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Why Evolve Neural Networks? |. Reinforcement Learning / POMDP Tasks

» |. Original role (since 1990s): RL Tasks & especially POMDP

» Both the structure and the weights evolved (no training) > A sequence of decisions creates a sequence of states
> Power from recurrency; behavior .
, L . » States are only partially known
» |I. A new role (since 2016): Optimization of Deep Learning Nets > Optimal outputs are not known
» Architecture, hyperparameters, functions evolved; weights trained » We can only tell how well we are doing
> Power from complexity » Exist in many important real-world domains
» Il1. A possible future role: Emergence of intelligence > Robot/vehicle/traffic control

» Computer/manufacturing/process optimization

» Body/brain co-evolution; Competitive co-evolution
» Game playing; Artificial Life; Biological Behavior

» Evolution of memory, language, learning
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Value-Function Reinforcement Learning Policy-Search Reinforcement Learning

Win!

Sensors

Function | Val
Approximator alue
Decision ..

Sensors Neural Net r Decision

» E.g. Q-learning, Temporal Differences
» Generate targets through prediction errors » E.g. REINFORCE, policy gradients
> Learn when successive predictions differ » The policy is optimized directly through hill climbing
» Predictions represented as a value function > Works well in simple cases
> Values of alternatives at each state > Large/continuous states and actions possible
» Difficult with large/continuous state and action spaces » Hidden states (in POMDP) disambiguated through memory

» Does not scale well

A\

Difficult with hidden states

Neuroevolution Reinforcement Learning How Well Does It Work?

» Takes advantage of population-based search

> In essence, multiple interacting searches » In the OpenAl Gym CartPole-v0 benchmark vs. PPO, DQN

» Each discover building blocks that are combined » NE converges faster, has lower variance, lower regret
> Extensive exploration possible » NE is more efficient, reliable, and safer'®
» Makes it possible to scale up: » In a double-pole benchmark vs. Sarsa, Q-MLP, etc.
> to large spaces (e.g. 22" states?) > The only method that can find solutions to 1m, 0.1m, POMDP 20
> to high dimensionality (e.g. up to 1B19) » The fundamental difference is exploration
> to deceptive landscapes (with e.g. multiobj and novelty ") > Evolution provides more exploration than gradients do3%:68:85
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Basic Neuroevolution

Fire

Neuroevolution for RL/POMDP

Left/Right Forward/Back

On  Object Rangefiners ~ Enemy
Target LOF
Sensors

Enemy Radars

» Input variables describe the state observed through sensors
» Output variables describe actions
» Network between input and output:
> Recurrent connections implement memory

» Memory helps with POMDP

Advanced NE 1: Evolving Partial Networks

s
e

observation
Recurrent
Neural Network

» Evolving individual neurons to cooperate in networks 5760

» E.g. Enforced Sub-Populations (ESP '8)
» Each (hidden) neuron in a separate subpopulation
» Fully connected; weights of each neuron evolved

» Can be applied at the level of weights, and modules?°

observation
Neural Network

» Evolving connection weights in a population of networks 96.69.96.97
» Chromosomes are strings of connection weights (bits or real)
» E.g. 10010110101100101111001
> Usually fully connected, fixed, initially random topology
» A natural mapping between genotype and phenotype

> GA and NN are a good match!

Why Is It a Good Idea?
' Géner;tior;I ‘ ' Generation 20 ’
mGen)erat;ion HOO ’

) ”Geheraation)so ’
» E.g. evolving neurons for robotic control
» Simulated Kheperas running a maze
» Subpopulations discover & optimize compatible subtasks

> E.g. slow down with obstacle on front
veer left with obstacle at right, etc.

» Each neuron part of 2-3 subtasks
> Robust coding of behavior during search
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Advanced NE 2: Evolutionary Strategies

observation

Neural Network

Evolving complete networks with ES (CMA-ES26)

v

v

Small populations, no crossover

v

Instead, intelligent mutations
» Adapt covariance matrix of mutation distribution
> Take into account correlations between weights

v

Why is it a good idea?
» Discovers good weight combinations — CM

Why Is It a Good Idea?

Minimal Starting Networks

/\/X/\f\j\M/X

Population of Diverse Topologies

sy

» NN search space is complex with nonlinear interactions
» Complexification keeps the search tractable
» Start simple, add more sophistication

» Incremental discovery of complex solutions

Advanced NE 3: Evolving Network Structure

B0

OO\

/'

4
AN

» Optimizing connection weights and network topology 312:16:98
» E.g. Neuroevolution of Augmenting Topologies (NEAT 78:82)
» Based on Complexification

» Of networks:
» Mutations to add nodes and connections

Of behavior:
» Elaborates on earlier behaviors

v

Advanced NE 4: Indirect Encodings (1)

S| r— input
pointer
cell

A. S
/ \ /\ Y ancestor
E E i cell
A EE |
| starting rl‘o‘éitx?tuetr
network L_eru

» Instructions for constructing the network evolved
» Instead of specifying each unit and connection 312557598

» E.g. Cellular Encoding (CE?23)
» Grammar tree describes construction

» Sequential and parallel cell division
» Changing thresholds, weights
> A “developmental” process that results in a network



Indirect Encodings (2)

X1 il Iz Y2
6o M———-l,l—bo,l ! y v
® Py . Connective
< —»_1.1—-1,0 |CPPN(evolved)
-1 5 sHH—w-1.1=90.0
e © © © o
e o ® —0.5,-1—%1,-1
-1.-1 0.-1 1.-1 Output
Substrate

» Encode the networks as spatial patterns
» E.g. Hypercube-based NEAT (HyperNEAT?®)

» Evolve a neural network (CPPN)
to generate spatial patterns
» 2D CPPN: (x,y) input — grayscale output
4D CPPN: (xl,yl,xz,yz) inpUt — w output
Connectivity and weights can be evolved indirectly
Works with very large networks (millions of connections)

vwyy

Future Opportunities

S ,{)4\% » Several possible directions

» More general L-systems;
developmental codings;
embryogeny 83

» Scaling up spatial coding®'”

> Genetic Regulatory Networks®°

» Evolution of symmetries®

» Theory starting to emerge

> Expressive Encodings*®:
Simple GAs are universal
probability approximators
(Meyerson et al. GECCO’22)
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Why Is It a Good Idea?

» Describes structure efficiently

» Useful for evolving topology

» E.g. large structured networks
» E.g. repetition of motifs

Further NE Techniques

Incremental and multiobjective evolution 19:72.90.97
Utilizing population culture 44287

Utilizing evaluation history 4!

Evolving NN ensembles and modules28:40:59.66,94
Evolving transfer functions and learning rules’-67.84
Bilevel optimization of NE 38

vV v vy vy Vvyy

v

Evolving LSTMs for strategic behavior34
Extrapolation with Context+Skill modules
» Combining learning and evolution®13:42,58.79.87,95

v

» Evolving for novelty

» Recurrency symbol in CE: XOR — parity
» Repetition with variation in CPPNs



Evolving for Novelty

» Motivated by humans as fitness functions
» E.g. picbreeder.com, endlessforms.com’3

» CPPNs evolved; Human users select parents
» No specific goal

» Interesting solutions preferred
» Similar to biological evolution?

Novelty Search Demo (1)

> lllustration of stepping stones*344

> Nonzero fitness on “feet” only; stepwise increase
» Top and right “toes” are stepping stones to next “foot”
» Difficult for fitness based search; novelty can do it

» DEMO

Novelty Search

» Evolutionary algorithms maximize a performance objective
» But sometimes hard to achieve it step-by-step

> Novelty search rewards candidates that are simply different3'8
> Stepping stones for constructing complexity

21/62 22/62

Novelty Search Demo (2)

Fitness Best

Novelty Best

» Fitness-based evolution is rigid
» Requires gradual progress

> Novelty-based evolution is more innovative, natural3'-8!
> Allows building on stepping stones

» How to guide novelty search towards useful solutions?
> Quality Diversity methods '461

» DEMO

23/62 24/62
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Neuroevolution Applications Example 1: Evolving Humanlike Behavior

Control
Pole-Balancing )
= A "
Sa}elllte Asst. Helicopter Rocket
Robotics } l y
Soccer - ) -
Driving Bipedal Multilegged
Games

» Botprize competition, 2007-2012
» Turing Test for game bots ($10,000 prize)
» Three players in Unreal Tournament 2004:

» Human confederate: tries to win
» Software bot: pretends to be human
» Human judge: tries to tell them apart!

Pac-Man

Alife Ty %

Predators Hyenas/Zebras Virtual Creatures

25/62 26/62

After Five Years, Success!!!

Con o sy ve pme
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—m”.----:-n.—:' Comtmey Yom W

» Wandering, unstuck etc. based on scripts & learning from humans » Human-like behavior with resource limitations (speed, accuracy...
> Best bot better than 50% of the humans
> Two teams human 50% of the time
> Persistent gap: 30% vs. 80% human » Fascinating challenges remain:
» Judges can still differentiate in seconds
» Judges lay cognitive, high-level traps
> Team competition: collaboration as well
» DEMO

27162 28/62

» Evolve effective fighting behavior”!

> Evolving to win results in unnatural behaviors
» Human judges do not understand their expertise
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Example 2: Optimizing COVID-19 NPIs

Al's Predicted New Cases in Train a NN to predict COVID-19 cases
Vinfied Souss Based on number of cases in different countries over time
* And non-pharmaceutical interventions (NPIs) over time

Using the predictive model as a surrogate,
evolve a NN to recommend NPIs

* Resulting in smallest number of cases
+ With minimal economic cost

Custom NPIs for

TR Not just what will happen, but what we should do about it!

2 Cognizant

Part | Conclusion: Neuroevolution RL

» A powerful way to train networks when gradients not available

+ E.g. recurrency in POMDP domains
* Many evolutionary techniques are a good match with NE

« Partial solutions, CMA, Complexification, Indirect, Novelty, Constrained
» Can discover surprising, believable, effective solutions

a Cognizant

Example 2: Optimizing COVID-19 NPIs (2)

H H H 15,52
[ ————— Retrained daily since May ZOZQ e
United States « Based on data from Oxford Unlversny2
Adapting to the different stages of the pandemic
«  Generalizing from experiences across the world

M/\\/\’[L Recommendations about two weeks in advance, e.g.

May 2020: Focus on schools and workplaces (i.e. indoors)

Sept 2020: Focus on gatherings, travel restrictions

Custom NPIs for «  March 2021: India lockdown

United States « July 2021: Delta surge on countries with low rates so far
e o *  March 2022: Masking to avoid a second Omicron surge

Interactive demo:
« https://evolution.ml/demos/npidashboard

» Cognizant
Il. Optimization of Deep Learning Systems
4 1
i
i 4 Idgid
I e i
A g iy 04 A e
anletug gl gl tg g8l ye wa J1
OB B fg,,)
Szegedy et al. 2015%
Deep learning systems operate at a much larger scale
® 105- 10'2 parameters
® Overparameterized; trained by gradient descent
A new problem: How to configure such systems?
2 Cognizant
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Configuring Complex Systems

Programming by optimization?®

A new general approach to engineering

» Humans design just the framework
» Machines optimize the details

Neural Architecture Search (NAS)
o S
. 0
m"“mﬁ“ﬁﬂEgnggnigiégﬂ-gaﬂ;g“- ;.H
HOEHOHj, . . ol
Szegedy etal. 2015 Agrawal et al. 20172 B

Vinyals et al. 2015
Different architectures work best in different tasks

® Structure matters!

Too complex to be optimized by hand

® How to discover principles of organization?
How to cover enough of the search space?

Several possible ML methods: Bayesian optimization, gradient descent, RL, evolution...

Cognizant

Cognizant
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Configuring Deep Learning with Evolution

afaefa]
I
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(A) Fundamental: Neural Architecture Search

.

Optimizing structure and hyperparameters
Takes advantage of exploration in EC

(B) Extended: Data and training

.

Loss functions, activation functions, data augmentation, initialization, learning algorithm
Takes advantage of flexibility of EC

Cognizant

Evolutionary NAS

- $ 0 A
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Evolution is a natural fit:
Population-based search covers the space
Crossover between structures discovers principles
Moreover,
® Can build on Neuroevolution work since the 1990s:
partial solutions, complexification, indirect encoding, novelty search
® Applies to continuous values; discrete choices; graph structures; combinations
® Can evolve hyperparameters; nodes; modules; topologies; multiple tasks

36
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E.G. NAS with CoDeepNEAT

Blueprint

?

@
2

D

1

Evolution at three levels™
Module subpopulations optimize building blocks
Blueprint population optimizes their combinations

Fitness of the complete network drives evolution

Hyperparameter evolution optimizes their instantiation

S

Module

e

(ONg

/,‘

=

-

Assembled Network

X

® Candidates need to be evaluated through training
® Expensive; use partial training, surrogates...

37

Optimizing Other Aspects of Deep Learning Design

0.04

Optimizing activation functions and loss functions (Cognizant)

Designing machine learning algorithms with GP (Google)#

Coevolution of multiple aspects of network design?

o 02 04

T T T
-10 0 10

06

Regularization and refinement

Adapts to different task types
Discovering new layer types

08

Predicted Label (yo)

1.0

— Logloss
Baikal
BaikalCMA

5,21,22,35

Cognizant

39

Cognizant

Making NAS Evaluations Practical

................

Mods! Weights Model Weights. ‘
e

T v Comews &

e [

e

=

Population-based training (DeepMind, Cognizant

¢ Continual training and evolution

NAS benchmarks created to help evaluate (Google, Baidu, Freiburg)

)27,35

® Collections of known architecture evaluations, surrogates

Scaling and regularization (Google)®

0.92) Evolution

11,99,100

¢ State-of-the art at the time in CIFAR-10, CIFAR-100, ImageNet

Evolutionary AutoML

Current AutoML: Mostly hyperparameter optimization
Future Evolutionary AutoML: Many design aspects

Performance
1. Improve state of the art
With sufficient compute

Applicability

2. Improve over naive baseline
Service makes broadly available

3. Minimize network resources
Train and run networks faster

4. Extend small datasets
Multitasking with related datasets

Blueprint

pr
@
I
'
@
I&

Cognizant

T
: — Logloss
i, saal
BakacMA
0

0o 02 04 o8 08 10
Predicted Label (yo)

40
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1 & 2 in Evolving Age-Estimation Networks

Parameter Possible Values ~ Type Class
Algorithm [adam, rmsprop] ~ Enum Opt
Initial Learning Rate (LR) [1e5,1e-3]  Float  Opt
Momentum [07,099]  Float  Opt
(Weight Decay) / LR [26] [1e7,1e-3]  Float  Opt
Patience (Epochs) [1, 20] Int Opt
SWA Epochs [21] (1, 20] Int  Opt
Rotation Range (Degrees) [1, 60] Int  Aug
Width Shift Range [0.01,03]  Float Aug
Height Shift Range [0.01,03]  Float Aug
Shear Range [0.01,0.3] Float  Aug
Zoom Range [0.01,03]  Float  Aug
Horizontal Flip {True, False}  Bool  Aug
Vertical Flip {True, False} ~ Bool  Aug
Cutout Probability [7] [0.01,0999]  Float  Aug
Cutout Max Proportion [7] [0.05,0.5]  Float  Aug
Pretrained Base Model Keras App. [5] Enum  Arch
Base Model Output Blocks {B0, B1, B2, B3} Subset Arch
Loss function A in Eq. 5 [0,1] Tloat Arch

Estimat age from a facial image

Evolving multiple design aspects™

* Learning, data augmentation
hyperparameters

+ Seeded architecture search

» Loss-function optimization:
Combination of MAE and CE

Also

* Population-based training

+ Ensembling of evolved solutions

P

3. Minimize Network Resources

Evolution adds complexity only if needed
» Favors minimal solutions
» Over evolution a range of sizes explored
» Approximation of the Pareto front

Small networks found that perform well

* Minimization with little cost
» E.g. 0.38% drop with 1/12t of the size

Could we optimize for size directly?

036

035

094

022

Cognizant

Accuracy vs. Training Time Tradeoff

s &
P <t

02 ] ] o8

43

Cognizant

Age Prediction MAE

2.50 -

2.25-

°
8

Age-Estimation Results

DO stages:
ResNet-50,
DenseNet-121

3.30

D1 Human Design: 2.33

D1 stages:
DenseNet-169,
DenseNet-201,
more epochs.
EfficientNet-B6,
ensembling

—e— DO Evolution
~#- D1 Evolution

Human optimization

RN-50 S0 s1 DN-169 S0 s1 $2 s3
Base Base
Evolution Stage

of ResNet-50 (DO0),
EfficientNet-B6 (D1)

Evolution improves significantly over SotA image models

« Fit the design to the task
Optimizes better than humans can
* Many more parameters simultaneously

Performance exceeds that of humans: 2.19 vs. 3-4 years

42

Multiobjective Minimization

Cognizant

Animation: Pareto front by
generation for single-objective
(green) vs. multi-objective (blue)

Single-objective focuses on
improving largest networks

Multi-objective focuses on
improving the entire curve

Result: Multi-objective finds much
smaller models for the majority of
performance values®*

Evolution can find solutions that fit
design constraints

44
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4. Extend Small Datasets

Japanese

: X 8 » y*x E Recognize handwritten characters in a
b “ 5 z iven alphabet
a d w 5 3 I}; g p
= C Sanskrit
s EE Terguar Not enough samples to learn well
Hebrew e ) “ * A common problem in deep learning
B o0 P & NKo [P}
}( v Korean T F X p .
L7 wmDa IS ;)Ior]gjbv;/te;'l)earn from multiple
5 NX B P '
Lake et al. 2015 2°
4 Cognizant
Multitasking Benchmarks
. P TP
State-of-the-art in two ML benchmarks: o P “ g
e C d w 7% = +
+ Omniglot multialphabet character recognition * ¢ E e
* Improved state-of-the-art 31% ne; n Fe T 1 g
» Demo: evolution.ml/demos/omnidraw X Kreon 3 F AP n
L moa N
« CelebA multiattribute face classification [SEPNEGY st

* Improved state-of-the-art 0.75%
* Demo: evolution.ml/demos/celebmatch

Improves learning in each task
» Even when little data available

Extend small datasets with multiple tasks

a Cognizant
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Evolution of Multitask Architectures

(a) (b) (©

» Learning in multiple tasks at once

» More generalizable embeddings
» Each task can learn better

» Network structure can have a large effect
» A good domain to test neuroevolution of structure

“ Cognizant

Part Il Conclusion: Optimizing Deep Learning Designs

1
aaleafadieg
(3

* Deep learning designs are too complex for humans to optimize
« Evolutionary techniques are a good fit

« Large, structured space; continuous, discrete, and structured
« Can be applied to multiple aspects of the design

* How to utilize their interactions?

» How to evaluate candidates efficiently?

a0 Cognizant




[ll. Emergence of Intelligence

proprio-

proprio-
ceptor

ceptor

proprio-
ceptor

target: 0:1 target: 0:0

target: 1:0

sinusoidal

frequency: 1.97337
phase: 0.835238
amplitude: 1

muscle
target: 0:1
Brain

» Origins of intelligence: Embodied optimization

» Body-Brain Coevolution 323377

> Body: Blocks, muscles, joints, sensors
» Brain: A neural network (with general nodes)
» Evolved together in a physical simulation

49/62
Encapsulation
e
» Once evolved, a trigger node is added
» DEMO
51/62

Syllabus

» Step-by-step construction of complex behavior
» Primitives and three levels of complexity
» Constructed by hand; body and brain evolved together

1032
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Turn to Light
mmo S
> First level of complexity
> Selecting between alternative primitives
52/62



Move to light

" MOVE TO

*

> First level of complexity (Sims 1994)
» Selecting between alternative primitives

53/62

Attack

IF

» Second level of complexity (beyond Sims and others)

55/62
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Strike

bl LLL D
’TURNTQ ORWARD)

RIE}I-W | LEFT
S’I‘BIKE = [ L i
» Alternative behavior primitive
54/62
Turn from Light
'A_‘K‘ M}OVETO
TURN TO [UkN Flio_ [FORWARD
_RIGVHT;I‘ J i
> Alternative first-level behavior
56/62



Retreat

MOVE TO

TURN TO ’TURN FROM|EFORW ARD|

sfpxs mqgf"
> Alternative second-level behavior
57/62
Insight: Body/Brain Coevolution
= !TG_I
.vf_;d
» Evolving body and brain together poses strong constraints
» Behavior appears believable
» Worked well also in BotPrize (Turing test for game bots) "
» Possible to construct innovative, situated behavior
59/62
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Fight or Flight

T ——

FIGHTOR|
FLIGHT

» Third level of complexity

58/62

Constructing Intelligent Systems

> Believable, complex behavior in embedded
environments

» Open-ended “arms race”?
» Similar to self-play e.g. in AlphaGo Zero
» Complexity beyond human ability to design it

» If we can build open ended environments, we
should be able to build more complex solutions

» Co-evolve environments and behaviors?
(e.g. POET®, EUREQA?)
> Challenge: Establish major transitions !

60/62



Conclusion

» Neuroevolution is a powerful approach for POMDPs

> Discovers surprising, believable, effective behavior
» Games, robotics, control, alife, decision-making...

» Makes complex DL architectures possible

» Structure, components, hyperparameters, etc. fit to the task
» Automatic design of learning machines

» A possible future focus: Emergence of intelligence

» Body/brain co-evolution; Competitive co-evolution
» Evolution of memory, language, learning; AGI
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Neuroevolution sessions at GECCO!
www.cs.utexas.edu/users/risto/talks/enn-tutorial

» Slides and references

» Demos

> A step-by-step neuroevolution exercise (evolving behavior
in the NERO game)

nn.cs.utexas.edu/?miikkulainen:encyclopedia20-ne %°
> A short summary of neuroevolution
www.nature.com/articles/s42256-018-0006-z 0

» Nature Machine Intelligence survey on Neuroevolution
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