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Face recognition (FR) is a technique for recognizing individuals through the use of face photographs. The FR technology is widely
applicable in a variety of fields, including security, biometrics, authentication, law enforcement, smart cards, and surveillance.
Recent advances in deep learning (DL) models, particularly convolutional neural networks (CNNs), have demonstrated
promising results in the field of FR. CNN models that have been pretrained can be utilized to extract characteristics for
effective FR. In this regard, this research introduces the GWOECN-FR approach, a unique grey wolf optimization with an
enhanced capsule network-based deep transfer learning model for real-time face recognition. The proposed GWOECN-FR
approach is primarily concerned with reliably and rapidly recognizing faces in input photos. Additionally, the GWOECN-FR
approach is preprocessed in two steps, namely, data augmentation and noise reduction by bilateral filtering (BF). Additionally,
for feature vector extraction, an expanded capsule network (ECN) model can be used. Additionally, grey wolf optimization
(GWO) combined with a stacked autoencoder (SAE) model is used to identify and classify faces in images. The GWO
algorithm is used to optimize the SAE model’s weight and bias settings. The GWOECN-FR technique’s performance is
validated using a benchmark dataset, and the results are analyzed in a variety of aspects. The GWOECN-FR approach achieved
a TST of 0.03s on the FEI dataset, whereas the AlexNet-SVM, ResNet-SVM, and AlexNet models achieved TSTs of 0.125s,
0.0051s, and 0.0062 s, respectively. The experimental results established that the GWOECN-FR technology outperformed more
contemporary approaches.

1. Introduction

The face recognition (FR) system is commonly presented
with essential facial features including the eyes, nose, and
mouth, that is, a nonoccluded face [1]. But a wide variety
of circumstances and situations impose people to wear
masks on faces that are partially occluded or hidden. This
common situation includes laboratories, pandemics,
immoderate pollution, or medical operations [2]. For exam-

ple, as per the WHO and Centers for Disease Control and
Prevention (CDC), the better method for protecting people
from the COVID-19 virus and being infected or preventing
the spreading of the disease is practicing social distancing
and wearing face masks. Therefore, each country in the
world requires people to wear a protective face mask in com-
mon places that address the need to understand and investi-
gate FR systems performed with face masks. But performing
this safety guiding principle earnestly challenges the current
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authentication and security schemes that depend on FR that
has already been implemented [3]. Techniques that are at
the forefront of lighting and pose research are utilized often
all around the world to solve illumination and posture
issues. On the basis of this exploration, we are presenting a
survey paper that comprises as much literature study as
possible for the reader to understand what exactly the varia-
tions are that can be caused by variation in illumination and
pose, as well as what approaches have been taken up until
now to make continuous improvements in existing systems.
Mostly, current approaches have been presented to deter-
mine whether a face is occluded or not, that is, masked face
detection. Even though saving an individual’s life is effective,
there is a crucial requirement for authenticating persons
wearing masks without requiring to expose them. For exam-
ple, premise access control and immigration points are
among various locations in which a subject makes a cooper-
ative presentation to a camera that increases the challenge of
face detection since the occluded part is essential for FR and
detection [4, 5].

The FR technique comprises four phases that include
face alignment, representation, classification (facial feature
extraction), and detection [6]. In the FR method, the major
problem is the feature representation system utilized for
extracting features, with the best approach for a given
biometric trait, for representation. Feature extraction is the
fundamental step for image classification. Feature extraction
means preserving the crucial data that is needed for classifi-
cation. There are several feature extraction processes that
were introduced for usage in a biometric scheme, involving
independent component analysis (ICA), principal compo-
nent analysis (PCA), the histogram method, and local binary
patterns (LBP) [7, 8]. In recent times, the convolutional
neural network (CNN) displays significant benefits.

Currently, with the development of the DL method, the
face detection method accomplishes remarkable outcomes.
The CNN method, more commonly known as the deep neu-
ral network in computer vision applications, proves a signif-
icant benefit of automated visual feature extraction [9].
There are two types of approaches for training CNN for face
detection systems, namely, metric learning and classification
layer. There are distinct methods for utilizing CNN. Initially,
learn the model from scratch. In such cases, the framework
of the pretrained method is trained and utilized based on
the dataset. Next, transfer learning (TL) uses features from
pretrained CNN, where the dataset is larger. At last, CNN
is utilized by the TL method to keep the convolution base
in its original version and utilize output for feeding the clas-
sifier. The pretrained method is utilized as a fixed feature
extraction method where the dataset is smaller [10].

This study designs an effective grey wolf optimization
with an enhanced capsule network-based deep transfer
learning model for real-time face recognition, named the
GWOECN-FR technique. The proposed GWOECN-FR
technique performs data augmentation and bilateral filter-
ing- (BF-) based noise elimination at the preprocessing step.
In addition, the enhanced capsule network (ECN) model can
be utilized for extracting feature vectors. In the current
investigation, enhanced capsule networks (ECN) are utilized
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in order to construct an appropriate diagnostic system. The
fragmented pixel set of the X-ray image is referred to as a set
of nerve cells in ECN. The capsule is the focus of this analy-
sis. For the purpose of the X-ray image, the system utilized a
pixel vector as an actuation vector. This pixel vector was
encircled by an active capsule and may represent a certain
category, such as healthy or COVID-19. Within this exam-
ple, the capsule output and the coupling coeflicient have
been multiplied by the capsule routing within a layer. The
value of the coupling coeflicient is determined by the resis-
tance of the parent capsule when it comes to routing. The
low-level COVID-19 diagnosis has been determined based
on the routing-by-agreement method, and the high-level
capsule activation was responsible for making this determi-
nation. Furthermore, grey wolf optimization (GWO) with a
stacked autoencoder (SAE) model is applied for the identifi-
cation and classification of faces where the weight and bias
values of the SAE model are chosen by the GWO algorithm.
Mirjalili et al. developed the grey wolf optimizer in 2014 as a
revolutionary heuristic swarm intelligence optimization
technique. As the apex predator in the food chain, the wolf
has a remarkable ability to capture prey. GWO is a novel
metaheuristic optimization tool. Its guiding premise is to
mimic the cooperative hunting behavior of grey wolves in
nature. In terms of model structure, GWO differs from
others. In order to showcase the supremacy of the
GWOECN-FR technique, a comprehensive result analysis
is carried out on a benchmark dataset.

2. Related Works

Gwyn et al. [1] provided a comprehensive review of many
advanced DL-based facial detection techniques to define
accuracy and other metrics that are very efficient. In this
work, VGG-16 and VGG-19 show the maximum level of
image detection performance and F1 score. Zhu and Jiang
[11] aimed to enhance the current face detection method,
studied the face detection approach driven by big data, and
presented a DL multifeature fusion face detection method
driven by big data. The study employs the LBP (local binary
pattern) approach for extracting the texture feature of the
face, and that is incorporated with the global feature
extracted through 2DPCA to multifeature fusion; thus, the
fused feature could consider local and global features, which
have good detection performance.

Al-Waisy et al. [12] proposed an architecture based on
merging the advantage of the local handcrafted feature
descriptor with the DBN for addressing the face detection
problem in unrestrained conditions. Initially, a novel multi-
modal local feature extraction method based on merging the
advantage of the curvelet transform with the fractal dimen-
sion has been presented and called the curvelet-fractal
method. Mao et al. [13] used the differentially private
method to enable the privacy-preserving edge-based training
of the DNN face detection method. In the training process,
DNN has split among the edge server and the user device
so that model parameters and private data are secured, with
a smaller cost of local computation.



Wireless Communications and Mobile Computing

Sharma and Kumar [14] developed a three-dimensional
face reconstruction and a sequential DL-based architecture
for face detection. It employs the reflection principle to gen-
erate the reconstructed points in 3D with the midface plane.
From the reconstructed face, a sequential DL architecture is
designed for recognizing the person, gender, emotion, and
occlusion. The presented method uses the concept of triplet
loss training, VAE, and BiLSMT. Anand et al. [15] focused
on using one of the advanced ML methods in face detection
to achieve maximum performance. Then, we generated our
own dataset and trained it on the GoogLeNet (inception)
DL method with the Caffe and Nvidia DIGITS architecture.

3. The Proposed Model

In this study, a new GWOECN-FR technique has been
developed for the rapid and prompt identification of facial
images. The presented GWOECN-FR technique initially
performs data augmentation and BF-based noise elimination
to preprocess the facial input images. Afterward, the ECN
model is applied to produce a useful set of feature vectors.
Besides, the SAE model is employed to recognize the faces
and the performance of the SAE model can be improved
by adjusting its parameters using the GWO algorithm.
Figure 1 illustrates the overall process of the GWOECN-FR
technique.

3.1. Data Augmentation and Noise Removal. Since DL
models require a large number of training instances, data
augmentation becomes essential. In this work, geometric
transformation, filtering, and brightness operations are per-
formed to augment the images. Image rotation, zooming,
translation, brightness, and filtering operations are carried
out to increase the number of variations of the images. Then,
the BF technique can be employed to eradicate the existence
of noise involved in it.

Assume that F refers to the multichannel images, and
consider that Wexists as slide windows of a fixed size n x n.
Let the pixel from W signify the Cartesian coordinates,
denoted by u = (u,, u,) € Y?, the place of pixels F, from W,
where Y={0,1,---,n—1}is endowed with the standard
order. The BF exchanges the central pixels of all the filter
windows by the weighted average of their neighbor color
pixels. The weighted function was planned for smoothing
from the area of related colors but keeping edges intact by
the heavily weighted individual’s pixel which is both spatially
close and photometrically related to the central pixels [16].
Represent by |-||, the Euclidean norms and F,, the central
pixels of concern. Afterward, the weighted 7#'(F,, F,) equiv-
alent to some pixel F, in accordance with F, refers to the
product of 2 elements, 1 spatial and 1 photometrical,

W(Fu’FV)ZWS(Fw FV)WP(FM’FV)’ (1)
but the spatial element %' ((F,, F,) is offered as

W (F,, F,)=e "2, 2)

and the photometrical element %", (F,, F,) is provided by
W (F, F,) = ¢ Sl Ful 1003 3)

where AE,,, =[(AL*)* + (Aa*)” + (Ab*)z]uz demonstrates
the perceptual color error from the L*a*b* color space, and

0,0, > 0. The color vector outcome ﬁvu of filtering is calcu-

lated utilizing the normalization weight, so it can be provided
as

1__7 — ZFvew%(Fu’ FV)F‘I/
! ZFVewW(Fu’ Fv)

(4)

The 7' weighted purpose reduces as the spatial distance
from the image among u and v improves, and the 7/,
weighted function reduces as the perceptual color variance
among the color vector enhances. The spatial element
reduces the control of the furthest pixel decreasing blurring,
but the photometric element decreases the control of the
individual’s pixels that are perceptually distinct in accor-
dance with one under process. During this approach, only
perceptually related regions of pixels were averaged together
and the sharpness of edges is maintained. The parameters o,
and o, were utilized for adjusting the control of the spatial
and photometric elements correspondingly. A rough thresh-
old is assumed to identify pixels appropriately closer or
related to the central one. Notice that if o, — oo, the BF
methods include Gaussian filtering, and if 0, — o0, the fil-
ter methods range filters without spatial notion. During the
case, if 0, — 0o and o, — ooare combined, the BF per-
forms as AMF.

3.2. Feature Extraction Using the ECN Model. During the
feature extraction process, the preprocessed facial image is
passed into the ECN model to generate feature vectors.
The enhanced capsule network (ECN) system has been
employed. In our method, the split pixel set of the images
is labeled as a group of nerve cells respective to the capsule
[17]. The pixel vectors are utilized as an activation vector
enclosed through an active capsule; also, there might be a
certain class, namely, tumor or healthy, for an image-
related pixel vector segmentation representing the overall
length. The capsule routing in a layer is implemented
through the multiplication of the coupling coefficient (CC)
and capsule output. The values of CC can be defined as the
resistance of the parent capsule for routing. The lower-level
tumor diagnoses are determined as higher-level capsule acti-
vation via a top-down feedback method that is named
“routing-by-agreement” [17]. Assume Y, € [healthy, tumor]
as output capsule i, and we;; denotes the weight matrix as
follows:

Vi = weiyi (5)

where ;) determines the detection vector that diagnoses
the output parent capsule j with capsule i, and the pixel
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range has been applied for evaluating the weight quantity.
The quantity for the weight was enhanced as long as the
value has been reduced or the pixel is possibly included in
the positive group. The softmax process is utilized by the
previous layer capsule, and the possible parent capsule as a

coeflicient is encoded as c;; where main logits b;; display

the log preceding possibility of routing capsule i in the prior
layer to capsule j in the subsequent layer. In general, the
“routing-by-agreement” method was implemented by logits
of the capsule in each layer:

ebff
C::

ij Zieb”' !

(6)

The preceding layer illustrates an essential component in
the computation of the input of parent capsule j, i.e., accom-
plished by

5= ¥y (7)
1

The compression value of the pixel vector was deter-
mined within [0, 1] using a nonlinear process named squash-
ing. The computational operation is expressed by

2
S. S,
o = ] B "

L+ s e+ |ls;

where € = 1077, And the following layer capsule was accom-
plished by

a;=va; X 7(1':')- (9)

The whole capsule classification is considered the margin
loss (Loss) in the class capsule k for the capsule network
according to the loss:

Loss; = Ty, max (0, m" — |[va|)*

10
+A(1=Ty) max (0, ||jvay|| —m")?, 1)
where T denotes the instant existence in class capsule k, and
A, m~, and m* determine hyperparameter assistance. The
training of ECN can be determined according to six hundred
iterations according to the Adam optimizer for the optimum
of the hyperparameter using the amount of learning rates.
Adam is a stochastic gradient descent replacement optimiza-
tion technique for training deep learning models. Adam
combines the finest features of the AdaGrad and RMSProp
methods to provide an optimization technique that can han-
dle sparse gradients on noisy issues. The Adam optimizer
combines two gradient descent methodologies: Momentum.
This algorithm is used to accelerate the gradient descent
technique by taking the “exponentially weighted average”
of the gradients into account. Using averages causes the
algorithm to converge faster to the minima. The Adam opti-
mizer produces better results than other optimization algo-
rithms, takes less time to compute, and requires fewer
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parameters to tune. Because of this, Adam is suggested as the
default optimizer for the majority of applications.

3.3. Image Classification. At the final stage, the SAE model
receives the feature vectors as input to allot proper class
labels to the facial images. AE is a type of unsupervised
learning infrastructure which retains 3 states such as input,
hidden, and output states [17]. An autoencoder is an unsu-
pervised learning strategy for neural networks that learns
efficient data representations (encoding) by training the net-
work to disregard signal “noise.” Autoencoders can be used
for image denoising, image compression, and, in some situ-
ations, picture data synthesis. An autoencoder is made up of
three major components: an encoder, a code, and a decoder.
The initial data is converted into a coded result, and the net-
work’s successive layers extend it into a finished output. A
“denoising” autoencoder can help you understand autoenco-
ders. The denoising autoencoder refines the output by com-
bining original and noisy input. Autoencoders are useful in
image processing, classification, and other elements of
machine learning. The procedure of trained AE has 2 parts,
encoded and decoded. The encoded part was utilized to map
the input data to hidden representations, and the decoded
part was signified as recreating input information in the hid-
den representations. To provide the unlabeled input dataset
{x,},, where x, € R, h, implies the hidden encoded
vector computed in x,,, and X, stands for the decoded vector
of the resultant state. Therefore, the encoding method is as
follows:

hn :f(Wlxn+bl)’ (11)

where f signifies the encoded functions, W, refers to the
weighted matrix of encoding, and b, implies the bias vectors.
The decoded procedure can be determined as

X, = g(Wh, +by), (12)

where g denotes the decoded functions, W, demonstrated
the weighted matrix of decoding, and b, implies the bias vec-
tors. The parameter set of AE was the optimization to min-
imize the reconstruction error:

1 .
J(O) = in— Y L(x',%"), 13
(©) =arg min ) L(x\%) (13)

where L stands for a loss function L(x, %) = ||x — %||*.

The infrastructure of SAE is stacked n AEs to »n hidden
states with an unsupervised statewise learning technique
and next is fine-tuned by a supervised approach. Therefore,
the SAE-based technique is separated into 3 phases:

(i) Train the primary AE by input information and
attain the learn feature vectors

(ii) The feature vector of the previous state was utilized
as input to the next stage, and this process was
repeated till the training ends

Start

Initialization of the population

Fitness function evaluation

Current iteration < Maximum of iteration?

Updating search agent location

|

Updating the value of search agent

l

Repeat evaluate the fitness function of search agents

I

Repeat updating the value of search agent

I

Output: Optimal solution

FiGUure 2: GWO flowchart.

Population initialization: grey wolves X;(i=1,2, -+, n)
Parameter initialization: a, A, and C
Determine fitness values of all searching agents
X, = optimal searching agent
Xp = second optimal searching agent
X = third optimal searching agent
While (t < Max_number_iterations)
For every searching agent
Upgrade the location of the present searching agent
End for
Upgrade a, A, and C
Determine fitness values of all searching agents
Upgrade X, Xp, and X;5
Increment ¢
End while
Return X,

ArLcoriTHM 1: Pseudocode of the GWO algorithm.

(iii) Afterward, each hidden state is trained, and the BP
technique was utilized for minimizing the cost func-
tion and upgrading the weight with a labeled trained

set for achieving fine-tuning
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FIGURE 3: Sample images.

3.4. Parameter Tuning Using the GWO Algorithm. For opti-
mally adjusting the parameters (such as weight and bias)
involved in the SAE model, the GWO algorithm is applied
to it. Recently, a novel SI-optimized technique is called
GWO established by Mirjalili et al. [18]. In fact, it can be
an original method which accelerates the social and hunting
hierarchy of GW by default. For developing the social per-
formance of GW, it can be categorized into 4 states such as
a, 3, 6, and w. aconsidered the optimum solutions executed
by B and 6, correspondingly, and the residual solution
derived inw.The 3 primary fittest wolves nameda, f3, and §
neighboring the prey supportw for identifying the food from
the challenging region. During the surrounding step, wolves
increase the place of 5 or § as illustrated in

>l

— —

X(t+1)=X, - A-D, (15)

where f refers to the present iteration, )?p(t) denotes the pres-
ent place of prey, and X(t) signifies the current place of
wolves. D implies the distance between wolves and prey,

and coefficient vectors A and C are resultant from the math-
ematical process as illustrated as follows [19]. Figure 2 show-
cases the flowchart of the GWO technique and pseudocode
of GWO discussed in Algorithm 1.

A=2d7 -4,
o (16)
C=2r,,

where 7, and 7, imply the 2 vectors created in zero and one
from an arbitrary fashion, and the element of @ has
decreased linearly from two to zero to all the iterations. At
this point, «, 8, and § define the location nearer to the place

of prey. During the case of hunting, the top 3 were optimum
solutions and residual wolves w are appropriate for replacing
the fundamental of the 3 initial optimum wolves. The place
of wolves was upgraded on the fundamental of

D,=|C,-X-X|, (17)
Dy=|C,-X-X|, (18)
Dy=|Cy-X-X|, (19)
Xlzia_KZ'(Ba)’ (20)
)_ézziﬁ—zz (Bﬁ)’ (21)
X;=X-A- (}), (22)
X, + X+ X,

X(t+1)= % (23)

where )_fa implies the place of «; X p defines the place of ;

— R

X stands for the place of §; X indicates the place of existing
— = —

solutions; C;, C,, and C; signify the vectors created from an

arbitrary fashion. Here, A " Zz, and 23 are demonstrated as
arbitrary vectors, and ¢ denotes the amount of rounds. The
step size of wwolves was executed; then,a, 3, and § are illus-
trated as in Equations (17)-(19), correspondingly. After-
ward, the resultant places of wwolves are evaluated on the
fundamental of Equations (20)-(23).

The GWO approach derives a Feedback Framework (FF)
for obtaining higher classification performance. It defines a
positive integer for representing the optimum efficiency of
the candidate solution. During this study, the minimized
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FIGURE 4: Accuracy analysis of the GWOECN-FR technique under 4 datasets.

classification error rate assumed as FF is provided in Equa-
tion (24). The optimum solution is a lesser error rate, and
the worst solution gains a higher error rate.

fitness(x;) = Classifier Error Rate(x;)

number of misclassified instances 100
= * .
Total number of instances

(24)

4. Performance Validation

In this section, the result analysis of the GWOECN-FR
model is carried out using four benchmark datasets. The first
GTAV face dataset [20] includes images of 44 persons. The
next Georgia Tech face database [21] includes a collection
of images for 50 persons. The third FEI face database [22]

comprises 14 sets of images from 200 people. Finally, the
Labeled Faces in the Wild (LFW) database [23] includes
13K facial images gathered from the Internet. A few sample
images are demonstrated in Figure 3.

The overall accuracy outcome analysis of the
GWOECN-FR technique under four datasets is portrayed
in Figure 4. The results demonstrated that the GWOECN-
FR algorithm has accomplished improved validation accu-
racy compared to training accuracy [24-30]. It can be also
observable that the accuracy values get saturated with the
count of epochs.

The overall loss outcome analysis of the GWOECN-FR
system under four datasets is depicted in Figure 5. The figure
revealed that the GWOECN-FR approach has denoted the
reduced validation loss over the training loss. It is addition-
ally noticed that the loss values get saturated with the count
of epochs.
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FIGURE 5: Loss analysis of the GWOECN-FR technique under 4 datasets.

TaBLE 1: Accuracy analysis of the GWOECN-FR technique with
existing approaches under four datasets.

Accuracy (%)
Dataset AlexNet-SVM ResNet-SVM  AlexNet GWOECN-FR

GTAV 99.42 99.54 99.78 99.82
Georgia 96.09 96.18 98.71 99.43
FEI 97.33 98.37 98.75 99.56
LPW 93.80 93.99 95.42 98.38

Table 1 and Figure 6 report the enhanced accuracy
examination of the GWOECN-FR model with recent
methods on four datasets [31-34]. The results indicated
the betterment of the GWOECN-FR model on all the test
datasets compared to existing methods. For instance, on
the GTAV dataset, the GWOECN-FR model has obtained
higher accuracy of 99.82%, whereas the AlexNet-SVM,
ResNet-SVM, and AlexNet models have attained lower
accuracy values of 99.42%, 99.54%, and 99.78%, respectively.

Meanwhile, on the FEI dataset, the GWOECN-FR model
has gained increased accuracy of 99.56%, whereas the Alex-
Net-SVM, ResNet-SVM, and AlexNet models have accom-
plished reduced accuracy values of 97.33%, 98.37%, and
98.75%, respectively. Eventually, on the LPW dataset, the
GWOECN-FR model has resulted in better accuracy of
98.38%, whereas the AlexNet-SVM, ResNet-SVM, and Alex-
Net models have offered reduced accuracy values of 93.80%,
93.99%, and 95.42%, respectively.

Table 2 and Figure 7 examine the enhanced precision
examination of the GWOECN-FR technique with recent
methods on four datasets. The results revealed the better-
ment of the GWOECN-FR method on all the test datasets
compared to existing techniques [35, 36]. For instance, on
the GTAV dataset, the GWOECN-FR method has obtained
higher precision of 99.32%, whereas the AlexNet-SVM,
ResNet-SVM, and AlexNet techniques have reached mini-
mal precision values of 96.81%, 98.84%, and 98.75%, respec-
tively. In the meantime, on the FEI dataset, the GWOECN-
FR model has gained increased precision of 98.97%, whereas



Wireless Communications and Mobile Computing

100 -
99 A
98 -
97
96

Accuracy (%)

95 A
94
93

92 -

Alexnet-SVM  Resnet-SVM Alexnet GWOECN-FR

mm GTAV
= Georgia

mm FEI
mm [ PW

FIGURE 6: Accuracy analysis of the GWOECN-FR technique with
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TABLE 2: Precision analysis of the GWOECN-FR technique with
existing approaches under four datasets.

Precision (%)
Dataset AlexNet-SVM ResNet-SVM  AlexNet GWOECN-FR

GTAV 96.81 98.84 98.75 99.32

Georgia 92.28 94.07 98.52 99.51

FEI 94.26 95.40 95.96 98.97

LPW 92.18 92.18 93.13 98.74
100 A

Precision (%)

Alexnet-SVM  Resnet-SVM Alexnet GWOECN-FR
mm GTAV mm FE]
= Georgia mm LPW

FIGURE 7: Precision analysis of the GWOECN-FR technique with
recent approaches.

the AlexNet-SVM, ResNet-SVM, and AlexNet techniques
have accomplished lower precision values of 94.26%,
95.40%, and 95.96%, respectively. Finally, on the LPW data-
set, the GWOECN-FR approach has resulted in better preci-
sion of 98.74%, whereas the AlexNet-SVM, ResNet-SVM,
and AlexNet algorithms have obtainable reduced precision
values of 92.18%, 92.18%, and 93.13% correspondingly.
Table 3 and Figure 8 demonstrate the improved recall
examination of the GWOECN-FR model with recent tech-

=}

TaBLE 3: Recall analysis of the GWOECN-FR technique with
existing approaches under four datasets.

Recall (%)
Dataset AlexNet-SVM ResNet-SVM  AlexNet GWOECN-FR

GTAV 98.52 98.14 98.89 99.51
Georgia 98.55 96.60 98.86 99.43
FEI 98.89 98.33 98.05 99.42
LPW 93.97 92.84 95.28 98.36
100 -
98
<
= 9 1
<
o}
~
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92 |
Alexnet-SVM  Resnet-SVM Alexnet GWOECN-FR
mm GTAV mm FEI
= Georgia mm LPW

FIGURE 8: Recall analysis of the GWOECN-FR technique with
recent approaches.

niques on four datasets. The results showed the betterment
of the GWOECN-FR technique on all the test datasets com-
pared to existing techniques. For instance, on the GTAV
dataset, the GWOECN-FR approach has attained superior
recall of 99.51%, whereas the AlexNet-SVM, ResNet-SVM,
and AlexNet techniques have attained lesser recall values of
98.52%, 98.14%, and 98.89% correspondingly. Afterward,
on the FEI dataset, the GWOECN-FR model has gained
increased recall of 99.42%, whereas the AlexNet-SVM,
ResNet-SVM, and AlexNet methodologies have accom-
plished decreased recall values of 98.89%, 98.33%, and
98.05% correspondingly. At last, on the LPW dataset, the
GWOECN-FR approach has resulted in better recall of
98.36%, whereas the AlexNet-SVM, ResNet-SVM, and Alex-
Net techniques have offered reduced recall values of 93.97%,
92.84%, and 95.28%, respectively.

Table 4 and Figure 9 define the increased F1 score exam-
ination of the GWOECN-FR system with recent algorithms
on four datasets. The outcomes referred to the betterment of
the GWOECN-FR method on all the test datasets compared
to existing methods. For instance, on the GTAV dataset, the
GWOECN-FR method has achieved a higher F1 score of
99.31%, whereas the AlexNet-SVM, ResNet-SVM, and Alex-
Net models have reached lower F1 score values of 96.69%,
98.05%, and 98.99% correspondingly. Likewise, on the FEI
dataset, the GWOECN-FR system has gained a higher F1
score of 99.52%, whereas the AlexNet-SVM, ResNet-SVM,
and AlexNet models have accomplished minimal F1 score
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TaBLE 4: F1 score analysis of the GWOECN-FR technique with
existing approaches under four datasets.

F1 score (%)
Dataset AlexNet-SVM ResNet-SVM  AlexNet GWOECN-FR

GTAV 96.69 98.05 98.99 99.31
Georgia 93.58 95.84 98.80 99.26
FEI 94.90 97.91 98.01 99.52
LPW 90.18 93.95 94.05 99.16
100 A
98 -
g 96
I
S 94 -
@
= 9
90 -
Alexnet-SVM  Resnet-SVM Alexnet GWOECN-FR
mm GTAV mm FEI
= Georgia mm [ PW

FIGURE 9: F1 score analysis of the GWOECN-FR technique with
recent approaches.

TaBLE 5: Testing time analysis of the GWOECN-FR technique with
recent methods.

Testing time (sec)
Dataset AlexNet-SVM ResNet-SVM  AlexNet GWOECN-FR

GTAV 0.100 0.061 0.080 0.04
Georgia 0.113 0.049 0.096 0.02
FEI 0.125 0.051 0.062 0.03
LPW 0.100 0.054 0.075 0.03

values of 94.90%, 97.91%, and 98.01%, respectively. Lastly,
on the LPW dataset, the GWOECN-FR methodology has
resulted in a better F1 score of 99.16%, whereas the Alex-
Net-SVM, ResNet-SVM, and AlexNet techniques have
accessible reduced F1 score values of 90.18%, 93.95%, and
94.05%, respectively.

Finally, a detailed testing time (TST) examination of the
GWOECN-FR technique with recent methods [24] is per-
formed in Table 5 and Figure 10. The results indicated that
the GWOECN-FR technique has obtained effectual out-
comes with the least TST under all datasets. For instance,
on the GTAV dataset, the GWOECN-FR technique has
resulted in a lower TST of 0.04s, whereas the AlexNet-
SVM, ResNet-SVM, and AlexNet models have attained
increased TST's of 0.100's, 0.0361 s, and 0.080 s, respectively.

Similarly, on the FEI dataset, the GWOECN-FR tech-
nique has achieved a reduced TST of 0.03s, whereas the

Wireless Communications and Mobile Computing
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FIGURE 10: Testing time analysis of the GWOECN-FR technique
with recent methods.

AlexNet-SVM, ResNet-SVM, and AlexNet models have
obtained higher TSTs of 0.125s, 0.0051s, and 0.0062s,
respectively. From the abovementioned result analysis, it is
ensured that the GWO-ECN-FR technique has accom-
plished the maximum FR outcome over the other
techniques.

5. Conclusion

In this study, a new GWOECN-FR technique has been
developed for the rapid and prompt identification of facial
images. The presented GWOECN-FR technique comprises
several stages of operations such as data augmentation, BF-
based noise elimination, ECN-based feature extraction,
SAE-based classification, and GWO-based parameter tun-
ing. Moreover, the GWO algorithm is utilized to optimally
modify the weight and bias values of the SAE model. In
order to showcase the supremacy of the GWOECN-FR tech-
nique, a comprehensive result analysis is carried out on a
benchmark dataset. On the FEI dataset, the GWOECN-FR
method got a lower TST of 0.03 s, while the AlexNet-SVM,
ResNet-SVM, and AlexNet models all got higher TSTs of
0.1255, 0.0051 s, and 0.0062 s, respectively. The experimental
results demonstrated the betterment of the GWOECN-FR
technique over the recent approaches. Therefore, the
GWOECN-FR technique can be applied as an effective tool
for FR. In the future, hybrid DL models with hyperpara-
meter optimizers can be involved to improve the recognition
performance.
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