whether overriding of methods of the actual wrappee by the wrapper is type sound. If this
is the case, we can create the wrapper instance. Otherwise, we throw an exception. Wrap-
time tests require enough information in the binary code. Java byte code, for example,
satisfies this requirement.

Wrap-time exceptions are undesirable, yet they are preferable over unsuccessful me-
thod lookup as in prototype based languages like Self. First, if components are combined
by an assembler, she can much more easily check all combinations than all method calls
on all combinations. Second, if an error occurs, detecting it as early as possible facilitates
debugging, as expressed by requirement (6).

To reduce the probability of wrap-time type conflicts, we could use laxer rules in
analogy to Java’s binary compatibility. However, laxer typing rules threaten semantic
soundness, which must be the ultimate goal. Hence, we believe that the strict rules should
be used for generic wrappers at wrap time also.

We suggest to adhere to the following four coding conventions, which can greatly
reduce the possibility of both type and semantic conflicts at wrap time:

(a) Classes only define (non private) methods declared in implemented interfaces.
(b) No two interfaces, not related by extension, declare methods with the same signature.
(c) Interfaces have semantic specifications and methods in classes are semantic refine-

ments of their correspondences in the implemented interfaces.
(d) Method calls are only made on variables of interface, but not class types.2

We analyze the conventions for methodo of Fig. 5. Convention (a) implies that
both AWrapper and A implement interfaces declaring a methodo. Furthermore, (b)
dictates that this must be the same interface, sayIO. The idea of behavioral subtyping
[1] is that interfaces have semantic specifications and that methods in subtypes are
behavioral refinements of the corresponding methods in their supertype. Assuming that
2 Self calls, which are of course also allowed, are discussed in Sect. 5.3.

Generic Wrappers 211

both AWrapper.o and A.o are refinements ofIO.o, we can deduce that both 0 and 1
are correct return values. Finally, condition (d) implies that a callx.o() may only be
written forx of static typeIO. In this case, the value 0 returned by the overriding method
AWrapper.m meets our expectations.

If (a) or (b) is not adhered to, then a type conflict may occur as illustrated by method
n of Fig. 5. If (c) is not adhered to, it could be thatIO.o specifies the return value to be 1,
which would not hold in the above case. Finally, if (d) is not respected, we could make
a callx.o on a variable of typeA. If x contained a reference to anAWrapper wrapping
anA, we would get a return value of0 although we expected1.

Conventions (a) and (d) could easily be enforced by a programming language. Instead
of (b) a language can require qualified notation for member access instead of merging
namespaces of interfaces. Convention (c) requires semantic proofs and is, therefore, more
difficult to check. These conventions also avoid semantic problems in the overriding
in subclasses. Hence, they are implicitly advocated as good style for object-oriented
programming [9,30].

In conclusion, wrap-time checking allows us to avoid type unsound overriding. Fur-
thermore, adherence to some also otherwise beneficial coding conventions can greatly
reduce the possibility of type or semantic unsound overriding.

An alternative form of method lookup. An alternative is to have the wrapper only
override methods already present in the static wrappee type. In Fig. 5, this would mean
that onlyA.m would be overridden byAWrapper.m.

Instead of overriding additional methods of the actual wrappee, in the exampleA.n
andA.o, we allow an aggregate to contain multiple methods with the same signature and
base the dispatch on run-time context information. In the simplest case, the dispatch is
based on the static type of the receiver:

AWrapper w=new AWrapper<new A()>();
int i; i=w.o(); // executes AWrapper.o, i=0
A a=(A)w; i=a.o(); // executes A.o, i=1

In more general cases, the dispatch is not only based on static, but on run-time
context information, i.e., an object’s history of subsumptions. To illustrate this, assume
that methodo is declared in interfaceIO and that bothAWrapper andA implementIO.
In the following code fragment, added to the above, the static type of the receiver is in
both casesIO, but different implementations are executed:

IO x;
x=w; i=x.o(); // executes AWrapper.o, i=0
x=a; i=x.o(); // executes A.o, i=1

The problem is that there are two occurrences ofIO in the aggregate. Thus, we have
to choose one for subsumption.3 Multiple non-virtual inheritance in C++ has a similar
semantics.
3 In our case, we have already subsumed the aggregate to be of typeAWrapper, respectivelyA.

A true choice would be needed in the first line ifw were of a subtype of bothAWrapper and
A, e.g., the compound type[AWrapper, A] [3].

212 M. Büchi and W. Weck

In languages that do not support method header specialization (Sect. 6.2) or final
classes, this form of method lookup avoids wrap-time exceptions. However, to also
achieve semantic soundness, we still need to adhere to the above four coding conventions.
Otherwise, we could executea.m() in the fragment above and be surprised that we don’t
get 1 as result. The soundness problems caused by specialization could only be avoided
by fully giving up overriding.

Method lookup and subsumption are more complex with this approach. Further-
more, adding this to a single-inheritance language with ‘normal’ method lookup and
subsumption for inheritance, we end up with two different forms of method lookup and
subsumption. The technicalities of this approach for the case of compile-time composi-
tion of mix-ins can be found in [8].

Refutation of static approaches.Here we briefly discuss why some approaches that
avoid possible wrap-time conflicts at compile time and that are based on normal overri-
ding have serious deficiencies.

Allowing the wrapper to only override methods of the static wrappee type, but not
add additional methods would avoid the problem of unsound overriding of additional
methods in the actual wrappee, e.g.A.n. However, not allowing additional methods in
the wrapper would be a severe restriction, which would greatly reduce the usefulness of
generic wrappers. Furthermore, this approach would fail in languages that support final
classes or method header specialization (Sect. 6.2).

Negative type information [24] could express that subtypes ofIA must not have a
method, liken, that might be overridden in an unsound way. However, this would also
mean that an aggregate of anAWrapper and a subtype ofIA would not be of a subtype
of IA. Furthermore, negative type information cannot be expressed in type systems of
current languages.

Requiring the exact type of the wrappee to be known at compile time, a third ap-
proach, would contradict the requirement of run-time applicability (1).

5.2 Hiding of Fields and Class Methods

In many languages, fields and class methods are hidden rather than overridden in subty-
pes. Hiding of fields, if permitted, is not problematic because the hiding field may have
a different type than the hidden field. The static wrappee type is used to access hidden
fields in the actual wrappee. Hiding of class methods is usually governed by similar
requirements as overriding of instance methods. Thus, the same two options apply.

5.3 Forwarding vs. Delegation

The difference between forwarding and delegation is the binding of the self parameter
in the wrappee when called through the wrapper. With delegation, the self parameter is
bound to the wrapper, with forwarding it is bound to the wrappee. Figure 6 illustrates the
difference with a client calling methodm of the wrappee on a reference to the wrapper.

Forwarding is a form of automatic message resending; delegation is a form of inhe-
ritance with binding of the parent (superclass) at run time, rather than at compile/link
time as with ‘normal’ inheritance [16].

Generic Wrappers 213

wrapper w

forwarding

wrappee f

this.n()

a) Forwarding

wrapper w

delegation

wrappee f

this.n()

b) Delegation

wrapper:

void n() {
print("n1");

}

wrappee:
void m() {
 print("m2, "); n();
}
void n() {

print("n2");
} Output: m2, n2 Output: m2, n1

Fig. 6.Forwarding vs. Delegation

In all cases, super calls in the wrappee invoke methods of its superclass and not the
wrapper’s superclass. During these calls,this is bound to the wrappee with forwarding
and to the wrapper with delegation.

Delegation has the advantage that the wrapper can better modify the behavior of the
wrappee. With forwarding, the wrappee can better control its own behavior and avoid
such problems as the semantic fragile base class problem. Generic wrapping as discussed
in this paper works with both options. The reader is referred to [30,19,26] for further
discussions of pros and cons.

5.4 Replacing a Wrappee

The wrappee of a given wrapper could be replaced by another object, the type of which
is a subtype of the old dynamic wrappee type. It is not sufficient that the new wrappee
is a subtype of the static wrappee type: ABorderWrapper wrapping aTextView can be
referenced by a variable of static typeTextView. Replacing the wrappee by aButtonView
would violate type soundness.

Although cyclic wrapping is type sound in combination with certain features, it is for
semantic reasons mostly undesirable. Cyclic wrapping is prevented by the construction
process, because the wrappee must be passed as an argument to the wrapper instance
creation expression (Sect. 4). If we don’t want cyclic wrapping, we also have to prevent
it in the replacement of a wrappee.

For semantic reasons, we think that the wrappee should not be exchangeable. By
fixing the wrappee for the lifespan of the wrapper, the system becomes more static and,
therefore, simpler to analyze and reason about.

5.5 Direct Client References to the Wrappee

There are both advantages and disadvantages to allowing clients to hold direct references
to the wrappee and being able to invoke the latter’s methods —bypassing a possible
overriding by the wrapper. On the positive side, this may give clients the possibility to
invoke methods that are ‘accidentally’ overridden. For example, bothBorderWrapper
andTextView may define instance methodssetColor with the same parameters. Without
direct access to the wrappee, clients may not be able to change the text color. With
direct access to the wrappee, this is possible. However, only clients that are aware that
they reference a wrappedTextView rather than a bare one can do so. With the alternative

214 M. Büchi and W. Weck

method lookup,TextView.setColor can also be accessed through a cast, unless the method
is already declared in the static wrappee typeIView.

The disadvantage of direct client references to the wrapper is that clients may invali-
date invariants ranging over both the wrapper and the wrappee. Furthermore, we end up
with different reference values to the same aggregate; thus, loosing the unique identity
and the possibility of direct reference comparison.

The transparency of generic wrappers reduces the need for direct client references.
In the containment approach (Sect. 3) all functionality that the dynamic wrappee type
provides beyond the static wrappee type can only be made accessible by giving cli-
ents direct access to the wrappee. With generic wrappers, on the other hand, the full
functionality of the dynamic wrappee type is available through the wrapper.

Whether we allow the wrapper to hand out direct references or not, we have the
problems of existing references to the wrappee and of the wrappee handing out self
references. Even if we in principle permit direct references, we may want to restrict
them to clients that explicitly ask for them and are aware of the dangers.

Redirection of existing references.The problem of existing references vanishes if
there aren’t any. In analogy to aggregation in Microsoft’s COM, we could require the
wrappee to be created along with the wrapper and not to allow the wrappee’s constructor
to pass out self references. However, experience with COM showed that this approach
is often too restrictive [22].

The second best case is a single reference to the object to be wrapped. In type systems
with aliasing control [12] that can guarantee uniqueness of references we could restrict
wrapping to unique references. This single existing reference to the wrappee, which is
used as argument in the wrapper construction, could then either be redirected to the
wrapper or be set tonull. The restriction to unique references may severely limit the
applicability of wrappers. Furthermore, aliasing control is not common.

For mainstream languages we see the following options:

1. Keep the references to the wrapped object unchanged. This is only an option if we
allow direct references to the wrappee. Unfortunately, clients won’t recognize if
an object they refer to has been wrapped. Hence, they might unknowingly invoke
overridden methods of the wrappee and, thereby, cause the aforementioned semantic
problems.

2. Update all existing references to point to the wrapper. Thanks to the transparency of
generic wrappers this is sound. Since the type of a reference can only be increased by
wrapping, assumptions that a reference is at least of a certain type are not falsified.

Handing out of self references.Wrappees may pass out self references, e.g. for event
listener registration. If we don’t want direct client references to the wrappee or only allow
the wrapper to hand them out, we need to address this issue. The draconian solution is
to disallow the use ofthis in the wrappee except for member access. This is, however,
very restrictive and excludes instances of legacy classes not adhering to this restriction.

Alternatively, we may definethis in the wrappee to reference the wrapper except
when used for member access.

Generic Wrappers 215

5.6 Multiple Wrapping

There are two forms of multiple wrapping,conjunctiveanddisjunctive(Fig. 7). Conjun-
ctive (also called additive or recursive) wrapping applies multiple wrappers around each
other. For example, we might wrap aTextView in a ScrollWrapper and the latter with a
BorderWrapper.

Disjunctive wrapping presents the same wrappee with different wrappers. It has
analogous drawbacks as direct client references to the wrappee, namely the possibility
of invalidating invariants ranging over the wrappee and one of its other wrappers. With
type transparency, disjunctive wrapping can in most cases be replaced by conjunctive
wrapping because the full dynamic wrappee type is visible through all wrappers.

If we allow direct client references to the wrappee but not disjunctive wrapping, we
have to define what happens if a client wraps an object that is already wrapped. The
options are disallowing it and throwing an exception if tried, putting the new wrapper
between the wrappee and the old wrapper, and applying the new wrapper around the old
wrappee. Thanks to the transparency of generic wrappers, all options are type sound.

5.7 Concealment

In certain cases, a wrapper may want to conceal part of the wrappee from clients. For
example, aConfidentialWrapper and its wrappee should not be serializable for confi-
dentiality reasons. Thus, the wrapper wants to conceal the interfaceSerializable from
clients in case the wrappee implements it. For this case, aconceals clause may be useful
in combination withwraps:

class ConfidentialWrapper wraps IView conceals Serializable {. . .}

With this definition, no instance of aConfidentialWrapper aggregate will ever be an
element ofSerializable.

Alternatively, a wrapper could be transparent for explicitly listed types only:

class SpecialWrapper wraps IView hoists IText, IGraphics {. . .}

TextView

La
be

lW
ra

pp
er

BorderW
rapper

b) Disjunctive wrapping

TextView

LabelWrapper

ScrollWrapper

BorderWrapper

a) Conjunctive wrapping

Fig. 7.Conjunctive and Disjunctive Wrapping

216 M. Büchi and W. Weck

When such aSpecialWrapper wraps an instance of a class implementingIText then
the functionality declared inIText can be accessed through the wrapper. On the other
hand, if the same class also implements another interface, sayIContainer, the latter’s
functionality cannot be accessed through the wrapper and the wrapper cannot be assigned
to a variable of static typeIContainer. Although transparency is restricted, this approach
differs from the containment approach (Sect. 3) in that the type of the aggregate depends
on the actual type of the wrappee.

Concealment may be practical for special cases, but it causes type soundness pro-
blems because the aggregate is not a subtype of the wrappee. Existing references to the
wrappee cannot be redirected to the wrapper, if the latter conceals (part of) the static type
of the variable containing the reference. Concealment also causes similar problems in
combination with solutions 2 and 3 of applying a wrapper to an already wrapped object
(Sect. 5.6). Furthermore, with delegation self calls of the wrappee to methods that are
concealed by the wrapper fail. For this, a workaround would be to conceal types only
from clients, but not from the aggregate itself.

These problems may, but do not necessarily occur in a given system that uses con-
cealment. In analogy to Eiffel allowing subclasses to conceal4 inherited members, we
could allow concealment of types. This would, however, require system validity checks
of complete systems.

5.8 Multiple Wrappees

So far, we have assumed that a given wrapper instance wraps exactly one object. This
could be generalized to a fixed or arbitrary number of objects, thereby providing a single
view of a subsystem implemented by multiple objects corresponding to the facade pattern
[9]. Similar to multiple code inheritance, this works well unless different wrappees
implement methods with the same signature and the wrapper does not override them. In
this case, message lookup needs to be redefined. With run-time wrapping, such conflicts
caused by type transparency may not be visible at compile time.

6 Interaction with Other Typing Mechanisms

In this section we discuss the interaction of generic wrappers with other common typing
mechanisms.

6.1 Subclassing

Here we investigate whether and how generic wrappers can substitute inheritance and
how the two may be combined.

4 This is called ‘hiding’ in Eiffel. We don’t use this term here to avoid confusion with Java style
hiding of class methods and fields (Sect. 5.2).

Generic Wrappers 217

Generic wrappers as a substitute for inheritance.If we choose delegation (Sect. 5.3)
for generic wrappers, then they can be used to simulate class-based inheritance as follows:

class D extends C {. . .};
D d=new D();

Inheritance

class D wraps C {. . .};
D d=new D<new C()>();

Simulation with generic wrappers

The main difference is that at compile time we only know the lower bound of the
wrappee type for generic wrappers, whereas with inheritance we know the exact super-
class. This can be interpreted as flexibility or as lack of knowledge.

If, on the other hand, we use forwarding instead of delegation for generic wrappers,
then we cannot modify the semantics of self calls in methods of the supertype. Thus,
such generic wrappers cannot be used to simulate inheritance.

Subclassing of wrapper classes.In most mainstream languages subclassing implies
subtyping. For this principle to extend to wrappers, a subclass of a wrapper class has to
be declared to wrap the same type as its superclass or a subtype of its superclass’ static
wrappee type. Covariant specialization of the static wrappee type is possible unless the
wrappee can be replaced using a method likesetWrappee(StaticWrappeeType w), where
the static wrappee type occurs in a contravariant position.

6.2 Method Header Specialization and Final Classes

Some languages allow overriding methods to have more specialized headers. For ex-
ample, Java allows a non-final method to be overridden by a final one and allows the
overriding method to have a more restricted exceptionthrows clause and a higher acces-
sibility. Other languages also allow covariant return type and contravariant parameter
type specialization.

This creates problems with overriding by wrappers, even if the overriding is sta-
tically visible. Wrapping an instance ofB with a BWrapper in Fig. 8, would override
the final methodB.p with an emptythrows clause byBWrapper.p, which may throw
SomeException.

To prevent such unsound overriding, we have to use wrap-time exceptions. Method
header specialization is the type correspondent of semantic refinement discussed in
Sect. 5.1.

Final classes pose a similar problem. They should not be subtyped. Thus, it is a
compile-time error to declare a wrapper with a static wrappee type that is a final class
type. At run time, an exception is thrown if an attempt is made to wrap an instance of a
final class.

6.3 Parametric Types

Generic wrappers and parametric types can be combined without problems. Instances
of generically derived classes don’t distinguish themselves from instances of normal
classes. Hence, they can be normally wrapped. Generic wrappers can also be used as
bounds in generic classes and as actual parameters in generic derivations.

218 M. Büchi and W. Weck

interface IB {
void p() throws SomeException;

}

class BWrapper implements IB wraps IB {
public void p() throws SomeException {. . .};

}

class B implements IB {
public final void p() {. . .};

}

IB b=new B();
BWrapper w=new BWrapper(); // illegal wrapping caught by exception
((B)w).p() // final method would be overridden and exception might be thrown

Fig. 8.Method Header Specialization Example

7 Generic Wrappers in Java

As a proof of concept, we add generic wrapping to Java. We present generic wrappers
as a strict extension, that is existing Java programs need not be changed and instances
of existing classes can be wrapped.

We select a consistent set of features from the aforementioned design choices and
give a definition of generic wrappers in Java. We base our choices on the motivating
examples and the above discussions, without repeating them. Next, we discuss selected
integration issues with the Java library. Finally, we show how the defined mechanism
solves the motivating problem. A discussion of efficient implementation strategies is
beyond the scope and page limit of this paper.

7.1 Feature Selection and Language Integration

Both compile-time and wrap-time overriding and hiding are governed by the same rules
as (compile-time) overriding and hiding in subclasses. Furthermore, we don’t allow
instances of final classes to be wrapped. Violations of these rules by the wrapper/static
wrappee pair are flagged at compile time; violations by the wrapper/actual wrappee pair
cause exceptions at the time of wrapping.

To get loose coupling between the wrapper and the wrappee and to facilitate semantic
reasoning we chose forwarding over delegation and fix the wrappee for the lifespan of
the wrapper. All existing references to the wrappee are redirected to the wrapper upon
wrapping. We definethis in instance method of the wrappee to refer to the (outermost)
wrapper except when used for member access.

In a tribute to flexibility, we allow clients to explicitly attain direct references to
the wrappee. The implementor of the wrapper class determines whether clients can get
direct references to the wrappee by putting an access modifier (private, protected, public)
between the keywordwraps and the static wrappee type, e.g:

Generic Wrappers 219

class LabelWrapper3 wraps public IView {. . .}

The access modifier of the wrappee in a subclass must provide at least as much
access as that in the superclass. The keywordwrappee can be treated like the name of a
final instance field of the wrapper class with the used modifier, e.gpublic in the above
example. To navigate back from a wrappee to its outermost wrapper, the method:

public final Object getWrapper() {return this ;}

is added to the classObject. With the above definitions, this method returns a reference
to the wrapper if the receiver object is wrapped and otherwise to the receiver itself.

We allow only conjunctive, but not disjunctive wrapping. Wrapping an already wrap-
ped object corresponds to wrapping its outermost wrapper. Because it is not sound in
combination with the above features, we don’t allow concealment. Every wrapper has
exactly one wrappee.

7.2 Library Integration

The library being an integral part of Java —the description of three packages is even part
of the Java language specification— we discuss how serialization and cloning interplay
with generic wrappers. Generic wrappers integrate in a straightforward way with most
libraries, often providing new possibilities.

For instances of a Java class to be serializable, the class must implement the empty
interfaceSerializable. A problem arises if only the wrapper or only the wrappee im-
plementSerializable. In this case, the aggregate appears to be serializable although it
isn’t. In practice, the best solution is to throw aNotSerializableException when trying to
serialize such an aggregate. In [4], we discuss certain options to statically avoid part of
the problem.

Similar problems occur with cloning if only the wrapper or only the wrappee im-
plementsCloneable. Because we don’t allow disjunctive wrapping, clone has to create
deep copies. Throwing aCloneNotSupportedException is again the best solution.

7.3 Assessment

Our mechanism fulfills all requirements (Fig. 2) except for genericity (2). The latter
fails in cases where overriding would not be sound. We consider this acceptable because
exceptions are already thrown at the time of wrapping —and not at the time of member
access— and because creation of new instances can also fail for other reasons with an
exception in existing Java.

Clearly, the motivating problems (Sect. 2.1) can be solved with the presented generic
wrappers for Java.

8 Type Soundness

In this section, we report on a mechanically verified formal proof of type soundness of
Java extended with generic wrappers. Type soundness intuitively means that all values

220 M. Büchi and W. Weck

produced during any program execution respect their static types.An immediate corollary
of type soundness is that method calls always execute a suitable method, that is, there
are no ‘method not understood’ errors at run time.

Our proof of type soundness for generic wrappers is based on the work of von Oheimb
and Nipkow [32]. They have formalized a large subset of Java and mechanically proved
type soundness with the theorem prover Isabelle/HOL [23].

For this paper, we have added generic wrappers to this formalization,5 adapted the
proofs, and ran them through Isabelle/HOL. Here, we present the widening relations
applicable to generic wrappers. A full report of all the mechanical details is beyond the
scope of this paper.

The Java language specification [10] introduces identity and irreflexive widening
conversions separately. ‘Widening’ is Java’s form of subtyping. Since identity conver-
sions are possible in all conversion contexts permitting widening, the two are merged
in the formalization. The expressionΓ ` S � T says that in program environmentΓ
objects of typeS can be transformed to typeT by identity or widening conversion. In
particular, expressions of typeS can be assigned to variables of typeT and expressions
of typeS can be passed as formal parameters of typeT .

We use the following naming conventions:

C,D classes A list of classes
I,J interfaces S,T arbitrary types
R reference type Γ program, environment

The judgmentΓ ` C≺cD expresses that classC is a subclass of classD, Γ `
C ; I that classC implements interfaceI, andΓ ` I≺iJ that I is a subinterface of
J . Furthermore,is type Γ T expresses thatT is a legal type inΓ , RefT R denotes
reference typeR, andNT stands for the null type.

Class C stands for the class typeC and Iface I for the interface typeI. In our
formalization we now have two kinds of classes: normal (non-wrapper) classes and
wrapper classes. The discriminatoris wrapper Γ C is true if C is a wrapper class.
WrappeeOf Γ C denotes the the static wrappee type of classC in programΓ .

At run time, instances of wrapper classes are of aggregate types. Aggregate types
are finite lists of at least two class types. An instance of the wrapper classC wrapping
an instance of the wrapper classD that itself wraps an instance of the (non-wrapper)
classE belongs to typeAggregate [C,D,E]. The discriminatoris aggregate Γ A is
true if A denotes a possible combination of classes for an aggregate. Since there are
no variables of aggregate type and because we do not allow the dynamic reassignment
of wrappees, we only need widening rules with aggregates on the left-hand side of the
conclusion judgment.

Furthermore, the discriminatorsis class Γ C andis iface Γ I are used. The follo-
wing six typing judgments apply unchanged also to wrapper classes:

is type Γ T

Γ ` T � T

is type Γ (RefT R)
Γ ` NT � RefT R

5 At http://www.abo.fi/˜mbuechi/publications/GenericWrappers.html the Isabelle theories are
available.

Generic Wrappers 221

Γ ` I≺iJ

Γ ` Iface I � Iface J

is iface Γ I; is class Γ Object
Γ ` Iface I � Class Object

Γ ` C≺cD

Γ ` Class C � Class D

Γ ` C ; J

Γ ` Class C � Iface J

The following widening rules involving wrapper classes are used at compile time:

is wrapper Γ C; Γ ` WrappeeOf Γ C � Class D

Γ ` Class C � Class D

is wrapper Γ C; Γ ` WrappeeOf Γ C � Iface J

Γ ` Class C � Iface J

The following widening rules involving aggregates are used at run time (set converts
a list into a set):

is aggregate Γ A; ∃C ∈ set A.Γ ` Class C � Class D

Γ ` Aggregate A � Class D

is aggregate Γ A; ∃C ∈ set A.Γ ` C ; J

Γ ` Aggregate A � Iface J

The main advantages of a mechanized over a paper-and-pencil proof are additional
confidence and better support for extensions. We would like to stress the second aspect.
Not only did the formalization result in a soundness proof, but the proof tool also re-
minded us of what all needed to be defined about generic wrappers before the desired
properties could be established. Most proof scripts worked without modifications. The
fact that all theorems were reproved mechanically6 for the extended language definition
conveys more confidence than the typical adaptation of a paper-and-pencil proof with
‘this-should-still-hold’ handwaving.

9 Related Work

Section 3 already provides an overview of some related mechanisms. With the exception
of delegation, where a final comparison with our mechanism is deemed interesting,
these technologies are not discussed again here. Comparisons with less closely related
language mechanisms as well as binary component standards can be found in [4].

Delegation in prototype-based languages.What do we gain with generic wrappers over
delegation in prototype-based languages? First, the static wrappee type and calls to it
can be statically type checked. Some prototype-based languages, such as Cecil [5], also
have (optional) static type systems. However, these languages require the exact type
or even the concrete instance of the parent object to be known at compile time. The
same approach is taken by prototype-based object calculi, e.g. [7]. Thus, they fail the
requirement of run-time applicability (1).

6 At the time of writing, a few lemmata have not yet been mechanically proved.

222 M. Büchi and W. Weck

Second, with generic wrappers the dynamic wrappee type can be checked with run-
time type tests. Third, type casts are the only points of failure; method lookup always
succeeds. This greatly simplifies debugging by indicating errors closer to where they
occur. Fourth, generic wrappers are targeted at mainstream class-based languages.

For our exemplary generic wrappers in Java, we have chosen a set of distinguishing
features that facilitate modular reasoning. First we have forwarding rather than delega-
tion. Second the wrappee is assigned snappily differentiating it from reassignable parent
fields. Third, we disallow disjunctive wrapping. The latter is no problem because we get
sharing of behavior from classes whereas prototype-based languages have to use shared
parents for this.

Lava. Kniesel [15] has implemented an extension of Java with wrappers. The main
difference to our generic wrappers is that in his proposal the aggregate is not a subtype
of the actual, but only of the static wrappee type. Thus his proposal fails the transparency
requirement (3) and is more limited in its applicability. Lava’s wrappers are a form of the
decorator pattern with automatically generated forwarding stubs and multiple wrappees
combined with delegation. Wrappees can be reassigned, thereby, complicating semantic
reasoning. The proposal is not type sound because the wrappees are assigned within the
constructor. Independent extensibility, the focus of our proposal, is not well supported.

Delegation for software and subject composition.Harrison et al. [11] discuss options
for different bindings ofthis in the decorator and facade patterns. They show how to
implement delegation using either stored or passed pointers in class-based languages.
Furthermore, they propose a declarative approach, to be used by component assemblers,
permitting the binding ofthis to be customized on a per-method base. Their solution does
not address the shortcomings of the decorator pattern with respect to our requirements.
Namely, it does not provide for transparency (3).

Dynamic object specialization and reflective mix-ins.gbeta [6], a generalized version
of Beta, supports two forms of dynamic inheritance through multiple inheritance. Dy-
namic object specialization is a dynamic modification of the structure of an existing
object, preserving object identity. For example, the statementsomePtn##->anObject##
enhances the structure ofanObject with the patternsomePtn. Furthermore,gbeta allows
non-constant virtual types as superpatterns.

Becausegbeta uses submethoding withINNER rather than overriding, it is not
obvious how the mechanisms ofgbeta could be transferred to more ‘standard’ object-
oriented languages.

Mezini [18] presents a sophisticated, but complex approach to object evolution with-
out name collisions. However, her work is untyped. Steyaert et al. [27] propose dynamic
inheritance through mix-ins. The catch is that each object must contain a specification
of all its potential enhancements. This renders their proposal inapplicable for mutually
unaware component vendors.

A proposal for mix-ins, which allow types to be derived at run time, is presented
in [4]. It is shown that —ignoring the use of the type parameter in places other than
the extends clause— they correspond to a special kind of generic wrappers where the
wrappee must be created along with the wrapper.

Generic Wrappers 223

Objective C.Categories in Objective C [20] allow classes to be extended with a new set
of methods/protocols independently of the original class definition. This compile-time
mechanism corresponds to creating a subclass and globally replacing all occurrences
of the superclass by the subclass. Categories modify whole classes, rather than indivi-
dual objects. Categories do not fulfill the requirements of run-time applicability (1) and
genericity (2).

Binary Component Adaption [13] provides for similar adaption of Java binaries as
categories for Objective-C binaries. With respect to the problem at hand, it has the same
shortcomings.

Aspect-oriented programming.Aspects [14] are a new category of programming con-
struct that ‘cross-cut’ the modularity of traditional programming constructs. So an aspect
can localize, in one place, code that deeply affects the implementation of multiple clas-
ses or methods. Aspects modify classes at compile time. Hence, they do not address
the problems of run-time composition of objects created by different components from
different vendors.

Mix-in calculus.Bono et al. have developed a formal calculus of classes and mix-ins [2].
Method declarations in mix-ins are explicitly marked as overriding an existing method or
introducing a new method. The lower type bound (static wrappee type) is computed from
the signature of a mix-in. Redefined methods give positive type information and new
methods negative type information. Subtyping is determined by the types’ structures.
Negative type information is used to avoid mix-in-application-time exceptions.

10 Conclusions

Late composition of software components from different vendors is the essence of com-
ponent software, enabling component markets and flexible reuse. One form of late com-
position is the combination of features implemented by different vendors into object-
aggregates that appear as single objects to their clients. Our analysis shows, that existing
technologies fail to fully unlock this power.

To remedy the problem, we have proposed generic wrappers, a typed form of dynamic
inheritance. We have analyzed the design space with respect to both type soundness
and semantic intuition, desirability, and consistency with existing mechanisms, such as
subclassing. One options is forwarding instead of delegation to loosen the coupling and,
thereby, avoid the semantic fragile base class problem. Another options is the snappy
assignment of the wrappee to facilitate modular semantic reasoning.

As a proof of concept, we have chosen a consistent set of desirable features for a
concrete mechanism, which we added to Java. Finally, we have given a mechanized proof
of type soundness for the extended language. Additionally, the formalization provides
an operational semantics for Java extended with generic wrappers.

Acknowledgments. David von Oheimb and Tobias Nipkow provided us with their for-
malization of Java and helped us with our extensions.We would like to thank Ralph Back,
Dominik Gruntz, and Cuno Pfister for a number of fruitful discussions. The referees’
helpful comments are also gratefully acknowledged.

224 M. Büchi and W. Weck

References

1. Pierre America. Designing an object-oriented programming language with behavioral sub-
typing. InFoundations of Object-Oriented Languages, REX School/Workshop, pages 60–90.
LNCS 489, Springer Verlag, 1991.

2. Viviana Bono, Amit Patel, and Vitaly Shmatikov. A core calculus of classes and mixins. In
Proceedings of ECOOP ’99, pages 43–66. LNCS 1628, Springer Verlag, 1999.

3. Martin Büchi and Wolfgang Weck. Compound types for Java. InProceedings of OOPSLA
’98, pages 362–373. ACM Press, 1998. http://www.abo.fi/˜mbuechi/.

4. Martin Büchi and Wolfgang Weck. Generic wrapping. Technical Report 317, Turku Centre
for Computer Science, March 2000. http://www.abo.fi/˜mbuechi/.

5. Craig Chambers. The Cecil language: Specification & rationale (version 2.1). Technical
report, University of Washington, March 1997.

6. Erik Ernst. gbeta – a Language with Virtual Attributes, Block Structure, and Propagating,
Dynamic Inheritance. PhD thesis, Department of Computer Science, University of Aarhus,
Denmark, 1999.

7. Kathleen Fisher and John C. Mitchell. Notes on typed object-oriented programming. InPro-
ceeding of Theoretical Aspects of Computer Software, pages 844–885. LNCS 789, Springer
Verlag, 1994.

8. Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. InProc.
25th ACM Symp. Principles of Programming Languages, pages 171–183. ACM Press, 1998.

9. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

10. James Gosling, Bill Joy, and Guy Steele.The Java Language Specification. Addison Wesley,
1996.

11. William Harrison, Harold Ossher, and Peri Tarr. Using delegation for software and subject
composition. Technical Report RC-20946 (92722), IBM Research Division, T.J. Watson
Research Center, August 1997.

12. John Hogg. Islands: Aliasing protection in object-oriented languages. InProceedings of
OOPSLA ’91, pages 271–285. ACM Press, 1991.

13. Ralph Keller and Urs H¨olzle. Binary component adaptation. InProceedings of ECOOP ’98,
pages 307–329. LNCS 1445, Springer Verlag, 1998.

14. Gregor Kiczales et al. Aspect-oriented programming. InProceedings of ECOOP ’97, pages
220–242. LNCS 1241, Springer Verlag, 1997.

15. Günter Kniesel. Type-safe delegation for run-time component adaptation. InProceedings of
ECOOP ’99. LNCS 1628, Springer Verlag, 1999.

16. Henry Lieberman. Using prototypical objects to implement shared behavior in object-oriented
systems. InProceedings of OOPSLA ’86, pages 214–223. ACM Press, 1986.

17. Bertrand Meyer.Eiffel: The Language. Prentice Hall, second edition, 1992.
18. Mira Mezini. Dynamic object evolution without name collisions. InProceedings of ECOOP

’97, pages 190–219. LNCS 1241, Springer Verlag, 1997.
19. Leonid Mikhajlov and Emil Sekerinski. A study of the fragile base class problem. InPro-

ceedings of ECOOP ’98, pages 355–374. LNCS 1445, Springer Verlag, 1998.
20. NeXT Software, Inc.Object-Oriented Programming and the Objective-C Language.Addison-

Wesley, 1993.
21. Object Management Group. CORBA components, 1999. Revision February 15, 1999, formal

document orbos/99-02-01, http://www.omg.org.
22. Geoff Outhred and John Potter. Extending COM’s aggregation model. InComponent-

Oriented Software Engineering Workshop (in conjunction with the Australian Software En-
gineering Conference), 1998.

Generic Wrappers 225

23. Lawrence C. Paulson.Isabelle: A Generic Theorem Prover. LNCS 828, Springer Verlag,
1994.

24. Didier Rémy. Typechecking records and variants in a natural extension of ML. InProc. 16th
ACM Symp. Principles of Programming Languages, pages 242–249. ACM Press, 1989.

25. Dale Rogerson.Inside COM. Microsoft Press, 1996.
26. A. Snyder. Encapsulation and inheritance in object-oriented programming languages. In

Proceedings of OOPSLA ’86, pages 38–45. ACM Press, 1986.
27. Patrick Steyaert and Wolfgang De Meuter. A marriage of class- and object-based inheritance

without unwanted children. InProceedings of ECOOP ’95, pages 127–144. LNCS 952,
Springer Verlag, 1995.

28. Bjarne Stroustrup.The C++ Programming Language. Addison Wesley, third edition, 1997.
29. Sun Microsystems, Inc. Java Beans, 1997. http://java.sun.com/beans/.
30. Clemens A. Szyperski.Component Software – Beyond Object-Oriented Programming.

Addison-Wesley, 1997.
31. D. Ungar and R.B. Smith. Self: The power of simplicity. InProceedings of OOPSLA ’87,

pages 227–241. ACM Press, 1987.
32. David von Oheimb and Tobias Nipkow. Machine-checking the Java specification: Proving

type-safety. In Jim Alves-Foss, editor,Formal Syntax and Semantics of Java, pages 119–156.
LNCS 1523, Springer Verlag, 1999.

	Introduction
	The Problem
	Examples
	Terminology
	Requirements

	Why Existing Technology is Insufficient
	Generic Wrappers
	Design Space for Generic Wrappers
	Overriding of Instance Methods
	Hiding of Fields and Class Methods
	Forwarding vs. Delegation
	Replacing a Wrappee
	Direct Client References to the Wrappee
	Multiple Wrapping
	Concealment
	Multiple Wrappees

	Interaction with Other Typing Mechanisms
	Subclassing
	Method Header Specialization and Final Classes
	Parametric Types

	Generic Wrappers in Java
	Feature Selection and Language Integration
	Library Integration
	Assessment

	Type Soundness
	Related Work
	Conclusions

