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Why Use Neural Networks?
OUTPUTS

INPUTS

I Neural nets powerful in many statistical domains
I E.g. control, pattern recognition, prediction, decision making
I Where no good theory of the domain exists

I Good supervised training algorithms exist
I Learn a nonlinear function that matches the examples
I Utilize big datasets
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Why Evolve Neural Networks?

I . Original role (since 1990s): RL Tasks & especially POMDP
I Both the structure and the weights evolved (no training)
I Power from recurrency; behavior

I . A new role (since 2016): Optimization of Deep Learning Nets
I Architecture, hyperparameters, functions evolved; weights trained
I Power from complexity

I . A possible future role: Emergence of intelligence
I Body/brain co-evolution; Competitive co-evolution
I Evolution of memory, language, learning
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I. Reinforcement Learning / POMDP Tasks

I A sequence of decisions creates a sequence of states
I States are only partially known
I Optimal outputs are not known
I We can only tell how well we are doing

I Exist in many important real-world domains
I Robot/vehicle/traffic control
I Computer/manufacturing/process optimization
I Game playing; Artificial Life; Biological Behavior
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Value-Function Reinforcement Learning

Win!

Function
Approximator

Sensors

Value

Decision

I E.g. Q-learning, Temporal Differences
I Generate targets through prediction errors
I Learn when successive predictions differ

I Predictions represented as a value function
I Values of alternatives at each state

I Difficult with large/continuous state and action spaces
I Difficult with hidden states
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Policy-Search Reinforcement Learning

Neural NetSensors Decision

I E.g. REINFORCE, policy gradients
I The policy is optimized directly through hill climbing
I Works well in simple cases

I Large/continuous states and actions possible
I Hidden states (in POMDP) disambiguated through memory
I Does not scale well
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Neuroevolution Reinforcement Learning

I Takes advantage of population-based search
I In essence, multiple interacting searches
I Each discover building blocks that are combined
I Extensive exploration possible

I Makes it possible to scale up:
I to large spaces (e.g. 2270 states49)
I to high dimensionality (e.g. up to 1B10)
I to deceptive landscapes (with e.g. multiobj and novelty74)
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How Well Does It Work?

I In the OpenAI Gym CartPole-v0 benchmark vs. PPO, DQN
I NE converges faster, has lower variance, lower regret
I NE is more efficient, reliable, and safer15

I In a double-pole benchmark vs. Sarsa, Q-MLP, etc.
I The only method that can find solutions to 1m, 0.1m, POMDP20

I The fundamental difference is exploration
I Evolution provides more exploration than gradients do30,68,85
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Neuroevolution for RL/POMDP

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On 
Target

Object Rangefiners Enemy
LOF

Sensors

Bias

I Input variables describe the state observed through sensors
I Output variables describe actions
I Network between input and output:

I Recurrent connections implement memory
I Memory helps with POMDP
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Basic Neuroevolution

I Evolving connection weights in a population of networks 56,69,96,97

I Chromosomes are strings of connection weights (bits or real)
I E.g. 10010110101100101111001
I Usually fully connected, fixed, initially random topology

I A natural mapping between genotype and phenotype
I GA and NN are a good match!
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Advanced NE 1: Evolving Partial Networks

I Evolving individual neurons to cooperate in networks1,57,60

I E.g. Enforced Sub-Populations (ESP18)
I Each (hidden) neuron in a separate subpopulation
I Fully connected; weights of each neuron evolved

I Can be applied at the level of weights, and modules20
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Why Is It a Good Idea?
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I E.g. evolving neurons for robotic control
I Simulated Kheperas running a maze

I Subpopulations discover & optimize compatible subtasks
I E.g. slow down with obstacle on front

veer left with obstacle at right, etc.
I Each neuron part of 2-3 subtasks

I Robust coding of behavior during search
12/62
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Advanced NE 2: Evolutionary Strategies

I Evolving complete networks with ES (CMA-ES26)

I Small populations, no crossover

I Instead, intelligent mutations
I Adapt covariance matrix of mutation distribution
I Take into account correlations between weights

I Why is it a good idea?
I Discovers good weight combinations! CM
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Advanced NE 3: Evolving Network Structure

I Optimizing connection weights and network topology3,12,16,98

I E.g. Neuroevolution of Augmenting Topologies (NEAT78,82)

I Based on Complexification

I Of networks:
I Mutations to add nodes and connections

I Of behavior:
I Elaborates on earlier behaviors
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Why Is It a Good Idea?

Minimal Starting Networks

Population of Diverse Topologies

Generations pass...

I NN search space is complex with nonlinear interactions
I Complexification keeps the search tractable

I Start simple, add more sophistication
I Incremental discovery of complex solutions
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Advanced NE 4: Indirect Encodings (1)

I Instructions for constructing the network evolved
I Instead of specifying each unit and connection3,12,55,75,98

I E.g. Cellular Encoding (CE23)
I Grammar tree describes construction

I Sequential and parallel cell division
I Changing thresholds, weights
I A “developmental” process that results in a network

16/62

1023



Indirect Encodings (2)

I Encode the networks as spatial patterns
I E.g. Hypercube-based NEAT (HyperNEAT8)
I Evolve a neural network (CPPN)

to generate spatial patterns
I 2D CPPN: (x, y) input! grayscale output
I 4D CPPN: (x1, y1, x2, y2) input! w output
I Connectivity and weights can be evolved indirectly
I Works with very large networks (millions of connections)
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Why Is It a Good Idea?

I Describes structure efficiently
I Recurrency symbol in CE: XOR! parity
I Repetition with variation in CPPNs

I Useful for evolving topology
I E.g. large structured networks
I E.g. repetition of motifs
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Future Opportunities

I Several possible directions
I More general L-systems;

developmental codings;
embryogeny83

I Scaling up spatial coding9,17

I Genetic Regulatory Networks65

I Evolution of symmetries91

I Theory starting to emerge
I Expressive Encodings48:

Simple GAs are universal
probability approximators
(Meyerson et al. GECCO’22)
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Further NE Techniques

I Incremental and multiobjective evolution19,72,90,97

I Utilizing population culture4,42,87

I Utilizing evaluation history41

I Evolving NN ensembles and modules28,40,59,66,94

I Evolving transfer functions and learning rules7,67,84

I Bilevel optimization of NE38

I Evolving LSTMs for strategic behavior34

I Extrapolation with Context+Skill modules89

I Combining learning and evolution6,13,42,58,79,87,95

I Evolving for novelty

20/62
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Evolving for Novelty

An Interesting Observation 

• NEAT-evolved networks (called CPPNs 58) 
produce nice patterns: Can this ability help 
to evolve brains? 

CPPN = Compositional 
Pattern  
Producing Network 

Mapping 

45 

An Interesting Observation 

• NEAT-evolved networks (called CPPNs 58) 
produce nice patterns: Can this ability help 
to evolve brains? 

46 

CPPN Patterns (Also for brains?) 
From http://picbreeder.org 52,53 

(All are 100% evolved: no retouching) 

47 

CPPN-based Indirect Encoding:  
Hypercube-based NEAT (HyperNEAT)19,60 
• Main insight: 2-D connections isomorphic to 4-D points 

– Nodes situated in 2 spatial dimensions (x,y) 
– Connections expressed with 4 spatial dim. (x1,y1,x2,y2) 

• HyperNEAT extends 2-D CPPNs to 4-D 
– CPPN encodes 4-D patterns (i.e. inside a hypercube) 

• 4-D patterns can express the same regularities as 2d patterns 
• 4-D patterns interpreted as connectvitity patterns 

               CPPN                                      Output                                              CPPN                                          Output 

48 

I Motivated by humans as fitness functions
I E.g. picbreeder.com, endlessforms.com73

I CPPNs evolved; Human users select parents
I No specific goal

I Interesting solutions preferred
I Similar to biological evolution?
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Novelty Search

I Evolutionary algorithms maximize a performance objective
I But sometimes hard to achieve it step-by-step

I Novelty search rewards candidates that are simply different31,81

I Stepping stones for constructing complexity
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Novelty Search Demo (1)

I Illustration of stepping stones43,44

I Nonzero fitness on “feet” only; stepwise increase
I Top and right “toes” are stepping stones to next “foot”
I Difficult for fitness based search; novelty can do it

I DEMO
23/62

Novelty Search Demo (2)

I Fitness-based evolution is rigid
I Requires gradual progress

I Novelty-based evolution is more innovative, natural31,81

I Allows building on stepping stones
I How to guide novelty search towards useful solutions?

I Quality Diversity methods14,61

I DEMO
24/62
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Neuroevolution Applications

Control
Pole-Balancing

Satellite Asst. Helicopter
Rocket

Robotics
Soccer

Driving Bipedal Multilegged

Games

a b

1

2

3

4

5

6

7

8

c d e f g h

Othello NERO Pac-Man Unreal

Alife
Duel

Predators Hyenas/Zebras Virtual Creatures
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Example 1: Evolving Humanlike Behavior

I Botprize competition, 2007-2012
I Turing Test for game bots ($10,000 prize)

I Three players in Unreal Tournament 2004:
I Human confederate: tries to win
I Software bot: pretends to be human
I Human judge: tries to tell them apart!

26/62

Evolving an Unreal Bot

I Wandering, unstuck etc. based on scripts & learning from humans

I Evolve effective fighting behavior71

I Persistent gap: 30% vs. 80% human
I Evolving to win results in unnatural behaviors
I Human judges do not understand their expertise

27/62

After Five Years, Success!!!

I Human-like behavior with resource limitations (speed, accuracy...)
I Best bot better than 50% of the humans
I Two teams human 50% of the time

I Fascinating challenges remain:
I Judges can still differentiate in seconds
I Judges lay cognitive, high-level traps
I Team competition: collaboration as well

I DEMO 28/62
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Example 2: Optimizing COVID-19 NPIs

Train a NN to predict COVID-19 cases
• Based on number of cases in different countries over time

• And non-pharmaceutical interventions (NPIs) over time

Using the predictive model as a surrogate,
evolve a NN to recommend NPIs
• Resulting in smallest number of cases

• With minimal economic cost

Not just what will happen, but what we should do about it!

30

Example 2: Optimizing COVID-19 NPIs (2)

Retrained daily since May 2020
• Based on data from Oxford University

• Adapting to the different stages of the pandemic

• Generalizing from experiences across the world

Recommendations about two weeks in advance, e.g.
• May 2020: Focus on schools and workplaces (i.e. indoors)

• Sept 2020: Focus on gatherings, travel restrictions 

• March 2021: India lockdown

• July 2021: Delta surge on countries with low rates so far

• March 2022: Masking to avoid a second Omicron surge

Interactive demo:
• https://evolution.ml/demos/npidashboard

15,52

24

31

Part I Conclusion: Neuroevolution RL

• A powerful way to train networks when gradients not available
• E.g. recurrency in POMDP domains

• Many evolutionary techniques are a good match with NE
• Partial solutions, CMA, Complexification, Indirect, Novelty, Constrained

• Can discover surprising, believable, effective solutions

32

II. Optimization of Deep Learning Systems

Szegedy et al. 2015

Deep learning systems operate at a much larger scale• 10  - 10   parameters• Overparameterized; trained by gradient descent

A new problem: How to configure such systems?

6 12

86
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Configuring Complex Systems

25

34

Configuring Deep Learning with Evolution

(A) Fundamental: Neural Architecture Search
• Optimizing structure and hyperparameters
• Takes advantage of exploration in EC

(B) Extended: Data and training
• Loss functions, activation functions, data augmentation, initialization, learning algorithm
• Takes advantage of flexibility of EC

35

Neural Architecture Search (NAS)

Different architectures work best in different tasks• Structure matters!
Too complex to be optimized by hand
• How to discover principles of organization?
• How to cover enough of the search space?

Several possible ML methods: Bayesian optimization, gradient descent, RL, evolution…

92

2
86

Szegedy et al. 2015
Agrawal et al. 2017

Vinyals et al. 2015

36

Evolutionary NAS

Evolution is a natural fit:
• Population-based search covers the space
• Crossover between structures discovers principles
Moreover,• Can build on Neuroevolution work since the 1990s:

partial solutions, complexification, indirect encoding, novelty search
• Applies to continuous values; discrete choices; graph structures; combinations• Can evolve hyperparameters; nodes; modules; topologies; multiple tasks
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E.G. NAS with CoDeepNEAT

Evolution at three levels
• Module subpopulations optimize building blocks
• Blueprint population optimizes their combinations
• Hyperparameter evolution optimizes their instantiation

Fitness of the complete network drives evolution
• Candidates need to be evaluated through training• Expensive; use partial training, surrogates…

53

38

Making NAS Evaluations Practical

Population-based training (DeepMind, Cognizant)
• Continual training and evolution
NAS benchmarks created to help evaluate (Google, Baidu, Freiburg)
• Collections of known architecture evaluations, surrogates
Scaling and regularization (Google)
• State-of-the art at the time in CIFAR-10, CIFAR-100, ImageNet

63

27,35

11,99,100

39

Optimizing Other Aspects of Deep Learning Design

Optimizing activation functions and loss functions (Cognizant)
• Regularization and refinement
Designing machine learning algorithms with GP (Google)
• Adapts to different task types
• Discovering new layer types

Coevolution of multiple aspects of network design?

5,21,22,35

39,64
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ENN:Evolutionary AutoML

Current AutoML: Mostly hyperparameter optimization
Future Evolutionary AutoML: Many design aspects

Performance
1. Improve state of the art

With sufficient compute

Applicability
2. Improve over naïve baseline

Service makes broadly available
3. Minimize network resources

Train and run networks faster
4. Extend small datasets

Multitasking with related datasets
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1 & 2 in Evolving Age-Estimation Networks

Estimate age from a facial image

Evolving multiple design aspects
• Learning, data augmentation 

hyperparameters
• Seeded architecture search
• Loss-function optimization:

Combination of MAE and CE
Also
• Population-based training
• Ensembling of evolved solutions

47

54

42

Age-Estimation Results

Evolution improves significantly over SotA image models
• Fit the design to the task
Optimizes better than humans can
• Many more parameters simultaneously
Performance exceeds that of humans: 2.19 vs. 3-4 years

• D0 stages: 
ResNet-50,  
DenseNet-121 

• D1 stages: 
DenseNet-169, 
DenseNet-201,
more epochs. 
EfficientNet-B6,
ensembling

• Human optimization 
of ResNet-50 (D0), 
EfficientNet-B6 (D1)

43

Evolution adds complexity only if needed
• Favors minimal solutions
• Over evolution a range of sizes explored
• Approximation of the Pareto front

Small networks found that perform well
• Minimization with little cost
• E.g. 0.38% drop with 1/12th of the size

Could we optimize for size directly?

ENN:3. Minimize Network Resources

44

Multiobjective Minimization

• Animation: Pareto front by 
generation for single-objective 
(green) vs. multi-objective (blue) 

• Single-objective focuses on 
improving largest networks

• Multi-objective focuses on 
improving the entire curve

• Result: Multi-objective finds much 
smaller models for the majority of 
performance values

• Evolution can find solutions that fit
design constraints

36
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4. Extend Small Datasets

Recognize handwritten characters in a 
given alphabet

Not enough samples to learn well
• A common problem in deep learning

Could we learn from multiple 
alphabets?

Lake et al. 2015 29

46

Evolution of Multitask Architectures

37,46

47

Multitasking Benchmarks

State-of-the-art in two ML benchmarks:

• Omniglot multialphabet character recognition
• Improved state-of-the-art 31%
• Demo: evolution.ml/demos/omnidraw

• CelebA multiattribute face classification
• Improved state-of-the-art 0.75%
• Demo: evolution.ml/demos/celebmatch

Improves learning in each task
• Even when little data available

Extend small datasets with multiple tasks

37

45

48

Part II Conclusion: Optimizing Deep Learning Designs

• Deep learning designs are too complex for humans to optimize 
• Evolutionary techniques are a good fit

• Large, structured space; continuous, discrete, and structured 
• Can be applied to multiple aspects of the design

• How to utilize their interactions?
• How to evaluate candidates efficiently?
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III. Emergence of Intelligence

Body

Brain

I Origins of intelligence: Embodied optimization

I Body-Brain Coevolution32,33,77

I Body: Blocks, muscles, joints, sensors
I Brain: A neural network (with general nodes)
I Evolved together in a physical simulation

49/62

Syllabus

I Step-by-step construction of complex behavior
I Primitives and three levels of complexity
I Constructed by hand; body and brain evolved together
I DEMOS

50/62

Encapsulation

I Once evolved, a trigger node is added
I DEMO

51/62

Turn to Light

I First level of complexity
I Selecting between alternative primitives

52/62
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Move to light

I First level of complexity (Sims 1994)
I Selecting between alternative primitives

53/62

Strike

I Alternative behavior primitive

54/62

Attack

I Second level of complexity (beyond Sims and others)

55/62

Turn from Light

I Alternative first-level behavior

56/62
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Retreat

I Alternative second-level behavior

57/62

Fight or Flight

I Third level of complexity

58/62

Insight: Body/Brain Coevolution

I Evolving body and brain together poses strong constraints
I Behavior appears believable
I Worked well also in BotPrize (Turing test for game bots)71

I Possible to construct innovative, situated behavior

59/62

Constructing Intelligent Systems

I Believable, complex behavior in embedded
environments
I Open-ended “arms race”62

I Similar to self-play e.g. in AlphaGo Zero
I Complexity beyond human ability to design it

I If we can build open ended environments, we
should be able to build more complex solutions
I Co-evolve environments and behaviors?

(e.g. POET93, EUREQA70)
I Challenge: Establish major transitions51

60/62
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Conclusion

I Neuroevolution is a powerful approach for POMDPs
I Discovers surprising, believable, effective behavior
I Games, robotics, control, alife, decision-making...

I Makes complex DL architectures possible
I Structure, components, hyperparameters, etc. fit to the task
I Automatic design of learning machines

I A possible future focus: Emergence of intelligence
I Body/brain co-evolution; Competitive co-evolution
I Evolution of memory, language, learning; AGI
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Further Material

I Neuroevolution sessions at GECCO!

I www.cs.utexas.edu/users/risto/talks/enn-tutorial
I Slides and references
I Demos
I A step-by-step neuroevolution exercise (evolving behavior

in the NERO game)

I nn.cs.utexas.edu/?miikkulainen:encyclopedia20-ne50

I A short summary of neuroevolution

I www.nature.com/articles/s42256-018-0006-z80

I Nature Machine Intelligence survey on Neuroevolution
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