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ABSTRACT 
In this note we construct a family of recurrence generating activation functions based on Gudermann function. 

We prove lower estimate for the Hausdorff approximation of the sign function by means of this family.  

Numerical examples, illustrating our results are given. 
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1. INTRODUCTION 
 

Sigmoidal functions (also known as “activation functions”) find multiple applications to neural networks [8]–

[18], [43], [44], [46]–[49]. 

 

The modified hyperbolic tangent is a special S-shaped function constructed on the basis of the hyperbolic 

tangent function, which is expressed in terms of the exponent. 
 

We study the distance between the sign function and a special class of family of recurrence generating 

activation function based on modified half Gudermann function (FMHGUDAF). 

 

The distance is measured in Hausdorff sense, which is natural in a situation when a sign function is involved.  

Precise lower bound for the Hausdorff distance is reported. 

 

Any neural net element computes a linear combination of its input signals, and uses a logistic function to 

produce the result; often called “activation” function [19]– [20]. 

 

2. PRELIMINARIES 
 

The following are common examples of activation functions: 

- logistic 

  (1) 

 

- Parametric Hyperbolic Tangent Activation (PHTA) function  

      (2) 

 

- Parametric Half Hyperbolic Tangent Activation (PHHTA) function  

 (3) 

 

- Parametric Fibonacci hyperbolic tangent activation function (FHTAF) [38] based on the Fibonacci 

hyperbolic tangent function [7] 

 

 (4) 

 where  and  is the ”Golden Section”; 
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A survey of new mathematical models of Nature is presented based on the Golden Section and using a class of 

hyperbolic Fibonacci and Lucas functions in [6]. 

- Parametric Soboleva’ modified hyperbolic tangent activation function [39] based on Soboleva’ 

modified hyperbolic tangent function [1]–[3] 

; (5) 

The function find application to approximate the current-voltage characteristics of light-emitting diodes [4]. 

 

In [21] the authors create the binary logistic regression model as to find the optimal vector 

 that best fits  

 

here  represents the error. 

 

Evidently, in (1)  can be regarded as a variable, which is a linear weighted combination of independent 

variable  as  

 

 
Thus, the binary logistic model is [21]: 

 (6) 

 

 where  represents the probability of dependent variable . 

 

 

 
Figure 1: Nonlinear, parametrized function with restricted output range [45]. 

 

Training a multilayer perceptron with algorithms employing global search strategies has been an important 

research direction in the field of neural networks. 

 

Multi–layer perceptrons are feed forward neural networks featuring universal approximation properties used 

both in regression problems. 

 

The standard feed forward networks with only a single hidden layer can approximate any continuous function 

uniformly on any compact set and any measurable function to any desired degree of accuracy [22]–[25], [5], 

[40]. 

 

The nonlinear, parametrized function with restricted output range is visualized on Fig.1. 
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It is straightforward to extend this analysis to networks with multiple hidden layers. 

For recurrent neural networks are typical: 

a) stable outputs may be more difficult to evaluate; 

b) unexpected behavior (chaos, oscillation). 

A survey of neural transfer activation functions can be found in [26]. 

Moreover, the nodes in the hidden layer are supposed to have a sigmoidal activation function which may be one 

of the following: 

 

a) logistic sigmoid  

 (7) 

 b) hyperbolic tangent  

; (8) 

c) half hyperbolic tangent  

; (9) 

 

d) Parametric Fibonacci hyperbolic tangent  

; (10) 

 

e) Parametric Soboleva’ modified hyperbolic tangent  

; (11) 

 

where  denotes the input to a node and ,  and  are the slope parameters of the sigmoids. 

 

Definition 1.The sign function of a real number  is defined as follows:  

1, if < 0,

( ) = 0, if = 0,

1, if > 0.

t

sgn t t

t







 (12) 

Definition 2.[27], [28] The Hausdorff distance (the H–distance) [27]  between two interval functions 

 on , is the distance between their completed graphs  and  considered as closed subsets 

of . More precisely,  

    (13) 

 

wherein  is any norm in , e. g. the maximum norm ;  

hence the distance between the points ,  in  is  

. 

 
In [29]–[34], [38] the authors consider some families of recurrence generated parametric activation functions 

on the base of (7)–(11). 

 

3. MAIN RESULTS. A FAMILY OF RECURRENCE GENERATING ACTIVATION 

FUNCTIONS BASED ON GUDERMANN FUNCTION 
 
A definition for the Gudermann function is [42]:  
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The Gudermannian is named after Christoph Gudermann (1798–1852). 

We define the following family of modified half Gudermann activation functions (FMHGUDAF): 

 

         (14) 

 

Evidently,  for . 

 

Approximation Issues 

In this Section we prove lower estimate for the Hausdorff approximation of the sign function by means of this 

family. 
 

Denote the number of recurrences by . 

The Hausdorff distance  between the sgn function and the function  satisfies the 

following nonlinear equation: 

 

            (15) 

 

The following Theorem gives lower bound for  

 

Theorem 3.1. For the Hausdorff distance  between the sgn function and the function  the following 

bound hold for : 

 

 (16) 

where 
 

.   (17) 

 

Proof. We define the functions 

 

 (18) 

and 

 (19) 

 

From Taylor expansion we find (see, Fig.2 and Fig.3) 

 

 

 

i.e. the function  approximates the function  with  as . 
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Figure 2: The functions  – (red) and  – (green) for . 

 

 
Figure 3: The functions  – (red) and  – (green) for . 

 

In addition  and the second derivative  has a constant sign on 

. 

Evidently, the smallest positive root  of the quadratic equation  

 

is lower bound for . 

 

This completes the proof of the Theorem. 

 

Some computational examples are presented in Table 1. 

 

The last column of Table 1 contains the values of  computed by solving the nonlinear equation (15). 

 

The recurrence generated (FMHGUDAF)–functions: , ,  and  are visualized on Fig.4. 
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Figure 4: Approximation of the  by (FMHGUDAF);  (green) – Hausdorff distance: ; 

 (red) – Hausdorff distance: ;  (dashed) – Hausdorff distance: ;  

(thick) – Hausdorff distance: . 

 

Table 1: Bounds for  for various . 

 
 

APPENDIX  

We define the following family of modified parametric Gudermann activation functions for : 

 

       (20) 

Evidently,  for . 

 

Denote the number of recurrences by . 

 

The -distance  between the sgn function and the function  satisfies the following 

nonlinear equation: 
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        (21) 

 

The recurrence generated functions are visualized on Fig.5 – Fig.6. 

 

 
Figure 5: Approximation of the  by family (20) for ;  (dashed) – Hausdorff distance: 

;  (thick) – Hausdorff distance: . 

 

 

 
Figure 6: Approximation of the  by family (20) for ;  (green) – Hausdorff distance: 

;  (red) – Hausdorff distance: ;  (dashed) – Hausdorff distance: 

;  (thick) – Hausdorff distance: . 

 

From the graphics it can be seen that the ”saturation” is faster. 

Based on the methodology proposed in the present note, the reader may formulate the corresponding 

approximation problems on his/her own. 

For the Hausdorff distance  for fixed  from (21) we have: 
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Table 2: Bounds for from (21) for various . 

 
4. CONCLUSION 

 

A family of modified parametric Gudermann activation functions based on Gudermann function is introduced 

finding application in neural network theory and practice. 
 

Theoretical and numerical results on the approximation in Hausdorff sense of the sgn function by means of 

functions belonging to the family are reported in the paper. 

 

We propose a software module within the programming environment CAS Mathematica for the analysis of the 

considered family of recurrence generated (FPSMHTAF) functions. 

 

 

 
Figure 7: Software module. 
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The module offers the following possibilities: 

- generation of the activation functions under user defined values of the parameter  –  number of 

recursions; 

- calculation of the H-distance ,  between the sgn function and the activation functions 

 and  respectively; 

- software tools for animation and visualization. 

 
For other results, see [35]–[39]. 

 

We will explicitly say that the results have independent significance in the study of issues related to neural 

networks. 

 

Some techniques for recurrence generating of families of activation functions can be found in [41]. 
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