

WP43S OWNER'S MANUAL

This manual documents WP 43S, a free scientific software for the calculator DM42 of SwissMicros. You can redistribute WP 43S and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
WP $43 S$ is published and distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. Please see the GNU General Public License at http://www.gnu.org/licenses/ for more details.
This manual is very preliminary; it will change while we develop WP $43 S$ in course of this project. We reserve the right to do so at any time. The very basic principles of WP $43 S$ will stay constant, however. Stay informed by watching https://gitlab.com/Over score/wp43s .

Copyright © 2015-2020 Walter Bonin, Auf der Platte 9, 61440 Oberursel, Germany
All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without prior written permission of the author. For the time being, the locations highlighted cyan are open construction sites - information is missing there or needs further discussion and investigation to be determined. Any contributions in this matter are highly appreciated.

HP is a registered trade mark of Hewlett-Packard.
The pictures on pp. 53, 200f, and 321, the stack graphics on pp. 33 (top), 34 (top), and 37, as well as the paintings and drawings on pp. 22, 45, 50, 65, 82f, 88f, 95-97, 105-108, 119, 129-132, 155, 158-160, 205, 213, 237, 240, 248, and in Appendix 3 were taken from various calculator manuals and advertisements published by Hewlett-Packard between 1974 and 1989. The diagrams on p. 98 are based on material found in Wikipedia. All WP $43 S$ keyboard graphics as well as the other photographs, pictures, graphics, and diagrams printed in this manual were created by the author.

Internet addresses are specified as found and verified at 2019-06-26 (just the map printed on p. 92 is not found online anymore). Please note such addresses may change without notice at any time.

This manual is published in English since it became the lingua franca of our time (after Greek, Latin, and French) - using it we can reach the maximum number of people without further translations. I apologize to the people of other languages and inserted some 'translator's notes' where applicable.

Printed in the USA
ISBN-13: 978-172950098-9
ISBN-10: 172950098-6

WP 43S would not have been created without our love for Classics, Woodstocks, Stings, Spices, Nuts, Voyagers, and Pioneers. Thus we want to quote what was printed in Hewlett-Packard pocket calculator manuals until 1980, so it will not fade:
"The success and prosperity of our company will be assured only if we offer our customers superior products that fill real needs and provide lasting value, and that are supported by a wide variety of useful services, both before and after sales."

Statement of Corporate Objectives
 Hewlett-Packard

TABLE OF CONTENTS

Welcome! 8
Print Conventions and Common Abbreviations 12
Section 1: Getting Started 15
Problem Solving, Part 1: First Steps 18
How to Enter Common Numbers (and How to Edit Them) 25
How to Enter and Execute Commands 26
Menus - Items à la carte 27
How the Keyboard is Organized 29
Problem Solving, Part 2: Elementary Stack Mechanics 31
Looking Closer at the Automatic Stack 38
Problem Solving, Part 3: The Stack in Advanced Calculations 41
Special Tricks, \#1: Top Stack Level Repetition 48
Special Tricks, \#2: LASTx for Reusing Numbers 50
Error Recovery: © , EXIT) and [\sim] 51
Clearing and Resetting Your WP 43S 52
Addressing and Manipulating Objects in RAM 53
Addressing Tables 60
Indirect Addressing - Working with Pointers 64
Store and Recall Arithmetic 64
Section 2: Dealing with Various Objects and Data Types 67
Some Display Basics 67
Supported Data Types 68
Recognizing Calculator Settings and Status 74
Getting Special Information: RBR, STATUS, VERS, etc. 77
Localising Numeric Output 78
Real Numbers: Changing the Display Format 80
Real Numbers: Squares and Cubes and their Roots 82
Real Numbers: Percent Change 85
Real Numbers: Logarithms and Powers (a.k.a. Antilogs) 86
Real Numbers: Hyperbolic Functions 94
Real Numbers: Probabilities - Factorials, Combinations, Permutations, and Distributions 96
Real Numbers: From Probability to Statistics - Accumulating Data, Calculating Means, Standard Deviations, and Confidence Limits; Curve Fitting, Forecasting, and Checking Dices 99
Real Numbers: Some Industrial Problems Solved 109
Real Numbers: Summary of Functions 118
Angles and Trigonometric Functions 125
Mixed Calculations: Coordinate Transformations in 2D, Flight Directions, Courses over Ground, etc. 128
Angles: Summary of Functions 134
Integers: Input and Displaying 135
Integers: Bitwise Operations on Short Integers 140
Integers: Arithmetic Operations 143
Integers: Overflow and Carry with Short Integers 145
Integers: Summary of Functions 148
Rational Numbers (Fractions) 151
Complex Numbers: Introduction 154
Complex Numbers Used for 2D Vector Algebra 158
Complex Numbers: Summary of Functions 161
Vectors and Matrices: Introduction and Input 163
Vectors and Matrices: Displaying and Editing Larger Objects 168
Vectors and Matrices: Complex Stuff 172
Vectors and Matrices: Calculating 174
Vectors and Matrices: Solving Systems of Linear Equations 179
Vectors and Matrices: Eigenvalues and Eigenvectors 180
Vectors and Matrices: Dealing with Statistical Data 185
Vectors and Matrices: Summary of Functions 187
Times 189
Dates 191
Alpha Input Mode: Introduction and Virtual Keyboard 193
Alpha Input Mode: Entering Simple Text and More 195
Combining Alpha Strings and Numeric Data 197
Working with Alphanumeric Strings 198
Section 3: Programming 202
Recording a New Routine 204
Labels 208
Editing a Routine 211
Running a Routine from the Keyboard (also for Debugging) 212
Subroutines: Running a Routine from another Routine 213
Automatic Testing and Conditional Branching 214
Loops and Counters 218
Programmed User Interaction and Dialogues 221
Solving Differential Equations 225
The Programmable Menu (MENU) 230
Basic Kinds of Program Steps 231
Deleting Programs 232
Serial Input and Output of Data and Programs 233
Local Data 233
Flash Memory (FM) 234
Section 4: Advanced Problem Solving 235
Programmable Sums 235
Programmable Products 236
Solving Quadratic Equations 237
General Equations 238
The Interactive Solver for Arbitrary Equations 240
The Interactive Solver for Expressions Stored in Programs 244
Using the Solver in a Program 246
Numeric Integration of Equations 248
Interactively Integrating Expressions Stored in Programs 251
Using the Integrator in a Program 252
Differentiating Equations 254
Interactively Differentiating Expressions Stored in Programs 256
Computing Derivatives in a Program 257
Nesting Advanced Operations 258
Section 5: Two Browsers, two Applications, and two Special Menus 261
The Browsers RBR and STATUS 261
The Timer Application 264
The Time Value of Money (TVM) 266
Constants 270
Unit Conversions 276
Section 6: Creating Your Very Personal WP 435 281
Assigning Your Favourite Functions 283
Creating Your Own Menus 287
Browsing and Purging Menus, Variables, and Programs 290
Assigning Special Characters 290
User Mode 292
Appendix 1: Operator Precedence 295
Appendix 2: Key Response Table 296
Appendix 3: Further Applications of TVM 310
Ordinary Annuities (a.k.a. Payments in Arrears) 311
Annuities Due (a.k.a. Payments in Advance) 315
Appendix 4: Power Supply 319
Appendix 5: Time Line of Quoted Manuals 320
Appendix 6: Release Notes 322
Index 326

WELCOME!

Congratulations, you are holding your very own WP $43 S$ in your hands now. It is a true pioneer: the very first entirely community-designed and -built RPN pocket calculator. ${ }^{1}$
All the hardware, firmware, and user interface of your WP $43 S$ were thoroughly thought through, discussed, designed and assembled, written and tested by us over and over again. We did this to create a new fast, compact, and solid problem solver like you did never own before instant on, fully programmable, incorporating a state-of-the-art LCD, customizable by you, still comfortably fitting into your shirt pocket, and RPN - a serious scientific instrument supporting you in your professional activities. It readily provides several advanced capabilities never before combined so conveniently in a pocket calculator:

+ A Solver (root ${ }^{2}$ finder) that can solve for any variable in an arbitrary equation.
+ A numeric integrator for computing definite integrals of arbitrary functions.
+ Numeric derivation, programmable sums and products.
+ A wealth of functions, operating on real and complex numbers and matrices, integers, fractions, dates, times, and text strings.
+ A comprehensive set of statistical operations including probability distributions, data analysis functions, curve fitting, and forecasting.
+ Matrix operations including a comfortable Matrix Editor, a solver for systems of linear equations, eigenvalues, eigenvectors, and many more matrix and vector functions in real and complex domain.

[^0]+ Base conversions and integer arithmetic in fifteen bases from binary to hexadecimal. Bit manipulations in words of up to 64 bits.
+ A timer based on a real-time clock.
+ An easy-to-use menu system using the bottom part of the display to assign up to eighteen operations to the top six keys according to your actual needs.
+ Keystroke programming including branching, looping, tests, flags, subroutines, and program-specific local data.
+ Easy system control via named system flags and variables provided.
+ A catalog for reviewing all items stored in memory - be they provided by us or defined and programmed by you.
+ A keyboard layout and menus you can customize. You can save your various custom layouts on-board and recall them one by one as you need them. Keyboard overlays are supported.
+ Battery-fail-safe on-board backup memory for all your data (in registers, variables, menus, programs, layouts, and mode settings).
+ A micro USB socket allowing for external auxiliary power supply as well as for exchanging your programs with a computer, so you can edit, debug, and test them there and return them proven thereafter.
+ An infrared port for immediate recording of results, calculations, programs, and data using e.g. an HP 82240A/B Infrared Printer.

Your WP 43S provides the most ample function set ever seen in an RPN pocket calculator, presumably in any pocket calculator at all:

+ More than 650 functions, including Euler's Beta and Riemann's Zeta, Lambert's W, the error function, Bessel functions of first kind, Bernoulli and Fibonacci numbers, as well as the Chebyshev, Hermite, Laguerre, and Legendre orthogonal polynomials - no more need for carrying heavy printed tables or running computer software for this matter.
+ 14 probability distributions: general Normal, Student's t, chi-square, Fisher's F, Poisson, binomial, geometric, hypergeometric, CauchyLorentz, exponential, logistic, Weibull, and more.
+ 10 curve fitting models with two or three parameters (two kinds of linear, exponential, logarithmic, power, root, hyperbolic, parabolic, Cauchy and Gauss peak).
+ Over 50 fundamental physical constants as accurate as used today by national standards institutes such as NIST or PTB (following CODATA 2018), plus a set of important mathematical, astronomical, and surveying constants.
+ More than 100 unit conversions, mainly from old British Imperial to universal S/ units and vice versa.
+ Plus a complete set of financial functions and applications for the inevitable business matters.

Furthermore, your WP 43S features lots of space for your data, programs, and ideas:

+ A high-resolution low-power dot-matrix LCD (240 $\times 400$ pixels $)$, showing crisp results and menus, allowing for natural matrix display as well as for a wide variety of mathematical symbols, Greek and extended Latin letters.
+ Your choice of 4 or 8 stack registers and up to 107 global general purpose registers, each taking any object of arbitrary data type (be it a matrix, a vector, a string, or any number of arbitrary kind).
+ Up to 1000 named variables. Also each such variable can take any object of arbitrary data type.
+ 112 global user flags and 40 named system flags.
+ 16 local user flags and up to 99 local registers per program, allowing e.g. for recursive programming.
+ Up to 10000 program steps in RAM, up to 20000 program steps in flash memory.

WP 43S is the result of an international collaboration of two teams: SwissMicros (https://www.swissmicros.com/) - i.e. Swiss Michael Steinmann and Czech David Jedelsky - created the hardware, French Martin Lorang, German Gert Menke and Friedrich Mütschele, Italian Gianluca Puggelli, Dutch Harald Overbeek, South African Jaco Mostert, Australian Paul Dale, and me designed the user interface and wrote the software. ${ }^{3}$

[^1]As our WP 34S and WP 31S before, also WP 43S is a hobbyist's project. It started in public in 2012 and was presented and discussed on https://www.hpmuseum.org/forum/forum-8.html until June 2016 and on https://forum.swissmicros.com/ from 2017 on. ${ }^{4}$ Prototypes of the SwissMicros hardware were publicly shown first on the HHC2016 conference in Nashville (USA) and on the Allschwil Meeting 2016 in Switzerland. Martin and me presented the first version of the WP $43 S$ simulator on the Allschwil Meeting 2018. We thank the participants of said meetings and all members of the international community who contributed their ideas, put their votes, and lent their support at various phases throughout this project. We greatly appreciate your contributions!

We baptized our baby in honor of the HP-42S of 1988, the most powerful RPN pocket calculator available before these activities. ${ }^{5}$ May it be a worthy and valiant successor of the HP-42S - though we would have preferred Hewlett-Packard making it (the company as we knew it until the 80's of last century). In any way, WP 43S stands in the tradition of almost 50 years of RPN pocket calculators.
We carefully checked all aspects of WP $43 S$ to the best of our ability. Thus we hope it is free of severe bugs. This cannot be guaranteed, however, so we promise to continue improving WP $43 S$ whenever necessary. Should you discover any strange results, please report them to us. If they turn out being caused by internal bugs, we will correct the firmware and provide you with an update as soon as possible. As we did since 2011, we will continue maintaining short response times.

Enjoy!

Walter Bonin

and its derivative, the WP 31S, at https://sourceforge.net/projects/wp34s/ and the links mentioned there. Both these calculators are based on HP hardware.
${ }^{4}$ If you are interested in the long and winding road how your WP 43S got the features, shape, and layout you're facing now, see the Release Notes in App. 5 at the end of this manual and the two websites mentioned.
${ }^{5}$ For us, a pocket calculator per definition is a device fitting comfortably in your shirt pocket. Marketing people are observed to see this term more elastic - our shirt pockets are not elastic enough for that. Being at it, we generally recommend not to put your calculator in the back pocket of your jeans - it may break or multiply there.

Print Conventions and Common Abbreviations

- Throughout this manual, standard text font is Arial. Emphasis is added by underlining or bold printing. Calculator COMMANDS, MENUS, PREDEFINED VARIABLES and SYSTEM FLAGS are generally called by their names, printed capitalized in running text (menus underlined). Quoted text is printed blue (as well as translator's notes).
Specific terms, titles, trademarks, names or abbreviations are printed in italics, hyperlinks in blue underlined italics. The latter will beam you to its target in the original .pdf file - it cannot work in a printed copy for obvious reasons; thus, such links generally refer to page numbers, to the Table of Contents, or to fully specified external addresses.
Bold italic Arial letters such as \boldsymbol{n} are employed for variables; bold regular letters for constant sample values (e.g. specific labels, numbers, or characters).
- Times New Roman regular letters are for unit symbols and for mathematical functions; italics are for unit names in running text.
Times New Roman bold capitals are used for REGISTER ADDRESSES, lower case bold italics for register contents. So e.g. the variable value \boldsymbol{y} lives in register \mathbf{Y} and $\boldsymbol{r} 45$ in R45. Overall stack contents are generally quoted in the order $[\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \ldots]$. We keep the term register for the space where an individual object is stored, although the actual size of such a register may vary widely following the size of the object stored therein.
- This KEY font (created by Luiz Vieira of Brasil) is taken for references to calculator keys, including SOFTKEYS in general. For shifted operations like GTO or LBBL, the respective color is used. Alphanumeric and numeric calculator outputs (like 1.234×10^{-56} or $7,089 \cdot 10^{-12}$) are printed as you see them on the calculator screen.
- Courier is used for file names and describing numeric formats.
- Regarding mathematical symbols and notation, we generally follow ISO 80000-2. We use decimal points and multiplication crosses in most parts of this manual (but you may set your WP 43S to decimal commas and/or multiplication dots as well, of course). Although that point is less visible than a comma, 'comma people' seem to be more
tolerant against decimal points than 'point people' against decimal commas (based on the number of complaints read so far).

All this holds unless stated otherwise locally.
The following abbreviations, listed alphabetically, are used throughout this manual - find detailed information about the respective terms at the locations referred to in the Index on pp. 326f, if applicable:

AIM	$=$ alpha input mode.
App.	$=$ Appendix.
$D T$	$=$ data type.
$G P$	$=$ general purpose.
$H P$	$=$ Hewlett-Packard.
$I O I$	$=$ Index of all Items provided in the WP 43 (see ReM below).
LCD	$=$ liquid crystal display.
$O H$	$=$ Owner's Handbook.
OHPG $=$	Owner's Handbook and Programming Guide.
$O M$	$=$ Owner's Manual.
PEM $=$	program-entry mode.
RAM $=$	random access memory, allowing read and write operations.
ReM	$=$ WP 43S Reference Manual, containing also the IOI.
$R P N$	$=$ Reverse Polish Notation (cf. footnote 1 on p. 8).
$S I$	$=$
	système international d'unités, a coherent system of units of
	measurement agreed on internationally and adopted by almost all
	countries on this planet. ${ }^{6}$

Further abbreviations are listed in the Index. A few more may be used and explained locally.

[^2]Finally: WARNING indicates the risk of severe errors. There are only three warnings printed in this manual. ${ }^{7}$ Resetting your calculator will help in almost all cases - but it will erase your data in RAM.

[^3]
SECTION 1: GETTING STARTED

At its heart, your WP 43S is an extremely powerful, versatile problemsolving tool. It allows you to solve even very elaborate mathematical and computational problems in either of two different ways:

- Manual problem solving: Using the calculator's RPN logic system, you can manually work step-by-step through the toughest problems while seeing intermediate answers each and every step of the way. The advantages of RPN become particularly apparent when working with exploratory type problems where intermediate answers are an important part of the problem solving process.
- Programmed problem solving: Your WP 43S can remember any sequence of keystrokes you entered, and it can then run it repeatedly as often as you need it. This simple programming paradigm is particularly useful in providing answers to repetitive problems that require different inputs. Advanced programs may also be written for solving more elaborate tasks, e.g. iterative computations containing automatic decisions and branching. Thousands of keystrokes can be recorded in your WP $43 S$ and can be exchanged with your computer or laptop.

If you know how to deal with a good old HP RPN scientific calculator, you can start using your WP $43 S$ right away. Browse this manual to learn about some fundamental design concepts putting your WP 43S ahead of previous scientific pocket calculators.

On the other hand, if $R P N$ is new to you, we recommend going through Sections 1 and 2 of this manual thoroughly. This will enable you to easily solve problems manually benefitting from this unique logic system implemented. Once learned, RPN forms a lifelong lasting, reliable basis of your work.

Most commands on your WP 43S work as they did on its antecessors, in particular on the WP $34 S$ and HP-42S. This manual is designed to supplement your prior knowledge, focussing on the new features of your WP 43S and providing information about them. It includes also some formulas and technical explanations; but it is not intended to replace textbooks on mathematics, statistics, physics, engineering, economy, computer science, or programming.

The following text starts with presenting you the keyboard of your WP 43S, so you learn where to find what you are looking for. It continues demonstrating basic calculation methods, the memory of your WP $43 S$ and addressing objects therein.
Section 2 covers the display and its indicators giving you feedback about what is going on. Furthermore, the various data types supported by your WP 43S are presented and demonstrated comprehensively.
Programming your WP 43S (as shown in Section 3) follows field proven concepts known from successful previous pocket calculators up to and including the HP-42S and WP 34S.
Sections 4 and 5 present advanced functionalities implemented in your WP 43S. You will find everything about the opportunity of customizing your WP $43 S$ according to your very personal preferences in Section 6.
This Owner's Manual is supplemented by a Reference Manual. A major part of the latter is taken by the $I O I$, an index of all available operations (and more), what they do, and how to call them. It also contains full information about all the menus and system flags provided. The ReM closes covering special topics (e.g. memory management, a WP $43 S$ emulator for your computer, and advanced mathematical functions implemented). There you also find instructions for keeping your WP $43 S$ up-to-date whenever new firmware revisions will be released. Continue using both manuals for reference.

Before diving into the $O M$, here is something we ask you to remember:
Your WP $43 S$ is designed to support you solving analytical problems. But it is just a mathematical tool (although a very powerful one): it can neither think for you nor check the sensibility of a problem you apply it to.

Thus, please do not blame us nor it for errors you may have made. Gather information, think before and while keying in and calculating, and check your results: these tasks will remain your responsibilities always. We will not be liable for any of your results.

SAFETY WARNING: Your WP 43 is not designed to be used by children under 3 years. This is not a toy. Do not use it before you can read. Your WP 43S contains small parts which if swallowed are
hazardous for health. Swallowing the battery can be fatal within 2 hours - seek medical advice immediately! ${ }^{8}$
Do not use your WP $43 S$ for any other purposes than specified above (e.g. not as a hammer, a lever, a door stop, or a missile); else you may destroy your WP 43S and/or other objects easily, or even hurt animals or human beings including yourself. ${ }^{8}$
Do not drop your WP 43S on solid ground - it may break. ${ }^{8}$
Your WP 43S shall be operated in a clean and dry environment (relative humidity less than 35\%) at ambient temperatures between 5 and $40{ }^{\circ} \mathrm{C}$ (41 to $104^{\circ} \mathrm{F}$).
Do not leave your WP 43S laying in the sun; its dark surface may become hot, and hot surfaces may cause burns. Do not leave your WP 43 laying in the cold; humidity may condense on its surface when a cold WP 43S is put in a warmer environment then.
Should your WP 43S become wet, turn it off, remove the battery (see Disassembly below), and let your WP 43S dry for sufficient time before turning it on again. Do not try to accelerate drying by blowing hot air (exceeding $60^{\circ} \mathrm{C}$ or $140^{\circ} \mathrm{F}$) into your WP $43 S$ or by putting it into a microwave oven or the like - you may destroy it. ${ }^{8}$
Disassembly: Do not disassemble your WP 43S unless you are qualified for such work and have the proper tools handy. You will need 1 small Phillips screwdriver and 2 hands for opening it. ${ }^{8}$

Inserting / replacing the battery: Your WP $43 S$ contains a battery. When it runs out of power, \rrbracket will appear top right on the screen. Then open your WP 43 (cf. Disassembly above) and replace its battery by a fresh one. Dispose of old batteries responsibly in the appropriate instore containers or at your local disposal center; do neither take them apart nor throw them in a bin nor in fire nor in your environment. ${ }^{8}$

Disposal of the calculator: Your WP 43S must not be disposed of along with household waste. Remove its battery (cf. Inserting / replacing the battery above) and dispose of your WP 43S according to applicable laws and regulations at your electronics collection point.

[^4]
Problem Solving, Part 1: First Steps

Start exploring your WP 43S by turning it on: Press its bottom right key - notice that $\mathbf{O N}$ is printed below that key. Doing this the very first time, you will get a display like this:

For turning your WP 43S off again, press the blue 9 (notice a little ${ }^{9}$ appearing top left in the display), then press EXII (which has OFF printed below it). Since your WP 43S features Continuous Memory, turning it off and on does not affect the information it contains (there is no "All Clear" at power up). For conserving battery power, your WP $43 S$ will shut down automatically some ten minutes after you stopped using it - turn it on again and you can resume your work right where you left off.
This works as on preceding pocket calculators (like a WP 34S or an HP-42S). Your new WP 43S, however, looks cleaner than a WP 34S while more colorful than an HP-42S. This is due to your WP 43S featuring two prefixes $\$$ and 9 and menus - offering you up to four functions per calculator key.

Looking at an arbitrary one of its 41 black keys, white print is for the primary function of this key. For additional (secondary) functions, golden and blue labels are printed on the key plate above 37 keys, and grey characters are printed bottom right of 29 keys.

For accessing a primary function, just press the corresponding key. For a golden or blue (a.k.a. f - or g-shifted) function, first press the respective prefix f or g, then the corresponding key.
For better readability within the manuals, we will refer to keys using dark print on white from here on (like e.g. [1/x or EXIT). And referring to secondary functions (like x! or OFF), we will omit the prefixes \ddagger or g most times since redundant by color print.

Take the key \boldsymbol{x}, for example. Pressing...

- \boldsymbol{X} alone will execute a multiplication,
- $\frac{\mathbf{f}}{\mathrm{x}!}+\underset{\text { calculating }}{\boldsymbol{x}}$ will call the factorial e.g. press 9 (x! and you will get $9 \times 8 \times 7 \times$ $6 \times 5 \times 4 \times 3 \times$ $2 \times 1=362880$.
- $\underline{g}+\boldsymbol{x}$ will call (PROB), a menu of functions related to probability (EXIT) will let you leave the menu again).
Each label printed underlined on the keyplate refers to a menu.

- The grey letter R will become relevant when entering alphanumeric data.

Note all the 145 labels printed on the keyboard of your WP 43 S are explained individually top left to bottom right in App. 2 from p. 296 on.

Time for a little problem solving example:

Turn your WP 43S on again if necessary. Press ©. Your display will show 0 . in each of its four rows then.

Now, let's assume you want to fence a rectangular patch of land, 40 yards long and 30 yards wide. ${ }^{9}$ You have already set the $1^{\text {st }}$ corner post (A), and also the $2^{\text {nd }}(B)$ in a distance of 40 yards from A. Where do you set the $3^{\text {rd }}$ and $4^{\text {th }}$ corner posts (C and D) to be sure that the fence will form a proper rectangle? Simply key in:
(3) 0

30

DISP FIX 01^{10}

SHOWDISP
 E M

Note the cursor vanished from the bottom row and the number 30 is adjusted to the right, indicating this input being closed now; so the next number can be entered:

40

0.0
 30.0

40

${ }^{9}$ Assume this little patch of land in suburbia. We use outdated British Imperial units here so our US-American readers can follow, but this example will work with meters instead of yards as well.
${ }^{10}$ Press g + E to access DISP; the menu DSP will open in the lower third of the screen. Press the leftmost top row \square key for FIX. Then enter $0 \square 1$ telling your WP 43S it shall display only 1 decimal digit (internally, everything is handled with full precision always). See Section 2 for more about output formatting.
Generally, we will print no more than one display row containing just zero from here on for print space reasons.

All you need is the number in the bottom row, ${ }^{11}$ a friend, and 80 yards of rope now:

Ask your friend to hold both ends of the rope firmly for you, take the loose loop and walk away as far as you can - when the loop is stretched, mark that position on the rope and return to your friend. Ask him or her to hold this point of the rope as well, fetch the two loose loops and walk again as far as possible - when the loops are stretched, mark both positions on the rope. Return again; hand over the two new points and walk once more, now with four loose loops. After
 marking as before, your rope will show marks every 10 yards.

Nail its one end on post A and its other end on B, fetch the loose loop and walk 5 marks away as calculated. As soon as both sections of the rope are tightly stretched, stop and place post C there. You may set post D the same way on the other side.

This method works for arbitrary rectangles, whatever other distances may apply (you will need a tapeline in the general case). As soon as you press \rightarrow P, your WP $43 S$ does the necessary calculation of the diagonal automatically for you. You just provide the land, posts, rope, hammer and nails. And it will be up to you to set the posts!

Another introductory example (basically quoted from the $H P-25 \mathrm{OH}$ though updated following progress in research in the meantime - only 12 moons of Jupiter were known in 1975): ${ }^{12}$

[^5]

To calculate the surface area of a sphere, the formula $A=\pi d^{2}$ can be used, where \boldsymbol{A} is the surface area, π is $3.1415 \ldots$, and \boldsymbol{d} is the diameter of the sphere.

Ganymede, one of Jupiter's 79 moons, has a diameter of 5262 km . To use your WP $43 S$ to manually compute the area of Ganymede, you can press the following keys in order:
(5)(2)62 5262

d.ms π
 TRI

If you wanted the surface areas of each of Jupiter's 79 moons, you could repeat the above procedure 79 times. However, you might wish to write a program that would calculate the area of a sphere from its diameter, instead of pressing all the keys for each moon.
To calculate the area of a sphere using a program, you should first write the program, then you must record the program into the calculator, and finally you run the program to calculate the answer.

Writing the program: You have already written it! A program is nothing more than the sequence of keystrokes you would execute to solve the same problem manually.

Recording the program: To record the keystrokes of the program into the calculator, press the following keys in order.

P/R
GTO. \square
switch to program-entry mode (PEM).
go to the point in program memory where free space begins.

[^6] labelled \mathbf{L} - for (L) just press +九 here as you see a grey L printed next to it.

These keys are the same you pressed to solve this problem manually above.

This is the closing step of the program. Finally, exits PEM and returns to run mode.

So a straight program on your WP 43S consists of an opening LLBL step and a closing (RTN framing the keystrokes you need for solving the respective problem manually.

Running the program: Now all you have to do to calculate the area of any sphere is keying in the value for its diameter and press

XEQ(L) (meaning 'execute program L').

When you press XEQ LD sequence of keystrokes you recorded is automatically executed by the calculator, giving you the same answer you would have obtained manually:

For example, to calculate the surface area of Ganymede, press
(5)6 (2) 5262 Ganymede's diameter

XEQ (D)

86986440.6 its surface area - as you calculated manually above. So you know your routine works properly.

With the program you have recorded, you can now calculate the respective surface area of any of Jupiter's moons - in fact, of any sphere - using its diameter. You have only to leave the calculator in run mode and key in the diameter of each sphere that you wish to compute, and then press XEQ LL. For example, to compute the surface area of Jupiter's moon lo with a diameter of 3643 km :

(3)64 ${ }^{3}$	3643	Io's diameter
XEQ(L)	41693486.7	its surface area;

(3) (1) 2 (2)	3122	Europa's diameter
XEQ (1)	30620739.2	its surface area;
(4)8(2)1	4821	Callisto's diameter
(XEQ) (1)	73017025.3	its surface area; etc.

Programming your WP 43S is that easy! It remembers a series of keystrokes and then executes them automatically when you press XEQ ... ${ }^{13}$

There is no need memorizing a complicated formula after you keyed it in once - your WP 43S will remember it for you (and provides space for dozens more). Furthermore, you can even define individual shortcuts to your favorite routines by customizing the keyboard of your WP 43S.

The early portions of this handbook show you how easy it is to manually use the power of your WP 43S; while in Section 3: Programming you will find a complete guide to WP 43S calculator programming. Even if you have used other pocket calculators ..., you will want to take a good look at this handbook. It explains the unique HP logic system that makes simple answers out of complex problems, and WP 43S features that make programming painless. When you see the simple power of your WP 43S, you'll become an apostle just as have some millions of RPN calculator owners before you.

First, let's demonstrate how to generally enter common decimal numbers in your WP 43S. Therefore, please return to startup default display format via (DISP ALL OO. ${ }^{14}$

[^7]
How to Enter Common Numbers (and How to Edit Them)

Numeric entry is as straightforward as typing: for 12.3456, for instance, simply press 12 (2) 6 and you will see

12.3456

You may key in up to 43 digits at once, echoed immediately in the bottom numeric row of the screen (note the gap inserted automatically after each group of three digits for easier reading). Any digit mistyped may be erased by $\boldsymbol{\leftarrow}$ and can be replaced then.

For entering negative numbers

 pressing + + changes the sign of the number being keyed in. Only negative signs will be displayed.
For a huge figure such as the age of the universe in years as we know it today, just enter $13-8$ E 9 which is echoed

$$
13.8 \times 10^{9}=
$$

in 'mantissa plus exponent' format. The key E stands for 'enter exponent'. Note your WP $43 S$ allows for a naturally readable display instead of showing you cryptic machine formats like 13859
During numeric input, your keystrokes are generally just echoed in the bottom numeric row. Input is closed and released for interpretation by a command - e.g. by ENTERT. Here, this will change the display to the equivalent:

13800000000.

Note the number moved to the right (cf. p. 20). Closed numbers in the bottom row may be cleared at once by pressing $\boldsymbol{\Psi}$. This puts 0 . in said row, and subsequent input will overwrite this 0 . then.

Really tiny numbers such as a typical diameter of an atom (i.e. 0.0000000001 m - with ten zeroes heading the digit 1) are entered in full analogy to huge numbers: E +100 will do here, and this will be displayed when closed by EXIT as

0.0000000001 in startup default format.

By the way, this may be shown significantly more compact as

$$
1 . \times 10^{-10} \text { or even }
$$

$1,10^{-10}$ with other display settings (as treated in Section 2).

Note you did not have to enter (1) numeric input heading $[\mathbf{E}, \mathbf{1}$ is assumed for the mantissa per default. And pressing $+\boxed{\sim} / \mathrm{after}$ will change the sign of the exponent - if you want to change the sign of the mantissa, press $t^{t \rightarrow}$ before entering [E] or after closing the entire input.

There are also other numeric data types like integers, times, or dates available on your WP 43S - these (and more) will be covered in Section 2 together with more output formats provided.

How to Enter and Execute Commands

This is easy as well: Just enter the keystrokes required to access the label calling the command you wish to be executed (cf. p. 19). Pending input will be echoed at left end of the top numeric row in the LCD until the command is completed. Therein, pending prefixes f or g will be echoed by ${ }^{\mathbf{f}}$ or ${ }^{\boldsymbol{g}}$, if applicable; these characters will be replaced by the name of the command accessed as soon as it can be decoded.

For many commands, \mathbf{f} or ${ }^{\mathbf{g}}$ will be the only echo you will really see during command entry since the next keystroke may well terminate command input already (as observed with $g \rightarrow P$ above), call and execute the command, and display the result.

Some commands, however, require trailing parameters and will thus stay in the top numeric row for longer. STO and RCL are commands of this kind, and there are many more (see pp. 60f and the ReM).

Menus - Items à la carte

Your WP 43S features more than 650 operations, far too many for showing all of them on the keyboard. Hence most operations live in menus. In addition to commands, also arbitrary characters, constants, conversions, digits, programs, submenus, system flags, or variables defined may be stored in menus: we collectively call them menu items or simply items. By using menus we can keep the keyboard relatively tidy.

Your WP 43S features 30 menus on its keyboard, printed underlined for easy recognition there (except TRI). ${ }^{15}$ In alphabetic order, these are ADV, BITS, CATALOG, CLK, CLR, CONST, CPX, DISP, EQN, EXP, FIN, FLAGS, INFO, INTS, I/O, LOOP, MATX, MODE, PARTS, PROB, P.FN, STAT, STK, TEST, TRI, U $\underline{\rightarrow}, \underline{X . F N}, \alpha . F N, \underline{\Sigma}$, and $\langle\rightarrow$.

Call any menu by simply accessing its label (cf. p. 19). This will open the menu and cause the lower part of the calculator screen (called the menu section from here on) displaying the respective menu view.

Example: Press EXP and EXP will open with a menu view as pictured here.

As long as this view is displayed, simply press, for example, ...

- the $2^{\text {nd }} \square$ for $\sqrt{\times \sqrt{V}}$,
- f and the leftmost $\left(1^{\text {st }}\right) \square$ for $(\sqrt[3]{\mathrm{x}})$,
- g and the $3^{\text {rd }} \square$ for cosh, known as the hyperbolic cosine.

[^8]- If you would press f and the $2^{\text {nd }} \square$, nothing will happen since no label is displayed there - no operation is linked to this f-shifted \square. We may as well print $\sqrt[3]{x}$ if we want to indicate the access path to this f-shifted \square in most compact way. In analogy, blue background may be printed for a g-shifted \square (like cosh here), and grey background for an unshifted \square function (like $\sqrt[x]{y}$ here).

Generally, whenever a menu is called, its top view will be displayed in the menu section. Any such view may contain up to 18 items:

- up to six assigned to the unshifted top row of keys,
- up to six to the f-shifted (note the golden stripes framing the LCD there), and
- up to six to the g-shifted top row of keys (note the blue stripes).

For calling a specific item contained in such a view, use the corresponding \square, preceded by f or g if applicable (this is called a softkey from here on).

Any predefined menu may contain more than just one view. This will be indicated by a dashed line limiting the menu section on the screen. Whenever such a multi-view menu shows up, Δ will advance to the next view and ∇ will return to the previous one, changing the labels displayed. Because multi-view menus are circular, also pressing $\boldsymbol{\Delta}$ repeatedly will return to the first view after all other stored views were displayed (thus, for a menu containing just two views, both Δ and ∇ will display the next menu view).

Any menu view will stay constant - granting direct access to the up to 18 functions displayed - until you leave it (e.g. via ∇ or \triangle, if applicable, or via (EXIT) or call another menu.

To indicate the access path via a menu and the corresponding softkey, we will generally print the background colors as explained at top of this page from here on. Note that submenus contained in a menu are displayed just inverted without the 'menu underline'. Pressing EXIT in a submenu will bring you back to its parent menu (containing the label of said submenu).

How the Keyboard is Organized

You might have already recognized that labels on your WP 43S are printed grouped according to their purposes. Beyond the digits and the four arithmetic operations $\oplus, \Theta, \mathbb{x}$, and \square, five larger groups are provided:

Menu keys calling items from the menu displayed above

Modes, data types, and 'common' transcendental functions. SIN, COS, TAN, and their inverses are in TRI (no underline on this key for space reasons)

Stack and register operations

General navigation, information and control keys: e.g. $\boldsymbol{\square}$ for deleting, \curvearrowleft for undoing the last command, Δ and ∇ for browsing, EXIT for general escaping

Functions for programming and calling programs: E.g. XEQ for executing a program, R/S for running or stopping it
f, g, and the menus in particular allow for easily accessing a multiple of the 43 primary functions this keyboard could take.

Before showing the operation of your WP 43S in detail, let's return to our introductory problem solving examples for four general remarks:

1. We presume you have graduated from an US High School at minimum, passed Abitur, Matura, or an equivalent graduation. So we will not explain basic mathematical rules and concepts here. Please turn to respective textbooks.
2. There is absolutely no need to enter units in your calculations: Just stay with a coherent set of units while calculating and you will get meaningful results within this set. ${ }^{16}$ If you need to convert special inputs into SI units or require results expressed in particular units, however, $U \rightarrow$ and $L \rightarrow$ will help (see pp. 276ff).
3. Although you entered just integers for both edges of your little patch of land in the example on pp. 20f, your WP $43 S$ calculated the diagonal using real numbers. This allows for decimals in input and output as well. Alternatively you may enter fractions such as e.g. $6 \frac{1}{4} 4$ if this carries a benefit for you. Your WP $43 S$ features also more data types - we will introduce them to you in Section 2.
4. In four decades of scientific pocket computing, a wealth of sample applications has been created and published by different authors more and better than we can ever invent ourselves. We do not intend to copy all of them; instead, we recommend the media mentioned on p. 21 once again: they contain almost all the user guides, application handbooks, and manuals printed for vintage HP calculators in two heroic decades beginning with HP's very first desktop calculator, the HP-9100A of 1968 (without any IC, but with a cathode ray tube built in). Be assured that all computations described there for any scientific or engineering calculator can be done on your WP 43S- most of them significantly faster and in a more elegant way. Nevertheless, we included more than 160 new and vintage examples in this manual to support you learning your new tool.
[^9]
Problem Solving, Part 2: Elementary Stack Mechanics

Most of the commands your WP 43S provides are mathematical operations or functions taking and returning real numbers. Real numbers (or shortly reals) are numbers like 0.12 or 3.14159265359 or -5.67×10^{-8}. Note that integers like 3 or 12345678 or -121 , as well as fractions like $2 / 5$ or $137 / 7$ are mere subsets of reals.

Depending on the particular command you choose, it may operate on one, two, or three such numbers at once to generate a result. In spite of the over 650 functions available, you will find your WP $43 S$ functions simple to operate by using a single, all-encompassing rule:

When you press a function key, your WP $43 S$ will execute the operation assigned to it immediately (if it requires parameters it will execute with parameter input completed).

One-number (monadic) functions: Many functions provided on your WP 43S operate on one number only.
Ten monadic functions are found on the keyboard, starting top left: the reciprocal $1 / 1 \times x$, the logarithms (In and (Ig), the exponentials e^{x} and 10^{x}, square $\sqrt{x^{2}}$ and square root \sqrt{x}, , $|x|$ (making negative numbers positive),生 (multiplying closed numbers by -1), and the factorial x!?

Examples:

(8) x^{2} returns	64	
(1/x	0.015625	
+1/	-0.015 625	
\|x		0.015625
\sqrt{x}	0.125	
(1/x)	8.	
$10^{\text {x }}$	100000000.	
(19)	8.	
$e^{\text {x }}$	2980.957987041728	
(10)	8.	
(x! returns	40320.	

Generally, monadic functions replace the value (called \boldsymbol{x}) displayed in the lowest numeric row on the screen before calling the function by the respective function result $f(x)$ (e.g. $f(x)=x$! in the last example). Everything else on the screen stays as it was. ${ }^{17}$
Check the $I O I$ for the many monadic functions provided (more logarithmic, exponential, root, trigonometric, and hyperbolic functions, unit conversions, etc.).

Two-number (dyadic) functions: Some of the most popular mathematical functions operate on two numbers and return one. Think of the four basic arithmetic operators + and,$- x$ and $/$.

Example:

Assume owning an account of 1234 US\$ and taking 56.7 US\$ away from it. What will remain? An easy way for solving such a problem works as follows:

On a piece of paper \rightarrow
Write down the $1^{\text {st }}$ number:
Start a new line.
Write down the $2^{\text {nd }}$ number:
Draw a line below.
Subtract:

1234
56.7
1177.3
\rightarrow

Key in the $1^{\text {st }}$ number:
Close $1^{\text {st }}$ input:
Key in the $2^{\text {nd }}$
number:

Subtract:

On your WP 43S
(1) 241234

ENTERT
(5) 6 7 $56.7=$

This is the essence of RPN:
Provide the necessary operands, then execute the requested operation by pressing the corresponding function key.

[^10]HP itself explained this method using a very compact picture. ${ }^{18}$ And a major advantage of RPN compared to all other calculator operating systems known to us is that it sticks to this basic rule always. ${ }^{19}$

Stack register name		contents
Display	D	d
	C	c
	B	b
	A	a
	T	t
	Z	z
	Y	y
	X	x

As the paper holds your operands while you are calculating manually, some space holding your operands on your WP 43S is required as well. The stack does this job. Think of it like a pile of registers, a work space for your calculations.
Bottom up, these registers are traditionally called $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$, and \mathbf{T},
${ }^{18}$ This picture is copied from the brochure 'ENTERT vs. Ξ ' of 1974.
${ }^{19}$ This rule applies for functions regardless of the kind of objects they operate on. This way of writing operations is called postfix notation since the operator is entered after the operands (hence $\underline{R P N}$, cf. footnote 1). It suits electronic calculating very well; and it eases work for human brains, too - see further below.
Some people might claim that the above global rule strictly holds for RPL only. RPL (meaning Reverse Polish Lisp) is a programming language and notation developed from RPN in the 1980's. Maybe those people are even right. In my opinion, however, RPL strains the postfix principle beyond the pain barrier, exceeding the limit where it becomes annoying for human brains. Not for everybody, of course, but also for many scientists and engineers. Thus, we stick to classic RPN on the WP $43 S$ as we did on the WP 34S and WP 31S.
optionally followed by $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} on your WP $43 S .{ }^{20}$ New input is always entered in \mathbf{X}, and at least \boldsymbol{x} is always displayed in run mode $\boldsymbol{y}, \boldsymbol{z}$, and \boldsymbol{t} may be (so you may see the contents of up to four stack registers on the screen at the same time if you want).

ENTERT separates two input numbers by closing the first number \boldsymbol{x} and copying it into \mathbf{Y}, so \mathbf{X} can take a new number then without loss
Press of information (cf. above). The contents of the upper stack registers are lifted out of the way before. In a 4-register stack, z is copied into \mathbf{T} and \boldsymbol{y} into \mathbf{Z} before x will be copied into Y.

This is the classical function of ENTERT from the HP-35 of 1972 until the HP-42S ceased production in 1995. ENTER \boldsymbol{T} affects all stack registers, and the previous content of the top register gets lost. It is often said ENTERT 'pushes \boldsymbol{x} on the stack' (although it pushes \boldsymbol{x} under the stack in the usual pictures).

Let's look at our account example again, putting it in a stack diagram: ${ }^{21}$

\mathbf{T}				
\mathbf{Z}				
\mathbf{Y}		1234	1234	
\mathbf{X}	$1234 _$	1234	56.7	$\rightarrow 1177.3$
Input	$\mathbf{1 2 3 4}$	ENTERT	56.7	-

${ }^{20}$ This optional 8-register stack was invented by Pauli and me and launched with WP 34S in 2011. WP 31S features it as well. See the further text for its advantages.
${ }^{21}$ The stack diagram is presented here for a traditional 4-register stack. At beginning, some arbitrary data may be present in the upper stack registers \mathbf{Y}, \mathbf{Z}, and \mathbf{T}, remaining from earlier operations. These data are irrelevant for this calculation, so we left them aside here; in further stack diagrams we will omit entirely all stack registers not containing any data relevant for the particular calculation, for sake of clarity and print space. And we will generally use plain bold text denoting numeric input from here on for the same reasons.

After having entered the $2^{\text {nd }}$ number (56.7, the new \boldsymbol{x}), pressing subtracts this from the $1^{\text {st }}$ number (1234 in \mathbf{Y}) and puts $f(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{y}-\boldsymbol{x}=$ 1177.3 in \mathbf{X}. This procedure applies to the overwhelming majority of functions featured on your WP 43S:

Put the operands on the stack,

 then execute the operation $f(x, \ldots)$, and the result will be displayed. ${ }^{22}$A large part of mathematics is covered by such dyadic functions and combinations of them. Let's look at a chain calculation:

Example:

$$
\frac{(12.3-45.6)(78.9+1.2)}{(3.4-5.6)^{7}} .
$$

This is as a combination of six dyadic functions: two subtractions, one addition, a multiplication, an exponentiation, and a division.

And this is how that problem is solved on your WP 43S, starting top left in the formula, and what happens on the stack while solving:

Y		入 12.3	12.3	
X	12.3	$\longrightarrow \quad 12.3$	45.6	$\rightarrow \quad-33.3$
Input	12.3	ENTERT	45.6	\square

You will have recognized that this $1^{\text {st }}$ parenthesis in the numerator was solved exactly as demonstrated in our little account example above. Now proceed to the $2^{\text {nd }}$ parenthesis:

Z		-33.3	-33.3		
Y	A -33.3	78.9	78.9	-33.3	
X 78.9		78.9	1.2	$\rightarrow 80.1$	-2667.33
	78.9	ENTERT	1.2	\pm	区

[^11]It is solved like the first. Though in the $1^{\text {st }}$ step of this sequence, the prior result (of $1^{\text {st }}$ parenthesis) is lifted automatically (A) to \mathbf{Y} to avoid overwriting it with the next number keyed in. This move is called automatic stack lift.

Actually, such an automatic stack lift works as if ENTERT was pressed before the first digit of the new input number (i.e. before 7 here). Automatic stack lifting is standard on RPN calculators, reducing the number of keystrokes necessary, and will not be indicated from here on anymore. ${ }^{23}$ Remember you need pressing ENTERT just for separating two consecutive numbers in input - cf. the flow diagram on p. 33.
Due to automatic stack lifting, there is also no need for clearing your WP 43S before starting a new calculation - old data are just lifted out of the way when new input is entered. In consequence, we need neither any (1) nor any (D) and can solve problems with a minimum of keystrokes.

After having solved the $2^{\text {nd }}$ parenthesis of the chain calculation by pressing \oplus, the results of both upper parentheses were on the stack in \mathbf{X} and \mathbf{Y} so everything was well prepared for the multiplication to complete the numerator. Thus, we just did it.

Now we start calculating the denominator - once again the intermediate result is lifted automatically in the $1^{\text {st }}$ step:

	-2 667.33	-2 667.33		-2 667.33		
-2 667.33	3.4	3.4	-2 667.33	-2.2	-2 667.33	
3.4 -	3.4	5.6-	-2.2	7	-249.43...	10.693...
3.4	ENTERT	5.6	\square	7	(1)	(1)

Note the automatic stack lift when entering 7 affects two intermediate results now. Thus, everything is well prepared for the exponentiation in the
${ }^{23}$ Also an automatic stack lift affects all stack registers, and the previous content of the top register gets lost again. Of all commands provided on your WP $43 S$ (more than 650), there are only 4 disabling automatic stack lift. ENTER, CLX, $\Sigma+$, and $\Sigma-$. Some reasoning:

- After ENTERT, you generally want to key in the consecutive number.
- CLX (called by $C L X$ or $\boldsymbol{\Psi}$) is for clearing \mathbf{X} to make room for a corrected value instead of the one deleted (and we do not want a useless extra zero on the stack).
- Regarding $\Sigma \boldsymbol{\Sigma +}$ and $\Sigma \boldsymbol{\Sigma}$, please see the chapters about statistical functions in Section 2 for the reasons.
penultimate step and the final division of the numerator (in \mathbf{Y}) by the denominator (in \mathbf{X}). Voilà!

Following this example, you have seen the five most popular dyadic
 more dyadic functions.

As you have observed several times now, the contents of the stack registers drop whenever a dyadic function is executed. Like the automatic stack lift mentioned above, also this automatic stack drop affects all stack registers as pictured here:

Press	Contents	Location
\pm	y \times	\longrightarrow T Y P La

There are also a few three-number (triadic) functions featured (e.g. \rightarrow DATE, \%MRR). Executing such a function replaces x by $f(x, y, z)$; then \boldsymbol{t} drops into \mathbf{Y} and so on, and the content of the top stack register is repeated twice (see p. 40 for an example). All triadic functions provided on your WP 43S are found in menus.

And some functions operate on one number but return two (like DECOMP) or three (e.g. DATE \rightarrow). Other operations do not consume any stack input at all but may just return one, two, or three objects (like RCL, SUM, or L.R.). Then these extra objects will be pushed on the stack, taking one register each (see p. 40).

Looking Closer at the Automatic Stack

For understanding the genius of RPN, we will look a bit closer to the functions operating on the stack. In addition to the one-, two-, and threenumber (monadic, dyadic, and triadic) functions explained in previous chapter, there are some dedicated stack and register commands:

The memory control operations ENTERT, $x \geqslant y, R \downarrow$, RT, STO, RCL, and VIEW are known from previous RPN calculators already. They are all found within this small area of the keyboard, together with RBR, (FILL, DROP \downarrow, and STK.

Your WP 43S contains even more stack and register commands, e.g. CLSTK, CLREGS, DROPy, STOCFG and RCLCFG, STOS and RCLS, $x \geqslant, y \geqslant, z k$, , and . Most of them are found in STK.

And your WP 43S allows for expanding the traditional 4-register stack to eight registers: just enter

FLAGS SF SYS.FL SSIZE8.

In consequence, the fate of stack contents will depend on the particular operation executed as well as on the stack size set at execution time. Operations on the 4-register stack work as known from vintage HP RPN calculators since the HP-45. On the optional 8 -register stack of your WP 43S, everything works in analogy - just with more registers available for intermediate results; so you will hardly ever run into a stack overflow (see p. 44 for an example).
 and further representative functions do in detail on stacks of either size. Then you will also know why ENTERT and the stack rotation command $\mathrm{R} \uparrow$ show arrows pointing up while $\mathbb{R \searrow}$ and $\mathbb{D R O P \downarrow} \downarrow$ point down.

			Stack contents after executing ...						
				$\stackrel{\pi}{\square}$	$\left\lvert\, \begin{aligned} & \text { o } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$$	$\left\lvert\, \begin{gathered} x \\ x \\ \|x\| \\ \vdots \end{gathered}\right.$	$\stackrel{\pi}{\mathbb{D}}$	$\stackrel{\sim}{\square}$
	T	$t=4$.	3.	1.1	4.	4.	4.	1.1	3.
	Z	$z=3$.	2.	1.1	4.	4.	3.	4.	2.
	Y	y=2.	1.1	1.1	3.	3.	1.1	3.	1.1
	\mathbf{X}	$x=1.1$	1.1	1.1	2.	1.1	2.	2.	4.
With 8 stack registers	D	$d=8$.	7.	1.1	8.	8	8.	1.1	7.
	C	$c=7$.	6.	1.1	8.	8	7.	8	6.
	B	$b=6$.	5.	1.1	7.	7.	6.	7	5.
	A	$a=5$.	4.	1.1	6.	6.	5.	6.	4.
	T	$t=4$.	3.	1.1	5.	5.	4.	5.	3.
	Z	$z=3$.	2.	1.1	4.	4.	3.	4.	2.
	Y	$y=2$.	1.1	1.1	3.	3.	1.1	3.	1.1
	\mathbf{X}	$x=1.1$	1.1	1.1	2.	1.1	2.	2.	8.

Clearing the entire stack can be done by 0 (FILL most easily. Nevertheless, a dedicated command CLSTK is provided in CLR for backward compatibility and program space economy (see p. 52).
$x^{2} \geqslant y$ takes the initial stack contents (as listed in the third column left) and swaps the contents of registers \mathbf{X} and \mathbf{Y}. Depending on the problems you solve and the way you proceed, you may sometimes find that \boldsymbol{x} and y should be swapped before executing e.g. \square, 1 , or y^{x}.
$\mathbb{R} \downarrow$ and $\mathbb{R} \uparrow$ may come handy for reviewing stack registers else unseen (unless you use the register browser RBR - see Section 5).

		Stack contents after executing ..					
		$\underbrace{\stackrel{\sim}{\sim}}_{\underset{\sim}{\infty}}$	$\underbrace{\infty N 1}_{n}$	x	${\underset{\sim}{\sim}}_{+}^{+}$		
T	$t=4$.	3.	2.	4.	4.	4.	2.
Z	$z=3$.	2.	1.1	3.	4.	4.	20.
Y	$y=2$.	1.1	s_{y}	2.	3.	4.	10.
\mathbf{X}	$x=1.1$	last x	s_{x}	1.21	3.1	1-02-03	1.

D	$d=8$.	7.	6.	8.	8.	8.	6.
C	$c=7$.	6.	5.	7.	8.	8.	5.
B	$b=6$.	5.	4.	6.	7.	8.	4.
A	$a=5$.	4.	3.	5.	6.	7.	3.
T	$t=4$.	3.	2.	4.	5.	6.	2.
Z	$z=3$.	2.	1.1	3.	4.	5.	20
Y	$y=2$.	1.1	S_{y}	2.	3.	4.	10
X	$x=1.1$	last x	${ }^{\text {S }}$	1.21	3.1	1-02-03	1

RCL(L) represents the vintage command LASTx (see p. 50 for more about it). Note that the previous contents of the top stack register are lost when ENTERT or (RCL are executed. Functions like ss or DATE \rightarrow
${ }^{24}$ This represents an arbitrary function pushing one object on the stack.
${ }^{25}$ This represents an arbitrary function pushing two objects on the stack.
${ }^{26}$ This represents an arbitrary monadic function.
${ }^{27}$ This represents an arbitrary dyadic function.
${ }^{28}$ Assume \rightarrow DATE is called in startup default date mode (i.e. YMD). It represents an arbitrary triadic function here.
${ }^{29}$ Assume $\mathbf{1 . 1 0 2}$ or 1-10-20 in \mathbf{X} initially here and startup default mode set, cf. Sect. 2.
will even cost the contents of two stack registers,. We recommend mitigating the effects of such losses by setting the stack to eight registers (cf. p. 38). - Please see the IOI for further information about the commands mentioned above.

Problem Solving, Part 3: The Stack in Advanced Calculations

Using the stack as described, RPN eliminates the need for an Ξ key as well as for any parentheses (1) keys. See the following example, showing a more elaborate formula than above. Find below a way for solving it step by step, and the corresponding stack diagrams. Enter MODE RAD and start calculating at the red 7:

$$
2+\sqrt{\frac{1+\left|\left(\frac{30}{7}-7.6 \times 0.8\right)^{4}-\left(\sqrt{5.1}-\frac{6}{5}\right)^{2}\right|^{0.3}}{\left\{\sin \left[\pi\left(\frac{7}{4}-\frac{5}{6}\right)\right]+1.7(6.5+5.9)^{3 / 7}\right\}^{2}-3.5}}
$$

\mathbf{Z}						1.75	1.75		
\mathbf{Y}		7	7		1.75	5	5	1.75	
\mathbf{X}	$7-$	7	$4-$	1.75	5	5	6_{-}	$0.83 \ldots$	$0.91 . .$.
	$\mathbf{7}$	ENTT	$\mathbf{4}$	1	5	ENTT	6	1	-

								0.25...	0.25...
				0.25...	0.25...		0.25...	12.4	12.4
0.91...			0.25...	6.5	6.5	0.25...	12.4	3	3
3.14...	2.87...	0.25...	6.5		5.9	12.4	3		7.

$\begin{array}{lllllllll}\pi & \mathrm{x} & \text { TRI } \sin 6.5 & \text { ENTT } 5.9 & \oplus & 3 & \text { ENTT } 7\end{array}$

$0.25 . .$.		$0.25 . .$.					
12.4	$0.25 . .$.	$2.94 \ldots$	$0.25 . .$.			$27.6 . .$.	
$0.42 . .$.	$2.94 \ldots$	$1.7-$	$5.00 \ldots$	$5.25 \ldots$	$27.6 \ldots$	$3.5 \ldots$	$24.1 \ldots$

This was the solution of the entire denominator. Let's continue with calculating the numerator now, basically following the same procedure, i.e. calculating from inside out (as you would do with pencil and paper):

					24.1...	24.1...			
	24.1...	24.1...		24.1...	6.08	6.08	24.1...		24.1...
24.1...	7.6	7.6	24.1...	6.08	30	30	6.08	24.1...	1.79...
7.6-	7.6	.8-	6.08	30	30	7.	4.28...	1.79...	4.
7.6	ENTT	. 8	区	30	ENTT		T	\square	4

		24.1...	24.1...		24.1...	24.1...			
	24.1...	10.3...	10.3...	24.1...	10.3...	10.3...	24.1...	24.1...	
24.1...	10.3...	6	6	10.3...	1.2	1.2	10.3...	10.3...	24.1...
10.3...	6	6	5	1.2	5.1-	2.25...	-1.05...	1.12...	9.24...
$y^{\text {x }}$	6	ENTT	5	1	5.1	X	\square	χ^{2}	\square

	24.1...		24.1...						
24.1...	9.24...	24.1...	1.94...	24.1...	2.94...			0.34..	
9.24...	.3-	1.94...	1.	2.94...	24.1...	0.12...	$0.34 . .$.	2	2.349...
$\underline{\|x\|}{ }^{30} \quad 3$			1	\oplus	$x^{2} \geqslant$	(1)	\sqrt{x}	2	\pm

Even solving this formula requires only four stack registers. ${ }^{31}$ Note there are no pending operations - each operation is executed individually, one

[^12]at a time, allowing perfect control of each and every intermediate result. ${ }^{32}$

Note this is another characteristic advantage of RPN. In many reallife applications, intermediate results carry their own value, so further calculations may depend on the numbers you see there - this is called 'exploratory math' and may well occur more frequently in your professional work than evaluating textbook formulas.

Experienced RPN calculator users have determined that by starting every problem at its innermost number or parenthesis and working outwards, you maximize the efficiency and power of your calculator.

If, instead, you had tried solving the formula on p. 41 starting with the numerator of the root straight ahead, stubbornly calculating from left to right, you would have needed more keystrokes and six stack registers for the entire solution instead of only four (the colors in the record below represent the top stack register involved in each step):
1 ENTERT 30 ENTERT 7 (1) 7.6 ENTERT $8 \times\left(\begin{array}{l}x \\ y^{x}\end{array}\right.$
$5.1 \sqrt{x} 6$ ENTERT $5 \square \square x^{2}-$ |x| $3 \sqrt{y^{x}}+$
RAD (TI ENTERT 7 ENTERT 4 (1) 5 ENTERT 6 (1) $-x \mathrm{sin}$ 1.7 ENTERT 6.5 ENTERT $5.9 \oplus 3$ ENTERT 7 (1) y^{x} 区

```
# ( x 3.5 - (1) \sqrt{}{x} 2 +
```

Admittedly, this way is not very smart though you see it is viable.

There are, however, some problems where four stack registers will just not suffice regardless of the way you tackle with them:

Example:

Solve $\frac{(1+2)(9+8)+(3+4)(11+6)}{(5-7)(10+12)-(13+14)(15+16)}$.
This highly symmetric formula lacks an unambiguous 'inside', so it does not matter where we start solving it. Let's begin with the numerator:

[^13]

T					51	51				
Z	51	51		51	7	7	51			
Y	3	3	51	7	11	11	7	51		170
X	3	4-	7	11	11	6	17	119	170	5
	ENTT 4			11	ENTT 6		\pm	-	\pm	5

\mathbf{T}					170	170				170
\mathbf{Z}	170	170		170	-2	-2	170		170	-44
\mathbf{Y}	5	5	170	-2	10	10	-2	170	-44	13
\mathbf{X}	5	$7-$	-2	10	10	12	22	-44	$13-$	13
	ENTT	$\mathbf{7}$	-	$\mathbf{1 0}$	ENTT	12	\pm	\mathbf{x}	$\mathbf{1 3}$	$\mathbf{E N T T}$

A				170	170				
T	170		170	-44	-44	170			
Z	-44	170	-44	27	27	-44	170		
Y	13	-44	27	15	15	27	-44	170	
X	14	27	15	15	16	31	837	-881	-0.192 96.
			15	NTt	16			\square	1

If you had set your WP 43 S to four stack registers (as all of HP's pocket calculators featured so far), however, the last stack diagram would have deviated since register A could not be loaded automatically then:

\mathbf{T}	170	170	170	-44	-44	-44	-44	-44	-44
\mathbf{Z}	-44	170	-44	27	27	-44	-44	-44	-44
\mathbf{Y}	13	-44	27	15	15	27	-44	-44	-44
\mathbf{X}	14	27	15	15	$16 _$	31	837	-881	0.049

Then it would return a wrong result due to stack overflow in step 4 and
subsequent repetition of wrong top register contents. Note this is possible - and there is (and will be) no warning since your WP 43S cannot know what you still need or what may be discarded without a problem. ${ }^{33}$ Thus, we recommend setting ssize8 to play safe.

We will close this chapter with another real-life example:

For decades, solving the following formula for the Mach number of an airplane as a function of its calibrated airspeed (CAS) in knots ${ }^{34}$ (here: 350) and pressure altitude ($P A$) in feet (here: 25 500) was used for demonstrating the simplicity and coherence of RPN:

$$
\sqrt{5\left(\left[\left\{\left(1+0.2\left[\frac{C A S}{661.5}\right]^{2}\right)^{3.5}-1\right\}\left\{1-6.875 \times 10^{-6} \times P A\right\}^{-5.2656}+1\right]^{0.286}-1\right)}
$$

Solve it like this:

$1 \oplus .2861$ [1 -
$5 \sqrt{\boxed{x}}$ resulting in 0.84 , i.e. 84% of the speed of sound. You need only three stack registers for solving this.

[^14]As you have seen, the way to solve a problem using RPN stays the same regardless of the problem size. You are always in control.

With an 8-register stack as provided on your WP 43S, you will be on the safe side, even dealing with the most advanced mathematical expressions you will meet in your professional life as a scientist or engineer. Promised. ${ }^{35}$
Let's quote a part of the HP-25 OH once more, just replacing all strings 'HP-25' by 'WP 43S':

Now that you've learned how to use the calculator, you can begin to fully appreciate the benefits of the Hewlett-Packard logic system. With this system, you enter numbers using a parenthesis-free, unambiguous method called RPN (Reverse Polish Notation).

It is this unique system that gives you all these calculating advantages whether you're writing keystrokes for a WP 43S program or using the WP 43S under manual control:

- You never have to work with more than one function at a time. The WP 43S cuts problems down to size instead of making them more complex.
- Pressing a function key immediately executes the function. You work naturally through complicated problems, with fewer keystrokes and less time spent.
- Intermediate results appear as they are calculated. There are no "hidden" calculations, and you can check each step as you go.
- Intermediate results are automatically handled. You don't have to write down long intermediate answers when you work a problem.
- Intermediate answers are automatically inserted into the problem on a last-in, first-out basis. You don't have to remember where they are and then summon them.

[^15]- You can calculate in the same order you do with pencil and paper. You don't have to think the problem through ahead of time.

RPN takes a few minutes to learn. But you'll be amply rewarded by the ease with which the WP 43S solves the longest, most complex equations. With RPN, the investment of a few moments of learning yields a lifetime of mathematical bliss.

And calculations with other data types (see Section 2) follow the same simple rules. So at the bottom line, we recommend:

Set SSIZE8 and let your WP 43S care for the arithmetic while you care for the mathematics! ${ }^{36}$

[^16]We count on your abilities and are very confident you will succeed.

Special Tricks, \#1: Top Stack Level Repetition

Whenever a dyadic or triadic function is executed, the stack will drop and the content of its top register will be repeated as illustrated on pp. 37 and 40. You may employ this top stack register repetition for some nice tricks.

See the following compound interest calculation: ${ }^{37}$

Example:

Assume your bank pays you 3.25% p.a. ${ }^{38}$ on an amount of 15000 US\$; what would be your status after $2,3,5$, and 8 years?

Solution:

Here, you are interested in currency values only, so set the display format by (DISP FIX (2). This causes the output being rounded to cents (internally, numbers are kept and calculated with far higher precision):

T		1.03	1.03	$\rightarrow 1.03$	1.03	1.03	1.03
Z		1.03	1.03	¢ 1.03	1.03	¢ 1.03	1.03
Y		1.03	1.03	1.03	1.03	1.03	1.03
X	1.0325	1.03	15000	15990.84	16510.55	17601.17	19373.66
1.0325		FILL	15000 after	$\begin{aligned} & \boldsymbol{x} \times \mathbf{x} \\ & 2 \text { years } \end{aligned}$	${ }^{x}$	$\boldsymbol{x} \times$ 5 years	$\boldsymbol{x} \times \mathbf{x}$
		3 years			8 years		

FILL STK
 $x^{>} \times y^{k}$

 Each multiplication consumes \boldsymbol{x} and \boldsymbol{y} for the new product $\boldsymbol{x} \times \boldsymbol{y}$ put in \mathbf{X}, followed by \boldsymbol{z} dropping into \mathbf{Y}, and \boldsymbol{t} copied into \mathbf{Z}. Due to top stack register repetition the interest rate is automatically kept as a constant on the stack, so the accumulated capital value computation becomes a simple series of \boldsymbol{x} strokes.This is demonstrated here for a 4-register stack. It works for an 8-register stack as well - with the contents of \mathbf{D} repeated then.

[^17]Debt calculations are significantly more complicated - so avoid debts whenever possible! In the long run, it is better for you and your economy. Nevertheless, you can cope with such calculations as well using your WP $43 S$ (see Section 5).

Another application making use of top stack register repetition is the Horner scheme for calculating polynomials. It tells:

$$
\begin{aligned}
& p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \\
& \quad=\left(\ldots\left(a_{n} x+a_{n-1}\right) x+\cdots+a_{1}\right) x+a_{0}
\end{aligned}
$$

Example:

Solve $7+6.4 x-2.1 x^{2}+5.2 x^{3}-3 x^{4}$ for $x=0.908$.

Solution:

This problem can be rewritten to

$$
\{[(-3 x+5.2) x-2.1] x+6.4\} x+7
$$

and is easily solved this way (with the display set to DISP FIX (1)):

	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
. 908	0.9	-3	-2.7	5.2	2.3	2.1-	0.1	6.4	5.9	12.9

Note how the \boldsymbol{x} values float automatically down the stack to be used in multiplications.

FILL loads the entire stack always - be it 4 or 8 registers deep - it is far more convenient than hitting ENTERT multiple times.

Special Tricks, \#2: LASTx for Reusing Numbers

Your WP 43S copies \boldsymbol{x} into the special register \mathbf{L} (for 'Last \boldsymbol{x} ') automatically just before a function is executed - as previous RPN calculators did (cf. the picture on p. 37). What is the benefit for you?

Example (from the HP-15C OH):

Two close stellar neighbors of Earth are Rigel Centaurus ${ }^{39}$ (4.3 light-years away) and Sirius (8.7 light-years away). Use the speed of light, c (2.997 92×10^{8} meters/second, or 9.46054×10^{15} meters/year), to figure the distances to these stars in meters.

Solution (with SCI 1 set):

4.3	4.3-	
ENTER \uparrow		4.3
9.46073 E 15	9.46054×10^{15}	
X		4.1×10^{16}
8.7	$8.7=$	
RCL ${ }^{\text {d }}$		9.5×10^{15}
W		8.2×10^{16}

RCLL is reached by pressing RCL , then $+1 /$; note the grey L printed bottom right of \dagger.
$\Delta \%$ FIN
$+/=$

Result: Rigel Centaurus has a distance of $4.1 \times 10^{16} \mathrm{~m}$ (or $4.1 \times 10^{13} \mathrm{~km}$) to our planet, Sirius $8.2 \times 10^{13} \mathrm{~km}$.

So, recalling the last \boldsymbol{x} via RCL may save you from keying in lengthy numbers more than once. It also allows for reusing intermediate results without the need for storing them explicitly. ${ }^{40}$

[^18]
Error Recovery: © , EXIT, and

Nobody is perfect - errors will happen although you are equipped with such a powerful tool. Stay cool - your WP $43 S$ allows you undoing the last command executed, restoring the calculator state exactly as it was before that error occurred.

1. If you receive an error message in response to your function call, press $\boldsymbol{\uplus}$ or EXIT] this will erase that message and return to the state before that error happened (see pp. 68 and 308f). Then do it right!
2. If you have erroneously executed a wrong function,
 just press $f \backsim$ to undo it immediately. (\curvearrowleft recalls the entire calculator state as it was before that wrong operation was executed. Then resume calculating where you were interrupted. ${ }^{41}$

Example:

Assume - while you were watching an attractive fellow student or collaborator - you pressed \boldsymbol{x} inadvertently instead of (D) in the fourth last step solving the lengthy formula on p. 41. Murphy's Law! Luckily, however, there is absolutely no need to start that calculation all over again - that error is easily undone as follows:

\mathbf{T}	yzx	\ldots	yzx	\ldots	\ldots
\mathbf{Z}	xyz	yzx	xyz	yzx	yzx
\mathbf{Y}	numerator	xyz	num	xyz	xyz
\mathbf{X}	denominator	num \times den	den	num / den	correct result

So don't worry - be happy!

[^19]
Clearing and Resetting Your WP 43S

There are several ways you can remove obsolete information from your WP 43S. The most basic one is $\boldsymbol{\Psi}$ - you have learned about it on p. 25. Almost all other clearing commands are contained in CLR:

CLX	Clears stack register \mathbf{X} (i.e. sets it to zero)	CLSTK	Clears all stack registers
CL Σ	Clears all statistical registers	CLREGS	Clears all global and local GP registers ${ }^{42}$
CF	Clears the flag specified	CLFALL	Clears all user flags
CLP	Clears current program	CLPALL	Clears all programs
CLMENU	Clears the programmable menu	CLCVAR	Clears all variables of the current program
CLALL	Clears all programs and data (variables, user flags, and all registers including the stack ${ }^{43}$	RESET	Resets your WP 43S to startup default (just flash memory contents will stay untouched) ${ }^{44}$

For your reference, startup default settings are: 2COMPL, ALL 0, DEG, DENMAX 9999, DSTACK 4,
GAP 3, J/G 1752-09-14, LinF, LocR 0, RM 0, TDISP -1,
WSIZE 64, and Y.MD. RANGE is set to 6145 .
The system flags AUTOFF, DECIM., DENANY, MULTx, TDM24,
and aCAP are set, all others are clear.

Red commands ask you for confirmation. Turn to the ReM for more information about the commands and system flags mentioned above.

[^20]
> orbited in space aboard three manned Skylab missions (1973-74) Solar research figured prominently among the wide assortment of experimental research conducted. Used as a backup to on-board computers, the HP. 35 calculated predocking rocket burns necessary to align the Apollo Command Module with Skylab. In addition, the HP-35 helped Skylab crews aim their telescopes at stars in attempts to measure uitraviolet radiation.

(p)
 HEWLETT
 PACKARD

That's almost all you have to know about number crunching for the time being - calling commands and calculations with real numbers on the stack. Such capabilities did suffice for high flying applications already see the picture above. There are, however, far more places than just the stack where you may store and save your data in your WP 43S. Let's present them to you.

Addressing and Manipulating Objects in RAM

You have learned about the stack providing work space and temporary storage during your calculations. For long term storage, feel free to use other registers, variables, flags, and program memory. The remaining chapters of this section will tell you how to use the first three.
The pictures on the next two pages show the entire address space of your WP 43S. Depending on the way you configure its memory, a subset of all these addresses will be accessible for you.
Depending on the stack size you choose, either \mathbf{T} or \mathbf{D} will be the top stack register, A - D will be allocated for the 8 -register stack if applicable. \mathbf{I}, \mathbf{J}, and \mathbf{K} may carry parameters of statistical distributions (see pp. 97ff); I and \mathbf{J} will also serve as index pointers in matrix editing (see pp. 163ff),
and \mathbf{K} is also the default alpha register for some special operations (see pp. 230f). Unless required for the purposes mentioned, A, B, C, D, I, J, and \mathbf{K} may be employed as additional global GP registers.

Special registers and stack

Turn overleaf to see all registers available as well as all user flags. Generally, registers or flags can be addressed as shown in the tables on pp. 60ff. Addresses ≥ 112 are used for local data (see pp. 233f).

Flags are elementary items having only two states, set and clear. You may think of them as switches being either on or off. You can employ user flags for signaling whatever you want. There are also system flags reflecting specific system states (overlapping with some lettered user flags for easier access, see also the ReM). Since flags are most useful in programming, they will be dealt with in Section 3.

Statistical data are accumulated in a set of dedicated summation registers not interfering with your other data (like in WP 34S and 31S before). You may enter your gathered statistical data value by value, point by point, or in a single matrix all at once (see Section 2 for more).

Like the stack registers, also each GP register can hold any object you store therein - more than just a common real number (you will learn about these other objects in Section 2). These registers are beneficial e.g. for storing intermediate results for repeated use.
GP registers
Local registers
R. $98=R_{2} 10=$
$R .97=R 2090$
\cdots

...
R. $02=$ R 114
R. $01=$ RU3
$\mathbf{R} .00=R 112$

R99
R98
R97
\ldots
R..
R02
R01

Global registers

Example (with startup default settings):

ASNSAVE RBRVIEW

$$
\sqrt{3+\left(\frac{1.09}{1.78}\right)^{2}} \times \frac{\ln \left[3+\left(\frac{1.09}{1.78}\right)^{2}\right]}{4 \cos \left[3+\left(\frac{1.09}{1.78}\right)^{2}\right]}
$$

Solution:

First calculate the repeating term $3+\left(\frac{1.09}{1.78}\right)^{2}$ and store it:
1.09 ENTERT 1.78 (1
$6.123595505617978 \times 10^{-1}$
$\mathrm{x}^{2} 3 \boldsymbol{+}$ STOK
3.374984219164247

Then solve the entire expression, e.g. like this:
\sqrt{x}

solves the $1^{\text {st }}$ factor of the expression, solves the numerator,
2.234647088154349
solves the $2^{\text {nd }}$ part of the denominator,
2.238529534683649
$5.596323836709123 \times 10^{-1}$

That's it - solving this expression has become really easy this way.

Variables are named storage locations. As well as each register, also each variable can hold any type of data (see Section 2).

During input processing in memory addressing, e.g. while entering parameters for storing, recalling, swapping, copying, clearing, or comparing, you will not need all the labels presented on the keyboard. Just 29 labels plus the prefixes will do instead. The calculator mode supporting exactly these 29 exclusively is called temporary alpha mode (TAM). As shown in examples on the next pages, it may be automatically set in memory addressing.

Entering TAM, the operational keyboard is temporarily reassigned as pictured overleaf.

Also all other lettered registers can be called directly - the stack registers $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$, and \mathbf{T} via unshifted softkeys. And accessing numbered registers stays as easy as can be. \rightarrow is for indirect addressing (see p. 60),. for local memory addresses here (see p. 233).

Variables already defined at execution time will show up in the submenu VAR in alphabetical order - so you can select the variable of your choice by pressing the respective softkey. You can also access them via α (or create new variables this way - see pp. 60f for how to do this).
Note that you will not need f or g except for softkeys. These may be context sensitive in TAM. If a comparison (e.g. $\mathrm{x}<$?) is called, ${ }^{46}$ for instance, the f-shifted row will look like this:

[^21]

This allows for directly comparing x with the numbers 0 or 1 (see p. 60).

If $\overline{S T O}$ or RCL is called, on the other hand, the shifted rows will look like this instead:

This allows for storing and recalling all your specific settings easily via STO Config and RCL Config, respectively (see p. 80). STO Stack stores the entire stack in a block of 4 or 8 registers (depending on stack size set), RCL Stack recalls it. And max (or min) lets you work with the maximum (or minimum) of \boldsymbol{x} and the contents of the source automatically (see the IOI). You may press Δ as shortcut for $f \mathrm{max}$ and ∇ for $f \mathrm{~min}$ here. ...EL and ...IJ may be helpful when dealing with matrices (see Section 2).

For commands operating on flags, SYS.FL grants access to the system flags provided:

For all other operations asking for one trailing parameter, the menu will stay with a single row of softkeys as pictured on p. 57. ${ }^{47}$

[^22]TAM will be terminated as soon as sufficient characters are entered for the respective operation. You may delete pending parameter input keystroke by keystroke using $\boldsymbol{\Psi}$ and correct it if necessary - or just abort the pending command by EXIT; this will leave TAM immediately, returning to the mode set and the menu displayed before, if applicable.

If you just want to look up the current contents of a storage location without disturbing the stack, use VIEW.

Example:

DISP FIX 5

VEWW returns $k=3.37498$
... as expected from previous example.
Note the view into register \mathbf{K} is displayed adjusted to the left immediately below the status bar.

For inspecting a row of various registers, take (RBR instead; press STATUS (or FLAGS STATUS) for checking the status of all flags (RBR and STATUS are explained in Section 5 from p. 261 on).

You are granted unlimited access to all the global registers and user flags allocated; there are no safety constraints like 'memory protection' on your WP 43S. You are the sole and undisputed master of its memory. Thus, it is also your responsibility to take care of it - keep suitable records to avoid inadvertently overwriting or deleting your precious data. ${ }^{48}$

You will not get 10000 program steps and 212 registers and 128 user flags all together at the same time - see the ReM, App. B, for the reasons and for resource management.

[^23]
Addressing Tables

Parameterized Comparisons:

	User input Echo	$\begin{gathered} \text { TEST } x<?, x \leq ?, x=?, x \approx ?, x \neq ?, x \geq ?, x>? \\ \text { OP }_{-} ? \text { (with TAM set), } \\ \text { e.g. } x<\text { ? } \end{gathered}$				
2	User input	0.0 or 1.	Stack or lettered register (i.e. ST.Y ST.T, (A) - (D), (L), (I) - (K) or variable defined ${ }^{49}$	Register number (range as specified on p. 63)	opens indirect addressing	α^{50} turns on alpha input mode (see pp. 193ff) for a (new) variable name
	Echo	$\begin{gathered} \text { OP } n ? \\ \text { e.g. } \\ x=0 . ? \end{gathered}$	$\begin{gathered} \text { OP? } x \\ \text { e.g. } \\ x \geq ? \text { ST.Y } \end{gathered}$	$\begin{aligned} & \text { OP? nn } \\ & \text { e.g. } \\ & x \neq ? ~ r 23 \end{aligned}$	OP? $\rightarrow_{\text {_ }}$	OP? '_
3	User input	Compares x with the number $\mathbf{0}$.	Compares x with the content of stack register Y.	Compares x with the content of R23.	See overleaf and p. 64 for more about indirect addressing.	Variable name (see overleaf for more)
	Echo					$\begin{gathered} \text { OP? ' } x x^{\prime} \\ \text { e.g. } \\ x>\text { ? 'ST1' } \end{gathered}$

Compares \boldsymbol{x} with the content of the variable called 'ST1'.
Press g IEST $x>$? α ST \mathbf{f} ENTERT for this.

[^24]Register operations (requiring just a register or variable trailing):

1 User input Echo	(RCL), STO, VIEW, x^{3}, y^{2}, z^{2}, t^{2}, (DSE, (DSL), (DSZ), INC), ISE, [ISG, ISZ, etc. OP _ (with TAM set), e.g. RCL _ ${ }^{51}$			
2 User input	Stack or lettered register (i.e. ST.XX - (K) or variable defined ${ }^{49}$	Register number (range as specified on p. 63)	opens indirect addressing where applicable (see p. 64 and the IOI)	turns on alpha input mode (see pp. 193ff) for a (new) variable name
Echo	$\begin{aligned} & \text { OP } x \\ & \text { e.g. } D E C \text { K } \end{aligned}$	$\begin{aligned} & \text { OP nn } \\ & \text { e.g. VIEW } 10 \end{aligned}$	OP \rightarrow	OP
3 User input	Decrement \boldsymbol{k}.	Register number (range as specified on p. 63)	Stack or lettered register or variable defined ${ }^{49}$	Variable name (up to 7 charac ters incl. one letter at least) ${ }^{52}$
Echo		$\begin{gathered} \text { OP } \rightarrow n n \\ \text { e.g. } \\ \text { STO } \rightarrow 45 \end{gathered}$		$\begin{gathered} \text { OP ' } x x^{\prime} \\ \text { e.g. } \\ \text { INC 'Zähler 1' } \end{gathered}$

Stores \boldsymbol{x} in the location where $\boldsymbol{r 4 5}$ is pointing to (see p. 64).

Swaps x and the content of the register where l is pointing to.
Increments the variable called Zähler1.

[^25]Clearing an individual register or variable is most easily done by storing zero in it. Deleting a variable from memory is demonstrated on pp. 290f.

Other operations requiring one trailing parameter:

1 User input Echo	BestF, CF, [FF, SF, (DSTACK, ERR, LOCR, PAUSE, RM, SIM EQ, TDISP, TONE, WSIZE, \rightarrow INT, bit and flag tests, etc. (see the $I O I$ for a complete list) OP \qquad (with TAM set), e.g. FIX _
2 User input Echo	
3 User input Echo	Sets flag 110.

Shows as many stack	Sets fix point format
levels as specified in	with \# of decimals
R12 (see p. 64).	stored in \mathbf{A}.

[^26]| | Valid number range ${ }^{54}$ |
| :---: | :---: |
| Registers | |
| Flags | $0 \ldots 99$ for direct addressing of global numbered user flags
 .0 15 for direct addressing of local user flags if allocated
 $0 \ldots 127$ for indirect addressing (≤ 111 without local user flags) |
| Decimals | 0... 15 (entering any digit except 0 or 1 will terminate |
| Integer bases | $2 \ldots 16$ waiting for a further digit and close input) |
| Bit numbers | 1... 64 |
| Word size | $1 . . .64$ bits |

Please see the ReM for all other parameters and their valid ranges, as well as for a list of all system flags.
${ }^{54}$ Specifying low numbers (and numeric addresses), you may key in e.g. 5 ENTERT instead of 05.

Remember some registers and user flags may also be addressed by single letters. Variables and system flags are generally called by their names.

Indirect Addressing - Working with Pointers

Parameters for many functions can be specified using indirect addressing. I.e. rather than entering the parameter itself as part of the instruction, you may supply the register or variable pointing to the actual parameter.

Example:

Assume $x=12.3, j=45.67$, and $r 12=8.9$. Then...
STO (J)

$R C L \square$| will return |
| :--- |
| command is executed) \mathbf{J} is containing 12.3 and |
| thus is pointing to $\mathbf{R 1 2}$. And now... |

FLAGS SF $\rightarrow X$ will set flag 8 , while...
DISP FIX $\rightarrow X$ will display 8.90000000 showing 8 decimals.
Since the content of the register specified is used as a pointer to the register wherefrom we want to read (or whereto we want to write), this method is called indirect addressing. Each and every register of your WP 43S can be used for indirect addressing. ${ }^{55}$ And each and every register can be accessed this way (also the stack). Indirect addressing is most beneficial in programs when the parameter for a function is calculated (see Section 3, also for examples).

Store and Recall Arithmetic

As mentioned in footnote 51 on p. 61, arithmetic (and two conditional picks, i.e. max or min) can be performed upon the contents of registers or variables by pressing (STO or RCL followed by the respective operator key $(\oplus, \boxed{\square}, \boldsymbol{x}, \square, \boxed{\Delta}$, or $(\boldsymbol{\nabla})$ trailed in turn by the address or name of the storage space.

[^27]
Example for store arithmetic:

123.4

STO K closes input and subtracts 123.4 from \boldsymbol{k}. The difference is stored in \mathbf{K}. The stack and \mathbf{L} remain unchanged here.

The same result could be achieved by the keystroke sequence
123.4

RCL $/ \mathrm{K}$
$x^{2} \geqslant y$
$-$
STO K
RCL (L) but that is far clumsier (replacing one step by five) and would cost one stack register in addition.

The general rule for store arithmetic reads:

Example (from the HP-67 OHPG):

During harvest, farmer Flem Snopes trucks tomatoes to the cannery for three days. On Monday and Tuesday he hauls loads of 25 tons, 27 tons, 19 tons, and 23 tons, for which the cannery pays him $\$ 55$ per ton. On Wednesday the price rises to $\$ 57.50$ per ton, and Snopes ships loads of 26 tons and 28 tons. If the cannery deducts 2% of the price on Monday and Tuesday because of blight on the tomatoes, and 3% of the price on Wednesday, what is Snopes' total net income?

Solution:

DISP FIX 2

25 ENTERT 27 +
$19+23+$
55 X
STO J
94.00
5170.00
5170.00

Total of Monday's \& Tuesday's
tonnage
Gross amount for these days
Take J for accounting

2 FIN \%	103.40	Deduction for these days
STO - d	103.40	Subtracted from the total in \mathbf{J}
26 ENTERT 28 +	54.00	Wednesday's tonnage
$57.5 \times$	3105.00	Gross amount for Wednesday
STO + (J)	3105.00	Added to the total in \mathbf{J}
3%	93.15	Deduction for Wednesday
STO	103.40	Subtracted from the total in \mathbf{J}
RCL) (J)	8078.45	Snopes' total net income from his tomatoes

Example for recall arithmetic:

78.91

RCLD 2 (3 closes numeric input and divides 78.91 by $r 23$. This operation is performed in \mathbf{X} alone. \mathbf{L} is loaded with 78.91. The rest of the stack and $\mathbf{R 2 3}$ stay unchanged.

Alternatively, the same result could be achieved by the sequence
78.91
(RCL) 2
(1)
but that would replace one step by two and also cost one additional stack register. And \mathbf{L} would differ here.

General rule for recall arithmetic:

$$
\text { new } \boldsymbol{x}=\text { old } \boldsymbol{x}\left\{\begin{array}{c}
+ \\
- \\
\times \\
/ \\
\max \\
\min
\end{array}\right\} \begin{gathered}
\text { content of the } \\
\text { register or variable } \\
\text { specified }
\end{gathered}
$$

Stack-wise, both store and recall arithmetic work like monadic functions. Note these functions may operate on each and every register or variable provided, also on the stack and even on \mathbf{L}. Indirect addressing may be used as well. See pp. 218ff for more examples and advantages and the IOI for further details.

Although these techniques have been more important in times when program memory was very limited, they may be still beneficial today.

SECTION 2: DEALING WITH VARIOUS OBJECTS AND DATA TYPES

Some Display Basics

The screen is your window to your WP 43S - there you see what is going on and what the current results are. Going top down, you find ...

- the status bar,
- space for up to four rows of standard numeric output (and more - see points 1 to 4 below), and
- the menu section displaying up to three rows of soft-
 keys (cf. pp. 27f).

The numeric rows deserve some additional explanations first - the status bar will be covered further below:

1. The left side of the top (T) numeric row is also used for output of VIEW (cf. p. 59) and SHOW (see the $I O I$) and for echoing command input until completed, i.e. until all the required command parameters are entered and the command can be executed. Prefixes (like f and g) will be displayed (using $\mathbf{f}^{\boldsymbol{f}}$ and ${ }^{\boldsymbol{g}}$) until they are resolved (if, however, you pressed f or g erroneously, recovery is as easy as $f=g=g=N O P$). And you may edit any pending operation character by character using $\boldsymbol{\uplus}$ or cancel it by EXIT (cf. p. 59).
2. The left side of the \mathbf{Z} numeric row is used for displaying any error message or the output of a binary test, if applicable. Then, pending command input will stay in the top numeric row.
3. The left side of the \mathbf{Y} numeric row is used for displaying additional (temporary) information heading \boldsymbol{y}, if applicable.
4. The left side of the bottom (\mathbf{X}) numeric row is used for...
a. echoing numeric or alphanumeric input (see pp. 25 and 193ff). Note it can take up to 42 digits, a sign, and a radix mark in startup default numeric format or some 40 alphanumeric characters. You may edit pending input character by character using $\boldsymbol{\square}$. Numeric input will be checked and interpreted as soon as it is completed and closed, according to the calculator settings at closure time.
b. showing additional (temporary) information heading \boldsymbol{x}, if applicable.

In run mode, any information exceeding the plain contents of the stack registers \mathbf{X}, \mathbf{Y}, and \mathbf{Z} is temporary information. ${ }^{56}$ It will vanish with the next keystroke you enter: pressing $\boldsymbol{\square}$ or EXIT will just clear messages, returning (for DSTACK > 2) to the pure display of $\boldsymbol{x}, \boldsymbol{y}$, and z - any other key will be executed in addition, if applicable.

Supported Data Types

You learned how your WP 43S calculates with real numbers in Sect. 1. It can do more for you: it can deal with integers, fractions, and complex numbers as well as angles, times, and dates in various formats. ${ }^{57}$

But how shall your WP 43S learn about the particular meaning of your input? Some examples will explain (showing \mathbf{X} in startup default format):

[^28]

Some of these inputs may be interpreted and displayed differently depending on particular mode settings. Startup default displays are printed in light blue, further widespread formats in grey fields overleaf.

	DECIM. set	DECIM. clear	
GAP 4	12345.678901	12345,678901	
GAP 3	12345.678901	12 345,678901	
$\begin{aligned} & \text { GAP } 2 \\ & \text { GAP } 1 \\ & \text { GAP } 0 \end{aligned}$	12345.678901	12345,678901	
multa set	$12 . \times 10^{345}$		$12, \times 10^{345}$
clear	12.10^{345}		12,10345
	$123^{\circ} 45^{\prime} 67.89^{\prime \prime}$	$123^{\circ} 45^{\prime} 67,89^{\prime \prime}$	
MULTx, \neg CPXj	$12.3-\mathbf{i} \times 4.56$		12,3-i×4,56
\neg MULTx, \neg CPXj	12.3-i.4.56		12,3-i $\cdot 4,56$
MULTx, CPXj	$12.3-\mathrm{j} \times 4.56$		12,3-j×4,56
\neg MULTx, CPXj	12.3-j 4.56		12,3-j.4,56
$12.3 九-4.56^{\circ}$ $12,3 九-4,56^{\circ}$			
	1:23:45.678901		1:23:45,678 901
	1:23:45.678901 a.m.	1:23:45,678 901 a.m.	
	Y.MD D.MY		
			M.DY
	0001-02-03	01.02.0304	01/02/0304

Obviously, your WP 43S allows for interpreting and displaying your input very flexibly. And it allows you immediately recognizing the various data types and format settings looking at the screen.
Now, how can you use and combine data of various types in calculations? The matrix below lists in its $1^{\text {st }}$ column ten data types your

WP 43S supports; and it shows what will happen when you combine various objects: an object of the $D T$ as indicated in one of the lean columns at right (\boldsymbol{y}) plus or minus an object of the $D T$ in column $1(\boldsymbol{x})$ will return an object of the $D T$ at the intersection (thus, wherever a $D T$ number is printed at the intersection, the corresponding combination is legal for addition or subtraction).

DT and meaning										
	1	2	3	4	5	6	7	8	9	10
1 Z Long integer	1	2	3	4	5	6	7	-	-	1
$2 \mathbb{R}$ Real number	2	2	3	4	5	6	7	-	-	2
3 C Complex number	3	3	3	-	-	-	7	-	-	3
4 Angle (in various formats) ${ }^{58}$	4	4	-	4	-	-	7	-	-	4
5 Time interval (in H.MS)	5	5	-	-	5	-	7	-	-	
6 Date (in various formats)	6	6	-	-	-	1^{59}	7	-	-	-
7 Alpha string ${ }^{60}$	-	-	-	-	-	-	7	-	-	-
8 Real matrix or vector	-	-	-	-	-	-	7	8	9	
9 Complex matrix or vector	-	-	-	-	-	-	7	9	9	-
10 Short integer	1	2	3	4	-	-	7	-	-	10^{61}

Example:

A complex number (DT 3) plus or minus a real number (DT 2) will result in a complex number.
${ }^{58}$ Angular output is tagged according to the current angular display mode chosen.
${ }^{59}$ A date minus a date returns an integer number of days (there are no other arithmetic operations on two dates). And a date plus a real number takes the integer part of that number and adds the respective number of days to said date.
${ }^{60}$ In additive operations on alpha strings, such a string must be present in \mathbf{Y} at the beginning. Adding corresponds to appending \boldsymbol{x} (converted to a string according to the display format set at execution time, if applicable) to string \boldsymbol{y}. Adding a matrix appends its abbreviation (e.g. [3×4 \mathbb{C} matrix], see the chapters about vectors and matrices below). Subtractions from strings are not allowed.
${ }^{61}$ If short integers of different bases are combined by an arithmetic operation, output will be a short integer of the base given in \mathbf{Y}.

The following matrix shows the resulting data types of products and ratios in the same way (note that dates and alpha strings cannot be multiplied or divided):

... times an object \boldsymbol{x} of the $D T$ below returns a product of the $D T$ printed at the intersection.	An object \boldsymbol{y} of $D T$.							
	1	2	3	4	5	8	9	10
1 z Long integer	1							
$2 \mathbb{R}$ Real number	2	2						
3 C Complex number	3	3	3					
4 Angle	4	4	-	-				
5 Time interval	5	5	-	-	-			
8 Real matrix or vector	8	8	9	-	-	8		
9 Complex matrix or vector	9	9	9	-	-	9	9	
10 Short integer	1	2	3	4	5	8	9	10^{61}
divided by an object \boldsymbol{x} of the $D T$ below returns a ratio of the $D T$ printed at the intersection.								
1 Z Long integer ${ }^{62}$	1/2	2	3	4	5	8	9	10
2 R Real number	2	2	3	4	5	8	9	2
3 c Complex number	3	3	3	-	-	9	9	3
4 Angle	-	-	-	2	-	-	-	-
5 Time interval	-	-	-	-	2	-	-	-
8 Real matrix ${ }^{63}$	8	8	9	-	-	8	9	8
9 Complex matrix ${ }^{63}$	9	9	9	-	-	9	9	9
10 Short integer	1	2	3	4	5	8	9	10^{61}

[^29]This is for powers:

	Any number $\boldsymbol{y} \boldsymbol{>} \mathbf{0}$ of $D T \ldots$		
	1	2	10
... raised to a power of $x>0$ of the $D T$ below returns a result of the $D T$ printed at the intersection.			
1 Z Long integer	1	2	10
$2 \mathbb{R}$ Real number	$1 / 2^{64}$	2	$10 / 2$
10 Short integer	1	2	10^{61}
\ldots... raised to a power of $\boldsymbol{x}<0 \ldots$ returns ...			
1 Z Long integer and 10 short integer	2		
$2 \mathbb{R}$ Real number	2		

	Any number $\boldsymbol{y}<0$ of $D T \ldots$		
	1	2	10
\ldots raised to a power of $x>0$ of ... returns ...			
$1 \mathbb{Z}$ Long integer	1	2	10
2 P Real	1	2	10
R Real else	3	3	3
10 Short integer	1	2	10^{61}
\ldots... raised to a power of $\boldsymbol{x}<0 \ldots$ returns ...			
1 Z Long integer and 10 short integer	2		
$2 \mathbb{R}$ Real number $\quad \mathrm{FP}(\boldsymbol{x})=0$	2		
2π Real number else	3		

Any numbers of data type 1, 2, or 10 raised to complex powers will return complex numbers, as well as any complex numbers raised to arbitrary powers. - Other powers - involving data types 4,5,6, 8, or 9 - are not supported.

[^30]Furthermore, this is for integer divisions and remainders:

	An object \boldsymbol{y} of data type \ldots		
_. IDIVR-divided by an object \boldsymbol{x} of the data type	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1 0}$
below returns an integer ratio in \mathbf{X} and a a remainder in \mathbf{Y} of the data types printed at the intersection.			
$\mathbf{1} \mathbf{Z}$ Long integer	$\mathbf{1 ; 1}$	$1 ; 2$	$1 ; 10$
$\mathbf{2 R}$ Real number	$1 ; 2$	$\mathbf{1 ; 2}$	$1 ; 2$
$\mathbf{1 0}$ Short integer	$1 ; 1$	$1 ; 2$	$\mathbf{1 0 ; 1 0}$

Additionally, explicit type conversions are available where necessary:

Recognizing Calculator Settings and Status

As seen above, radix marks and gap settings are recognized in the numeric display immediately; so are date and time display modes (Y.MD / D.MY / M.DY and CLK24 / CLK12) in the time string top left within the status bar. Also program-entry mode (PEM) is easily recognized (see pp. 202ff).

Further modes and system states as well as many settings for specific data types are indicated in the status bar: The following specific characters may appear trailing the date and time string there, listed from left to right in various groups - indicators shown in startup default are printed in a light blue field again: ${ }^{65}$

Indicator	Set by	Deleted by	Explanation, remarks
\mathbb{C}	CPXRES	\neg CPXRES	With CPXRES set, complex results of real number calculations are allowed, like $\sqrt{-1}$. Else a domain error would be thrown in such a case (see the ReM, App. C).
\mathbb{R}	\neg CPXRES	CPXRES	
L	\neg POLAR	POLAR	Rectangular or polar notation chosen for displaying complex numbers.
0	POLAR	\neg POLAR	
4°	DEG	setting any other ADM	Current angular display mode (ADM) setting: decimal degrees, grades or gon, radians, multiples of π, and sexagesimal degrees.
4^{9}	GRAD		
$4^{\text {r }}$	RAD		
4π	MULT		
$4 "$	d.ms		
/max		Can only be	Fraction display settings. The current value of the maximum displayable denominator is shown behind the fraction bar (startup default and absolute maximum is 9999, displayed as /max). With DENANY clear, DENFIX toggles a specific character trailing DENMAX in the status bar.
$\begin{gathered} \text { or } \\ / 2345 \end{gathered}$	DENANY	modified by	
/2345f	 \neg DENANY	\neg DENFIX, DENANY	
/2345x or /2345	 ᄀ DENANY	DENFIX, DENANY	

[^31]| Indicator | Set by | Deleted by | Explanation，remarks |
| :---: | :---: | :---: | :---: |
| 64：1 | 1COMPL | setting any other integer sign mode （ISM） | Settings for short integers．First two digits tell the word size，the character after the colon the ISM． Startup default is 64 bits（the maximum）and 2＇s complement． CARRY and OVERFLow may trail the ISM but are only lit if set． |
| 64：2 | 2COMPL | | |
| 64：U | UNSIGN | | |
| 64：s | SIGNMT | | |
| A | （ O ，ALPHA；
 Δ if α is set | pressing
 EXIT in AIM unless in a menu， \neg ALPHA | Alpha input mode（AIM）is set． Upper（A）or lower（ α ）case letters can be entered now． |
| α | ∇ if A is set | | |
| 0 | program waiting for user input | program running | Will also be lit if a program is stop－ ped by EXIT or（R／S）－then $\boldsymbol{\theta}$ will be cleared by next keystroke． |
| 是 | see remarks | WP 43S idling | Flashes while a program is running； steady while a function is executing． |
| 产 | top of pro－ gram memory | else | Program pointer at step 0000. |
| （ 0 | timer running in background | idle timer | See the TIMER（or stopwatch） application on pp．263f． |
| \pm | serial I／O in progress | idle commu nication line | See Serial Input and Output of Data and Programs on pp．233f． |
| 围 | data are being sent to printer | | |
| U | USER | USER | Toggles user mode（see pp．292f）． |
| \square | low battery $\begin{aligned} & \text { b } \\ & \text { a }\end{aligned}$ | battery volt－
 A low battery will reduce processor speed automatically．Your WP 43S will shut off when voltage drops $<2.0 \mathrm{~V}$ ． | |

The startup default configuration is indicated in a status bar like this:

2017-05-08 23:49 $\operatorname{Rb} \Varangle^{\circ} / \max$ 64:2

On the other hand, choosing 12 h time format (or M.DY), setting CPXRES, FRACT, DENFIX and a four-digit DENMAX, selecting unsigned short integers, setting CARRY and OVERFLow, having a program waiting for input with $A I M$ set, timer and printer running in background, user mode set, and a low battery would be reflected in the following status bar.

Note also $\frac{\mathrm{K}}{\mathrm{K}}$ and might show up at right end of the status bar.

Getting Special Information: RBR, STATUS, VERS, etc.

Some commands and tools use the display in a special way. These operations are listed below:

1. The Matrix Editor is described comprehensively on pp. 163ff.
2. (RBR allows for browsing the contents of all registers currently allocated (see pp. 261 ff).
3. STATUS (or (ELAGS) (STATUS) returns free space available, memory currently used, user and system flags set (see pp. 263f).
4. TIMER calls the timer or stopwatch application (see pp. 264ff).
5. FBR browses all the characters defined in the fonts provided.

Further commands throw temporary information as defined on p. 68:

1. ERR and MSG display the corresponding error message. See the $I O I$ and $A p p$. C of the ReM for more.
2. $(\mathbb{r}, \mathrm{VIEW}, \hat{\mathrm{x}}$, and $\hat{\hat{y}}$ return results headed by text.
3. Commands returning two or three values at once (like $\rightarrow P,(\mathbb{R} \oplus$, DATE \rightarrow, (DECOMP), ($\overline{\mathbf{x}}$, (s), L.R., SUM, (M.DIM?, [RCLIJ, $\Sigma+$ and $\Sigma-$) tag their output (see e.g. pp. 20 and 109f).
4. VERS generates a string showing version and build of the firmware running on your WP 43S (WHO works in a similar way):

WP 43S v0.1 b0123 by Pauli, Walter \& Martin

A few far-reaching commands (like CLALL, CLPALL, or RESET) ask you for confirmation before executing. Answer either Yes by pressing 3 (or ENTERT or XEQ) or (No by pressing 7 (or EXIT or ©) ; any other input will be ignored. Note that such an action explicitly confirmed cannot be undone by (\curvearrowleft).

Localising Numeric Output

You can summon display preferences for reals, times, and dates all at once according to your region's customs and practices using dedicated commands (all contained in DISP). In the table starting overleaf, ...

- radix mark denotes the decimal separator;
- GAP states the digit group interval - after \boldsymbol{n} digits a narrow blank is displayed (cf. examples on p. 70); this follows ISO 80000-1. ${ }^{66}$
- JG states the year the Gregorian calendar was introduced in the particular region, typically replacing the Julian calendar (or national calendars in East Asia); ${ }^{67}$
- background colors are chosen as on pp. 69f.

Most people using radix commas employ multiplication dots while those using radix points need a cross for multiplication to avoid misunder-

[^32]standings．This latter convention causes further ambiguities in vector multiplication（see pp．174ff）．

Com－ mand	GAP	Radix mark	Time	Date ${ }^{69}$	JG	Remarks
SETCHN	$\mathbf{4}^{70}$	point	24 h	Y．MD	1949	
SETEUR	$\mathbf{3}$	comma	24 h	D．MY	1582	Also applies to South America （and－with other JGs－to Indo－ nesia，South Africa，the area of the former Soviet Union，and Vietnam）．
SETIND	$\mathbf{3}^{71}$	point	24 h	D．MY	1752	Also applies to India，Pakistan， Nepal，Bhutan，Myanmar， Bangladesh，and Sri Lanka．
SETJPN	$\mathbf{3}$	point	24 h	Y．MD	1873	
SETUK	$\mathbf{3}$	point	12 h	D．MY	1752	Also applies to Australia and New Zealand．${ }^{72}$
SETUSA	$\mathbf{3}$	point	12 h	M．DY	1752	

${ }^{68}$ See https：／／en．wikipedia．org／wik／Decimal separator for a world map of radix mark use． Looks like an even score in this matter．Thus，the international standard ISO 80000－1 allows either a decimal point or a comma as radix mark and requires a narrow blank as unambiguous separator of digit groups（it explicitly states that points or commas shall not be used as group separators to avoid ambiguity）．
${ }^{69}$ See https：／／en．wikipedia．org／wiki／Date format by country also for a world map of date formats used．The international standard ISO 8601 states Y．MD for dates and 24 h for times．This combination is common in East Asia（see SETCHN and SETJPN）．
${ }^{70}$ Chinese counting and traditional mathematics work with powers of 10000 while （originally Indian，then Persian，then）European counting and mathematics work with powers of 1000．Thus，Chinese count using intervals－（＝1），十 $(=10)$ ，百 $(=100)$ ，千 $(=1000)$ ，万 $(=10000)$ ，十万 $(=10 \times 10000)$ ，百万 $(=100 \times 10000)$ ，千万 $(=$ $1000 \times 10000)$ ，亿 $\left(=10^{8}\right)$ ，十亿 $\left(=10^{9}\right)$ ，百亿 $\left(=10^{10}\right)$ ，千亿 $\left(=10^{11}\right)$ ，etc．The command GAP 4 takes care of this notation while GAP 3 formats the European way．
${ }^{71}$ Proper South Asian（a．k．a．Indian）formatting would require separators every two digits for numbers over thousand．Think of $\operatorname{lakh}=10^{5}$ and crore $=10^{7}$ ．Actually，an amount of 50 cr．Rupees $\left(=5 \times 10^{8}\right)$ reads $50,00,00,000$ Rs．in Indian newspapers．
${ }^{72} 24 \mathrm{~h}$ is taking over in the UK，so SETIND will work there then as well．

Note that the following settings and formats can be stored collectively at one location: entire decimal display format (see next chapter), angular display mode, date and time display settings, parameters of integer and fraction display modes, curve fit model chosen, rounding mode, and the status of all system flags. STOCFG stores this configuration in the register or variable you specify. ${ }^{73}$ RCLCFG recalls such information and will set (or reset) your WP 43S accordingly.

Real Numbers: Changing the Display Format

As mentioned in Section 1, the numbers you calculate with (decimal numbers or measured values) are reals frequently. Any number you enter containing one \odot and/or an \mathbb{E} is interpreted by your WP $43 S$ as a real number unless there is additional information given (cf. pp. 68f). The majority of functions provided by your WP 43S operate on reals.
As soon as input of a real number is closed, its mantissa will be displayed right adjusted as far as possible (cf. p. 25). Startup default format (ALL 0) shows all digits of the number if less than 16 are needed to do so. Your WP 43 S will automatically turn to mantissa plus exponent format (cf. pp. 25f) if more than 15 digits are needed. ${ }^{74}$

There are two flavors of the latter format: SCI and ENG. SCI is called scientific notation. ENG looks almost like SCI but the exponent will always be a multiple of three, corresponding to the S/unit prefixes - thus it is called the ENGineer's notation (see examples below).

You can choose whether ALL shall turn either to SCI or to ENG. And you can define the switch point from ALL to SCI or ENG by specifying a positive parameter for ALL (telling up to how many decimal zeros you allow before the output shall be switched):

[^33]Example (beginning with startup default settings):

Input:
-700
$11 / x$
DISP ALL 3
10 (1)
(FLAGS SF SYS.FL ALLENG
(ALL 4
10 (1)
CF SYS.FL ALLENG

Display:
-700
$-1.428571428571429 \times 10^{-3}$ -0.001428571428571
$-1.428571428571429 \times 10^{-4}$
$-142.8571428571429 \times 10^{-6}$
-0.000142857142857
$-14.28571428571429 \times 10^{-6}$
$-1.428571428571429 \times 10^{-5}$

There is one more format provided: FIX. With FIX, the radix mark is set at a fixed position on the screen and stays there (a.k.a. fixed point notation); it floats in the other formats - see the examples below. ${ }^{75}$

You can specify the number of decimals you want to see with SCI, FIX, or ENG (note the parameter of FIX and SCI specifies the number of decimals to be shown while the parameter of ENG specifies the total number of digits displayed within the mantissa minus one):

Format	Startup default format (ALL 00, SCIOVR)	FIX 5	SCI 5
107.12345678 ENTERT	107.12345678	107.12346	1.07123×10^{2}
$[1 / x \operatorname{2} \times$	$1.867004725311852 \times 10^{-2}$	0.01867	1.86700×10^{-2}

See more examples of displays varying according to popular choices for GAP, decimal radix mark, and multiplication symbol (cf. the examples shown on p. 70):

[^34]

Nearly all functions for real number display format control are found in DISP: FIX, SCI, ENG, ALL, GAP, rounding, and more. Please see the ReM.

SHOWDISP

Real Numbers: Squares and Cubes and their Roots

You find $\sqrt{x^{2}}$ and \sqrt{x} on the keyboard of your WP 43S, while x^{3} and $\sqrt[3]{x}$ are in EXP (cf. p. 27). The following example using these four functions contains some of the most popular problems of antique mathematics:

What size square has the same area as a circle whose radius is 3 arbitrary units? And what size cube has the same volume as a sphere whose radius is 3 again? And what can we tell about their surface areas?

Solutions:

The area of a circle is $A_{C}=\pi r^{2}$. The area of a square is $A_{s q}=a^{2}$. The volume of a sphere is $V_{S}=\frac{4}{3} \pi r^{3}$, while its surface is $A_{S}=4 \pi r^{2}$. And the volume of a cube is $V_{c u}=a^{3}$, while its surface is $A_{c u}=6 a^{2}$.
Thus,

DISP) FIX 3

Furthermore,
3 EXP $x^{3} \pi x$
4×3 returns 113.097, the volume of the sphere. Then
$\sqrt[3]{x} \quad$ returns $\quad 4.836$ for the edge length of the cube with same volume. Thus,
$x^{2} 6 \boldsymbol{x}$ returns 140.320 for the surface of the cube.
Finally,
$3 \longdiv { x ^ { 2 } } \pi \mathbf { x } 4$ returns 113.097 for the surface of the sphere.
Actually, there was no necessity calculating this last surface here - why?

Here a little winter sports problem of our time:

Example:

Chuck Carver swings down a ski run with moderate $30 \mathrm{~km} / \mathrm{h}$. The curvature of his skis allows for turns with 12 m radius. He claims carving this way without any sliding on an almost flat part of the run. If true then how many g he had to withstand there? Can we believe his story?

Solution:

The centrifugal force is $F_{c}=r \omega^{2} m=2 \pi \frac{v^{2}}{r} m$, thus the corresponding acceleration is $a_{c}=2 \pi v^{2} / r$. In consequence, the total acceleration
acting along Chuck's body axis is $a_{T}=\sqrt{g^{2}+a_{c}^{2}}$. Measured in multiples of g , this means $a_{T} / g=\sqrt{1+\left(a_{c} / g\right)^{2}}$.

DISP FIX 01

30 E 3 ENTERT	30000.0	
3600 (1)	8.3	Chuck's speed in m/s
χ^{2}	69.4	
12 (1) 2 (T)	36.4	
CONST g_{\oplus} (1)	3.7	
$x^{2} 1 \pm \sqrt{x}$	3.8	meaning 3.8 g .

Even if this might be possible to stand shortly for a young sportsman like Chuck, the snow under him can hardly bear the corresponding forces it will break so Chuck will inevitably slide in a greater radius leading to less acceleration.

Another problem, found in a calculator manual of 1976:

Example:

Finding himself floating dangerously close to the jagged peaks of the Canadian Rockies, intrepid balloonist Chauncy Donn frantically cranks open the helium valve on his spherical
 balloon. Gas from the helium tank increases the balloon's radius from 7.5 meters to 8.25 meters. ${ }^{76}$ Donn clears the mountain tops safely. How much did the volume of the balloon increase?

Solution:

Since the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$, the difference of two such volumes is $\Delta V=$ $\frac{4}{3} \pi\left(r_{2}^{3}-r_{1}^{3}\right)$. One decimal shall do.

[^35]
8.25 EXP x^{3}

$7.5 x^{3}-$
(T) \mathbf{x}
4×3 returns
561.5
139.6
438.7
$584.9 \mathrm{~m}^{3}$ for the volume increase.

Real Numbers: Percent Change

$\Delta \%$ calculates the percentage of change from \boldsymbol{y} to \boldsymbol{x}.

Example (continued from above):

This is a volume increase of how many percent?

Solution:

$7.5 x^{3}$
 $8.25 x^{3}$

$\Delta \%$
421.9
561.5
33.1% increase.

$\triangle \%$ FIN

$+/-$

Another example:

How about designing an almost optimum bicycle gearing for hilly areas? Feel free to choose sprockets and gear clusters to your liking.

Solution:

As long as drag may be neglected, an optimum gearing will show equal velocity ratios between subsequent gears (or uniform increase of distances per crank revolution). There are several ways you can reach this, depending on the number of sprockets chosen at front and rear.
One inexpensive way is taking three front sprockets of 48,36 , and 24 teeth and getting a standard seven-gear cluster featuring $13,15,17,20,23,26$, and 30 teeth at the rear. This will result in the following distances travelled per crank revolution (d / r_{c} in meter) for a 26 " MTB:

Gear	1	2	3	4	5	6	7	8	9	10	11	12
Front	24				36			48				
Rear	30	26	23	20	26	23	20	23	20	17	15	13

$\boldsymbol{d} / \boldsymbol{r}_{\boldsymbol{c}}$	1.66	1.92	2.17	2.49	2.87	3.25	3.73	4.33	4.98	5.86	6.64	7.66
$\triangle \triangle \%$	-	15.7	13.0	15.3	15.3	13.2	14.8	16.1	15.0	17.7	13.3	15.4

Assuming you pedal with 60 rpm constantly, such a bicycle will cover velocities between 6 and $28 \mathrm{~km} / \mathrm{h}$ (or up to $37 \mathrm{~km} / \mathrm{h}$ for 80 rpm). Using also some statistical functions provided on your WP $43 S$ (i.e. $[\Sigma+, \overline{\bar{x}}$, and \sqrt{s} explained on pp. 99ff), you will determine a mean speed increase per gear step of ($15.0 \pm 1,4$)\%, being quite uniform and convenient for town and country. ${ }^{77}$ Feel free to try other configurations.

Real Numbers: Logarithms and Powers (a.k.a. Antilogs)

Your WP 43S features two logarithmic functions on its keyboard and two more in EXP (cf. p. 27):
In calculates the natural logarithm of \boldsymbol{x}, i.e. the logarithm of \boldsymbol{x} to the base \mathbf{e} (being Euler's constant, see CONST). Thus, In inverts $\boldsymbol{e}^{\boldsymbol{x}}$.

returns the (common) decadic logarithm, i.e. the logarithm of x to the base 10. (19) inverts $10^{x} .^{.7}$
lbx calculates the binary logarithm, i.e. the logarithm of \boldsymbol{x} to the base 2. Ibx inverts [2 $\mathbf{2}^{x}$.

[^36]${ }^{L O G}{ }_{x} \bar{y}$ is the most general of these four functions: it returns the logarithm of \boldsymbol{y} to the base \boldsymbol{x}. $\operatorname{LOG}_{x} \bar{y}$ can be used to invert $\boldsymbol{y}^{\boldsymbol{x}}$.

The operating manual of the world's very first electronic pocket calculator featuring transcendental functions, the HP-35 (cf. p. 53), presented just a single example concerning this then new class of pocket-able functions:

Example:

Suppose you wish to use an ordinary barometer as an altimeter. After measuring the sea level pressure (30 inches of mercury) you climb until the barometer indicates 9.4 inches of mercury. How high are you? Although the exact relationship of pressure and altitude is a function of many factors, a reasonable approximation is given by: ${ }^{79}$

$$
\frac{\text { altitude }}{[\text { feet }]}=25000 \times \ln \left(\frac{30}{\text { pressure } /[\text { inches of } \mathrm{Hg}]}\right)
$$

Solution:

DISP FIX 00 should suffice here.

30 ENTERT 9.4 (1)

In
25 E 3 returns 29012 .
[We suspect that you may be on Mt. Everest (29 028 feet).]

Note the concise and factual style of this text. The HP-35 was a calculator made by engineers for engineers, and the manual was alike. - This example was reprinted in the HP-45 OH. Thereafter, it underwent slight modifications:

Example (from the HP-21 OH):

Having lost most of his equipment in a blinding snowstorm, ace explorer Buford Eugobanks is using an ordinary barometer as an altimeter. After measuring the sea level pressure (30 inches of mercury) he climbs until

[^37]the barometer indicates 9.4 inches of mercury. Although the exact relationship of pressure and altitude is a function of many factors, Eugobanks knows that an approximation is given by the formula ...

This problem remained in subsequent calculator manuals though the explorers changed for unknown reason. A picture of the scenery was added in 1976, and not every snowstorm was worth mentioning anymore. Then, however, a switch of units reached the Himalayas - and also the weather and the methods changed:

Example (in Solving Problems with Your Hewlett-Packard Calculator of 1978):

With most of his equipment lost in an avalanche, mountaineer Wallace Quagmire must use an ordinary barometer as an altimeter. Knowing the
 pressure at sea level is 760 mm of mercury, Quagmire continues his ascent until the barometer indicates 238 mm of mercury. Although the exact relationship of pressure and altitude is a function of many factors, Quagmire knows that an approximation is given by the formula:

$$
\frac{\text { altitude }}{[\mathrm{m}]}=7620 \times \ln \left(\frac{760}{\text { pressure } /[\mathrm{mm} \text { of } \mathrm{Hg}]}\right)
$$

Where is Wallace Quagmire?

Solution:

760 ENTERT 238 (1)
(In) 7620×8 returns 847.
Quagmire appears to be near the summit of Mt. Everest (8848 m).

And it seems neither he nor his barometer returned from this expedition since this example did neither show up in the HP-41C OHPG nor later anymore. Perhaps there was something wrong with the recalibration of his instrument? ${ }^{80}$

By the way, the altitude approximation formula for standard S/ units reads:

$$
\begin{aligned}
& \frac{\text { altitude }}{[\mathrm{m}]}=7620 \\
& \times \ln \left(\frac{1013}{\text { pressure } /[\mathrm{mbar}]}\right) \\
& =7620 \\
& \times \ln \left(\frac{101300}{\text { pressure } /[\mathrm{Pa}]}\right)
\end{aligned}
$$

Beyond the barometric scale, there are more logarithmic scales used in science and engineering, e.g.

- in astronomy for assessing the brightness of stars or
- in chemistry for the power of acids (pH); most popular may be
- the decibel (dB) in acoustics and electronics (see $\underline{U \rightarrow}, \mathrm{pp} .276 \mathrm{f}$) and
- the so-called upwardly unlimited Richter scale for magnitudes of earthquakes. ${ }^{81}$

Example:

One of the strongest earthquakes observed recently was the one causing the devastating tsunami in the Indian Ocean (near Indonesia) in December 2004. It had a magnitude of 9.1. Another one near Japan in March 2011 - with a magnitude of 9.0 - led to another tsunami and the

[^38]
'Fukushima nuclear accident'. Compare with the 'great San Francisco earthquake' of 1906 with a magnitude of 7.9.

Solution:

The formula for comparing the energies released in two different earthquakes (with their magnitudes known) reads

$$
\frac{E_{2}}{E_{1}}=10^{1.5\left(M_{2}-M_{1}\right)}
$$

Again, no decimals are needed here - we can continue with the display settings as they are:

9.1 ENTER $7.9-$

1.5×10^{x}
9 ENTERT $7.9-$
1.5×10^{x}
So the energy released in said Japanese earthquake in 2011 was 45 times greater than the so-called 'great San Francisco earthquake'. And said earthquake in the Indian Ocean was even 63 times more intense.

Taking into account that published magnitudes of earthquakes never show more than one decimal, we did not lose anything real setting the WP $43 S$ to FIX 0 here.

Even small numeric differences will gain significance when raised to powers. Human brains are not well equipped for such operations, so we recommend taking good care in such cases.

Example:

What difference in magnitude will cause double destruction?

Solution:

Rewriting the formula above results in $\Delta M=\frac{2}{3} \lg \left(\frac{E_{2}}{E_{1}}\right)$. Thus, for double destruction we need a magnitude difference of

DISP FIX 0

2
(Ig) $2 \times$ 31 equalling 0.2 only.

But there are also friendlier applications of logarithms:

Example:

How many bits are required if the unsigned integer 3.7×10^{9} shall be the maximum to be handled by a microprocessor?

Solution:

$$
3.7 \text { E } 9 \mathrm{lb} \times \text { returns } \quad 31.8 \text {, so } 32 \text { bits will suffice. }
$$

If we had a tri-state logic, however,
RCL $3 \log _{x} y$ returned 20.1 , so 21 cells would suffice.

Providing $\sqrt[y^{x}]{ }$, your WP $43 S$ also allows for raising any positive real number to an arbitrary real power, as well as any negative real number to an arbitrary integer power, all returning real results. Compare e.g. the Mach number formula on p. 45.
In combination with $\sqrt{1 / x}, y^{x}$ also provides a simple way to extract roots:

Example (with startup default settings):

What is the fifth root of 17 ?

Solution:

This is equivalent to $17^{1 / 5}$, so 17 ENTERT $5 \sqrt{1 / x} \sqrt{y}^{x}$ will do.
This solution path may be faster accessed and executed than the alternative 17 ENTERT 5 g EXP $\sqrt[x]{y}$. Both keystroke sequences, however, will return 1.762340347832317.

Let's return to Fukushima for a final and (alas!) more down-to-earth application of powers and logs:

Example:

Locations in a distance of 30 km to the nuclear plant being devastated by the tsunami in March 2011 showed radioactivity in the soil of some $1 \ldots 3 \mathrm{MBq} / \mathrm{m}^{2}$ corresponding to an annual radiation dose of 4 mSv in 2013 (see the map). Assume this was mainly caused by ${ }^{137} \mathrm{Cs}$ then; this
radioactive caesium isotope has a half-life of 30.2 years. ${ }^{82}$
To the best of our knowledge today, an unborn child must not receive a dose of more than 1 mSv before birth. So when will it be reasonably safe to let the evacuated inhabitants of the villages in that area return to their homes finally?

Solution:

Assuming there will be no further nuclear accident there, the isotopes set

free will stubbornly decay following the inevitable laws of physics. Having had a radioactivity \boldsymbol{a}_{0} at time zero, the activity \boldsymbol{a} at an arbitrary later time t will be

$$
a=a_{0} \times 2^{-\left(t / T_{1 / 2}\right)} . \text { Hence, } t=T_{1 / 2} \times l b\left(\frac{a_{0}}{a}\right) \text {. }
$$

[^39]1 mSv in nine months corresponds to an annual dose of $4 / 3 \mathrm{mSv}$. Well, the 2013 annual dose of 4 divided by $4 / 3$ equals 3 , and

DISP FIX 0

3 EXP lb x
$30.2 \times$ 48. years.
So you can recommend reproductive people shall rather not live in that area earlier than 2061. Senior inhabitants may return far sooner. ${ }^{83}$

Quite similar considerations apply to nuclear waste of power plants - at the bottom line, there are many tons of radioactive material produced decaying with half-lifes exceeding thousand years; and this means you

[^40]have to 'put them away' safely for really long times - a task kept under wraps for decades but not solved by waiting so far. ${ }^{84}$

The formula above is a nice example of a mathematically simple law of physics linking science and society quite closely.

Real Numbers: Hyperbolic Functions

Hyperbolic functions tell us something about free hanging ropes, cables, chains, and the like. Your WP 43S provides three hyperbolic functions and their inverses in the g-shifted row of EXP (see p. 27) and TRI:
sinh Hyperbolic sine. arsinh Inverse hyperbolic sine.
cosh Hyperbolic cosine. arcosh Inverse hyperbolic cosine.
tanh Hyperbolic tangent. artanh Inverse hyperbolic tangent.
We found the following in the HP-32 OH^{85} though we modified it a bit:

[^41]Sad example: A huge concrete coffin holds almost 90 million liters (equivalent to $90000 \mathrm{~m}^{3}$) of US nuclear waste on the Marshall Islands (remember Bikini). Now sealevel rise (caused by anthropogenic global warming) is eating away at the dome, and the USA is not interested in helping the tiny Pacific Ocean republic to do anything about it (see the Los Angeles Times of 2019-11-10).
Sometimes you might meet people talking about 'transmuting' that entire long-living radioactive waste by converting it to isotopes with significantly shorter half-lifes by some nuclear reactions (never met anybody being more specific in this matter so far). If that would be physically possible for all that material, however, the energy needed for that transmutation process would easily outweigh the energy 'produced' by nuclear power plants before. As a matter of fact, the companies who made profits with those power plants for decades are very reluctant in definitely solving the waste problem they created so far.
As far as mankind knows today, prospective fusion plants will not produce any longlived isotopes in operation. Wait and watch.
${ }^{85}$ This was HP's first pocket calculator featuring hyperbolic functions. It was launched in 1978. Note that the SR50 of Texas Instruments (HP's arch rival in those years of the so-called 'calculator wars') provided hyperbolic functions four years earlier already.

Example:

In Upper Lagunia, a tram ${ }^{86}$ carries tourists between two peaks in the Baruvian A/ps that are the same height and 437 meters apart. How long does it take the tram to travel from one peak to the other if it moves along its cable at 135 meters per minute? Before the tram latches onto the cable, the angle from the horizontal to the cable at its point of attachment is found to be 43°.

Solution:

The travel time is given by the formula

$$
t=\frac{d}{v} \times \frac{\tan \alpha}{\operatorname{arsinh}(\tan \alpha)}
$$

Let's set
DISP FIX 2 since we do not need more decimals displayed.
Then

43 TRI tan

ENTERT duplicates this intermediate result on stack for numerator and denominator.
arsinh (1)
$437 \times \quad 489.30 \mathrm{~m}$ is the length of the cable.
135 (1)
3.62 , i.e. a bit more than $31 / 2$ minutes.

[^42]
Real Numbers: Probabilities - Factorials, Combinations, Permutations, and Distributions

Besides the keyboard commands $\Delta \%$ and $x!$, you find a lot of probability and statistical operations in your WP 43S, going far beyond the Gaussian distribution. It contains all the preprogrammed functions implemented in WP 34S and more presumably the maximum set available in a pocket calculator world-wide. These operations are stored in the adjacent menus PROB and STAT.

PROB includes also the functions for combinations and permutations.

Example (from the HP-32 OH):

Willie's Widget Works wants to take photographs of its product line for advertising. How many different ways can the photographer arrange their
 eight widget models?

Solution:

The total number of possible arrangements possible is given by the factorial $8 \times 7 \times$ $6 \times 5 \times 4 \times 3 \times 2 \times 1=8$!

8 x! returns 40320 for this number.

Example (continued):

The photographer looks through his viewfinder (in 1978) and decides that he can show only five widgets if his camera is to capture the intricate details of the widgets ... How many different sets of five widgets can he select from the eight?

Solution:

The number of sets equals the number of possible combinations (i.e. the number of possible different sets of \boldsymbol{y} different objects taken in quantities of \boldsymbol{x} objects at a time; no object appears more than once in a set, and different orders of the same \boldsymbol{x} objects are not counted separately here):

8 ENTERT 5

Example (continued):

Again, there are different arrangements feasible. How many pictures of different widget arrangements are possible within these limits?

Solution:

The number of possible arrangements is 5! according to the statement above. Thus,

5 x! returns 120 for that number. And (returns 6720 for the number of significantly different pictures.

This is the number of possible permutations of 5 items out of 8 (i.e. the number of possible different arrangements of y different objects taken in quantities of \boldsymbol{x} objects at a time; no object appears more than once in an arrangement, and different orders of the same \boldsymbol{x} objects are counted separately here). ${ }^{87}$ It can be obtained in one step by keying in

$$
8 \text { ENTER } 5 \text { P } P_{y x} \quad \text { returning } \quad 6720 .
$$

Furthermore, PROB contains ten continuous and five discrete distributions for calculating probabilities, confidence intervals, etc. ${ }^{88}$ These functions share a few features:

[^43]- Discrete distributions (like Poisson, binomial, negative binomial, geometric, and hypergeometric) are confined to integers. Whenever your WP 43 S sums up a probability mass function (PMF) $p(n)$ to get a cumulated distribution function (CDF) $P(m)$, it starts at $n=0$. Thus,

$$
P(m)=\sum_{n=0}^{m} p(n)
$$

- Continuous distributions (like Cauchy, exponential, logistic, lognormal, two kinds of normal, Fisher's F, Student's t, Weibull, and chisquare) operate on reals. Whenever your WP $43 S$ integrates a function, it starts at left end of the integration interval. Thus, integrating a continuous probability density function (PDF) $f(x)$ to get a CDF works as

$$
P(x)=\int_{-\infty}^{x} f(\xi) d \xi
$$

- Many frequently used continuous PDFs look more or less like the ones plotted in the upper diagram overleaf. The lower diagram shows their corresponding CDFs, using the same scale and colors.

 Typically, any CDFstarts at 0 with a slope of almost zero, becomes steeper then, and runs out at 1 with its slope returning to zero. This holds even if the respective PDF does not look as nicely symmetric as the sample normal distributions plotted here.

Thus, obviously you will get the most precise results for the CDF on its left side using P. On its right side, however, where P slowly approaches 1, the error probability $Q=$ $1-P$ will be more precise. Thus, also the right sided Q
is computed in your WP 43S for each distribution, independently of P. Definitions are:

$$
\begin{array}{ll}
\text { - for discrete distributions: } & Q(m)=\sum_{n=m}^{\infty} p(n) \\
\text { - for continuous distributions: } & Q(x)=\int_{x}^{\infty} f(\xi) d \xi
\end{array}
$$

- With an arbitrary CDF, e.g. NORML』 (returning P), you will find the
 name $\mathrm{NORML}_{\boldsymbol{u}}$ used for the function returning Q, NORML ${ }^{-1}$ for the inverse of the CDF (the so-called quantile function), and NORML $_{p}$ for its PDF on your WP 43S. This naming scheme applies also to the binomial, Cauchy (a.k.a. Lorentz or BreitWigner), exponential,
Fisher's F, geometric, hypergeometric, log-normal, logistic, negative binomial, Poisson, Student's \boldsymbol{t}, and Weibull distributions. The Chi-square distribution is denoted differently following mathematical tradition. See PROB on p. 111 or the ReM.

Find application examples of distributions in the next two chapters.

Real Numbers: From Probability to Statistics - Accumulating Data, Calculating Means, Standard Deviations, and Confidence Limits; Curve Fitting, Forecasting, and Checking Dices

There is also a wealth of commands for sample and population statistics in STAT, applicable in one or two dimensions. After clearing the summation registers by $C L \Sigma$ initially, use $\Sigma \boldsymbol{\Sigma +}$ to accumulate your
experimental data (typically counted or measured values); weighted data require the weight in \mathbf{Y}, pairs of data or coordinates of data points shall be entered in \mathbf{X} and \mathbf{Y}. $\Sigma-$ is provided for easy data correction.

Data analysis functions are found in STAT as well: e.g. arithmetic mean $\overline{\mathbf{x}}$, sample and population standard deviations \mathbf{s} and o , and standard error $\mathbf{s}_{\mathbf{m}}$ (a.k.a. standard deviation of the mean).

Example:

Archibald is champion of the Golden Bow, his archers club. In his standard exercise, aiming at a target disk of 1.5 m diameter at a distance of 50 m , his arrows scatter symmetrically around the center of the target showing quite a small variance. Actually, Archibald's statistics tells his arrows have a standard deviation (SD) of 1 foot at that distance. Assume his shots are distributed normally around the center of the disk, how often must he walk further than 50 m to collect an arrow? ${ }^{89}$

Solution:

DISP FIX 3

0 STO (1)
$1 \cup X:$ feet $\rightarrow m$
STO STO O 1
1.5 ENTERT 2 (1)

PROB Normla Normla
$2 \times 1 / x$

Archibald's mean $=$ center of disk.
$0.305,1$ foot in meters, Archibald's SD. store this $S D$ for later re-use.
0.750 , the radius of the target disk. 0.007 , the error probability.
72.102 so Archibald has to collect an arrow in the green only once in 72 shots on long term average.

Example (continued):

One of his buddies and competitors, Bill, also sends his arrows to the same target disk with his hits scattering symmetrically around the center of said disk, too. He, however, has to pick up about one out of 15 arrows in the green on average. What is his SD in the target plane?

[^44]
Solution:

$151 / \mathrm{x}$
2 (1)
1 STO J
Norml ${ }^{\mathbf{- 1}}$
+1/ . 75 x $x^{2} \mathrm{y}$ (1)
STO O 0
RCL 01
$\triangle \%$

0.067 , i.e. about 7% of Bill's arrows
miss the target disk.
$0.033 \sim 3 \%$ misses on either side.
to get the standard normal distribution. -1.834 , the corresponding lower limit of this distribution.
$0.409 \mathrm{~m}=$ Bill's SD. Just store it since we will need it again soon:

Note that the SD of Archibald's arrows is just... -25.47 \% narrower than Bill's, but his rate of misses is more than 10 times less.

There are applications of this methodology in industry, where the scattering (a.k.a. variation, variance) of a production process is compared with its tolerance limits. Resulting from such comparisons, socalled capability indices are computed, directly linked to the amount of scrap to be expected in the process investigated. Please consult applicable literature and standards - look for process capability.

On the other hand, we may continue with our example as is, guiding you to advanced statistics:

Example (continued):

Bill quietly practiced in a Zen cloister during his summer vacation. Returning, he went to the Golden Bow immediately on next weekend and sent 50 arrows to his club's standard disk. Only two missed, with one of them scratching the very edge of the disk. Cheers! But is this just a lucky chance success (within the usual scattering of results to be expected) or probably a consequence of his extra training efforts?

Solution:

Calculate Bill's new SD:
1.5 ENTERT 50 (1)
0.030
2 (1)
$0.015=1.5 \%$ misses on either side.

Norml ${ }^{-1}$
(+1) $.75 \times$ x 1
Now, is this significantly better than his previous SD? Statisticians have found it is better (based on a confidence level of 95%) if it is lower than the 95% confidence limit of his old SD. We assume his old $S D\left(s_{o}\right)$ was computed based on 60 shots. Then the formula for the single-sided lower 95% confidence limit of this old SD reads:

$$
\sigma_{L}=s_{o} \times \sqrt{\frac{59}{\left(\chi_{59 ; 0.95}^{2}\right)^{-1}}}
$$

The expression in the denominator is the inverse chi-square for 95% probability and 59 degrees of freedom. Calculate inside out as usual:

59 STO J
.95

RCL 00
the degrees of freedom must be stored in \mathbf{J}. calls the inverse chi-square, returning
77.931 .
0.757
0.870
0.356 m for σ_{L}.

Looks like Bill's training made a difference!
Well ... within 95% confidence. If we had required 99% confidence instead, the lower confidence limit had been 0.337 m (you can easily verify this now) - then Bill's new weekend result would have been an insufficient indicator for a significant improvement. ${ }^{90}$

STAT contains also functions for curve fitting, featuring ten different regression models (linear, exponential, logarithmic, power, root,
${ }^{90}$ Applying statistics may cause that you might have more doubts than without - but such is life: doubts increase with knowledge. Only very dumb people have no doubts and may easily feel great therefore.
Generally, standard confidence limits and levels (also those defined for indicating significant differences) may depend on the country or industry or science you are working in. Note the term significant is well defined in statistics - this definition may deviate from common language. Be sure to check the applicable valid standards before blindly copying the exemplary calculations demonstrated in this manual.
hyperbolic, and more - see the ReM), their parameters, the forecasting functions $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$, and the coefficient of correlation \boldsymbol{r}. The fit model applied will be displayed heading numeric output after any command related to fitting (i.e. after CORR, COV, L.R., s_{XY}, $\hat{\mathrm{x}}$, and $\hat{\mathrm{y}}$). And after L.R., even the generic formula of the regression model applied will be shown (see examples below).

The command BESTF tells your WP $43 S$ to select the regression model fitting your data 'best' (i.e. resulting in the largest absolute coefficient of correlation, approx. 1). Then, an elevated asterisk (*) will trail the name of the fit model chosen this way automatically. Like with all other autofunctionality, you should know what you are doing here.

Example (from the HP-27 OH):

If Galileo had wished to investigate quantitatively the relationship between the time (\boldsymbol{t}) for a falling object to hit the ground and the height (\boldsymbol{h}) it has fallen, he might have released a rock ${ }^{91}$ from various levels of the Tower of Pisa (which was leaning even then) and timed its descent by counting his pulse. The following data are measurements Galileo might have made:

\boldsymbol{t} (pulses)	2	2.5	3.5	4	4.5^{92}
$\boldsymbol{h}($ Pisan feet $)$	30	50	90	130	150

Unlike Galileo, you are equipped with a WP 43S; so what can you learn from this experiment? Let's look what we may find:
(DISP) FIX 4
STAT

$C L \Sigma$	\bar{x}_{G}	ε	ε_{p}	ε_{m}	PLOT
$\Sigma-$	\bar{x}_{w}	\mathbf{s}_{w}	σ_{w}	$s_{m w}$	
$\Sigma+$	\bar{x}	\mathbf{s}	σ	s_{m}	SUM

CLI

[^45]
30 ENTERT 2

$\boldsymbol{\Sigma}+\quad$ returns

0.3559	
Data point 001	30.0000
	2.0000

Note that $\boldsymbol{\Sigma}+$ takes \boldsymbol{x} and \boldsymbol{y}, adds them to the statistical sums, increments the count of data points, and gives you feedback (note this output contains temporary information as explained on p. 68). Your next input after $\boldsymbol{\Sigma}+$ will overwrite \boldsymbol{x} : ${ }^{93}$

50 ENTERT $2.5 \Sigma+$
90 ENTERT $3.5 \Sigma+$
130 ENTERT $4 \Sigma+$
150 ENTERT $4.5 \Sigma+$
Data point 005
∇

GaussF	CauchF	ParabF	HypF	RootF		
LinF	ExpF	LogF	PowerF		Best	

BestF 0 instructs your WP 43S to pick the curve fit model matching these experimental data best (as explained above).
∇

L.R.

[^46]

Your WP 43S chose power regression as the model fitting these given data best. Let's check the correlation coefficient:

r	returns \quad Power*	0.9976

This is an almost perfect correlation. The equation expressing the experimental results best is hence $h \approx 7.72 \times t^{1.99}$ (with \boldsymbol{t} measured in pulses and \boldsymbol{h} in Pisan feet). Galileo could not know around 1600 yet, but we know today that $h=\frac{1}{2} g t^{2}$.
The task to determine the size of a Pisan foot and Galileo's heartbeat frequency is left for the reader.

In addition, we found the following linear regression example in various HP calculator owners' manuals of 1976-78.
 It reads typical for the thinking at that time:

Big Lyle Hephaestus, owner-operator of the Hephaestus Oil Company, wishes to know the slope and y-intercept of a least squares line for the consumption of motor fuel in the United States (of America ${ }^{94}$) against time since 1945 (in 1978!). He knows the data given in the table:

Motor fuel demand (millions of barrels)	696	994	1330	1512	1750	2162	2243	2382	2484
Year	1945	1950	1955	1960	1965	1970	1971	1972	1973

Solution:

Hephaestus ${ }^{95}$ could draw a plot of motor fuel demand against time.

[^47]However, with his WP 43S, Hephaestus has only to key the data into the calculator using the $\boldsymbol{\Sigma +}$ key, then press L.R.. ${ }^{96}$

DISP FIX 2

STAT CLE

696	ENTERT	1945	$\Sigma+$	994	ENTERT	1950	$\Sigma+$
1330	ENTERT	1955	$\Sigma+$	1512	ENTERT	1960	Σ
1750	ENTERT	1965	$\Sigma+$	2162	ENTERT	1970	
2243	ENTERT	1971	$\Sigma+$	2382	ENTERT	1972	
2484	ENTERT	1973	$\Sigma+$				

(4) L.R.

Linear*	$a_{1}=$	61.16
$y=a_{0}+a_{1} x$	$a_{0}=$	-118290.63

Your WP 43S chose linear regression as the model fitting the given data best here. Let's check the correlation coefficient:

| r | 0.99 |
| :--- | :--- | :--- |

Based on this good correlation result, Hephaestus confirms the automatic choice and is even tempted to extrapolate the observed trend of motor fuel demand to (then) future years.

Example (continued):

If Hephaestus wishes to predict the demand for motor fuel for the years 1980 and 2000, he keys in the new \boldsymbol{x} values and presses $\hat{\mathbf{y}}$.

Similarly, to determine the year that the demand for motor fuel is expected to pass 3500 million barrels, Hephaestus keys in $\mathbf{3 5 0 0}$ (the new value for \boldsymbol{y}) and presses $\hat{\boldsymbol{x}}$.

[^48]| 1980 | \hat{y} | returns | Linear* | 2808.63 |
| :--- | :--- | :--- | :--- | :--- |
| 2000 | \hat{y} | returns | Linear* * | 4031.85 |

These were forecasts (i.e. extrapolations based on the fit model employed) of the demands in 1980 and 2000 at that time.

$3500 \hat{\boldsymbol{x}} \quad$ returns Linear* $^{*} \quad 1991.30$

- the demand was expected to pass 3.5 billion barrels in $1992 .{ }^{97}$

Another example from the HP-27 OH:

The chi-square statistic measures the goodness of fit between two sets of frequencies. ${ }^{98}$ It's used to test whether a set of observed frequencies differs from a set of expected ones sufficiently to reject the hypothesis under which the expected frequencies were obtained.

In other words, you are testing whether discrepancies between the observed frequencies (O_{i}) and the expected frequencies (E_{i}) are significant, or whether they may reasonably be attributed to chance. The formula generally used is

$$
\chi^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

If there is a close agreement between the observed and expected frequencies, X^{2} will be small. If the agreement is poor, X^{2} will be large.

Let's demonstrate the application of such a chi-square statistic ${ }^{99}$ using the following problem, presuming startup default settings of your WP 43S:

[^49]

A suspect dice from a Las Vegas casino is brought to an independent testing firm to determine its bias, if any. The dice is tossed 120 times and the following results obtained:

Number	1	2	3	4	5	6
Frequency	25	17	15	23	24	16

Solution:

Expected frequency is $120 / 6=20$ for each number here. For calculating X^{2}, just enter:

DISP FIX 0

Now, is this X^{2} large or small? Statisticians have found it is to be considered 'small' if x^{2} is less than the value of the inverse x^{2} CDF for the degrees of freedom (DOF, here $n-1=5$) and the significance level applicable (here 5\%). As seen above already, also this X^{2} function is provided in your WP 43S. Note that a significance level of 5% equals an error probability of 5% and a confidence level of 95%. Simply key in:

5 STO J

.95 PROB $\chi^{2}:\left(\chi^{2}\right)^{-1}$

5 for the DOF;
11.

Since 5 is less than $11, x^{2}$ is small enough to conclude that this dice is fair (with 95% confidence).

Real Numbers: Some Industrial Problems Solved

To get an idea of further real-life opportunities covered by your WP $43 S$ and of some constraints inherent to statistics, see the sample applications shown below. All of them are demonstrated employing the traditional 4-register stack but will work with the 8 -register stack as well.

Application 1 (scrap rate, confidence limits):

Assume you own a little tool shop, produce axis pins in series, and want to know the quality of the parts you produce. You drew a representative sample of pins (all being nominally equal parts!) and precisely measured their real sizes using a proper instrument. How can you know your batch will be ok?

Example:

Ten turned pins drawn from a batch produced on a precision lathe, diameters measured: 12.356, 12.362, 12.360, 12.364, 12.340, 12.345, 12.342, 12.344, 12.355, and 12.353. From earlier large scale investigations, you know that diameters from this production process follow a Gaussian (or normal) distribution.

Now you should just know your objective:

- Do you want to know what pin diameters you will get in your batch? Statistics cannot tell you about all of them but it will tell you where to find almost all (e.g. 99\%) of them.

Example (continued):

DISP FIX 3

STAT CLE
0 ENTERT12.356 $\Sigma+$
Data point 001

Continue accumulating the remaining measured sample data:
$12.362 \Sigma+$
$12.360 \Sigma+$
$12.364 \Sigma+$
$12.340 \Sigma+$
12.345 इ+
12.342 इ+
12.344 इ+
12.355 इ+
12.353 इ+

Data point 010
0.000
12.353

Knowing these pins are drawn from a Gaussian process, you get the best estimates for mean and standard deviation of your batch by pressing \bar{x}

$$
\begin{aligned}
& \bar{y}= \\
& \bar{x}=
\end{aligned}
$$

0.000
12.352

STO s

$$
\begin{array}{lr}
& 12.352 \\
s_{y}= & 0.000 \\
s_{x}= & 0.009
\end{array}
$$

STO J We stored $\overline{\mathrm{x}}$ and $\mathrm{s} x_{\mathrm{x}}$ for the next steps already.

Now, if 99% of a batch is found inside some arbitrary symmetric limits of a Gaussian process then 0.5% will be out on either side since the Gaussian distribution is symmetric around its mean.

Thus, based on the ten pins analyzed, you may expect 0.5% of all pins with diameters less than .005 PROB

Norml:

Norml $_{p}$ Norml
Norml $_{\mathrm{e}}$ Norml $^{-1}$

Norml ${ }^{-1}$
12.330
and another 0.5% with diameters greater than

. 995 Norml $^{-1}$
 12.375

If you should observe significantly more than 0.5% of your pins beyond either limit, this indicates your process may be running out of control.

Assume the pins shall have a nominal diameter of 12.35 . Then - based on this sample analysis - you can safely commit to hold a tolerance of ± 0.05 (you will hardly produce any scrap as long as your process continues running the way you found it). If your customer would try, however, to force you to accept a tighter tolerance of ± 0.02, you must expect some losses:

Norml ${ }_{\wedge}$
$x^{2} \geqslant y$
$.02+$
Norml $_{\boldsymbol{A}}$

12.350
12.330 = lower limit.
$0.006=$ lower scrap $=0.6 \%$.
12.350
12.370 = upper limit.
$0.021=$ upper scrap $=2.1 \%$.
$0.026=$ total scrap. ${ }^{100}$

What will hurt you even more than these 2.6% scrap you must expect now (i.e. more than 1 out of 40 pins) will be the inevitable necessity to establish a very precise and constant sorting tool or machine to ensure only good pins will pass to your customer. Thus, stay firm (if you can afford it) and

[^50]refuse that customer request to constrict your tolerance limits - it may well be you cannot afford becoming weak here.

- Are you interested in the mean pin diameter of your batch? So you know how much space you must provide to store a stack of e.g. 50 pins? Then determine the applicable mean and the size of its variation; then use them to find both upper and lower limit confining the mean with a probability of e.g. 95%.

Example (continued):

Since we have got a sample drawn out of a Gaussian process, the arithmetic mean is applicable, the standard error tells its variation, and Student's t is required. For the latter, we need its degrees of freedom. Press

Having 95% inside means having 2.5% outside at either end (cf. previous diagram). ${ }^{101}$ Thus, one must generally take 0.025 and 0.975 as arguments in two subsequent calculations using the quantile function of t to get both 95% limits below and above the sample result:

[^51]$x^{2} y$
0.006
$-$
RCL (L)
$2 \times \pm{ }^{103}$
$12.346=$ lower limit.
$0.006=$ last x.
12.358 = upper limit.

Now you know what to expect for the future average diameter of such batches. Hence a stick being 50 pins in 97.5% of all cases.
12.346 and 12.358 are the 95% confidence limits of the mean calculated above. So here is a chance of 2.5% that the mean will be <12.346 and an equal chance that it will be >12.358. These chances are an inevitable consequence of the fact that you know something about a small sample only (drawn out of a large population), but want or have to tell something about said total population. ${ }^{104}$ If you cannot live with these uncertainties or the widths of the confidence limits, do not blame statistics but collect more or more precise data instead.

Application 2 (quick and easy measuring system analysis):

Your colleagues in R\&D have specified that particle accelerator beam pipes made of a special stainless steel shall have a magnetic susceptibility ≤ 0.01. How can you verify whether or not the susceptibility meter available in the laboratory is sufficiently precise to control the series production of those tubes?

Solution:

1. Collect 30 samples of material covering the susceptibility range you are interested in. This range could extend e.g. from 0 to about 0.015

[^52]here. ${ }^{105}$ Mark each sample unambiguously (e.g. by numbering it).
2. Use the measuring instrument under investigation to measure all samples carefully under controlled conditions. Record as many decimals as possible. Write each measured value in a table next to the respective sample number.
3. Measure a $2^{\text {nd }}$ time under 'the same' conditions, but following another sample sequence (just shuffle the samples). Don't allow for looking at the data measured previously (hiding these data will be very helpful if you acquire the values manually)! Write each $2^{\text {nd }}$ measured value behind the $1^{\text {st }}$ one in the row carrying the respective sample number.
4. Get your WP 43S. Clear its statistical registers via CLR CLE. Then enter all 30 pairs of values using (STAT) $\boldsymbol{\Sigma +}$. The $1^{\text {st }}$ measured value shall be \boldsymbol{y}, the $2^{\text {nd }}$ be \boldsymbol{x} - thus, input will be

$\boldsymbol{m v 1}$ ENTERT mv2 $\mathbf{\Sigma +}$

 for each sample (alternatively, you can enter your statistical data into a matrix, then accumulate all points at once - see pp. 185f).5. It is recommended to plot these 30 points. The plot shall look like an ant trail following the center line $\boldsymbol{y}=\boldsymbol{x}$ (see a typical scatter plot here). ${ }^{106}$

${ }^{105}$ Nature allows for positive susceptibilities only. Note there is no requirement to know the exact susceptibilities of your samples beforehand - they shall just fall in said range, cover it fairly homogenously (cf. the plot overleaf), and the samples must be resilient enough to stay constant in your measurements. No need for any investment in expensive gauges here - real life has proven scrap may well do.
${ }^{106}$ Even pencil plotting on quadrille paper will do. Since important here, we might implement some basic scatter plot abilities in this calculator. See the ReM.
Go to an expert in metrology if your diagram should deviate fundamentally from the one pictured here.
In four decades professional experience, I found such correlation diagrams being the most powerful though easy tools for assessing the quality of real-life measuring processes. Even manually drawn clean correlation diagrams will support your
6. Let your WP $43 S$ fit a straight line through the points and compute

$$
c_{0}=\frac{T}{30 s_{x} s_{y}} \sqrt{\frac{s_{x}^{2}+r^{2} s_{y}^{2}}{1-r^{2}}}
$$

with \boldsymbol{T} being the width of the tolerance zone you want to control. So select the orthogonal linear fit model:
© OrthoF
$r x^{2}$ STO K get the coefficient of correlation and store its square.
∇ s x^{2}
$R \downarrow$
\boldsymbol{x}^{2} (\mathbf{x}
$\mathrm{R} \uparrow+$
1 RCL $-\mathbb{K}$ calculate the denominator.
(1) \sqrt{x} this is the $2^{\text {nd }}$ factor now.
$s \times 30$ d divide by $30 s_{x} s_{y}$.
$.01 \times$
get $s_{x}{ }^{2}$.
roll it out of the way.
get $r^{2} s_{y}{ }^{2}$.
this returns $\boldsymbol{c}_{\boldsymbol{o}}$ for our exemplary \boldsymbol{T} now.
return $\boldsymbol{s}_{\boldsymbol{x}}{ }^{2}$ from the top stack register and calculate the numerator.

If you get $c_{0} \geq 1$ then this measuring device may be used for controlling series production with this tolerance zone under these conditions (i.e. it is a capable instrument for this control job) - else look for a more precise instrument, better measuring conditions, or a wider tolerance.

Application 3 (significant changes):

Assume you have taken a sample out of an arbitrary industrial production process at day 1. Then you have changed the process parameters, waited for stabilization, and have taken another sample of same size at day 2 (there may well have been a longer time interval between both sampling days). Being serious, you have meticulously measured and recorded a critical quantity (e.g. a characteristic dimension) for each

[^53]specimen investigated at both days. Now: do these two samples show any significant difference?

The following simple three-step test is well established. ${ }^{107}$ It may easily save yourself some unwanted embarrassments in your next presentation or after your next publication:

1. Accumulate your sample data. Then let your WP $43 S$ compute the means and standard errors for both samples, and their normalized distance $d=|\bar{x}-\bar{y}| / \sqrt{s_{x}^{2}+s_{y}^{2}}$. If you are working with four stack registers, this calculation could look like the following:

returns both standard errors in \mathbf{X} and \mathbf{Y}. so this is the entire denominator. returns both \bar{x} and \bar{y}. thus, this is the numerator and this is d.
2. Let your WP 43S calculate the critical limit $t_{c r}$ of Student's t for f degrees of freedom and a probability of 97.5% now:
(E) n
$1-$ STOT)
.975 PROB $t: t^{-1}(p)$
recall the number of samples measured. calculate the degrees of freedom f and store them for Student's t.
as mentioned above, the requested quantile function lives in PROB. It takes the degrees of freedom stored in I to get $t_{c r}$.

If $d<t_{c r}$, the test indicates the difference between both samples is due to random deviations only. Congratulations - you have got a robust process regarding the parameters you changed!
Else continue.
3. Let your WP 43S compute a new critical limit $t_{c s}$ for f and 99.5% :
.995
 get $t_{c s}$.

If $d \geq t_{c s}$ now, then the test indicates a significant difference

[^54]between both samples. Congratulations - your parameter change caused a significant effect!

Else (i.e. for $t_{c r} \leq d<t_{c s}$) you simply cannot decide seriously based on the information provided - your samples may contain too little data or your measurements were not precise enough or the process is scattering too far etc. Though do not let your audience lead you in temptation: stay silent or mumble something like "investigation in progress" at the utmost.

Application 4 (operating characteristics):

Assume you draw a sample of 20 parts out of a production batch of 100 parts and check the sample thoroughly. What is the probability P to find at least one random defect in such a sample if the overall probability for a defect in such a batch is 5%, 2%, or 1% ?

This is a textbook example for applying the hypergeometric distribution. $P(n \geq 1)$ equals $100 \%-p(n=0)$. Thus, the solution is as simple as this:

DISP) FIX 3

100 STO (1)

20 STO K
0.05 STO J

$1 \quad x^{2} \geqslant y-$
0.02 STO J

0 Hyper A
$1 \quad x^{2} \geqslant y$
0.01 STO J

0 Hyper A

store batch size
store sample size
store 5% overall defect probability
returns 0.319
returns
0.681
store 2% overall defect probability returns
0.638
returns
0.362
store 1% overall defect probability returns
0.800
returns
0.200

Even with 5\% defects in the batch the odds are about 1 out of 3 that no defect at all is detected in such a relatively large sample. And note that such sample tests are certainly not adequate for controlling industrial processes with overall defect probabilities less than 1%.

STAT encompasses many more statistical functions (e.g. covariances, means and standard deviations for weighted data, geometric means and scattering factors) - just look them up there and check the respective entries in the IOI.

You will find all accumulated sums of your data in $\underline{\underline{\Sigma}}$. Summon these sums individually by calling their names (no need to memorize any register numbers in this matter).

More examples of statistical applications can be found in the manuals of various vintage HP calculators, especially the HP-27 and HP-21S.

We strongly recommend you consult a good statistics textbook for more information about statistical methods in general, the terminology used, and the mathematical models provided, before applying them.

Real Numbers: Summary of Functions

The majority of the functions your WP $43 S$ features are for calculations operating on reals. It provides many more than the numeric functions shown on pp. 20ff, 29ff, and 82 ff in various applications and examples. See all real functions listed below:

- General mathematics:
- Monadic functions:
+1/, $\sqrt[1 / x]{x}, x!$, \sqrt{x} and $\sqrt[x^{2}]{ }, \sqrt[3]{x}$ and $x^{3}, 2^{x}$ and $l b x, 10^{x}$ and 19 , $\boldsymbol{e}^{\boldsymbol{x}}$ and In, sin, cos, tan, and their inverses work as demonstrated above and you learned in school (see also pp. 125ff for more information about angular I/O),
$e^{x}-1$ and $\ln (1+x)$ return more accurate results for $x \approx 0$, ceil returns the smallest integer $\geq \boldsymbol{x}$, while floor returns the greatest integer $\leq \boldsymbol{x}$,

SDL \boldsymbol{n} shifts digits left by \boldsymbol{n} decimal positions, equivalent to multiplying \boldsymbol{x} times 10^{n},

SDR n shifts digits right by \boldsymbol{n} decimal positions, equivalent to dividing x by 10^{n}, for sinh, cosh, tanh, and their inverses cf. pp. 94f, $(-1)^{x}$ returns $\cos (\pi x)$ for non-integer \boldsymbol{x}.

- Dyadic functions:
$\oplus, \boxed{\square}, \boxed{x}, \boxed{\square}, \sqrt[y^{x}]{ }$, and $\sqrt[x]{y}$ work as was shown above and you learned in school; use ...
IDIV for integer division
(e.g. 7.8 ENTERT 3.2 INTS IDIV returns 2)
(and IDIVR if you want also the remainder returned in \mathbf{Y}),
$\log _{x} y$ for the logarithm of \boldsymbol{y} for the base \boldsymbol{x}
(e.g. 625 ENTERT 5 EXP $\log _{x} y$ returns 4),

RMD for the remainder of $\boldsymbol{y} \boldsymbol{x}$ (see p. 143 for examples),
MOD for $\boldsymbol{y} \bmod \boldsymbol{x}$ (see p. 144 for examples),
\max (or \min) for the maximum (or minimum) of \boldsymbol{x} and \boldsymbol{y}; and
|| returns $\left(\frac{1}{x}+\frac{1}{y}\right)^{-1}$ for $x \times y \neq 0$ and 0 else, being handy in electrical engineering in particular.

- Triadic functions:
\times MOD returns $(z \cdot y) \bmod x$ for $x>1, y>0, z>0$, and
^MOD returns $\left(z^{y}\right) \bmod x$ for $x>1, y>0, z>0$
(e.g. 73 ENTERT 55 ENTERT 31 INTS ^MOD returns 26).
- Isolating parts of numbers: Use...

EXPT for the exponent of \boldsymbol{x} and MANT for its mantissa,
FP (or IP) for the fractional (or integer) part of \boldsymbol{x},
(|x|) for the absolute value of \boldsymbol{x}, and

SIGN for the signum of \boldsymbol{x}; thus, SIGN returns 1 for $\boldsymbol{x}>0,-1$ for $x<0$, and 0 for $x=0$ or non-numeric data.

- Rounding:

RDP \boldsymbol{n} rounds \boldsymbol{x} to \boldsymbol{n} decimal places in FIX format (e.g. $1.23456789 \mathrm{E}-95$ RDP 99 will return 1.2346×10^{-95}),

ROUND rounds x using the current display format (like RND did on HP-42S),
ROUNDI rounds \boldsymbol{x} to next integer ($1 / 2$ rounds to 1), and RSD \boldsymbol{n} rounds \boldsymbol{x} to \boldsymbol{n} significant digits.

- Conversions:
$\Leftrightarrow \mathrm{P}$ converts rectangular coordinates to polar ones (cf. pp. 20f), while $R \leftarrow$ converts vice versa.
Angular, time, and date conversions are covered on pp. 125 ff and 189ff.
For unit conversions see pp. 276ff.
- Boole's algebra:

AND, NAND, OR, NOR, XOR, XNOR, and NOT operate on reals like these operations did in the HP-28S, i.e. \boldsymbol{x} and \boldsymbol{y} are interpreted before executing the operation. Zero is 'false' $(=0)$; any other number is 'true' (=1).

Example: 13.5 ENTERT -7.2 BITS AND returns 1.

- Probability and statistics (unless introduced and explained on pp. 96ff already):
$\Gamma(x)$ calculates the Gamma function,
$\ln \Gamma$ returns the natural logarithm of the Gamma function, allowing also for calculating really great factorials:

Example: What is 5432! ?

Remember $\Gamma(x+1)=x$! So, entering 5433 X.FN $\ln \Gamma$ 10 In (D returns 17931.48037401087 as decadic logarithm of the result. Calling (PARTS FP 10^{x} will return some 3.023553598420006 for its mantissa. Thus, 5432 ! \approx 3.024×10^{17931}.

RAN\# returns a (pseudo) random real number between 0 and 1, SEED stores a seed (i.e. a start value) for RAN\#,

RANI\# returns a (pseudo) random integer number $\in[\boldsymbol{x}, \boldsymbol{y}]$;
and the other contents of
PROB cover combinations, permutations, and the 14 distributions introduced on pp. 97ff.
$\underline{\underline{\Sigma} \text { contains all accumulated sums of your data, callable by their }}$ names.

In STAT, you find the summation commands $\boldsymbol{\Sigma}+$ and Σ - , various mean values ($\overline{\mathbf{x}}, \overline{\mathbf{x}}_{\mathbf{w}}, \overline{\mathbf{x}}_{\mathbf{G}}, \overline{\mathbf{x}}_{\mathbf{H}}, \overline{\mathbf{x}}_{\text {RMS }}$), sample standard deviations ($\mathbf{s}, \mathbf{s}_{\boldsymbol{w}}$) and standard errors $\left(\mathbf{s}_{\mathbf{m}}, \mathbf{s}_{\mathbf{m} \boldsymbol{w}}\right)$, population standard deviations ($\boldsymbol{\sigma}, \boldsymbol{\sigma}_{\boldsymbol{w}}$), various scattering factors $\left(\varepsilon, \varepsilon_{\mathbf{m}}, \varepsilon_{\mathbf{p}}\right)$, as well as all commands related to curve fitting (L.R. etc.).

Turn to the ReM for comprehensive information about all the statistical and probability functions provided on your WP $43 S$.

- Percentages:
\% calculates $x y / 100$, leaving y unchanged (so you can easily calculate another percentage of the same base after CLX). ${ }^{108}$

Example (from the HP27 OH):

If you buy a new car, you have to figure the sales tax percentage, then add that to the purchase price to find the total cost of the car. ... For example, if the sales tax on a $\$ 6200$ car is 5%, what is the amount of the tax and total cost of the car?

[^55]6200 ENTERT 5 FIN \% returns 310. US\$ for the sales tax; returns 6510 . US\$ for the total cost.

If the dealer gives you a 10\% discount on the car, what will your total cost be?

6200 ENTERT
$10 \% \quad$ returns 5 580. US\$ for the discounted price;
5% returns 5 859. US\$ for the total cost.
$\Delta \%$ calculates the percentage of change from \boldsymbol{y} to \boldsymbol{x}, returning $100 \frac{x-y}{y}$, leaving y unchanged (for same reason as with \%). You can use $\triangle \%$ also for calculating markup ${ }^{109}$ or margin: ${ }^{110}$

Example:

You purchase ink cartridges for 21.99 US\$ wholesale and retail them for 26.50 US\$. What percent is your markup and what percent is your margin?
21.99 ENTERT 26.5
26.5 ENTER T 21.99
returns 20.5 \% markup.
returns -17.0 , i.e. 17% margin.
\%MRR calculates the mean rate of return in \% per period, i.e. $100\left(\sqrt[z]{\frac{x}{y}}-1\right)$ with $y=$ present value, $x=$ future value after z periods,
\% T calculates $100^{x} / y$ (called "\% of total"), leaving y unchanged, ${ }^{111}$
$\% \Sigma$ returns $100^{x} / \sum x$, and

[^56]\%+MG calculates a sales price by adding a margin ${ }^{110}$ of x \% to the cost \boldsymbol{y}; you may use \%+MG for calculating net amounts as well - just enter a negative percentage in \boldsymbol{x}.

Example:

Total billed $=221,82 €$, VAT $=19 \%$. What is the net?

221.82 ENTERT 19 + + (FIN) \%+MG returns 186,40. ${ }^{112}$

- Advanced mathematics (see the ReM, App. H for comprehensive information about the functions following):
- Monadic functions:
B_{n} and $\mathrm{B}_{\mathrm{n}}{ }^{*}$ return the Bernoulli numbers,
erf and erfc the error function and its complement,
FIB the extended Fibonacci number,
g_{d} and $g_{d}{ }^{-1}$ the Gudermann function and its inverse, and
NEXTP the next prime number greater than \boldsymbol{x};
sinc returns $\sin (x) / x$ for $x \neq 0$ and 1 for $\boldsymbol{x}=0$ (input shall be supplied in radians - see pp. 125f),
W_{p} returns the principal branch of Lambert's W for given $x \geq-1 / \mathrm{e}, W_{\mathrm{m}}$ the negative branch of it,
W^{-1} returns x for given $W_{p}(\geq-1)$, and
$\zeta(x)$ Riemann's Zeta function.

[^57]Call H_{n} for the Hermite polynomials for probability and $H_{n p}$ for the Hermite polynomials for physics, L_{n} for Laguerre's polynomials and
$\mathrm{L}_{\mathrm{n} \alpha}$ for Laguerre's generalized polynomials,
P_{n} for the Legendre polynomials,
T_{n} for the Chebyshev polynomials of $1^{\text {st }}$ kind and
U_{n} for the Chebyshev polynomials of $2^{\text {nd }}$ kind.

- Dyadic functions:

AGM returns the arithmetic-geometric mean,
$\mathrm{J}_{\mathrm{y}}(\mathrm{x})$ the Bessel function of $1^{\text {st }}$ kind and order \boldsymbol{y},
$\beta(x, y)$ Euler's Beta function,
$\operatorname{In} \beta$ the natural logarithm of Euler's Beta function,
$\gamma_{x y}$ the lower incomplete gamma function,
$\Gamma_{\mathbf{x y}}$ the upper incomplete gamma function, and
$\mathrm{I} \Gamma_{\mathbf{p}}$ and $\mathrm{I} \Gamma_{\mathbf{q}}$ return the regularized gamma function (1 of 2 kinds).

- Triadic function:
$\mathrm{I}_{\mathrm{xyz}}$ returns the regularized beta function.

Angles and Trigonometric Functions

For dealing with angles on your WP 43S, you may choose out of five angular display modes (ADM) featured: DEG, RAD, GRAD, MULm, and D.MS. ${ }^{113}$ Angles are entered as reals. They are interpreted according to the current $A D M$ as indicated in the status bar by $\Varangle^{\circ}, 4^{\mathbf{r}}, 4^{\mathbf{g}}, \Varangle \pi$, or $\Varangle^{\prime \prime}$ (cf. p. 75) as soon as a function expecting angular input is called.

Exception: Sexagesimal angles must be entered in the format ddddd.mmsspp - with ddddd standing for integer degrees, mm for angular minutes, ss for seconds, and pp for hundredth of seconds - terminated by

d.ms π TRI c

Example:

Entering 12.3454321 d.ms returns $12^{\circ} 34^{\prime} 54.32$ ".
There are some functions (e.g. ARCSIN) operating on reals and returning angles. The returned values will be automatically tagged according to the current ADM. Assume FIX 3 and RDX. set for the following examples:

In $A D M \ldots$.5 TRI arccos will return \ldots
4^{r}	1.047^{r}
4π	0.333π
4°	60.000°
$4^{\prime \prime}$	$60^{\circ} 0^{\prime} 0.00^{\prime \prime}$
4^{g}	66.667^{g}

[^58]Translator's note: The traditional calculator notations DEG and GRAD are misleading in German at least: DEGrees on your WP 43S mean "Grad", while calculator GRADes are generally called "Gon" in Continental Europe.
${ }^{114}$ Note there are no leading zeroes in the angular minutes and seconds sections. And this $A D M$ can neither take nor display anything smaller than 0.01 ". On the other hand, it will display down to that fraction always and cannot be shortened.

Whenever you see a number formatted alike on your WP 43S you know it is an angle. - Other functions presume their inputs being angles, e.g. SIN. Decimal inputs are generally interpreted as angles of the current ADM.

14 angular conversions are provided, all found in $\lfloor\rightarrow$:

From ... to		decimal degrees	radians	grades/ gon	multiples of π	current ADM or tagging
sex. degrees	-	D \rightarrow D.MS	-	-	-	\rightarrow D.MS
dec. degrees	D.MS \rightarrow D	-	$\mathrm{R} \rightarrow \mathrm{D}$	-	-	\rightarrow DEG
radians	-	$\mathrm{D} \rightarrow \mathrm{R}$	-	-	-	\rightarrow RAD
grades/gon	-	-	-	-	-	\rightarrow GRAD
multipl. of π	-	-	-	-	-	\rightarrow MUL π
current ADM	D.MS \rightarrow	DEG \rightarrow	RAD \rightarrow	GRAD \rightarrow	MUL $\pi \rightarrow$	-

Example:

DISP) FIX 5

MODE MUL π

300 1/x
$\xrightarrow{L} \rightarrow$ RAD
\rightarrow DEG
\rightarrow D.MS
\rightarrow MUL π
$300 \quad 1 / x$
$L \rightarrow$ RAD
$\rightarrow D E G$
$\rightarrow D . M S$
$\rightarrow M U L \pi$

Choose multiples of π as ADM and $\Varangle \pi$ will appear in the status bar and stay there for the time being.
0.00333 So $\pi / 300$...
0.01047^{r} are 0.01047 radians
0.60000° or exactly 0.6°
$0^{\circ} 36^{\prime} 0.00^{\prime \prime}$ or 36 angular minutes
0.00333π equivalent to $\pi / 300$ still.
Note \rightarrow RAD 'knew' it had to convert from multiples of π since this function expects angular input and took the current ADM setting into account. Angular output of operations is tagged and will stay so. Thus, \rightarrow DEG above converted from radians, \rightarrow D.MS from decimal and \rightarrow MUL π from sexagesimal degrees since the respective inputs were tagged.

You have learned about trigonometric functions in school. Thus, we just demonstrate their operation on angles with one example.

Example (found in the HP-25 OH):

Lovesick sailor Oscar Odysseus dwells on the island of Tristan da Cunha ($37^{\circ} 03^{\prime} \mathrm{S}, 12^{\circ} 8^{\prime} \mathrm{W}$), and his sweetheart, Penelope, lives on the nearest island. Unfortunately for the course of true love, however, Tristan da Cunha is the most isolated inhabited spot in the world. If Penelope lives on the island of St. Helena ($15^{\circ} 55^{\prime} \mathrm{S}, 5^{\circ} 43^{\prime} \mathrm{W}$), use the following formula to calculate the great circle distance that Odysseus must sail in order to court her. ${ }^{115}$

Solution:

The formula for the great circle distance \boldsymbol{d} in nautical miles is:

$$
d=60 \times \arccos \left[\sin \left(B_{s}\right) \sin \left(B_{d}\right)+\cos \left(B_{s}\right) \cos \left(B_{d}\right) \cos \left(L_{d}-L_{s}\right)\right]
$$

with B_{s} and L_{s} being the latitude and longitude of the start (Tristan da Cunha) and B_{d} and L_{d} being the latitude and longitude of the destination (St. Helena). ${ }^{116}$ Hence, with the numbers inserted, this formula reads:

$$
\begin{aligned}
d=60 \times \arccos [& \sin \left(37^{\circ} 03^{\prime} S\right) \sin \left(15^{\circ} 55^{\prime} S\right) \\
& +\cos \left(37^{\circ} 03^{\prime} S\right) \cos \left(15^{\circ} 55^{\prime} S\right) \\
& \left.\times \cos \left(5^{\circ} 43^{\prime} W-12^{\circ} 18^{\prime} W\right)\right]
\end{aligned}
$$

Set the appropriate number of decimals and calculate from inside out, remembering the trigonometric functions assume their input being in the current $A D M$ as indicated in the status bar.

d.ms
Since we will use sexag this calculation,
DISP FIX 2
---:

[^59]| TRI) cos | 0.99 |
| :---: | :---: |
| 15.55 STO D cos | 0.96 |
| X | 0.96 |
| 37.03 STO K cos | 0.80 |
| X | 0.76 |
| RCL (K) sin | 0.60 |
| RCL) $]$ sin | 0.27 |
| X | 0.17 |
| \pm | 0.93 |
| arccos | $21^{\circ} 55^{\prime} 24.66$ " |
| .d | 21.92 |
| $60 \times$ returning | 1315.41 |

Mixed Calculations: Coordinate Transformations in 2D, Flight Directions, Courses over Ground, etc.

Two functions are provided for converting polar or rectangular coordinates in two dimensions. Input and output data are in stack registers \mathbf{X} and \mathbf{Y} here.
\Leftrightarrow P converts 2D Cartesian coordinates \boldsymbol{x} and \boldsymbol{y} to polar magnitude or radius \boldsymbol{r} in \mathbf{X} and angle $\boldsymbol{\vartheta}$ in \mathbf{Y}.

Example (assuming startup default settings):

Convert $(\boldsymbol{x}, \boldsymbol{y})=(6,4.5)$ to polar. Two decimals shall do.

Solution:

DISP FIX 2
4.5 ENTERT $6 \rightarrow P$ returns

$\vartheta=$	36.87°
$r=$	7.50

i.e. a vector of magnitude 7.5 pointing up right from the origin with an angle of some 37° to the positive \boldsymbol{x}-axis.
$R \leftrightarrow$ does the reverse, it converts 2D polar magnitude or radius \boldsymbol{r} in \mathbf{X} and angle $\boldsymbol{\vartheta}$ in \mathbf{Y} to Cartesian coordinates \boldsymbol{x} and \boldsymbol{y}. Both functions honour the ADM settings and tags as described in previous chapter.

Example (continued):

Convert the returned angle of the conversion executed above to radians, and then convert the resulting coordinates $(\boldsymbol{r}, \boldsymbol{\vartheta})$ to rectangular.

Solution:

$x \geqslant y$			7.50
			36.87°
$\xrightarrow{\square} \rightarrow$ RAD			7.50
			$0.64{ }^{r}$
$x \geqslant y$ R	returns	$y=$	4.50
		$\mathrm{x}=$	6.00
		as expected.	

Note angular input can range from $-\infty$ to $+\infty$; angular output, however, is confined to -180° to $+180^{\circ}$ or its equivalents, i.e. $-\pi$ to $+\pi$ in radians, -200 g to +200 g in grades, and -1 to +1 in multiples of π.

Example (triggered by the HP-67 OHPG):

In an electronic circuit designed for alternating current, an overall impedance of 82.4Ω is measured, and voltage lags current by 28°. Replacing said circuit by an equivalent containing just a resistor and a
 capacitor in series, what would be the resistance \boldsymbol{R} and the capacitive reactance X_{C} therein?

Solution:

The values measured correspond to an impedance vector of magnitude
82.4 pointing down right at an angle of -28° to the positive \boldsymbol{x}-axis. \boldsymbol{R} is its component parallel to the \boldsymbol{x}-axis, and $\boldsymbol{X}_{\boldsymbol{c}}$ is its perpendicular component parallel to the \boldsymbol{y}-axis:

DISP FIX 0 1

-28 ENTERT 82.4

(- returns

$y=$	-38.7
$x=$	72.8

i.e. a resistance of 72.8Ω and a reactance of 38.7Ω.

By the way, you can use $\rightarrow P$ and R^{\bullet} also to convert 3D cylinder coordinates to Cartesian and vice versa, since \boldsymbol{z} is kept unchanged.

Having learned about $\rightarrow P$ and \mathbb{R} as well as about $\Sigma+$ and $\Sigma-$, we can profit from combining these functions. Here is an example:

Example (from the HP-25 OH):

The instruments in fearless bush pilot Apeneck Sweeney's converted

		P-41 indicate an air speed of 125 knots and a heading of 225°. However the aircraft is
Speed and Heading		
Vector		

Solution:

Combine the vector indicated on the aircraft instruments with the wind vector to yield the actual course and speed. Convert the vectors to rectangular, then combine the \boldsymbol{x} - and \boldsymbol{y}-coordinates in the statistical summation registers. Finally, recall the summed \boldsymbol{x} - and \boldsymbol{y}-coordinates and convert them to polar coordinates giving the actual vector of the aircraft. (North becomes the \boldsymbol{x}-coordinate in order that the problem corresponds with navigational convention.)

CLR CLI clears the summation registers.

DISP FIX 2

225 ENTERT 125 indicated air speed and heading.

(we have to change the angle to become positive for being in line with navigational convention).

So, Mr. Sweeney is actually flying at 143.77 knots on a course of 217.94° over ground. Note we will demonstrate an alternative way for solving this kind of 2 D vector problems on p. 158.

A similar example appeared first in the HP-55 OH and was copied then for some years. We quote the respective text from the HP-33 OH:

Example:

On his way to search for an albino caribou, grizzled bush pilot Apeneck Sweeney's converted Swordfish aircraft has a true air speed of 150 knots and an estimated heading of 45°. The Swordfish is also being buffeted by a headwind of 40 knots from a bearing of 25°. What is the actual ground speed and course of the Swordfish?

Start of solution:

Method 1: The course and ground speed are equal to the difference of the two vectors.

Method 2: Taking into account that a bearing of 25° equals a heading of $25^{\circ}+180^{\circ}=205^{\circ}$, the corresponding headwind vector may be added (cf. the HP-97 OHPG).

We leave it to you to solve this problem using $\overline{\Sigma+}$ and $\Sigma \boldsymbol{\Sigma}$ (but give you the results for crosschecking: 51.94° and 113.24 knots).

Additionally, here is an advanced problem from a universe far, far away:

Example from the HP-32 OH:117

Federation starship Felicity has emerged victorious from a furious battle with the starship Oavatos ${ }^{118}$ from the renegade planet Maldek. However, its automatic pilot is kaput, ${ }^{119}$ and its main thrust engine is locked on at 37.2 meganewtons (MN) directed along an angle of 25.2° from the star Ultima (= Latin for 'the last'). Consulting the ship's star map, the navigator reports a hyperspace entrance vector of 51 MN at an angle of 41.3° from Ultima.
${ }^{117}$... of 1978. Note the first episode of Star Wars was launched in 1977.
${ }_{118}$ Translator's note: This is the ancient Greek word for 'death', pronounced like 'Tunnatoss' in English but like 'Thanatos' in Spanish, Italian, French, German, and Finnish, for example. Actually, they printed Thanatos in the English handbook.

$$
{ }^{119} \text { Oh, why can't the (American) English learn to speak ... ummh ... spell? }
$$

To what thrust and angle should the auxiliary engine be set, for Felicity to achieve alignment with the hyperspace entrance vector?

Solution:

The required thrust vector of the auxiliary engine is equal to the hyperspace entrance vector minus the thrust vector of the main engine. The vectors are converted to rectangular coordinates using $(\mathrm{R} \leftrightarrows$, and their difference is calculated using $\boldsymbol{\Sigma +}$ and $\boldsymbol{\Sigma}-$. This difference is recalled to the \mathbf{X} - and \mathbf{Y} registers using SUM. Then, these rectangular coordinates of the auxiliary engine thrust vector are converted to polar coordinates using $\rightarrow P$.

CLR CLइ

41.3 ENTERT 51 hyperspace entrance vector

STAI $\boldsymbol{\Sigma +}$ adds the \boldsymbol{x} and \boldsymbol{y} components of the hyperspace entrance vector to the summation registers.

25.2 ENTER $\mathbf{3 7 . 2}$ main engine thrust vector

R \ddagger returns | $y=$ | 15.84 | |
| :--- | :--- | :--- |
| | $x=$ | 33.66 |

$\boldsymbol{\Sigma} \quad \quad$ subtracts the \boldsymbol{x} and \boldsymbol{y} components of the main engine thrust
SUM recalls the summation registers:

	$\Sigma y=$	17.82
	$\Sigma x=$	4.65
$\rightarrow P$		75.36°
		18.42

meaning the auxiliary engine shall be set at 18.42 MN and an angle of 75.36° from Ultima. ${ }^{120}$

[^60]Real adepts of vector algebra may prefer subtracting the main engine thrust vector first and adding the hyperspace entrance vector second. This will work as well although the count of 'data points' will become negative once - simply don't bother.

See the operating manuals of vintage HP calculators (especially the HP-27) for further applications from the areas of mathematics (e.g. triangle solutions), navigation, and surveying.

Angles: Summary of Functions

The number of functions operating on and with angles is quite limited.
They are important nevertheless. See all functions listed below:

- General mathematics:
- Monadic functions:
sin, cos, and tan operate on angles and return reals, arcsin, arccos, and arctan operate on reals and return angles,
(+) returns $x \times(-1)$ for closed input (a.k.a. 'unary minus').
- Dyadic functions:
$\oplus, \square, \boxed{x}$, and \square work as specified in the matrices on pp. 71f, $\boldsymbol{\operatorname { m a x }}$ (or \min) return the maximum (or minimum) of \boldsymbol{x} and \boldsymbol{y}.
- Rounding:

ROUND rounds x using the current display format (cf. pp. 118f),

- Conversions:
\rightarrow P converts rectangular coordinates to polar ones (cf. pp. 20f), while $R \leftrightarrow$ converts vice versa. Cf. the examples on pp. 128 ff .
Angular conversions are covered comprehensively on p. 126.

[^61]
Integers: Input and Displaying

Any single number (e.g. a counted value) you enter without using \odot or [E] is regarded as an integer by your WP $43 S$ (cf. pp. 68f). It allows for integer computing in fifteen bases from binary to hexadecimal.
Any single number displayed without any punctuation on your WP 43S is an integer (see examples below). And it will stay integer as long as it is exclusively combined with other integers and only integer functions operate on it; else it will be converted to another data type (cf. the matrices on pp. 71 f and Section 3 of the ReM). Note that any closed integer \boldsymbol{x} will be converted to a real number by .d, while even an open one will be converted to an angle by any angular conversion (cf. p. 74).
There are two kinds of integers provided on your WP 43S: integers of finite length (called short) and of almost arbitrary length (called long).

Long integers are useful e.g. for numeric tasks. If you enter a number of arbitrary length just without using \square or \mathbb{E}, it is taken as a long integer of base 10. For example,

$111111111 \times \boldsymbol{x}^{2} \quad$ returns $\quad 12345678987654321$

Note the number is adjusted to the right again when closed, though no point (or comma) is displayed. A 17-digit result is shown with ease. Large long integers ($>10^{21}$) will be displayed using the small font. Very large ones ($>10^{42}$) will be shown with an exponent instead of their least significant digits; nevertheless, all their digits are kept internally, so long integers can be of very high precision.

Example (a mathematical problem solved in 2019):

It was proven for integers \boldsymbol{n} from 1 up to 100 that they ${ }^{121}$ can be expressed as sum of three integer cubes $\boldsymbol{n}=\boldsymbol{i}^{3}+\boldsymbol{j}^{3}+\boldsymbol{k}^{3}$ - except for 42 . In September 2019, two mathematicians of Bristol and Boston published that the numbers 12602123297335 631, 80435758145817 515, and -80538738812075974 should solve this problem. Verify!

[^62]12602123297335631 (EXP) x^{3} (SHOW) returns2001387454481788542313426390100466780457779044591
$80435758145817515 x^{3} \oplus$ (SHOW returns
522413599036979150280966144853653247149764362110465
$-80538738812075974 x^{3} \oplus$ returns

This is all you need to know about entering and displaying long integers - turn to pp. 143ff for further information about calculating with them.

Short integers feature a finite word size (up to 64 bits) and are especially useful for computer logic and system design tasks incl. debugging. Your WP $43 S$ encompasses all the integer and bit manipulation operations of the dedicated Computer Scientist's HP-16C and even all the bases and the entire extended function set of the WP $34 S$.

Short integers are entered with trailing \# base (= $2 \ldots 16$). For decimal short integers, you may use \# D instead of \# 10), for hexadecimal \# H instead of \# 16. Open INTS (see its top view displayed here) for the digits A ... F required for numeric input in bases >10.

From the $2^{\text {nd }}$ integer input on, you can save keystrokes: If you enter a new number omitting $\#$ and base (as well as \square, E, and (CC), your WP 43S takes it as a short integer of the same base you keyed in before - as long as you did not enter any other data type in between. ${ }^{122}$

Word size and integer sign mode (ISM) settings are indicated in the status bar using a format ww: x. Therein, ww denotes the word size in bits and x is 1 or 2 for 1's or 2's complement, respectively, \mathbf{u} for unsigned, or s for sign-and-mantissa mode (cf. p. 76); these ISM's control the handling of negative numbers (see examples below).

Carry and Overflow - if set - will be shown as ${ }_{c}$ or ${ }^{\circ}$ or ${ }^{\circ}$, respectively, trailing ISM display in the status bar. Both behave like they did on HP-16C or WP 34S, corresponding to system flags (cf. p. 55) - if you want to set, clear, or check them one by one, use the commands provided in FLAGS.

Example:

Enter FLAGS SF SYS.FL LEAD. 0 (or FLAGS SF (L)
INTS \triangle WSIZE 12 This allows seeing all bits at a glance easily.

147 ENTER \uparrow
\# 2
1COMPL

Enters 147 (base 10)
Converts decimal 147 to binary. and you will see ${ }^{123}$

$$
000010010011_{2} \text { and }- \text { after +t/ - } \quad 111101101100_{2} .
$$

Obviously + + in in 1COMPL flips every bit, equivalent to NOT here.
Return to the original number via +/_, press 2COMPL, and you will get
000010010011_{2} and -after t/t- 111101101101_{2}.
Note the negative number equals the inverse +1 in 2COMPL.

[^63]${ }^{123}$ Note the gap automatically inserted every four bits here for easy reading this output.

Return via ${ }^{+/-}$again, press SIGNMT and you will see

$$
000010010011_{2} \text { and }- \text { after +t/ - } \quad 100010010011_{2} .
$$

Negating a number will just flip the top bit in SIGNMT (hence the name of this mode).

Return via ${ }^{+} /$once more, press UNSIGN and you will get

$$
000010010011_{2} \text { and - after +t/ - } \quad 111101101101_{2} .
$$

Note the $2^{\text {nd }}$ number looks like in 2COMPL, but in addition an overflow is set here - see the ${ }^{0}$ in the status bar trailing the ISM. ${ }^{124}$ Thus, pressing +// will not suffice anymore for returning to the original number here; you must clear the overflow flag explicitly by FLAGS CF SYS.FL OVERFL.

As you have seen, positive numbers stay unchanged in all those four modes. Negative short integers, on the other hand, are displayed in different ways. Therefore, taking a negative integer in one mode and switching to another one will lead to different interpretations.

Example:

The fixed bit pattern representing

$$
\begin{aligned}
& -147_{10} \text { in } 12: 2 \text { will be displayed as... } \\
& -146_{10} \text { in } 12: 1 \text {, as } \ldots \\
& -1901_{10} \text { in 12:s, and as... } \\
& 3949_{10} \text { in } 12: 0 \text {. You can verify this easily. }
\end{aligned}
$$

Keeping the mode and changing bases will produce different views of the constant bit pattern as well.

[^64]
Example:

Compare the outputs for different bases in 12:2 :

You may have noticed that the displays for bases 2, 4, and 8 look similar, presenting all twelve bits to you, while in the other bases a signed mantissa is displayed instead. There are also different separator intervals; they are fixed for short integers unless GAP 0 is set by you. These different display formats (and more) take into account that bases $2,4,8$, and 16 are most convenient for bit and byte manipulations and further close-to-hardware applications. The bases in between will probably gain most interest in dealing with different number representations and calculating therein, where base 10 is the common reference standard. ${ }^{125}$

Let's look to bigger words now:

Example (continued):

Enter (FLAGS CF (L)

INTS \triangle WSIZE 64 UNSIGN

- 93 A14C6 (cf. the menu shown on p. 136).

Then your WP $43 S$ will display

93 14 C6 $_{15}$

[^65]In binary representation, this number will need 28 digits and would look like

$1001001110100001010011000110_{2}$.

Obviously, your WP 43S cannot display a binary number of this size this way in a single row (no pocket calculator can as far as we know). Look what it does instead - enter \# (2) for converting \boldsymbol{x} to binary and you will see:
$100100111010000101001100 \quad 0110_{2}$
This binary number is displayed using the small font provided. If leading zeros were turned on via (FLAGS SF (L), all 64 bits would be displayed in one row making use of a minimal font:

\ldots with the 36 most significant bits all containing 0 .

Integers: Bitwise Operations on Short Integers

Your WP 43S carries all the bitwise operations you may know from the vintage HP-16C Computer Scientist, plus some more you may have learned with the WP 34S. You find them all in BITS. Generally, bits in a word are counted from right to left, starting with number 1 for the least significant bit. This convention is important for specifying correct bit numbers in the operations BC?, BS?, CB, FB, and SB.

The following examples deal with 8-bit words showing leading zeros for easy reading.

BITS) \triangle WSIZE 8

FLAGS SF (L)

$$
10110011 \text { \# } 2 \text { STOK }
$$

This is the common initial number for the operations presented in the table below. You find seven shift and rotate functions with schematic pictures
herein like they were printed on the backplane of the HP-16C, wherein the boxed \mathbf{C} represents the carry bit indicated in the status bar if set.

Operation	Schematic picture if applicable	E. g.	Output
Clear Bit		CB 5	10100011_{2}
Flip Bit		FB6	10010011_{2}
Set Bit		SB 7	11110011_{2}
Negate		NOT (\neg)	01001100_{2}
Mirror		MIRROR	11001101_{2}
Rotate Left	\square	$\begin{array}{r} \mathrm{RL} 1 \\ \mathrm{RL} 2 \end{array}$	$\begin{aligned} & 01100111_{2} \mathrm{c} \\ & 11001110^{2} \end{aligned}$
Rotate Left through Carry	$\xrightarrow{\square}$	$\begin{aligned} & \text { RLC } 1 \\ & \text { RLC } 2 \end{aligned}$	$\begin{aligned} & 01100110_{2} \text { c } \\ & 11001101_{2} \end{aligned}$
Rotate Right	$\xrightarrow{\square} \rightarrow$ c	$\begin{aligned} & \hline \text { RR } 1 \\ & \text { RR } 2 \\ & \text { RR } 3 \end{aligned}$	$\begin{aligned} & 11011001_{2}^{c} \\ & 1110{1100_{2}}^{c} \\ & 01110110_{2} \end{aligned}$
Rotate Right through Carry	$\xrightarrow{\square}$	RRC 1 RRC 2 RRC 3	$\begin{aligned} & 01011001_{2} \mathrm{c} \\ & 1010{1100_{2}} \text { c } \\ & 11010110_{2} \end{aligned}$
Shift Left		$\begin{aligned} & \text { SL } 1 \\ & \text { SL2 } 2 \end{aligned}$	$\begin{aligned} & 0110{0110_{2}}^{c} \\ & 11001100_{2} \\ & \hline \end{aligned}$
Shift Right	$0 \rightarrow \square \square$	$\begin{aligned} & \text { SR } 1 \\ & \text { SR } 2 \end{aligned}$	$\begin{aligned} & 01011001_{2} \\ & 00101100_{2} \end{aligned}$

Operation	Schematic picture if applicable	E. g.	Output
Arithmetic Shift Right		ASR 3	in 1/2COMPL: 11110110_{2} in UNSIGN: ${ }^{126}$ 00010110_{2} in SIGNMT: 10000110_{2}

Now let's also look at the bitwise dyadic functions. We will continue using 8 -bit words displayed as above for the following examples: ${ }^{127}$

Common input	\mathbf{Y}	01101011_{2}
	\mathbf{X}	10111001_{2}
Operation	Symbol	Output
AND	\wedge	00101001_{2}
NAND	$\bar{\wedge}$	11010110_{2}
OR	\vee	11111011_{2}
NOR	\bar{v}	00000100_{2}
XOR	\underline{v}	11010010_{2}
XNOR		00101101_{2}

See the $I O I$ for these and further commands operating on bit level on integers (LJ and RJ, MASKL and MASKR, \#B, and the tests BS? and

[^66]${ }^{127}$ Remember:

BC?). Most of them are found in BITS.
Finally, note that no such operation will set an Overflow. Carry is only settable by shift or rotate functions as demonstrated above. And ASR is the only bitwise operation being sensitive to ISM - ASR is the link to integer arithmetic operations.

Integers: Arithmetic Operations

Of the four basic arithmetic operations (,,$+- \times$, and /), the first three work with both kinds of integers as they do with reals; the only difference lies in precision: up to 64 digits precision for short integers in binary representation on your WP 43S or even (almost) infinite precision for data type 1. Take $\dagger /$ as a multiplication times -1 , and y^{x} as repeated multiplication. Depending on input parameters and mode settings, the OVERFLow or CARRY flags may be set in such an operation (see pp. 146ff).

Divisions, however, must be handled differently in integer domain since the result cannot feature a fractional part here. Generally, the formula

$$
\frac{a}{b}=(a \operatorname{div} b)+\frac{1}{b} \times \operatorname{rmd}(a ; b)
$$

applies; therein, the horizontal bar denotes real division, div represents integer division, and rmd stands for the remainder of the latter. While remainders for positive parameters are simply found, remainders for negative dividends or divisors may lead to confusion sometimes. The formula above, however, is easily employed for calculating such remainders (also for reals - see the first row of the examples here):

$$
\begin{array}{ll}
\frac{25}{7}=3+\frac{1}{7} \times 4 & \left(\text { and for a real case: } \frac{25}{7.5}=3+\frac{1}{7.5} \times 2.5\right) \\
\frac{-25}{7}=-3+\frac{1}{7} \times(-4) & \Rightarrow \\
\frac{25}{-7}=-3+\frac{1}{-7} \times 4 & \Rightarrow \\
\frac{-25}{-7}=3+\frac{1}{-7} \times(-4) & \Rightarrow \quad \operatorname{rmd}(25 ;-7)=4)=-4 \\
& \Rightarrow \operatorname{rmd}(-25 ;-7)=-4
\end{array}
$$

In general, $\operatorname{rmd}(a ; b):=a-b \times(a \operatorname{div} b)$ applies.
Unfortunately, there is a second function doing almost the same: it is called mod. With the same pairs of numbers as above, it returns:

$$
\begin{aligned}
& \bmod (25 ; 7)=4 \\
& \bmod (-25 ; 7)=3 \\
& \bmod (25 ;-7)=-3 \\
& \bmod (-25 ;-7)=-4
\end{aligned}
$$

So mod (i.e. modulo) returns the same as rmd only if both parameters have equal signs. The general formula for mod is a bit more sophisticated than the one above:

$$
\bmod (a ; b):=a-b \times \text { floor }\left(\frac{a}{b}\right) \quad \text { with e.g. floor }\left(\frac{25}{7}\right)=3 \text { and }
$$

 floor $\left(-\frac{25}{7}\right)=-4$.

By the way, this formula applies to reals as well. So it may be used straightforwardly for calculating e.g.

$$
\bmod (25.3 ;-7.5)=25.3-(-7.5) \cdot(-4)=-4.7
$$

These four functions are called IDIV, RMD, MOD, and FLOOR ${ }^{128}$ on your WP 43S for obvious reasons. They are found in INTS (cf. p. 136), together with more integer operations like CEIL, \times MOD, and ${ }^{\wedge}$ MOD (see p. 149 for an example); (RMD and IMOD are also on the keyboard as shifted function of (1).

Furthermore, many exponential and logarithmic operations, x^{2} and \sqrt{x}, x^{3} and $\sqrt[3]{x}, x!$, COMB and PERM, as well as SIN, COS, and TAN operate on integers, too. Note that some of these functions will stay in integer domain while others may or will return real or even complex numbers. See the summary on pp. 148f for further information.

[^67]
Integers: Overflow and Carry with Short Integers

There are conditions where OVERFL and/or CARRY will be touched in arithmetic operations on short integers on your WP 43S. Note there is a maximum and a minimum integer displayable for each word size and $I S M$ setting - let's call them $I_{\max }$ and $I_{\text {min }}$.

Example:

For four-bit words (i.e. WSIZE 4), we get

- $I_{\max }=15$ and $I_{\min }=0$ for $4: \mathbf{u}$, while
- $I_{\max }=7$ and $I_{\min }=-8$ for $4: 2$,
- $I_{\max }=7$ and $I_{\min }=-7$ for $4: 1$ and $4: s$.

Let's start from 1 incrementing by 1 and see what will happen in these various modes. And whenever OVERFLow and/or CARRY will be lit in the status bar in this course, we will clear them (using

FLAGS CF SYS.FL OVERFL or FLAGS CF 0 and/or
(FLAGS CF SYS.FL CARRY or (FLAGS CF (C)
before next increment:

4:U		4:2		4:1		4:s	
$0001{ }_{2}$	1	$0001{ }_{2}$	1	$0001{ }_{2}$	1	$0001{ }_{2}$	1
0010_{2}	2	0010_{2}	2	0010_{2}	2	0010_{2}	2
\ldots	..	\ldots	..	\ldots	...	\ldots	
0111_{2}	7	0111_{2}	7	0111_{2}	7	0111_{2}	7
1000_{2}	8	$1000_{2}{ }^{\circ}$	-8	$1000_{2}{ }^{\circ}$	-7	$100 \mathrm{O}_{2}{ }_{\text {¢ }}^{\text {¢ }}$	-0
$1001{ }_{2}$	9	$1001{ }_{2}$	-7	$1001{ }_{2}$	-6	00012	1
\cdots	\ldots	\cdots	\cdots	\cdots	\ldots		
1110_{2}	14	1110_{2}	-2	1110_{2}	-1		
1111_{2}	15	1111_{2}	-1	1111_{2}	-0		
$000 \mathrm{O}_{2} \stackrel{0}{\text { ¢ }}$	0	$000 \mathrm{O}_{2}$ c	0	$0001{ }_{2}$	1		
00012	1	00012	1				

For comparison, we start another turn from 1 following the same rules but decrementing by 1 instead:

4:U		4:2		4:1		4:s	
00012	1	$0001{ }_{2}$	1	$0001{ }_{2}$	1	$0001{ }_{2}$	1
0000_{2}	0	$000 \mathrm{O}_{2}$	0	$000 \mathrm{O}_{2}$	0	$000 \mathrm{O}_{2}$	0
$1111_{2}{ }^{\circ}$	15	1111_{2} c	-1	1110_{2} c	-1	$1001{ }_{2}$ c	-1
1110_{2}	14	1110_{2}	-2	$1101{ }_{2}$	-2	1010_{2}	-2
\ldots	...	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots
10012	9	$1001{ }_{2}$	-7	$1000{ }_{2}$	-7	1111_{2}	-7
1000_{2}	8	1002_{2}	-8	$0111_{2}{ }^{\circ}$	7	$1000_{2}{ }^{\circ}$	-0
0111_{2}	7	01112 ${ }^{\text {o }}$	7	0110	6	10012	-1
0110_{2}	6	0110 2	6	\ldots			
	\ldots	\cdots	..	\ldots			
0010_{2}	2	0010_{2}	2	00012	1		
00012	1	00012	1				

The most significant bit is \#3 in 4:s and \#4 in all other modes here.

With these results, $I_{\text {max }}$, and $I_{\text {min }}$, the general rules for setting and clearing CARRY and OVERFL in ISMs are as presented in the table overleaf:

Operation	Effect on CARRY	Effect on OVERFL
Shift and rotate	As demonstrated on pp. 141f.	None.
Boole's, MIRROR	None (cf. pp. 141f).	None.
$\|\mathrm{x}\|$, ABS	None.	Clears OVERFL (but sets it for $x=I_{\text {min }}$ in 2COMPL).

Operation	Effect on CARRY	Effect on OVERFL
$\begin{gathered} \text { +, RCL+, } \\ \text { STO+, INC, etc. } \end{gathered}$	Sets CARRY if there is a carry out of the most significant bit, else clears CARRY.	Sets OVERFL if the result exceeds [$I_{\text {min }} ; I_{\text {max }}$], else clears OVERFL.
$\begin{gathered} \text {-, RCL-, STO- } \\ \text { DEC, etc. } \end{gathered}$	Sets CARRY in a subtraction $\boldsymbol{m}-\boldsymbol{s}$ - in 1COMPL or 2COMPL if the binary subtraction causes a borrow ${ }^{129}$ into the most significant bit, - in UNSIGN if $\boldsymbol{m}<\boldsymbol{s}$, - in SIGNMT if $\boldsymbol{m}<\boldsymbol{s} \underline{\&} \boldsymbol{m} \cdot \boldsymbol{s}>0$ Else clears CARRY.	Sets OVERFL if the result exceeds [$\left.I_{\text {min }} ; I_{\text {max }}\right]$, else clears OVERFL.
$\begin{aligned} & \times, \text { RCL×, STO×, } \\ & +/-,(-1)^{x}, x^{2}, x^{3}, \\ & \text { LCM, } x!, \text { etc. } \end{aligned}$	None.	+1/ always sets OVERFL and $(-1)^{x}$ does so for odd \boldsymbol{x}.
2^{x}	Clears CARRY. Sets CARRY only if $\boldsymbol{x}=-1$, or in UNSIGN if $\boldsymbol{x}=\boldsymbol{w s i z e}$ or in the other modes if $\boldsymbol{x}=\boldsymbol{w s i z e}-1$	
$y^{x}, 10^{x}$	Sets CARRY for $\boldsymbol{x}<0$ (as well as for 0^{0}), else clears CARRY.	Sets OVERFL if the result exceeds $\left[I_{\text {min }} ; I_{\text {max }}\right]$, else clears OVERFL.
e^{x}	Sets CARRY for $x \neq 0$, else clears.	
DBL×	None.	Clears OVERFL.

129 See the examples on previous page.
Translator's note: The so-called borrow in subtraction seems to be a specialty of the USA. See the subtle methodic differences in manual subtracting explained in http://de.wikipedia.org/wiki/Subtraktion\#Schriftliche Subtraktion. The corresponding English article is less instructive. Both carry and borrow translate to Übertrag in German.

Operation	Effect on CARRY	Effect on overfl
$/, \mathrm{RCL} /$,	Sets CARRY if the remainder is $\neq 0$,	Clears OVERFL
$\mathrm{STO} /, \mathrm{DBL} /$,	else clears CARRY.	but sets it in 2COMPL
$\mathrm{LN}, \mathrm{LOG}_{10}$,		for the division
$\mathrm{LOG}_{2}, \mathrm{LOG}_{\times y}$,		$I_{\text {min }} /(-1)$.
$\sqrt[3]{x}, \sqrt[3]{x}, \sqrt[x]{y}$		

Integers: Summary of Functions

Many of the numeric functions operating on reals also work for integers. In addition, there are some specialties as shown in the preceding chapters, and beyond:

- General mathematics:
- Monadic functions:
$\sqrt{x}, \sqrt[3]{x}, l b x$, and 19 return long integers if possible (else real or complex numbers) for long integer input ${ }^{130}$ or just the short integer part of the solution for short integer input, $|x|, x^{2}, x^{3}, 2^{\mathbf{x}}$, and 10^{x} return integers as you expect, and +/ works for short integers as demonstrated on p. 137.
- Dyadic functions:
$\oplus, \boxed{\square}, \boldsymbol{X}$, and \sqrt{x}^{x} return integers as you expect,
(1) returns an integer or a real in analogy to \sqrt{x},

IDIV returns just the integer part of the division always, RMD returns the remainder of $\boldsymbol{y} / \boldsymbol{x}$ (cf. pp. 143f for examples), IDIVR combines IDIV and RMD,

[^68]MOD returns $\boldsymbol{y} \bmod \boldsymbol{x}$ (cf. p. 144 for examples),
$\sqrt[x]{y}$ and $\log _{x} y$ return integers or reals in analogy to \sqrt{x} (e.g. 625 ENTERT 5 EXP $\log _{x} y$ returns 4),
\max (or \min) return the maximum (or minimum) of \boldsymbol{x} and \boldsymbol{y}, GCD the Greatest Common Divisor of \boldsymbol{x} and \boldsymbol{y} and LCM the Least Common Multiple (remember school?).

- Triadic functions:
\times MOD returns $(z \cdot y) \bmod x$ for $x>1, y>0, z>0$, and
^MOD returns $\left(z^{y}\right) \bmod x$ for $x>1, y>0, z>0$
(e.g. 73 ENTERT 55 ENTERT 31 (INTS ${ }^{\text {A MOD returns 26). }}$
- Boole's algebra:

AND, NAND, OR, NOR, XOR, XNOR, and NOT operate bitwise on short integers as shown on p. 142. They operate on long integers like in the HP-28S, i.e. \boldsymbol{x} and \boldsymbol{y} are interpreted before executing the operation; zero is 'false' $(=0)$; any other number is 'true' $(=1)$, cf. p. 120.

- Bitwise operations are exclusively for short integers:

CB , $\mathrm{FB}, \mathrm{SB}, \mathrm{ASR}, \mathrm{SL}, \mathrm{SR}, \mathrm{RL}, \mathrm{RLC}, \mathrm{RR}, \mathrm{RRC}$, and MIRROR work as demonstrated on pp. 140ff.

LJ (or RJ) justifies the bit pattern to the left (or right) within its word size,

MASKL and MASKR create mask words,
$B C$? and BS? test if the specified bit is clear or set,
\#B counts the number of bits set in \boldsymbol{x}.
See the IOI for more information about these commands.

- Probability (cf. pp. 96f):
returns the factorial,
C_{yx} calculates the number of combinations and
$P_{y x}$ the number of permutations, while
RANI\# returns a (pseudo) random integer number $\in[x, y]$.
- Advanced mathematics (see the ReM, App. H for more information):
\mathbf{B}_{n} and $\mathbf{B}_{\mathrm{n}}{ }^{*}$ return the Bernoulli numbers,
FIB the Fibonacci number, and
NEXTP the next prime number greater than \boldsymbol{x}.

Many more functions accept integer input but will return different, mostly real output. See the IOI and Section 3 of the ReM for details.

Rational Numbers (Fractions)

Fractions are handled like in previous RPN calculators. In particular, DENMAX sets the maximum allowable denominator (up to 9999, see the $I O P)$. On your WP 43S, you can work with fractions like on the HP-32SII and its successors but with higher precision.

A fraction is entered directly by keying in a $2^{\text {nd }}$ radix mark in numeric input (see the examples below). Here, the $1^{\text {st }}$ radix mark is interpreted as a blank space, the $2^{\text {nd }}$ as a fraction mark. This way of input is straightforward and logically coherent:

Examples:

Key in:
... and get in startup default format

(1) $2 \bigcirc 4$ ENTERT	$123 / 4=$	
1) 2 ENTERT	1.2	(decimal input)
(1)	$1 / 2=$	
(1)2 ENTERT	0.12	(decimal input)
1) 2 ENTERT	$1 \% / 1=$	$(=1 \% / 2)^{131}$

Each closed real number on the stack will be displayed as a fraction after $a b / c$ is pressed, after a fraction is entered, or after that number is combined with a fraction by an arithmetic operation. If the fraction displayed is exactly equal, slightly less, or slightly greater than the underlying real
 number, $=$, <, or > will trail this fraction display, respectively (see examples overleaf).

[^69]Vice versa, each closed number \boldsymbol{x} displayed as a fraction will be shown as a decimal real number after .d or after DISP ALL, FIX, SCI, or ENG. And a closed fraction \boldsymbol{x} will be decomposed to its integer numerator in \mathbf{Y} and its integer denominator in \mathbf{X} by (PARTS DECOMP.

There are two fraction display modes: proper and improper fractions. ${ }^{132}$ toggles them. They are illustrated below. On your WP 43S, fraction display can handle numbers with absolute values greater than 10^{-4}; maximum denominator is 9999 (greater denominators may be entered but will be reduced as soon as input is closed).

The following example comprises most aspects of fraction display:

Example (with startup default settings):

Enter:

3 1/x

$1 / \mathrm{x}$
and you will see:
$3.333333333333333 \times 10^{-1}$
$1 / 3>$
since $1 / 3>0.3333333333333333$.
$3 / 1=$
since this is exact.
$78.40625-$
x^{2}
2 x

$$
\begin{array}{r}
-2413 / 32= \\
5822569 / 1024= \\
5822569 / 512=
\end{array}
$$

Now, press ab/c for converting this improper fraction to a proper one. ${ }^{133}$ You will get

11 (

$$
\begin{array}{r}
11372^{105 / 512}= \\
1033^{4713 / 5632}<
\end{array}
$$

This fraction is less than the real value, deviating less than $0.5 / 5632$ from it.

[^70]Now, let's reduce the maximum denominator by

64 MODE DENMAX	64
R \downarrow	1033 41/49 <
FLAGS CF SYS.FL denany	
CF SYS.FL denfix	1033 27/32

Before closing this chapter about numbers displayed as fractions, we will not forget those isolated irrational islands in the vast sea of S/ where you may come across dimensions like in the following example:

A calculator stand is specified to measure 9 " $\times 31 / 2 " \times 5 / 8^{\prime \prime}$. It goes without saying that your WP 43 will support you also in such harsh environments. Only absolute greenhorns, however, will expect that a tight thin-walled box around this stand will displace

9 ENTER $3 \odot 1$ (\mathbf{x}
$\odot 5 \bigodot 8$ x
$31^{1} / 2=$
$19^{11} / 16=$
cubic inches of water.

Instead, a magic conversion factor from cubic inches to so called fluid ounces is required now. ${ }^{134}$ And this factor even depends on the country you are in! Though do not despair: in Section 5 you will learn how to do this magic using your WP 43S - it takes just a little more time and effort than calculating with rational units.

[^71]
Complex Numbers: Introduction

So far, we dealt with reals only (rational and integer numbers are mere subsets of reals). Your WP 43S can do more for you. Mathematicians know of more complex items than reals; these are called complex numbers. If you do not know of them, leave them aside; you can profit from your WP 43S perfectly without them.

If you know of complex numbers, however, note your WP 43S supports many operations in complex domain as well as it does in real domain.

Complex numbers may be entered using (CC (see p. 307). With startup default settings, CC separates and concatenates real and imaginary part in numeric input.

R个 CPX $|x| \measuredangle$ Rリ CC ${ }^{\eta}$

Examples (with startup default settings):

$3+\boldsymbol{i} \times 4$ is keyed in 3 CC (4 ENTERT while the display (set e.g. to FIX 5) shows in lowest numeric row:

3

$$
3+\mathfrak{i} \times
$$

$$
3+i \times 4
$$

$3.00000+\mathfrak{i x 4 . 0 0 0} 00$

You enter the real part first - CC closes it - the imaginary part second as you write the number. ${ }^{135}$

Input of negative complex numbers works in full analogy to real number input (cf. p. 25). Following our example above,

[^72]| $3-\boldsymbol{i} \times 4$ | is keyed in | (3) CC (4) ${ }^{\text {L/ }}$ ENTER , |
| :---: | :---: | :---: |
| $-3+i \times 4$ | is keyed in | (3) $+1 /$ CC 4 ENTERT, |
| -31-i× 42 | is keyed in | (3) 1 + $/$ CC (4) 2 + + ENTER T |
| | Alternatively, use | (3) 1 CC (4) ENTERT ${ }^{+/-}$here. |

Choosing scientific notation, e.g. SCI 5 , this last number will be displayed like

$$
-3.10000 \times 10^{1}-\mathrm{i} \times 4.20000 \times 10^{1}
$$

Depending on display format set, this may be shown more compact (allowing for one decimal more):
$-3,100000 \cdot 10^{1}-\mathrm{i} \cdot 4,200000 \cdot \cdot 10^{1}$

Alternatively to rectangular notation, complex numbers may be written in polar notation as well. With polar notation set (by FLAGS SF SYS.FL POLAR or FLAGS SF X causing \odot lit in the status bar), its magnitude (or radius) \boldsymbol{r} shall be entered first for a new complex number and its phase (angle or argument) $\boldsymbol{\vartheta}$ second. This $\boldsymbol{\vartheta}$ may be entered in any angular notation; though often radians or multiples of π make most sense here (e.g. set
 MODE RAD causing $4^{\mathbf{r}}$ lit in the status bar).

Example:

With polar display mode, radians, and FIX 2 set, the complex number ($5 ; 1.2^{r}$) is keyed in $\mathbf{5}$ CC 1.2 ENTERT with the display showing in lowest numeric row successively:
5
$5 \nleftarrow$
$5 \nleftarrow 1.2$

Special cases: If a negative magnitude is entered, it is made positive and $\boldsymbol{\vartheta}$ is increased by π and then normalized (i.e. ϑ will never exceed the interval ($-\pi, \pi$] in radians or its equivalents - cf. p. 129). Larger
phase input is legal, but the output will be normalized always. If $\mathbf{0}$ is entered for the magnitude, $\boldsymbol{\vartheta}$ will be set to $\mathbf{0}$ as well.

Composing and decomposing a complex number: Alternatively to entering a complex number directly, it may be generated from two closed reals provided in \mathbf{X} and \mathbf{Y}. If \llcorner is lit, CC will take \boldsymbol{y} as real part and \boldsymbol{x} as imaginary part composing the complex number. If \odot is lit on the other hand, it will take \boldsymbol{y} as magnitude and \boldsymbol{x} as phase of the new complex number (compare numeric input above).

Example:

MODE CF X
CF
DEG
4 ENTERT - 3 EXIT
These three entries return to startup default settings $\mathbb{R}\left\llcorner 4^{\circ}\right.$.

- 4.

-3.

EXIT closes input without disturbing the stack.
CC composes a complex number out of \boldsymbol{x} and \boldsymbol{y} now, lights \mathbb{C} and returns ${ }^{136}$
4. $-i \times 3$.

SF X
turns L to -
and displays

Vice versa, CC may also cut a complex number \boldsymbol{x} into two reals in \mathbf{X} and \mathbf{Y} following the same rules.

Example (continued):

$$
\begin{array}{llr}
\text { (CC) returns } & r= & 5 . \\
& 9= & -36.86989764584402^{\circ}
\end{array}
$$

[^73]© © remains lit in the status bar.

	CC returns	$5.4-6.435011087933 \times 10^{-1 r}$	
CF ${ }^{\text {X }}$	turns © to L		
	and displays		4. $-\mathfrak{i} \times 3$.
(c)	returns	$\mathrm{Re}=$	4.
		Im =	-3.

CL4 ${ }^{\text {r }}$ remains lit in the status bar.

Generally, complex number outputs follow real number formats (see pp. 80ff). The number of displayable decimals, however, may be limited by screen space. If you want to view both parts of a complex number in higher precision, press (CC) watch, and press (CC again. ${ }^{137}$

Complex results in calculations: As long as you work exclusively with real input, you will get only real results with CPXRES clear (startup default); you can, however, also set CPXRES to allow for complex results. Try $\sqrt{1+1} \sqrt{x}$ and see the different results.

With at least one complex input parameter in arithmetic operations or function calls, your WP $43 S$ will set CPXRES automatically (indicated by \mathbb{C} in the status bar).

With input closed for a complex \boldsymbol{x} and POLAR clear, for example,...

- + + w will change the signs of both the real and the imaginary part (as shown above),

[^74]- CPX conj will change the sign of the imaginary part only, and
- CPX ReきIm will swap real and imaginary parts.

Press ENTERT for separating complex input as you do in real domain.

Many transcendental functions will operate on complex numbers as well (e.g. $\sin , \cos , \tan , \mathrm{LN}, \mathrm{e}^{x}, \boldsymbol{y}^{x}, \sqrt{\boldsymbol{x}}$, etc.). Please check pp. 161f.

Complex Numbers Used for 2D Vector Algebra

You can use complex domain for 2D vector algebra as demonstrated below. The functions $|x|,+,-$, CROSS, DOT, and UNITV wait for you see the menu CPX and the $I O$.

	${ }^{(x)}$
	-
Speed and Heading Vector	$225{ }^{\circ}$
	Vector

We can, for example, compute Mr. Sweeney's ground course (as explained on p. 130) according to the following alternative way:
(DISP) FIX (2)
(MODE DEG

SF SYS.FL POLAR

125 CC 225125 \& 225
indicated air speed and heading.
ENTERT
$125.00 \Varangle 225.00^{\circ}$
25 CC $18025 \nless 180$ for the north wind.
\oplus
$143.77 \Varangle-142.06^{\circ}$ for the resulting vector

(CC)	$r=$	143.77
	$\vartheta=$	-142.06°
$360 \oplus$		143.77
		217.94°

(according to navigational convention, the angle must be positive. - Compare with pp. 130f.)

Two examples more (taken from the HP-42S OM):

Dot Product of Complex Numbers

The figure ... represents three two-dimensional force vectors. Use complex numbers and add the three vectors. Then use the DOT (dot product) function to find the component of the resulting vector along the 175° line.

Solution:

MODE DEG
SF SYS.FL POLAR ensure proper ADM and coordinates.

170 (CC) 143 ENTERT
185 CC 62
$+$
100 (CC) 261
$+$
$125.00 \npreceq 225.00^{\circ}$
$185 \Varangle 62$
$270.12 \nless 100.43^{\circ}$
$100 \Varangle 261-$
$178.94 \Varangle 111.15^{\circ}$

Now, take the unit vector at 175° :
1 CC 175
$1 \npreceq 175$

CPX dot

Thus, the resulting vector sum has a component of approximately 79 Newtons in the direction of 175°. See the drawing overleaf.

Computing Moments.

To compute the moment of two vectors, use the CROSS (cross product) function. The cross product of two vectors is a third orthogonal vector. However, when two complex numbers are crossed, the WP 43S simply returns a real number that is equal to the signed magnitude of the resulting moment vector.

Find the moment generated by the force acting through the lever in the illustration below, where

$$
\vec{M}=\vec{r} \times \vec{F}
$$

Note this picture shows a two-dimensional situation.
Lever and force are both acting in the drawing plane.

Solution:

MODE DEG

SF SYS.FL POLAR
ensure proper $A D M$ and coordinates.
Key in the radius vector and the force vector:

5 CC 50 ENTERT
300 CC 205
CPX cross
$5.00 \not \subset 50.00^{\circ}$
$300.00 \nless 205$

The moment vector has a magnitude of 634 pounds times inches and, since the result is positive, the vector points up, perpendicular to the plane of this page. ${ }^{138}$

Complex Numbers: Summary of Functions

Many of the numeric functions operating on reals also work for complex numbers:

- General mathematics:
- Monadic functions:
\sqrt{x} and $x^{2}, \sqrt[3]{x}$ and $x^{3}, 2^{x}$ and $l b x, 10^{x}$ and $19, \sqrt{1 / x}, e^{x}$ and In, sinh, cosh, and tanh as well as their inverses work as usual; the same applies to sin, cos, tan, and their inverses (cf. also pp. 125 ff for more information about angular I/O),
$e^{x}-1$ and $\ln (1+x)$ return more accurate results with $x \approx 0$,
(t/ returns $\boldsymbol{x} \times(-1)$ (a.k.a. 'unary minus') for closed input and POLAR clear while it turns \boldsymbol{x} by 180° for POLAR set, and
$(-1)^{x}$ returns $\cos (\pi x)$ for non-integer \boldsymbol{x}.
- Dyadic functions:
$\pm, \square, \boxed{x}, \square, y^{x}$ and $\sqrt[x]{y}$ work as usual,
$\log _{x} y$ calculates the logarithm of \boldsymbol{y} for base \boldsymbol{x},
dot and cross allow using complex numbers for 2D vector computations, and
|| returns $\left(\frac{1}{x}+\frac{1}{y}\right)^{-1}$ for $\boldsymbol{x} \times \boldsymbol{y} \neq 0$ and 0 else.

[^75]- Isolating and manipulating parts of complex numbers:

Use CC for composing and cutting,
RE for isolating the realpart of \boldsymbol{x} and IM for its imaginary part,
Re§Im for swapping its real and imaginary part,
for the magnitude of \boldsymbol{x} and \measuredangle for its phase (a.k.a. argument),
FP for the fractional part of \boldsymbol{x} and IP for its integer part;
sign and UNITV return the unit vector of \boldsymbol{x}, and conj returns its complex conjugate.

- Rounding:

RDP \boldsymbol{n} rounds \boldsymbol{x} to \boldsymbol{n} decimal places in FIX format (e.g. 1.23456789E-95 RDP 99 will return 1.2346×10^{-95}),

ROUND rounds \boldsymbol{x} using the current display format (like RND did on HP-42S), and
RSD \boldsymbol{n} rounds \boldsymbol{x} to \boldsymbol{n} significant digits.

- Advanced mathematics (see the ReM, App. H for comprehensive information about the functions following):
- Monadic functions:

FIB returns the extended Fibonacci number,
g_{d} and $g_{d}{ }^{-1}$ the Gudermann function and its inverse,
sinc returns $\frac{\sin (x)}{x}$ for $\boldsymbol{x} \neq 0$ and 1 for $\boldsymbol{x}=0$ (input shall be supplied in radians - cf. pp. 125f),
W_{p} returns the principal branch of Lambert's W for $x \geq-1 / \mathrm{e}$,
W^{-1} returns \boldsymbol{x} for given $\mathrm{W}_{\mathrm{p}}(\geq-1)$,
$(=\Gamma(x+1))$ and $\Gamma(x)$ calculate the complex Gamma function, and
$\ln \Gamma$ returns its natural logarithm.

- Dyadic functions:

AGM returns the arithmetic-geometric mean, COMB and PERM calculate with complex Gamma, $\beta(x, y)$ returns Euler's Beta function, and
$\ln \beta$ its natural logarithm.

Vectors and Matrices: Introduction and Input

So far, we dealt with just one or two or (seldom) three numbers at once. Your WP 43 can do more for you - e.g. manipulate a set of numbers in a column or a row or even in an array of $4,6,8,9,10,12$, or more numbers simultaneously. Such number columns or rows are called vectors and the arrays are called matrices by mathematicians. If you do not know of vectors and matrices yet, feel free to set them aside; your WP $43 S$ will serve you perfectly without them.
If you know of them, however, note the function set of your WP 43S covers vector operations and also allows for adding, multiplying, inverting, and transposing matrices, as well as for editing and manipulating parts of such matrices. It also provides functions for computing determinants, eigenvalues and eigenvectors, and for solving systems of linear equations. Its function set is based on the one of HP-42S and extends it.

Generally, we talk of an $\boldsymbol{n} \times \boldsymbol{m}$ matrixif it features \boldsymbol{n} rows and \boldsymbol{m} columns. A vector may be regarded as a special matrix featuring one column or one row only.

MATX X.FN

$2 \times$ X

Example:

A vector $\left[\begin{array}{c}4 \\ -5 \\ 6.7\end{array}\right]$ and a matrix $\left[\begin{array}{ccc}-1 & 12 & 7 \\ 25 & 0 & 3\end{array}\right]$ shall be entered subsequently. The stack shall be clear at beginning.
to initialize the 3D column vector (i.e. a 3×1 matrix). See the new matrix in \mathbf{X} and the top view of MATX displayed in the menu section:

$\left.\begin{array}{llll}0.0 & 0.0 & 0.0\end{array}\right]^{\top} \quad 0.0$						
RNORM	ENORM	STOEL	RCLEL	PUTM	GETM	
dot	cross	UNITV	DIM	INDEX	EDITN	
NEW	$[\mathrm{M}]^{-1}$	\|M		$[\mathrm{M}]^{\top}$	SIM EQ	EDIT

For saving screen space, your WP 43S displays each column vector transposed (thus the superscript T trailing it), i.e. in one row instead of one column on the screen. The vector is initialized with all its components being zero. To enter the vector components, press EDIT (the rightmost unshifted softkey) and the Matrix Editor will appear in the menu section:

Note the $1^{\text {st }}$ element of the vector is displayed inverted now indicating the position of the edit cursor. This particular element is shown below in the format set (i.e. FIX 1 here), so we need two rows for \mathbf{X}.

Now press 4

$$
\begin{array}{lll}
{\left[\begin{array}{ccc}
4.0 & 0.0 & 0.0
\end{array}\right]^{\top}} \\
1 ; 1=4=
\end{array}
$$

Move the cursor to the next element: \rightarrow

$$
\left.\begin{array}{ccc}
4.0 & 0.0 & 0.0
\end{array}\right]^{\top}
$$

Continue editing: $5+$ + $\rightarrow 6.7$
0.0

$$
\begin{array}{lll}
{\left[\begin{array}{lll}
4.0 & -5.0 & 6.7
\end{array}\right]^{\top}} \\
3 ; 1=6.7-
\end{array}
$$

EXIT

$\left[\begin{array}{lrr}4.0 & -5.0 & 6.7\end{array}\right]^{\top}$						
RNORM	ENORM	STOEL	RCLEL	PUTM	GETM	
dot	cross	UNITV	DIM	INDEX	EDITN	
NEW	$[\mathrm{M}]^{-1}$	\|M		[M] ${ }^{\text {T }}$	SIM EQ	EDIT

Note EXIT left the Matrix Editor, returning to the top view of MATX, closes input for the object in \mathbf{X}, and shifts \boldsymbol{x} to the right.

Now, let's initialize the 2×3 matrix via
2 ENTERT 3 NEW and begin editing once again by EDIT

Three numeric rows are required for editing \boldsymbol{x} now. The 3×1 matrix in \mathbf{Y} above is the 3D vector we just entered before; note any matrix is
displayed in this short form (with a \times even for MULT• chosen) in any stack register but \mathbf{X}.

Again, all elements of the new matrix start containing zero. Its $1^{\text {st }}$ element is displayed inverted as the $1^{\text {st }}$ element of the vector was above. Matrix editing will continue in analogy:
$1+\rightarrow$

$$
\left[\begin{array}{ccc}
& & \\
-1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0
\end{array}\right]
$$

$12 \rightarrow 7 \rightarrow$

$$
\left[\begin{array}{lll}
& & \\
{\left[\begin{array}{lll}
-1.0 & 12.0 & 7.0 \\
0.0 & 0.0 & 0.0
\end{array}\right]} \\
2 ; 1=0.0 &
\end{array}\right.
$$

Entering the last \rightarrow moved the cursor from the last element of row 1 to the $1^{\text {st }}$ element of row 2 . So you can simply continue row-wise:
$25 \rightarrow 3$

$$
\left[\begin{array}{ccc}
-1.0 & 12.0 & 7.0 \\
{[3 \times 1 \text { matrix] }]} \\
253.0 & 0.0 & {[3.0]}
\end{array}\right.
$$

EXIT

Now also this matrix is closed and ready for calculating. Assume you want to multiply it by ${ }^{2} / 3$; and you want more than just one decimal displayed in the result:

DISP FIX 3

$\square 2$
0.000

$$
0 \text { 2/3 }
$$

Press \mathbf{X} and you will get immediately

which are all matrix elements multiplied by $2 / 3$ at once.

You may store such matrices in any register or variable. So let's store our resulting matrix in $\mathbf{R 0 0}$ - just press STO OO for this.

You can also create and fill a matrix directly in a variable (i.e. you do not have to create the matrix on the stack and store it afterwards).

Example:

Create a quadratic matrix $[M A]=\left[\begin{array}{rr}4 & -3 \\ -2 & 1\end{array}\right]$ and fill it directly.
2 ENTERT DIM \propto M A ENTER \mathbb{A} creates MA as a 2×2 matrix.

EDITN VAR MA

$4 \rightarrow 3+/ \rightarrow 2+/ \rightarrow 1$
[2×3 Matrix]
$\left[\begin{array}{rr}4.000 & -3.000] \\ -2.000 & 1.000\end{array}\right]$ $2 ; 2=1$ -

Now, press EXIT and you are done with MA - while the screen looks just as before again:

Vectors and Matrices: Displaying and Editing Larger Objects

Whenever \mathbf{X} contains a matrix, your WP 43 S will try to show it completely (i.e. display all its elements in the format you chose for reals). Objects in higher stack registers will be indicated in a single row (abbreviated if necessary) or will be shifted out of the display window - but \boldsymbol{x} will stay on the screen at least.

If space does not suffice for showing the complete matrix in the format chosen, your WP $43 S$ will switch to the small font automatically.

Example (continued):

DISP FIX 5

[3×1 matrix]
$\left[\begin{array}{lll}-0.66667 & 8.00000 & 2.66667 \\ 16.33333 & 0.00000 & 1.00000\end{array}\right]$

If font switching should not suffice, your WP $43 S$ will furthermore automatically turn to abbreviated SCl 3 for the elements of the respective matrix. This allows for showing arbitrary 5×4 real matrices entirely. If a real matrix exceeds five rows, its fifth row is displayed filled with ellipses (...); if it exceeds four columns, its fourth column is shown filled with ellipses.

Example:

Assume a 6×5 matrix

$$
x=\left[\begin{array}{ccccc}
1.1493 & 2.6 & 18.725 & 3 & 9.2 \\
0.4 & 5.462 & -6 & 95.1 & 51.6 \\
-7.744 & -8.8 & 9.95 & 54.5 & 0.17 \\
74.66 & 0.229 & -0.0934 & 2 & -3.829 \\
33.9 & -79.4 & 3.436 & 9.08 & 4.256 \\
0.0488 & 7 & 5.98 & -0.68 & -22.492
\end{array}\right]
$$

was entered on the present stack and is in \mathbf{X} now. Then the screen will look like this to scale:

Editing such a large matrix will push also y from the screen until input is closed again. You can browse the entire matrix regardless of its size always.

For matrices larger than 5 rows and/or 4 columns, the display may vary depending on the cursor position: ellipses may appear on top and bottom, left and right side. A view of 3×3 matrix elements including the one selected by the cursor can be seen always at least - this selected element is also displayed below of the matrix in the format you have chosen for reals. Since the indices of this element are shown there as well you always know where you are.

Example (continued):

Press MATX EDIT and you will see:
$\left[\begin{array}{llll}1.149 & 2.600 & 1.873 \mathrm{E} 1 & \ldots . \\ {[4.000 \mathrm{E}-1} & 5.462 & -6.000 & \ldots \\ -7.744 & -8.800 & 9.950 & \ldots \\ 7.466 \mathrm{E} 1 & 2.290 \mathrm{E}-1 & -9.340 \mathrm{E}-2 & \ldots . \\ \ldots & \ldots & \ldots & \ldots .\end{array}\right]$
$1 ; 1=1.14930$

The $1^{\text {st }}$ matrix element is selected. And the lowest numeric row displays this element in FIX 5 as we had chosen.

Go to the bottom row of this matrix by pressing $\nabla($ or $\downarrow)$ five times and you will get:
$\left[\begin{array}{cccc}\ldots & \ldots & \ldots & \ldots \\ -7.744 & -8.800 & 9.950 & \ldots . \\ 7.466 \mathrm{E} 1 & 2.290 \mathrm{E}-1 & -9.340 \mathrm{E}-2 & \ldots . \\ 3.390 \mathrm{E} 1 & -7.940 \mathrm{E} 1 & 3.436 & \ldots . \\ 4.88 \mathrm{E}-2 & 7.000 & 5.980 & \ldots .\end{array}\right]$
$6 ; 1=0.04880$

Now go to the very last element of this matrix by pressing \rightarrow four times:

$$
\left[\begin{array}{cccc}
\ldots & \ldots & \ldots & \ldots \\
\ldots & 9.950 & 5.450 \mathrm{E} 1 & 1.700 \mathrm{E}-1 \\
\ldots & -9.340 \mathrm{E}-2 & 2.000 & -3.829 \\
\ldots & 3.436 & 9.080 & 4.256 \\
\ldots & 5.980 & -6.800 \mathrm{E}-1 & -2.249 \mathrm{E} 1 \\
6 ; 5=-22.49200 &
\end{array}\right]
$$

Wherever you are within a matrix, you can replace or modify the currently selected element in two ways:

1. Let an arbitrary monadic function operate on the selected element. If you need any menus to reach a function, they will temporarily replace the Matrix Editor menu; exiting those menus will bring you back to the Matrix Editor menu.
2. Simply key in a new number replacing the old one.

Example (continued):

Replace the last matrix element by 17.435 .
17.435

If you now decide you want to recover the old element again, however, call OLD. This old content is actually not overwritten until you press one of $\Delta, \uparrow, \nabla, \downarrow, \leftarrow$, or \rightarrow after entering a new number, or you leave the Matrix Editor via EXIT.

Repeatedly pushing the cursor in one direction (e.g. by \rightarrow) will jump from the $1^{\text {st }}, 2^{\text {nd }}$, etc. to the last row and then return to the $1^{\text {st }}$ row in default WRAP mode. If GROW is set instead, another
\rightarrow from the very last (i.e. bottom right) matrix element will add a new row to the matrix.

Example (continued):

\rightarrow

...-	\ldots
7.466 E 1	2.290E-1	-9.340E-2	.
3.390 E 1	-7.940E1	3.436	..
$4.880 \mathrm{E}-2$	7.000	5.980	..
0.000	0.000	0.000	- \cdot

Here, we are done with that matrix for now. So press EXIT and you will see again:

Note the $1^{\text {st }}$ matrix element is not highlighted anymore since you left the Matrix Editor. Thus, just entering (4) will display (due to automatic stack lift) now:

$$
4-\quad[7 \times 5 \text { Matrix }]
$$

So matrix editing is easy and straightforward. The IOI contains additional information, also about the further commands DELR, INSR, and R $\leftrightarrows R$ showing up in the Matrix Editor menu.

Vectors and Matrices: Complex Stuff

Your WP $43 S$ supports also complex vectors and matrices, i.e. matrices containing complex elements. They are created and initialized like real objects via NEW or DIM as explained above. Or you can recall a real matrix and edit it; if you enter one or more complex numbers for its elements it becomes a complex matrix - you can store it at the same or another place after editing.

Example (continuation of p. 168):

Create and store a complex matrix $\left[\begin{array}{cc}5+8 i & \pi i \\ -2 & 4-3 i\end{array}\right]$.

Solution:

Remember we have created a 2×2 matrix just a few pages ago. So it is most easy to recall it for using it as a template:

RCL VAR MA

DISP FIX 2
MATX EDIT
since this will suffice for the process following.
[6×5 matrix]

$$
\begin{aligned}
& {\left[\begin{array}{cc}
4.00 & -3.00] \\
-2.00 & 1.00
\end{array}\right]} \\
& 1 ; 1=4.00
\end{aligned}
$$

We can now just enter the new elements there as we have done before:

$$
5 \subset 8 \rightarrow 0 \times \mathrm{CC} \pi \rightarrow 4 \times \mathrm{CC} 3+
$$

EXIT

STO 01

Since we edited on the stack and stored the resulting new complex matrix in a new location, the old real matrix MA is not affected at all.

Compare pp. 154 f for the input and formatting of complex numbers. Everything else works as it does for real matrices. You see complex vectors and matrices are no complex topic at all for you with your WP 43S.

Vectors and Matrices: Calculating

As we have seen on $p .167$, your WP $43 S$ can multiply a matrix by a plain number (a.k.a. scalar); doing this, each element of said matrix is multiplied by said number. Additions, subtractions, and divisions work alike for a matrix \boldsymbol{y} combined with a scalar \boldsymbol{x}. Vice versa, with a scalar \boldsymbol{y} and a matrix \boldsymbol{x}, additions, subtractions and multiplications will work the same way (remember you cannot divide a number by a matrix). Also monadic functions operate on each matrix element in your WP 43S, if applicable.

Examples:

With an arbitrary matrix in \mathbf{X}, pressing...

- \sqrt{x} will extract the square root of each matrix element individually (if CPXRES is set, a real matrix \boldsymbol{x} containing at least one negative element will become complex this way).
- \boldsymbol{x}^{2} will square each matrix element individually (use ENTERT \mathbf{x} for squaring the matrix instead);
- ||x| will calculate the absolute value of each matrix element (instead, use MATX ENORM for calculating the Euclidean norm of the matrix or take $|\mathrm{M}|$ for getting its determinant);
- + $/$ will change the sign of each matrix element.

You can also let the dyadic functions $\oplus, \boxed{\square}, \mathbf{x}$, or \square operate on two matrices or vectors alone (i.e. data types 8 and 9), provided the rules of linear algebra are obeyed:

	y	x	Op.	Resulting \boldsymbol{x}
\pm	$[m \times n$ Matrix]	[$m \times n$ Matrix]	$[y]+[x]$	$[m \times n$ Matrix]
\square			$[y]-[x]$	
X	[$m \times n$ Matrix]	[$n \times p$ Matrix $]$	$[y] \cdot[x]$	$\left[\boldsymbol{m}_{\times} \boldsymbol{p}\right.$ Matrix]
(1)	[$m \times n$ Matrix]	[$n \times n$ Matrix]	$[y] \cdot[x]^{-1}$	$[m \times n$ Matrix $]$

The $1^{\text {st }}$ row of this table reads as follows: For adding or subtracting two arbitrary matrices, both must be of identical size, and the result will be of the same size as well. The subsequent rows read in analogy. ${ }^{139}$ If either matrix is complex, the result will be complex in most cases as well.

Example (continuation of p. 168):

Multiply the matrices in R00 and MA. Output format shall be FIX 3.
Solution (we omit the menu section in the following pictures):
DISP FIX 3
RCL 0

$$
\left[\begin{array}{ccc}
& {[2 \times 2 \text { c matrix }]} \\
-0.667 & 8.000 & 2.6671 \\
16.333 & 0.000 & 1.000
\end{array}\right]
$$

Note the ' $2 \times 2 \mathbb{C}$ matrix' in \mathbf{Y} is the complex matrix we entered in previous chapter - the stack handles matrices as it handles other objects. Now let's recall MA:

RCL VAR MA (or RCL \propto (M) A ENTERT, if you have defined many variables already - cf. p. 57)

The 2×3 matrix in \mathbf{Y} now is the one we have recalled from $\mathbf{R 0 0}$ into \mathbf{X} before recalling MA. We multiply \boldsymbol{y} times \boldsymbol{x} as usual by

[^76]x resulting in
\[

$$
\begin{array}{rrr}
& {[2 \times 2 \mathrm{c} \text { matrix }]} \\
{[-79.000} & 48.000 & 19.000] \\
27.000 & -24.000 & -11.000]
\end{array}
$$
\]

You see that arithmetic operations on matrices are almost as easy as on scalars using your WP 43S.
And your WP 43S features further matrix operations: |M| for computing determinants, $[M]^{-1}$ for inverting, $[M]^{\top}$ for transposing, M.LU for computing the LU decomposition, and two norms (Euclid's ENORM and the row norm RNORM) - please look them up in the IOI.

Example:

We want to invert a 2×2 matrix $[M]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.

Solution:

Just enter the matrix as usual
2 ENTER \mathbb{M} MATX DIM \propto ENTER \boldsymbol{T} creates M as a 2×2 matrix.

```
RCL VAR M
```

EDIT etc.
$\left[\begin{array}{rr}{[3 \times 2 \text { matrix] }} \\ 1.000 & 2.000] \\ 3.000 & 4.000]\end{array}\right]$
$[\mathrm{m}]^{-1}$

Thus, the inverted matrix reads $[M]^{-1}=\left[\begin{array}{cc}-2 & 1 \\ 1.5 & -0,5\end{array}\right]$.

For two vectors of identical size, there are two special multiplications provided: DOT and CROSS. DOT will return the dot product, a scalar exactly what the table above says for $\boldsymbol{m}=\boldsymbol{p}=1$. CROSS works for two 2D or 3D vectors and will return their cross product.

Example from the HP-27 OH:

The force \vec{F} on a particle with charge q which is moving with a velocity \vec{v} through a magnetic field \vec{B} is given by $\vec{F}=q \vec{v} \times \vec{B}$. Suppose a proton $\left(q=-e=1.6 \cdot 10^{-19}\right.$ coulomb) is moving with velocity $\vec{v}=$ $\left(\begin{array}{lll}0.4 & 2.8 & -1.2\end{array}\right) \cdot 10^{7} \mathrm{~m} / \mathrm{s}$. A uniform magnetic field surrounding the proton is of a strength $\vec{B}=\left(\begin{array}{lll}1.3 & -0.3 & 0.7\end{array}\right)$ tesla. Calculate the force on the proton.

This can be written as

$$
\begin{gather*}
\vec{F}=q \vec{v} \times \vec{B} \\
=1.6 \cdot 10^{-19} \cdot 10^{7} \cdot\left(\begin{array}{lll}
0.4 & 2.8 & -1.2
\end{array}\right) \times\left(\begin{array}{ll}
1.3 & -0.3
\end{array}\right.
\end{gather*}
$$

Solution:

Just remember that in cross products, vectors must be entered in proper sequence as written from left to right:

DISP FIX 2 since this will suffice for that process.
3 ENTERT 1 MATX DIM \propto ENTER $\mathbf{~ c r e a t e s ~} v$ as a 3×1 matrix. RCL VAR V
EDIT etc.

$$
\left.\left[\begin{array}{cc}
& {[2 \times 2 \text { matrix }]} \\
0.40 & 2.80
\end{array}\right]-1.20\right]
$$

STO α ENTERT creates \mathbf{B} as a 3×1 matrix, too.
RCL VAR B
EDIT etc.

$$
\left[\begin{array}{cc}
{[3 \times 1} & \text { matrix] } \\
1.30 & -0.30 \\
0.70]
\end{array}\right.
$$

cross

[2×2 Matrix] [$1.60-1.84-3.76]$

E 7 X

1.6 E $19 \times$ resulting in

$$
\begin{array}{r}
{[2 \times 2 \text { Matrix }]} \\
{\left[\begin{array}{lll}
2.56 \times 10^{-12} & -2.94 \times 10^{-12} & -6.02 \times 10^{-12}
\end{array}\right]}
\end{array}
$$ newtons, of course.

The total 'length' or absolute value of this force is

ENORM

[2×2 matrix]
5.14×10^{-11}

Compare with the weight of a proton:
CONST $\propto(M) \square$ recall the proton mass m_{p}.
$G \square \mathbf{x}$ recall earth acceleration g_{\oplus} and get weight. 1.64×10^{-26}

So this is a force ratio of

Thus, physicists deliberately neglect gravitational effects in such microscopic calculations.

If you just want to perform elementary vector operations in 2D, however, there are two simple alternatives (known for long from earlier calculators):

1. Enter the Cartesian components of each vector in \mathbf{X} and \mathbf{Y} (if necessary, converting its polar components into Cartesian ones by
R^{R} before) and use $\Sigma \Sigma^{+}$for additions or $\Sigma-$ for subtractions. Recall the result via SUM ; it may look like this, for example:

$$
\begin{aligned}
& \Sigma y= \\
& \Sigma x=
\end{aligned}
$$

2. Calculate with complex numbers (cf. pp. 154ff). In complex domain, 2D vector multiplication is possible since the commands DOT and CROSS are contained in CPX as well. Cf. pp. 158 ff for examples.

Vectors and Matrices: Solving Systems of Linear Equations

Your WP 43S can also solve simultaneous linear equations (of the kind $[A] \cdot \vec{X}=\vec{B}$) for you. ${ }^{140}$ To deal with such a system of linear equations, proceed as follows:

1. Specify the number of unknowns (e.g. 4) by entering

MATX SIM EQ 4

Your WP 43S automatically creates (if necessary) and dimensions three matrices: MatA, MatB, and MatX. You will see a new menu showing up:

2. Press Mat A. The Matrix Editor will open and you can enter the elements of the 4×4 coefficient matrix (see on pp. 163ff how to do this). Close the Matrix Editor by EXIT to return to the menu shown above.
3. Press Mat B and enter the elements of the 4×1 constant matrix the same way (this is a vector actually).

[^77]4. Press Mat X to let your WP 43 S compute the 4×1 solution matrix (a vector again). You are done!

To work another problem with the same number of unknowns, return to step 2 or 3 . For a problem with a different number of unknowns, press EXIT and start over with step 1.

Vectors and Matrices: Eigenvalues and Eigenvectors

An eigenvalue is a real or complex number λ solving the matrix equation $[A] \cdot \vec{X}=\lambda \cdot \vec{X}$. Then, the vector \vec{X} is called an eigenvector of $[A]$.
Usually, there will be more than one λ and a multitude of vectors \vec{X} solving this problem. Thus, the simplest set of linearly independent vectors \vec{X} is chosen to build the base of the eigenspace belonging to a particular eigenvalue found. And the simplest set of eigenvectors building a base of a space of the same dimension as \vec{X} are called the eigenvectors of $[A]$.

Your WP 43S can solve such problems for you as well:

Example 1:

We need the eigenvalues of a matrix $[M]=\left[\begin{array}{ll}2 & 1 \\ 6 & 1\end{array}\right]$.

Solution:

We have got a 2×2 matrix named \mathbf{M} already. We don't need its old contents anymore so we simply recall and edit it:

RCL VAR M

DISP FIX 01
MATX EDIT etc.

STO VAR M

The eigenvalues are the solutions of the characteristic polynomial of this problem:

$$
(2-\lambda)(1-\lambda)-6=0
$$

(4) EIGVAL returns

$$
\begin{aligned}
M= & =\left[\begin{array}{cc}
{[2 \times 2 \text { matrix }} \\
4.0 \\
0.0 & 0.0 \\
0.1 .0]
\end{array}\right]
\end{aligned}
$$

being the matrix with the eigenvalues as its diagonal elements. Note this resulting diagonal matrix is pushed on the stack.

Example (continued):

Now, what are the eigenvalues of $[N]=\left[\begin{array}{cc}3 & 4 \\ -4 & 3\end{array}\right]$?

Solution:

(\triangle EDIT etc.

$$
M=\left[\begin{array}{cc}
2 \times 2 & \text { matrix } \\
3.0 & 4.0 \\
-4.0 & 3.0
\end{array}\right]
$$

STO α N ENTERT

(4) EIGVAL returns

$$
\begin{aligned}
M & =[2 \times 2 \text { matrix }] \\
N & =[2 \times 2 \text { matrix }] \\
{[3.0+\mathfrak{i} \times 4.0} & 0.0 \\
{[-4.0} & 3.0+\mathfrak{i} \times 4.0]
\end{aligned}
$$

Note that although \mathbf{N} contained only real elements, we get complex eigenvalues here.

Example 2:

What are the eigenvalues of $[Q]=\left[\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$?

Solution:
3 ENTER \boldsymbol{T} MATX DIM $\propto Q$ ENTERT creates \mathbf{Q} as a 3×3 matrix. RCL VAR Q
EDIT etc.
[2×2 c Matrix]
$\left[\begin{array}{rrr}0.0 & 0.0 & -2.0 \\ 1.0 & 2.0 & 1.0 \\ 1.0 & 0.0 & 3.0\end{array}\right]$
(4) EIGVAL returns

$$
\left[\begin{array}{lll}
Q=[3 \times 3 \text { matrix }
\end{array}\right]\left[\begin{array}{lll}
2.0 & 0.0 & 0.0 \\
0.0 & 2.0 & 0.0 \\
0.0 & 0.0 & 1.0
\end{array}\right]
$$

Note one eigenvalue comes twice here. Let's get the eigenvectors of \mathbf{Q} now - they will be put out as a matrix whose rows are these vectors:
$x^{2} \geqslant y$ returns \mathbf{Q} into \mathbf{X} :

$$
\left[\begin{array}{ccc}
\\
{\left[\begin{array}{ccc}
3 \times 3 & \text { matrix] } \\
0.0 & 0.0 & -2.0 \\
1.0 & 2.0 & 1.0 \\
1.0 & 0.0 & 3.0
\end{array}\right]}
\end{array}\right.
$$

EIGVEC pushes this matrix on the stack:

$$
\left[\begin{array}{cc}
0=[3 \times 3 \text { matrix } \\
1.0 & 0.0 \\
0.2 .01 \\
0.0 & 1.0 \\
-1.0 & 0.0 \\
-1.0
\end{array}\right]
$$

\boldsymbol{X} returns

RCL (L) recalls V.

(Δ [$M]^{-1}$
\mathbf{X} returns

This looks very much like what was returned for the eigenvalues of \mathbf{Q} above. Let's check:

DISP FIX 4

$\square \quad$ returns

$$
\left[\begin{array}{llll}
0.0000 & 0.000 & {\left[\begin{array}{cc}
2 \times 2 & 0.000 \\
0
\end{array}\right]} \\
0.000 & 0 & 0.000 & 0 \\
0.000 & 0 \\
0.000 & 0 & 0.000 & 0 \\
0.000 & 0
\end{array}\right]
$$

So the result of $[\mathrm{V}]^{-1} \cdot[Q] \cdot[\mathrm{V}]$ with \mathbf{V} being the matrix of the eigenvectors of \mathbf{Q} is exactly the diagonal matrix of the eigenvalues of \mathbf{Q}.

Your WP 43S can compute eigenvalues and eigenvectors for matrices featuring rational elements as well:

Example 3:
What are the eigenvalues of $\left[\begin{array}{cccc}-38 & 43 / 7 & 63 / 2 & 1149 / 14 \\ -14 & 19 / 7 & 7 & 181 / 7 \\ -8 / 7 & -122 / 49 & 24 / 7 & 177 / 49 \\ -16 & 26 / 7 & 13 & 244 / 7\end{array}\right]$?

Solution:

```
4 \text { ENTERT (MATX NEW creates a 4×4 matrix.}
EDIT 38 +/ ) 43.7 -> .63.2 -> .1149.14 -> etc.
```

Note each matrix element can be entered as integer or fraction but is converted to a real number following the current display settings as soon as said element is closed:
$\left.\begin{array}{rrrr}-38.0000 & 6.1429 & 31.5000 & 82.0714 \\ -14.0000 & 2.7143 & 7.0000 & 25.8571 \\ -1.1429 & -2.4898 & 3.4286 & 3.6122 \\ -16.0000 & 3.7143 & 13.0000 & 34.8571\end{array}\right]$

DISP FIX 0 1 shall suffice here:

$$
\left[\begin{array}{rrrr}
-38.0 & 6.1 & 31.5 & 82.1 \\
-14.0 & 2.7 & 7.0 & 25.9 \\
-1.1 & -2.5 & 3.4 & 3.6 \\
-16.0 & 3.7 & 13.0 & 34.9
\end{array}\right]
$$

MATX \triangle EIGVAL returns:
$\left[\begin{array}{rrrr}-5.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 3.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 5.0\end{array}\right]$

Note the $2^{\text {nd }}$ eigenvalue is zero here.
RCLL
EIGVEC displays:
$\left[\begin{array}{rrrr}4.0 & 5.0 & 4.0 & 5.01 \\ 3.0 & -2.0 & 2.0 & -4.0 \\ 1.0 & -4.0 & -3.0 & 5.0 \\ 1.0 & 4.0 & 3.0 & 1.0\end{array}\right.$

Generally, your WP 43S solves characteristic polynomials numerically.

Vectors and Matrices: Dealing with Statistical Data

We mentioned above you can enter 2D statistical data using a matrix as well as keying them in point after point. How is this done?

Let's return to the application introduced on p. 113 with its step $4-$ remember there were 30 samples measured twice in a special way using the instrument under investigation, resulting in 30 pairs of measured values:
4. Create a 1×2 named matrix and open it for editing:

1 ENTERT 2 DIM $\boldsymbol{\alpha}$ M A ENTERT creates MSA accordingly. EDITN VAR MSA

GROW allows the matrix to grow with data entered.
Now key in all 30 pairs of measured values. The $1^{\text {st }}$ value shall be \boldsymbol{x}, the $2^{\text {nd }}$ be \boldsymbol{y} - thus, the keystroke sequence will be $\boldsymbol{m v 1} \rightarrow \boldsymbol{m v 2}$ for each sample. A subsequent \rightarrow lets the matrix grow by one row for the next data point.

With all points entered, eventually key in
STAT CLE

RCL VAR MSA

$\boldsymbol{\Sigma} \quad$ Calling $\Sigma+$ with a 30×2 matrix in \mathbf{X} will display the data of the $30^{\text {th }}$ data pair in \mathbf{X} and \mathbf{Y} (and save a copy of the data point matrix in \mathbf{L}).
5. It is recommended to plot these 30 data points ${ }^{141}$ (see a typical diagram here but check p. 114 and its footnote as well).
6. Let your WP $43 S$ fit a straight line through the points and compute $c_{0}=\frac{T}{30 s_{x} s_{y}} \sqrt{\frac{s_{x}^{2}+r^{2} s_{y}^{2}}{1-r^{2}}}$ with \boldsymbol{T} being the width of the tolerance zone you want to control:

\triangle OrthoF	select the orthogonal linear fit model.
r (x^{2} STOK	get the correlation coefficient and store its
$\boldsymbol{T} \leq \mathrm{x}^{2}$ R】	get $\boldsymbol{s}_{\mathbf{x}}{ }^{2}$ and roll it out of the way.
\boldsymbol{x}^{2} (\boldsymbol{x}	get $r^{2} s_{y}{ }^{2}$.
R \uparrow	return $\boldsymbol{s}_{\mathbf{x}}{ }^{2}$ from the top stack register and
\pm	calculate the numerator
$1 \mathrm{RCL}-\mathrm{K}$	and the denominator.
(1) \sqrt{x}	this is the $2^{\text {nd }}$ factor now.
s x (1) 30]	divide by $30 s_{x} s_{y}$.
. $01 \times$	this returns \boldsymbol{c}_{0} for our \boldsymbol{T} now (cf. pp. 113ff).

If you get $c_{0} \geq 1$ then this measuring device may be used for controlling the given tolerance zone under these conditions - else look for a more precise instrument, better measuring conditions, or a wider tolerance.

[^78]
Vectors and Matrices: Summary of Functions

Assume \mathbf{X} contains a matrix. Then there are functions operating on \boldsymbol{x} as a whole and others just operating on its elements individually. Let us list the first set first:

- General mathematics:
- Monadic functions operating on the entire matrix \boldsymbol{x} :

ENORM computes the Euclidean norm of \boldsymbol{x} (i.e. a real number),
RNORM computes the row norm of x (i.e. a real number),
RSUM computes the row sum of \boldsymbol{x} (i.e. a vector),
$|\mathrm{M}|$ computes the determinant of \boldsymbol{x} (i.e. a real or complex number),
[M] ${ }^{\top}$ returns the transpose matrix of \boldsymbol{x},
[M] $]^{-1}$ returns the inverse matrix of \boldsymbol{x},
Eigval returns the eigenvalues of \boldsymbol{x}, and Eigvec its eigenvectors (cf. pp. 180ff), while
unitv returns the unit vector of \boldsymbol{x} (see the ReM).

- Monadic functions operating on each element $\boldsymbol{x}_{i j}$ of \boldsymbol{x} individually:
 and In, $\left.10^{x}\right]^{2}$ and 19 , sin, cos, tan, sinh, cosh, and tanh as well as their inverses work as explained for real and complex numbers above,
$\mathrm{e}^{\mathrm{x}}-1$ and $\ln 1+\mathrm{x}$ return more accurate results with $\boldsymbol{x}_{i j} \approx 0$;
sinc returns a matrix containing $\frac{\sin \left(x_{i j}\right)}{x_{i j}}$ for $x_{i j} \neq 0$ and 1 for $x_{i j}=0$ (input shall be supplied in radians - cf. pp. 125f), $(-1)^{\mathrm{x}}$ returns $\cos \left(\pi x_{i j}\right)$ for non-integer $\boldsymbol{x}_{i j}$. RDP \boldsymbol{n} rounds $\boldsymbol{x}_{\boldsymbol{i j}}$ to \boldsymbol{n} decimal places in FIX format,

ROUND rounds $\boldsymbol{x}_{i j}$ using the current display format, and RSD \boldsymbol{n} rounds $\boldsymbol{x}_{\boldsymbol{i j}}$ to \boldsymbol{n} significant digits.

For complex matrices, conj returns a matrix with the complex conjugates of $x_{i j}$.

For real matrices,
ceil returns a matrix with the smallest integers $\geq x_{i j}$ and floor with the greatest integers $\leq x_{i j}$,
FP returns a matrix with the fractional parts of $x_{i j}$ and IP with their integer parts, while
$\boldsymbol{s i g n}$ returns a matrix with each $\boldsymbol{x}_{i j}$ replaced by $\operatorname{signum}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$.

- Dyadic functions operating on \boldsymbol{x} and \boldsymbol{y} :
$\oplus, \square, \boxed{x}$, and \square work as explained on pp. 174ff, cross operates on two real 2D or 3D vectors of identical size as shown on pp. 177f, and dot operates on two matrices of identical size.
- Dyadic function operating on each element $\boldsymbol{y}_{i j}$ of \boldsymbol{y} individually:
$\log _{x} y$ calculates the logarithms of $y_{i j}$ for base number \boldsymbol{x}.
- Isolating and manipulating bulk parts of a complex matrix \boldsymbol{x} : Use ...

CX \rightarrow RE for cutting x in its two parts,
RE $\rightarrow \mathrm{CX}$ for composing \boldsymbol{x} from its two parts,
Re for isolating its realpart and Im for its imaginary part, and ReねIm for swapping its real and imaginary part.

The functionality of the Matrix Editor was demonstrated in the chapters above. Turn to the ReM for additional information about all matrix operations provided on your WP 43S. If you look for more general information about vectors and matrices, and further applications, please turn to a textbook covering linear algebra.

Times

There also is a special data type for time calculations on your WP $43 S$. Sexagesimal times are entered most easily in the format hhhhh.mmssfff terminated by h.ms - with hhhhh standing for hours, mm for minutes, ss for seconds, and fff for decimal fractions of seconds (these fractions may take more or less than three digits).

Example (with startup default settings):

Enter 5 hours, 39 minutes, and 7.8642 seconds:

$$
5 \square 39078642
$$

This is displayed with startup default settings:
Choosing CLK \triangle TDISP 2 will return 5:39:07
instead, while CLK \triangle TDISP 0 returns 5:39

The latter two formats allow for compact time displays like seen in digital clocks or watches. Note there is no rounding of hours, minutes, or seconds for times.

The colon is the unambiguous indicator for a time on your WP 43S. In general, there may be leading zeroes in the minutes and seconds sections and a settable number of digits after the $2^{\text {nd }}$ colon. You can choose 12- or 24-hour display for time of day.

Example (continued):

Call TIME in the evening and you might get
$\begin{array}{l}\text { FLAGS CF SYS.FL TDM24 }\end{array}$

When time of day is returned by a function, it will be displayed according to your choice - internally, however, it is stored as standard 24-hour time for further calculations.

You may add and subtract sexagesimal time intervals simply using \oplus and \square; and time intervals may be multiplied or divided by any integer,
rational, or real number - the result will stay a time. If you add an integer, rational or real number to such a time, it will be automatically converted to a time before adding. This applies to subtractions in analogy. Compare the matrices on pp. 71f.

Example (with startup default settings):

To meet your date at 5:25 p.m. at Stanford, you need 15' from your office to get your car out of the parking garage, 1.5 hours for the ride, and 12' for walking from the parking lot to lecture hall. Being careful, you count in another quarter of an hour for a possible traffic jam on the expressway. When do you have to leave your office?

Solution:

CLK \triangle TDISP 0

Note your WP $43 S$ returns something looking like a 12h-time here even with startup default settings because it cannot know better based on the input given.

You can convert such (closed) sexagesimal times to decimal numbers using .d, and reconvert the decimal result to sexagesimal times by pressing h.ms.

There is only one more dedicated time command - SETTIM, serving obvious purposes. ${ }^{142}$ GAP, ALL, ENG, FIX, or SCI have no effect on times.

[^79]
Dates

For date calculations, choose one out of three date display modes (DDM) on your WP 43S: Y.MD, D.MY, and M.DY (these mode-setting commands are contained in CLK). ISO Y.MD is startup default.

Date input is decimal according to the DDM chosen and is terminated by (as shown on pp. 68f).

Example:

The $18^{\text {th }}$ of December in 2017 is entered

$$
2017.1218 \text { in Y.MD, }
$$

18.122017 .d in D.MY, and
12.182017 .d in M.DY.

Alternatively, any real number may be converted into a date via CLK $x \rightarrow$ DATE, and any triple of reals or integers via \rightarrow DATE (cf. p. 40). Input containing more than the necessary digits for a date in the DDM selected will be rounded.

Vice versa, DATE \rightarrow splits a date in three integers and pushes them on the stack as demonstrated on p. 40. Note that both DATE \rightarrow and \rightarrow DATE observe the DDM chosen. If you want to extract particular information from a date independent of current $D D M$, we recommend using one of the operations DAY, MONTH, or YEAR.

Like in the status bar, a closed date input or dates returned by a function are displayed as in the following example:

$$
\begin{aligned}
2017-12-18 & \text { in Y.MD, } \\
18.12 .2017 & \text { in D.MY, } \\
12 / 18 / 2017 & \text { in M.DY. }
\end{aligned}
$$

So you immediately know the effective DDM from looking at the date format in the status bar.

CLK WDAY takes a date from the stack - or a decimal input of e.g. 2013.0504 in Y.MD mode (equivalent to inputs of 4.052013 in D.MY or 5.042013 in M.DY) - and returns an integer indicating the position of this day in the corresponding week, temporarily headed by the name of this weekday:
Saturday
$6 .{ }^{143}$

Expect similar returns after CLK DATE . ${ }^{144}$
There is only one more dedicated date command - SETDAT, serving obvious purposes.

Note integers (or the integer parts of real numbers) may be added to or subtracted from a date, always representing an integer number of days regardless of the date format set. And dates may be subtracted from dates, resulting in an integer number of days.

But that's it - these are all the legal operations. Compare the matrices on pp. 71f. GAP, ALL, ENG, FIX, or SCI have no effect on dates.

[^80]${ }^{144}$ Calculation of weekdays for the past depends on the calendars used at that time there may be different true results for different countries depending on the date the particular country introduced the Gregorian calendar. Officially, that calendar became effective in 1582-10-15 in the catholic world. Large parts of the world took their time and switched later (see the chapter Localizing Calculator Output above and check Wikipedia for the dates applicable). Note, however, there are still also other calendars in use on this planet today, e.g. in the Muslim world.
Dates before the year 8 A.D. may be indicated differently than they were experienced at the time due to the inconsistent application of the leap year rule before. We count on your understanding and hope this shortcoming will not affect too many calculations.
Note that 8 A.D. should be written A.D. 8 or even better A.D. VIII instead - quite some false Latin is found in the English language. Nobody, however, counted years this way at that time - around the Mediterranean Sea, it was the year DCCLXI A.V.C. in best case (actually, this notation was broadly introduced some XL - or even CD - years later). Also note the Julian calendar was introduced and became valid not earlier than DCCVIII A.V.C. - before, months were organized differently. Julius Caesar was daggered in DCCIX A.V.C.; calendars may be a sensitive topic.

Alpha Input Mode : Introduction and Virtual Keyboard

This mode is designed for text entry, e.g. for keying in messages, prompts, and answers. It is entered via \propto typically. Within AIM, ...

1. primary function of most keys will be appending the letter printed bottom right of the respective key to \boldsymbol{x} see the virtual keyboard overleaf;
2. the menu Mya will pop up immediately in the menu section (unless another menu is open), containing your favorite special characters or groups of them (up to 18 items); ${ }^{145}$
3. prefix g leads to homophonic Greek letters. ${ }^{146}$

Upper and lower case are set by $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$, respectively, applying also to the letters in Mya and CATALOG'CHARS'alNTL (see pp. 195f).

Wherever a default primary function is not primary anymore in AIM but continues being meaningful, it is reached via prefix \ddagger. Thus, f is required here for appending a digit to \boldsymbol{x}, for example. And is also a shortcut to some special characters, like f_{m} calling \pm.

[^81]Two extra prefixes operate exclusively in AIM: $f(\mathbb{R D}$ makes the next directly keyboard-accessible input character a subscript if provided, while f makes it a superscript. See the yellow arrows printed to the right of these two keys, above I and M .

And three alpha menus become accessible for more letters, punctuation marks as well as mathematical and other symbols (abbreviations are printed in blue and gold on the keyboard as reminders). Look up their contents in Section 2 of the ReM, and use FBR to browse the entire character set provided.

Alpha Input Mode: Entering Simple Text and More

Your WP $43 S$ features a large font for mainly numeric output and a small alphanumeric font for text strings. See here all characters directly evocable through the virtual alpha keyboard shown above:

ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz
 $\alpha \beta \gamma \delta \varepsilon \zeta \eta \vartheta t \kappa \lambda \mu \nu \xi \circ \pi \rho \sigma \tau \cup \varphi \chi \psi \omega$
 and subscripts ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdeijklmnopqsuwvixyz $\alpha \boldsymbol{\delta} \boldsymbol{f}$ and 0123456789 + as well as superscripts afghortx and $0123456789+-$

The 26 plain Latin letters can be also found in CATALOG'CHARS'aINTL (together with 73 more supporting international communication), the 24 basic (plus eleven accented) Greek letters in CATALOG'CHARS'A... Ω. $\underline{\alpha}$ INTL can be called via f(A) in AIM; see the ReM for its content.

So you may, for example, easily store and display an actual modern Greek message like

Actually, we could have written the major part of this manual just using said small font. It covers at least 47 languages from Afrikaans to Zhōngwén (see the ReM), providing the means that your display messages or prompts can be easily read and understood by more than 50% of all mankind.

Example:

You can even store Dèng Xiãoping's famous and successful slogan

Bùguăn băi māo, hēi māo, dàizhù lăoshü jiù shì hăo māo:
in Pinyin straight ahead.

Taking advantage of this character set, it is also absolutely easy spelling e.g. French, Spanish, or German prompts correctly «en français», "en Español", or „auf Deutsch", as well as text strings in many more languages using letter sets based on Latin alphabets.
Your WP 43S supports you in climbing the very first step of politeness and respect by allowing you to adapt the software you write to the language your customers speak - instead of hacking in everything in English or using merely the very meager plain Latin letter set.

Two more menus (α MATH, called via $g-$, and $\alpha \bullet$, called via g (.) contain further mathematical and non-mathematical symbols and marks (see the ReM):

$$
\begin{aligned}
& \text { : : ¿"'s\$£¥€\%\&()*<=>e[]\^_\{\}|~ }
\end{aligned}
$$

Pressing USER in AIM toggles USERA. Individual characters may be assigned to particular locations on the keyboard or within menus in AIM only (see pp. 290ff for how to do that). Such user assignments will become accessible when USER is set (indicated by \mathbb{U} and A or α being both lit in the status bar).

Alpha input can be edited character by character (like numeric input can be edited digit by digit) using $\boldsymbol{\square}$ as long as it is open still.

AIM is closed by ENTERT (duplicating string \boldsymbol{x} in \boldsymbol{y}) or by EXIT unless pressed in a menu. Empty strings will not be pushed on the stack.

Example (continued):

Pressing EXIT with Dèng Xiăopíng's slogan keyed in will display it in \mathbf{X} as shown above.

Pressing ENTERT instead will display the text twice - fully in \mathbf{X} and shortened to one line in \mathbf{Y}, showing only its first seven words trailed by an ellipsis.

Alpha strings exceeding two lines will show all their contents after SHOW only.

Combining Alpha Strings and Numeric Data

Due to the data type concept of your WP 43S, adding numeric data to a text string is as simple as pressing \oplus.

Example:

Assume the two lowest stack registers look like this:

So here is an alpha string in \mathbf{Y} and a time in \mathbf{X}. Pressing \oplus now will combine x and y, returning

```
The train will arrive at 23:55
```

So, \boldsymbol{x} will be converted to a string, taking into account its present display format, and will be appended to \boldsymbol{y} (cf. the matrix on p. 71). Let's enter a $2^{\text {nd }}$ string now by pressing α and the necessary characters, starting with a blank:

Leave AIM and close \boldsymbol{x} by pressing EXIT:

> The train will arrive at $23: 55$ sharp at Victoria station.

Now we have got alpha strings in \mathbf{X} as well as in \mathbf{Y}, so pressing \oplus once more will append \boldsymbol{x} to \boldsymbol{y} returning

The train will arrive at $23: 55$ sharp at Victoria station.

Strings may contain up to 196 characters in total. Once numeric data (like a time here) became part of an alpha string, they are fixed and will not vary even if format is changed. Easy, isn't it?

Working with Alphanumeric Strings

Your WP 43S provides some commands more for dealing with such strings. You find them all in $\underline{\alpha . F N}$:
α LENG? source pushes the length of the string in the source on the stack.

$a b / c \alpha . F N$
 $1 / \mathrm{x} \frac{\mathrm{A}}{\mathrm{A}}$

aPOS? source searches the string in the source for the character or string given in \mathbf{X}; if a match is found, aPOS? returns the position number where the target was found starting (counting the leftmost character as position 0) - else it returns -1. Previous \boldsymbol{x} is saved in \mathbf{L}.
α RL source rotates the source string by \boldsymbol{x} characters to the left.
α RR source rotates the source string by x characters to the right.
$\alpha \rightarrow x$ source converts the leftmost character in the source to the corresponding code, removes this character from the source string, and pushes its code on the stack; if the source is empty, $\alpha \rightarrow x$ returns zero.
$x \rightarrow \alpha$ destination converts a character code in \mathbf{X} to the corresponding character and appends it to the destination; the character code is saved in \mathbf{L}.

If \mathbf{X} contains an alphanumeric string, the entire string is appended to the destination.

If \mathbf{X} contains a matrix, $x \rightarrow \alpha$ uses each element in the matrix as a character code or alphanumeric string. $x \rightarrow \alpha$ begins with the $1^{\text {st }}$ element $(1 ; 1)$ and continues row-wise (to the right) until reaching the end of the matrix.
α SL source shifts the source string by \boldsymbol{x} characters to the left, deleting the first \boldsymbol{x} characters from the string.
α SR source shifts the source string by \boldsymbol{x} characters to the right, deleting the last \boldsymbol{x} characters from the string.

You can also compare strings using commands in TEST to create something like a sorted list. A string (A) is called "smaller" than another one (B) if it precedes (B) in sorting.

Nevertheless, do not forget that your WP 43S is mainly designed as a programmable calculator. Please turn overleaf to see what can be performed with such a device.

HP-65 in space with Apollo-Soyuz.

The American astronauts calculated crifical course-correction maneuvers on their MP-65 programmable hand-held during the rendezvous of the U.S. and Russian spacecraft.

Twenty-four minutes before the rendeavous in spece, when the Apollo and Soyus watw 12 miles dpart, the American astronauts corrected thetr course to place their sjacecraft into the same orbit as the Russian cruft. Twelve minutes later, they made a second poritioning maneuver jost prior to traking. and coasted tn to Herkip.
In both canes, the Apolle astronauts made the course-cerrection calculations on their HP-6s Had the on-boand opmptuter falled, the spocecraft not belng in commumication with groand statioms at the time, the HPGS would have been the ottly way to make all the critical calculatiens. Using complex promrams of nearly 1000 steps written by NASA iclentists and pre-recorded on magnetic prograin cards, the astronauts made the calculations asstomatically, quickly, and with ten-digit accuracy.
The HP-6S also served as a backup for Apollo's on-board computer for two earlier manesvers. Its anvwers provided a confidence-boosting doublecheck on the coettiptic (n5 mite) maneuver, and the terminal phase initiation (22 mile) maneuver. which ptaced Apollo on an intercept trajectory with the Russian craft.
Periodically throughout their joint mission, the Apollo astronants alse used the HP-65 to calculate

HEWLETT hp PACKARD

Sales and sarvict from 1 th ollices is 65 countries
An advertisement of 1975 (above) and another one of 198x (overleaf). Com-
hew to point a high-gain antenna precisely at an orbiting satellite to assure the best possible ground cummunlcationic.
The first fully programmable hand-held calculatot, the HP6S antomatically steps through lengthy or repetitive calculations. Thits advanced fastrument refleves the user of the need to remember and axecute the correct sequence of keystrokes, using programs recorded 100 stegs at a time on tiny magnetic cards. Each program consists of any combination of the calculator's $5 t$ key-strole functioms with branching, logical semparison, and conditional skip instructions.
The Hip-65 is priced at 5795°. See it, and the rest of the HP family of professional hand-helds at quality department stores or campus boolstores. Call no0-535-7022 (lin California, too-552-3t62) for the name of the retailer nearest you.
 pare the capabilities of the WP $43 S$ in your hands. Imagine the opportunities.

SECTION 3: PROGRAMMING

Your WP 43S is a powerful keystroke-programmable calculator. If already this statement makes you smile with delight, this section is for you. Else we will bring a smile on your face by mentioning the following facts:

Your WP 43S allows you to store a sequence of keystrokes like you would use them to solve a problem manually; this is to save you time on repetitive calculations (remember the example on pp. 21 ff). Once you have written the keystroke procedure (or routine) for solving a particular problem and recorded it in your WP 43S, you need no longer devote attention to the individual keystrokes that make up the procedure. You can let your WP $43 S$ solve each similar problem for you. And because you can easily check the routine stored, you have more confidence in your final answer since you do not have to worry each time about whether or not you have pressed an incorrect key. Your WP 43S performs the drudgery, leaving your mind free for more creative work.

And it becomes even better: You may use program memory for storing more than one routine only. For telling your WP $43 S$ where such a routine begins and ends, each one is confined by two steps: it starts with LBL (for LaBeL) and typically ends with RTN (for ReTurN) cf. p. 23. These two steps separate it from other routines you may add for other tasks. And LBL puts a label on your routine so you can find and call it easily when you want it to be executed.

You may structure program memory even more: Put two or more routines together and separate them by END steps from other routines or sets of routines. What we find between two END steps we call a program. Programs are the basic building blocks within program memory. Think of the beginning and end of the entire used program memory section containing implicit END steps. ${ }^{147}$ So even with program memory cleared, there will be at least one program within at any time.

Within routines, you may store any sequence of keystrokes (commands, operations, objects). Choose any operation featured - the overwhelming

[^82]majority of them are programmable. The commands in your routine may also access each and every global register, variable, or flag provided there are (almost) no limits. You are the sole and undisputed master of the memory. ${ }^{148}$

Each such routine itself may contain one or more subroutines. Also subroutines start with LBL and typically end with RTN. Actually, subroutines may look exactly like routines: the only difference is that a subroutine is called from another routine, while a main routine is called from the keyboard. Thus we do not need differentiating these two kinds of routines further on.

Enough of theory - press $\mathbb{R T N}$ and switch to PEM via (P/R). The display of your WP $43 S$ will change to something like this:

$\begin{array}{ll} \text { 2018-07-15 } & 14: 31 \\ \text { J000: } & \text { LBL } \\ \text { 'A' } \\ \text { 0001: } & x^{2} \\ \text { 0002: } & \pi \\ 0003: & x \\ 0004: & \text { RTN } \\ 0005: & \text { END } \\ 0006: & \\ \hline 0 \end{array}$		$\mathbb{R} L 4^{\circ}$	5000 64:2	$\overline{7}$	
R-CLR	R-COPY	R-SORT	R-SWAP	LocR	OFF
PSTO	PRCL	$\alpha 0 \mathrm{FF}$	$\alpha 0 \mathrm{~N}$	CNST	PUTK
INPUT	END	ERR	TICKS	PAUSE	P.FN2

[^83]showing the example you entered on pp. 23f (the status bar on top will differ according to your time and settings).

In the section of the screen used for numeric output so far, the first seven steps in program memory are shown. ${ }^{149}$ Labeled steps and END are 'outdented' for visual structuring. The current position of the program pointer (the current step) is highlighted by inversion; the routine the program pointer is currently in is called the current routine; the corresponding program is the current program. The menu section displays the top view of P.FN.

On the other hand, if you switch to PEM for the very first time after unpacking your WP 43S (or after resetting it), the display will look like this instead:

2018-07-15 14:3 D000: END 0001: 0002: 0003: 0004: 0005: $0006:$ R		$\mathbb{R} L 4^{\circ}$	$5000 \text { 64:2 }$	雨	
R-CLR	R-COPY	R-SORT	R-SWAP	LocR	OFF
PSTO	PRCL	$\alpha 0 \mathrm{FF}$	$\alpha 0 \mathrm{~N}$	CNST	PUTK
INPUT	END	ERR	TICKS	PAUSE	P.FN2

Recording a New Routine

Whenever you want to enter a new routine, switch to PEM using (unless you are already in) and start with pressing GTO.C. These keystrokes will bring you to the very end of the used section of program memory, so you can start keying in your new routine right there without interfering with anything coded previously.

Start with LBL giving your routine a unique name (it may be up to seven characters long). Then press the keys as you would do in manual

[^84]problem solving (cf. pp. 21ff). Each new step will be inserted right after the current step. You find

- LLBL for LaBeL_ing a routine or a program step following,
- XEQ for eXECUting or calling a specific routine,
- RTN for ReTurNing to the caller of the current routine,
- GTO for unconditionally Going TO a specified label (i.e. positioning the program pointer to the respective LBL step),
- R/S for Running or Stopping the current routine,
- \triangle and ∇ (or $\bar{E} \triangle$ and $\bar{E} \bar{V}$ if there is a multi-view menu displayed) for browsing program steps,
- \mathbb{P} / R for toggling Program-entry and Run mode, and
- EXIT for EXITing PEM (returning to run mode)
all bottom right on your keyboard as shown on p. 203, continued to the left by the menus for LOOPs, TESTs, FLAGS, and PARTS. Further programming commands (like END mentioned above) are collected in P.FN. Note that $\triangle, \nabla, \bar{E}, \bar{E}, \bar{E}, ~ P / R$, and EXIT are not programmable but useful in programming nevertheless (see also p. 211).

Example (from the HP-15C OH):

Mother's Kitchen, a canning company, wants to package a ready-to-eat spaghetti mix containing three different cylindrical cans: one of spaghetti sauce, one of grated cheese, and one of meatballs. Mother's needs to calculate the base areas, total surface areas, and volumes of the three different cans. It would also like to know, per package, the total base area, surface area, and volume.

Solution:

The program to calculate this information uses these formulas and data:

$$
\begin{aligned}
& \text { base area }=\pi r^{2} \\
& \text { volume }=\text { base area } \times \text { height }=\pi r^{2} h \\
& \text { surface area }=2 \text { base areas }+ \text { side area }=2 \pi r^{2}+2 \pi r h
\end{aligned}
$$

\boldsymbol{r}	\boldsymbol{h}	Base Area	Volume	Surface Area
2.5	8.0	$?$	$?$	$?$
4.0	10.5	$?$	$?$	$?$
4.5	4.0	$?$	$?$	$?$
TOTALS		$?$	$?$	$?$

Method:

1. Enter an r value into the calculator and save it for other calculations. Calculate the base area (πr^{2}), store it for later use, and add the base area to a register which will hold the sum of all base areas.
2. Enter \boldsymbol{h} and calculate the volume ($\pi r^{2} h$). Add it to a register to hold the sum of all volumes.
3. Recall \boldsymbol{r}. Divide the volume by \boldsymbol{r} and multiply by $\mathbf{2}$ to yield the side area. Recall the base area, multiply by 2, and add to the side area to yield the surface area. Sum the surface areas in a register.
Do not enter the actual data while writing the program-just provide for their entry. These values will vary and so will be entered before and/or during each program run.
Key in the following program to solve the above problem (assuming startup default - and we chose named variables instead of registers):

\times

STO 'VOLUME' STO+ ' ΣV^{\prime} VIEW 'VOLUME' Show vol. for 1 s RCL 'r'
1
2
\times
RCL 'BASE'
2
\times
$+$
STO+ ' ΣS^{\prime} RTN

Compute surface
Sum of surfaces
End of routine Leave PEM

Now, let's run the program:

2.5	2.5	$1^{\text {st }}$ can: radius
(DISP FIX 2	2.50	
XEQK	BASE $=19.64$	
8	8	Height
R/S	volume $=157.08$	
	164.93	Surface
4	4	$2^{\text {nd }}$ can: radius
XEQ K	BASE $=50.27$	
10.5	10.5	Height
R/S	vOLUME $=527.79$	
	364.43	Surface
4.5	4.5	$3^{\text {rd }}$ can: radius
XEQ K	BASE $=63.62$	
4	4.	Height
R/S	vOLUME $=254.47$	
	240.33	Surface

133.52 Sum of bases 939.34 Sum of volumes 769.69 Sum of surfaces

The preceding program illustrates the basic techniques of programming. It also shows how data can be manipulated in PEM and run mode by entering, storing, and recalling data (input and output) using ENTERT, STO, RCL, store arithmetic, and programmed I/O. (If you want to run this routine again for another set of cans, remember to clear the variables $\mathbf{\Sigma B}, \boldsymbol{\Sigma} \mathbf{V}$, and $\boldsymbol{\Sigma S}$ before.)

See the next paragraphs and the $I O I$ for comprehensive information about all the commands used in this example and more.

Labels

As mentioned above, each routine or subroutine begins with a LBL step. Structuring program memory and jumping around within is eased by those labels. You may tag labels not only to the first but to any step in your routine - as known from preceding programmable pocket calculators. Your WP $43 S$ allows for specifying a wide variety of alphanumeric labels as described overleaf.

Whenever a step like e.g. GTO labl is encountered in run mode (with labl representing an arbitrary label), your WP $43 S$ will search this label using one of the two following methods:

1. If labl is plain numeric ($\mathbf{0 0} \ldots 99$) or $\mathbf{A} \ldots \mathbf{J}$, it will be searched forward from the current position of the program pointer. When an END step is reached without finding labl so far, the quest will continue right after previous END (so the search will stay in the current program). This is the procedure for local labels. So, local labels are valid in the current program only and may hence be reused in another program.
2. If, however, labl is an alphanumeric label of up to seven characters of arbitrary case (automatically enclosed in ' like 'Ab1'), searching will
start at program step 0000 and cover the entire program memory (first RAM, then flash memory) independent of the current position of the program pointer. This is the procedure for global labels. ${ }^{150}$
So, global labels can be accessed from anywhere in memory, while local labels can only be accessed from within their own program.

Addressing labels, on the other hand, follows the rules given below:

1	User input Echo	(XEQ, (GTO, LLBL, LBL?, SOLVE, $\int, f^{\prime}(x), f^{\prime \prime}(x), \Pi_{n}$, or Σ_{n} OP _ (with TAM set) e.g. GTO		
2	User input Echo	(a) ${ }^{151}$ sets AIM. OP	152 opens indirect addressing. $\mathrm{OP} \rightarrow$	local label 00 ... 99, (A) ... (J), or 1-letter global label (K), (L), © , ..., (Z) OP nn e.g. LBL 07 or LBL C
3	User input Echo	Alphanumeric (global) label (up to 7 chars ${ }^{153}$) OP 'label' e.g. SLV ' $F 1 \mu$ '	Stack or lettered register X, $\mathbf{Y}, \ldots, \mathrm{K}^{\prime}$ OP $\rightarrow x$ e.g. $\int f d \rightarrow$ ST.T	Register number

[^85]SLV ' $F 1 \mu$ ' solves the function given in the routine labeled $\mathbf{F} 1 \mu$ (see pp. 244ff).
$\int f d \rightarrow$ ST.T integrates the function given by PGMINT over the variable whose label is on stack register \mathbf{T} (see pp. 252ff).

XEQ $\rightarrow 44$ calls and executes the routine whose label is found in $\mathbf{R 4 4}$.
Furthermore, GTO provides two special cases: see GTO. and GTO.. in next chapter.

And remember TAM is set during addressing, so the virtual keyboard of your WP 43S will work like this:

Note you can access the local labels A - D, I, and J directly as well as the global labels K , L, T, and $X-Z$. This allows reaching up to six programs with only 2 keystrokes.

And note the changed assignment of the $2^{\text {nd }}$ softkey compared to p. 57. So, instead of keying in a longer global label in alpha input
 mode, it may be easier
to press PROG and select it from the menu popping up containing all global labels defined at the time of execution.

Editing a Routine

Whenever you want to edit (correct, expand, modify, etc.) an existing routine, start with ensuring you are in run mode - then enter GTO labl . This will position the program pointer onto the corresponding LBL step (as explained on p. 208). Then switch to PEM using $(P / R$ and start browsing from this LBL step.

Let's browse the program steps in our example routine: press ∇ four times:

Unless you are next to the very beginning of program memory, the program pointer will always be placed in the middle of the $L C D$ with three steps displayed above and three steps below of it, if available.

Navigating in program memory, you may execute various actions. If, for example, you want to...

- delete a program step, go to said step (i.e. make it the current step by positioning the program pointer on it), then press $\boldsymbol{\uplus}$; it will vanish and the program pointer will move on the step before (note this deletion cannot be undone);
- insert something, go to the program step before, and then press the key(s) to be inserted after it;
- continue browsing forward, press ∇ (or $\overline{\text { E }}$ 和 a multi-view menu is displayed); when reaching the END, browsing will start with the first step again;
- browse backwards, press Δ (or $\overline{\underline{E}}$ if a multi-view menu is displayed); when reaching program top, browsing will stop;
- go to a particular global label (without inserting a GTO step in the current routine), press GTO $\propto \boldsymbol{\alpha}$ label ENTER \boldsymbol{T}; if you want to go to a local label, press GTO nn instead; 1-letter labels can be accessed e.g. via GTO (J).
- start writing a new routine, press GTO ©., then LBL ...

That's almost all. When you are done, press P / R or EXIT to leave $P E M$, returning to run mode again.

Running a Routine from the Keyboard (also for Debugging)

Whenever you want to execute an existing routine, ensure you are in run mode. Then there are three alternatives:

1. For normal execution of the current routine: Press (RTN) to return the program pointer to the first step of the current routine. Then press R / S. This will run the routine, i.e. start automatically executing the following steps until a STOP, a final RTN, or an END will be encountered ${ }^{155}$ where it will halt and display \boldsymbol{x}.
2. For normal execution of a selected routine: ${ }^{156}$ Press XEQ and specify the label of the program you want to execute (or press PROG and pick the label from the menu). This will move the program pointer to the corresponding LBL step (cf. p. 208) and start automatically executing the following steps until a STOP, a final RTN, or an END will be found ${ }^{155}$ where it will halt and display \boldsymbol{x} (cf. pp. 21f).
3. For stepwise execution of a selected routine: Press GTO instead and specify the label of the program you want to execute (or press PROG and pick it from the menu). This will move the program pointer

[^86]to the corresponding LBL step (cf. p. 208) and wait. Each following program step will then be executed one at a time as you press (or
 it will execute it. When you reach the end of the current routine, ∇ will return to its first step. ${ }^{157}$
Following this procedure, you will go through the routine as in normal execution but significantly slower - and you may perform additional checks after each program step. This procedure is especially useful for debugging (i.e. looking for errors in a routine). ${ }^{158}$

If an error occurs while a routine is running, it stops immediately at the step generating said error and throws the corresponding error message (see App. C in the ReM for a list of all error messages provided). Press any key to clear this temporary information; to view the corresponding program step, press (P/R.

Subroutines: Running a Routine from another Routine

XEQ is programmable as well. Whenever a running routine encounters an XEQ, it will search for the associated label as described on p. 208, go to it, and continue program execution with the step after this LBL until it encounters a RTN; this will return the program pointer to the step right after above XEQ where execution will continue. Compare the picture where routine A calls routine B.

You can also nest subroutines - your WP 43S can remember up to eight pending return locations. But all of them will be lost for the current

Main program (top level)

End of program program if you should alter the program pointer while execution of this

[^87]program is stopped; pressing R/S or EV or (\boldsymbol{V}, however, will not cause a loss of return locations.

If you need any of your subroutines elsewhere, you can call it again at no expense of memory. If you want to call a particular subroutine from another program than the one it is defined in, the label at the beginning of this subroutine must be global.

Automatic Testing and Conditional Branching

So far, we were talking about linear programs running straight from beginning (LBL) to end (final RTN or END). Your WP 43S can do more for you: like keystroke-programmable calculators before, it features a set of binary tests checking various calculator states. Most of the binary tests provided are collected in the menu TEST. There are also two tests in BITS, and eight tests on flags stored in FLAGS. Names of binary test commands contain a '?', most times as their last character.

Generally, binary tests will return true or false as temporary information at left of the \mathbf{Z} numeric row if called from the keyboard; if called automatically from a routine instead, they will execute the next program step if the test is true at execution time, else skip that step. So the general rule reads "do if true" (or "skip if false"). ${ }^{159}$ Think of the next step after the test containing a GTO and you see how conditional branching comes into play.

[^88]
Example:

1020:	$x \leq y$?	If this test is true
0021:	GTO 'Join'	then go to the label Join (at step 32);
0022:	$x \geqslant y$	else swap \boldsymbol{x} and \boldsymbol{y}
...		and continue working here.
...		
0032:	'Join'	
0033:	$\ln x$	
...		

Most binary tests operate on \boldsymbol{x}. They can check its data type:

- REAL? tests if \mathbf{X} contains a real object (data type 2, 8, or 11) and executes the next program step if true, else skips it.
- CPX? tests if \mathbf{X} contains a complex object (data type 3 or 9) ...
- MATR? tests if \mathbf{X} contains a matrix (data type 8 or 9) ...
- STRI? tests if \mathbf{X} contains an alpha string (data type 7) ...
- SPEC? tests if \boldsymbol{x} is special (i.e. $\pm \infty$ or 'Not a Number') ...
- NaN? tests if \boldsymbol{x} is 'Not a Number'...

They can check its numeric content:

- INT? tests if \boldsymbol{x} is an integer number (i.e. has no fractional part) ...
- EVEN? tests if \boldsymbol{x} is an integer and even ...
- ODD? tests if \boldsymbol{x} is an integer and odd...
- FP? tests if \boldsymbol{x} has a nonzero fractional part ...
- PRIME? tests if the absolute value of the integer part of \boldsymbol{x} is a prime number and executes the next program step if true, else skips it.

They can compare its numeric content with 0 , 1 , or the content of another source specified (let's call it \boldsymbol{s}, cf. also pp. 57 and 60):

- $\mathrm{x}<$? tests if \boldsymbol{x} is less than \boldsymbol{s} and executes the next program step if true, else skips it.
- $x \leq ?, x=?, x \neq ?, x \geq$?, and $x>$? work in analogy to $x<$?.
- $\quad x \approx$? tests if the rounded values of x and s are equal and executes the next program step if true, else skips it.

They can check its internal structure:

- BC? (or BS?) tests if \mathbf{X} contains a short integer, then checks its bit specified and executes the next program step if said bit is clear (or set), else skips it.
- LEAP? tests if \mathbf{X} contains a date, then extracts the year and tests for a leap year ...
- M.SQR? tests if \mathbf{X} contains a matrix, then checks if it is square ...

General flag tests operate on the flag specified:

- FC? tests this flag and executes the next program step if said flag is clear, else skips it.
- FC?C works as FC? but clears the flag after testing.
- FC?S works as FC? but sets the flag after testing.
- FC?F works as FC? but flips the flag after testing (i.e. clears it if it was set or sets it if it was clear).
- FS? tests that flag and executes the next program step if it is set, else skips it.
- FS?C works as FS? but clears the flag after testing.
- FS?S works as FS? but sets the flag after testing.
- FS?F works as FS? but flips the flag after testing.

Finally, there are special tests:

- LBL? tests for the existence of the label specified, anywhere in program memory.
- TOP? will return true if the program pointer is in the top level routine (cf. the sketch on p. 213).
- KEY? tests if a key was pressed while a routine was running or paused. If no key was pressed in that interval, the next program step after KEY? will be executed; else it will be skipped and the code of said key will be stored in the address specified. Key codes reflect the rows and columns on the keyboard (see the picture here and p. 224 for an application).
- ENTRY? checks the (internal) entry flag. It is set if:
- any character is entered

$\frac{\square}{11}$	$\frac{\square}{12}$	$\frac{\square}{13}$	\square_{14}	\square	\square	
1/x	$y^{\text {x }}$	(TR1)	(1n)	$e^{\text {x }}$	x^{2}	
21	22	23	24	25	26	
STO	RCL	RI	CC	相	[9]	
31	32	33	34	35	36	
$\begin{gathered} \text { ENTERT } \\ \hline 41 \end{gathered}$		$\begin{gathered} x^{2} y \\ 42 \end{gathered}$	$\frac{+1 / 2}{43}$	$\frac{E}{44}$	\pm	
		45				
(1)	7		8		9	XEQ
51	52	53		54	55	
x	4	5		6	(
61	62	63		64	65	
-	1	2		3	7	
71	72	73		74	75	
\pm	0	\square		R/S	EXIT	
81	82	83		84	85	in AIM, or

- any command is accepted for entry (be it via ENTERT, a function key, or R/S with a partial command line).
ENTRY? is useful e.g. after PAUSE.

See the $I O I$ for more information about all the individual commands contained in TEST, also beyond those mentioned above.

There are further commands also featuring a trailing '?' but returning numbers (e.g. WSIZE?) or codes (e.g. KTYP?) instead of true or false - you will find these commands in INFO. Turn to the ReM for information about them.

As mentioned further above, routines end with RTN (typically) and programs with END. Executing a program, both RTN and END work in a very similar way and show only subtle differences: a RTN immediately after a binary test returning false will be skipped - an END will not.

Loops and Counters

The commands DSE, DSL, DSZ, ISE, ISG, and ISZ are for controlling loops in routines. They are all contained in LOOP. Each of them Decrements or Increments a counter in a register or variable as specified and executes or skips the following program step depending on the result. See the picture illustrating ISG (Increment and Skip if Greater), DSE (Decrement and Skip if Equal), ISE, and DSL ($\underline{\text { Decrement and }} \underline{\text { Skip if }} \underline{\underline{L}}$ ess). ${ }^{160}$ ISZ and

LOOP TEST

 0 ? DSZ simply skip if zero. With GTO placed in the skipped step pointing to a label upstream in the same routine you can create loops running until the specified condition is met.

Without such an exit condition you can create an infinite loop such a routine will run until you interrupt it manually by (EXIT or (R/S), or until battery voltage falls below the limit. Note that such loops are allowed by the operating system of your WP 43S.

Example (also for indirect addressing, cf. Section 1):161

Write a little routine to store random numbers in $\mathbf{R 2 5}$ through $\mathbf{R 3 9}$.

Solution:

Initialize the loop counter via 25.039 STO 2 (4).
Reset the program pointer to the start of program memory by RTN. Switch to programming via $(\mathbb{P} / R$ and key in:

[^89]| LBL X | LBL ' X^{\prime} | |
| :---: | :---: | :---: |
| PROB \triangle RAN\# | RAN\# | |
| STO \rightarrow (4 | STO $\rightarrow 24$ | |
| LOOP ISG 24 | ISG 24 | |
| GTO X | GTO ' X ' | if $\boldsymbol{r} \mathbf{2 4} \leq 39$ return to label \mathbf{X} |
| RTN | RTN | else return to run mode. |

EXIT

Start this program by pressing XEQ X. It will stop with the last random number in display. Check the target registers using (RBR.

Example (continued):

Now, write a routine to sort those fifteen stored numbers so the smallest moves to the register with the smallest address.

Solution:

We will use the so-called 'bubble sort' algorithm. Re-initialize the loop counter via 25.039 STO (2) ($\mathbf{r} 24$ was modified by program \mathbf{X} above). Reset the program pointer to the start of program memory by (RTN). Switch to programming via (P/R) and key in:

LBL Y	LBL ' Y '	
P.FN LocR 2 ENT 4	LocR 002	Allocate 2 local registers.
LBL (A)	LBL A	Local label A.
(RCL 24	RCL 24	Put the start pointer r24
STO OO	STO . 00	into local register 00.
LOOP INC X	INC ST.X	Increment the pointer and
STO OOT	STO . 01	store it in local register 01.
FLAGS CF -00	CF . 00	Clear local flag 00.
LBL C	LBL C	
RCL \rightarrow OO	RCL \rightarrow. 00	Recall the contents of the
RCL \rightarrow O 0	RCL $\rightarrow .01$	registers where r. 00 and $\boldsymbol{r} .01$ are pointing to.
TEST $x<? \mathbf{Y}$	$x<$? ST.Y	Is $x<y$?
GTO B	GTO B	Then go to (local) label B
LBL) (D)	LBL D	else..

LOOP ISG 0 O 0	ISG . 00	increment $r .00$ and...
ISG $\square^{(1)}$	ISG . 01	if $\boldsymbol{r} .00 \leq 39$ increment $\boldsymbol{r} .01$ and
GTO (C)	GTO C	if ($\boldsymbol{r} .00>39$ or $\boldsymbol{r} .01 \leq 39$)
ELAGS FS? 0	FS? . 00	else check local flag 00:
GTO (A)	GTO A	if set, return to label A,
RTN	RTN	else stop this routine.
LBL (B)	LBL B	
SFOO	SF . 00	Set local flag 00.
STO \rightarrow O0	STO \rightarrow. 00	Store the smaller value
$x \geqslant y$	x ${ }^{\text {\% }}$	where r. 00 and the greater
STO \rightarrow O 0	STO \rightarrow. 01	where r. 01 is pointing to.
$x \geq 2$	x ${ }^{\text {y }}$	Restore the stack and
GTO D	GTO D	return to label D.

Start the program by pressing XEQ Y. Then check the target registers using (RBR). You will find the smallest value in $\mathbf{R 2 5}$, a greater one in $\mathbf{R 2 6}$, etc., up to the greatest in R39.

Note this program allocates two local registers for its exclusive use (R.00 and R.01). Furthermore, it uses 1 local flag and 4 local labels.

The following alternative sorting program is even shorter (kudos to JeanMarc Baillard for this routine):
LBL ' Z '
SIGN
LBL A
RCL L
RCL L
RCL \rightarrow L
LBL B
RCL \rightarrow ST.Y
X> ? ST.Y
GTO C
XYY
RCL L
+
LBL C
R \downarrow
ISG ST.Y
GTO B
$\times \rightarrow$ L
STO \rightarrow ST.Z
ISG L
GTO A
END

Just start it by keying in 25.039 XEQ Z .

Cf. HP-42S OM, pp. $152-154$.

Programmed User Interaction and Dialogues

A number of commands are provided for controlling the interaction of programs with you. A program shall output some results to you at least, and it may also ask for your input. In the IOI, the behavior of those I/O commands is described if they are entered from the keyboard. Executed by a program, however, they will work differently.

When you start a program by XEQ or R/S, the hour glass \mathbb{Z}^{2} will start flashing in the status bar. While in manual run mode each command executed may change the display immediately, in automatic run mode only INPUT, PAUSE, STOP, or VIEW will update the display, and this display will hold until the next such command is encountered or automatic run mode is left. For programmed I/O, see the following examples:

- Take VIEW for displaying intermediate results. Specify any register or variable you want as source of information - also \mathbf{X} is a valid parameter of VIEW. The name of the source will label the output.

Frequent display updates will slow down program execution, since the anti-flicker logic waits for a complete display refresh cycle before allowing the next update.

- Use

VIEW xyz
PAUSE nn
for displaying output for a defined minimum time interval, specified by PAUSE.

- If you have a printer connected, you may send your program output thereto as well. Turn to pp. 233 ff for more about printing.
- Ask ('prompt') for numeric input employing

VIEW $x y z$
STOP
STO xyz
update display showing the register or variable $\mathbf{x y z}$,
... and wait for user reaction, finished by (R/S).
store what the user entered.

A stop sign 9 will be displayed in the status bar when the program pointer runs on STOP. Whatever you will key in will be put into $\boldsymbol{x y z}$ when you continue program execution by R / \mathbf{S}.

More elegant is using INPUT for this task:
INPUT $x y z$ does the same in just one step.

- Prompt for alphanumeric input using the following steps:

SF ALPHA sets AIM for upcoming input.
RCL $x y z \quad$ displays the register with the message string.
STOP waits for your input. Whatever you key in now is appended to x when you continue by pressing R/S).
CF ALPHA returns to the numeric mode previously set.
STO $x y z \quad$ stores x to wherever you like.
Again, more elegant is using INPUT for this task:
SF ALPHA sets AIM for upcoming input.
INPUT xyz
CF ALPHA returns to the numeric mode previously set.

- If you need to enter values for several variables then the following way is most efficient (although it may look lengthy here):

LBL 'Var.In'
MVAR 'xy1'
MVAR 'xyz'
MVAR 'xy3'
...
VarMNU 'Var.In'
STOP
EXITall
RCL 'xyz'
we will need this label for VarMNU later.
creates a menu for the variables defined immediately after 'Var.In' and shows it. stops for user interaction. exits the menu when program continues. recalls what you need first (it may have been entered in any order).

The label called 'Var.In' here should be located close to the program top. It shall be followed by up to 18 MVAR steps defining your variables required. When the program encounters the step VarMNU, it will setup a menu for these variables and display it. Here, this would look like

> | $x y 1$ | $x y 2$ | $x y 3$ |
| :--- | :--- | :--- |

Now, if you want to

- write a new value into one of the variables displayed, key in the value or calculate it, then press the corresponding softkey. The content of \mathbf{X} will be stored.
- recall the present value of one of the variables displayed, enter (RCL), ${ }^{162}$ then press the corresponding softkey.
- view the present value of one of the variables displayed, enter (VIEW), then press the corresponding softkey. ${ }^{163}$
- exit this menu, press EXIT.
- continue program execution, press R/S.

[^90]- Directly react on particular keys pressed: The key codes returned by KEY? (cf. p. 217) allow for 'real time' response to user input from the keyboard. KEY? takes a register argument (\mathbf{X} is allowed but does not lift the stack) and stores the key most recently pressed during program execution or pause in the register specified. ${ }^{164}$ Although the keyboard is active during program execution it is desirable to display a message and suspend the routine by PAUSE while waiting for user input. Since PAUSE will be terminated early by a key press, simply use PAUSE 99 in a loop to wait for input. Since KEY? acts as a test as well, a typical user input loop may well look like this:

> LBL 'US.in'
> RCL $x y z$
> PAUSE 99
> KEY? 00
> GTO 'US.in'
> LBL? $\rightarrow 00$
> XEQ $\rightarrow 00$
> displays the register with the message string. waits 9.9 s for user input unless a key is pressed. tests for user input and puts the key code in R00. If there was no input then return to the beginning; else: if a label corresponding to the key code exists...

> GTO 'US.in' ... else return to the beginning. ... then call it, ...

Instead of the dumb waiting loop, the routine can do some computations and update the display before the next call to PAUSE and KEY?

To be even more versatile, you can use KTYP? to return the type of the key pressed if its row / column code is given (see the IOP).
If you decide not to handle the key in your program you may feed it back to the main processing loop of the WP 43S with the command PUTK nn . It will cause the program to halt, and the key will be handled as if pressed after the stop. This is especially useful if you want to allow numeric input while waiting for some special keys like the arrows. After execution of the PUTK command you are responsible for letting the routine continue its work by pressing R / \mathbf{S}.

See the $I O I$ for more information about the commands mentioned in this chapter and their parameters.

[^91]
Solving Differential Equations

The following method uses the programmability of your WP 43S for solving ordinary $2^{\text {nd }}$ order differential equations, a type frequently occurring in physics. ${ }^{165}$

In a first example, we will solve the equation of motion for the fall of a parachutist $\frac{d^{2} f}{d t^{2}}=g-b\left(\frac{d f}{d t}\right)^{2}$ with earth acceleration g and b taking care of drag.

Proceeding in small constant time steps Δt, the following set of equations controls the vertical motion of the parachutist (or skydiver):

$$
\begin{aligned}
&\left(\frac{d f}{d t}\right)_{1 / 2}=\left(\frac{d f}{d t}\right)_{0}+\left[g-b\left(\frac{d f}{d t}\right)_{0}^{2}\right] \times \frac{\Delta t}{2} \\
& f_{1}=f_{0}+\left(\frac{d f}{d t}\right)_{1 / 2} \text { and }\left(\frac{d f}{d t}\right)_{3 / 2}=\left(\frac{d f}{d t}\right)_{1 / 2}+\left[g-b\left(\frac{d f}{d t}\right)_{1 / 2}^{2}\right] \times \Delta t,{ }^{166} \\
& f_{2}=f_{1}+\left(\frac{d f}{d t}\right)_{3 / 2} \Delta t \text { etc. }
\end{aligned}
$$

Assume start height at time zero $(t=0)$ is 1000 m and vertical velocity is zero (i.e. $f(t=0)=f\left(t_{0}\right)=f_{0}=1000$ and $\left.\left(\frac{d f}{d t}\right)_{0}=0\right)$. Using named variables $\Delta \boldsymbol{t}, \boldsymbol{b}, \boldsymbol{t}, \boldsymbol{f}$, and $\boldsymbol{d f} / \boldsymbol{d t}$, the following routine will compute height and velocity of the parachutist as functions of time:

LBL 'PFall'

.5
STO ' Δt '
.003
sто 'b'
1000 start height
initialize all variables used

STO 'f'

[^92]| ```0 STO 't' STO 'df/dt'``` | start time and velocity end of initialization |
| :---: | :---: |
| LBL 01
 \# g_{\oplus} RCL 'b' RCL 'df/dt' x^{2} | begin of time loop take g_{\oplus} out of $\underline{\mathrm{CONST}}$ |
| \times | $\mathbf{b} \times(\mathbf{d f} / \mathbf{d t})^{2}$ |
| - | $\mathbf{g}-\mathbf{b} \times(\mathbf{d f} / \mathbf{d} \mathbf{t})^{2}$ |
| $\begin{array}{ll} \mathrm{RCL} & \text { 't' } \\ x>0 & ? \\ \text { GTO } & 02 \end{array}$ | check time - it will be zero in $1^{\text {st }}$ run from $2^{\text {nd }}$ run on go to local label 02 |
| DROP | $1^{\text {st }}$ run only: forget t |
| 2 | $1^{\text {st }}$ run only: |
| 1 | $1^{\text {st }}$ run only: $\left[\mathbf{g}-\mathrm{b} \times(\mathrm{df} / \mathrm{dt})^{2}\right] / 2$ |
| GTO 03 | $1^{\text {st }}$ run only: go to common part |
| $\begin{aligned} & \text { LBL } 02 \\ & \text { DROP } \end{aligned}$ | from $2^{\text {nd }}$ run on: from $2^{\text {nd }}$ run on: forget t |
| LBL 03 | common part of time loop resumes here again |
| RCLx ' $\Delta \mathrm{t}^{\prime}$ | $\left[\mathbf{g}-\mathbf{b} \times(\mathbf{d} \mathbf{f} / \mathbf{d} \mathbf{t})^{2}\right] \times \mathbf{\Delta t}$ (or half of it in $1^{\text {st }}$ run) |
| STO+ 'df/dt' | calculate the new df/dt |
| RCL ' $\Delta \mathrm{t}$ ' | |
| STO+ 't' | calculate the new time |
| RCLx 'df/dt' | $\mathbf{d f} / \mathbf{d t} \times \Delta t$ |
| STO- 'f' | calculate the new f |
| VIEW ' t '
 STOP | display new time for plotting next |
| STOP | data points |
| VIEW 'f' | display new height $(t ; f)$ |
| STOP | |
| VIEW 'df/dt' | display new velocity (t; df/dt). |
| STOP | |
| GTO 01 | end of time loop, return for next run through it |
| END | |

Now, leave PEM and start program execution via XEQ PROG PFall plotting the points calculated will result in a diagram like the one overleaf. Height decreases following a parabola over time in the beginning but becomes linear later. Note the vertical velocity does not increase much
anymore after some 12 s here, approaching some $57 \mathrm{~m} / \mathrm{s}$ while skydiving with closed parachute.

For comparison: the velocity limit with an open parachute ($b=0.3$) will be $<6 \mathrm{~m} / \mathrm{s}$, so the vertical velocity at touchdown will be like falling from a wall 1.65 m high.

In a second example, we will demonstrate solving a 2D problem like e.g. finding the orbit of a satellite in the gravitational field of the earth. Here we have a pair of coupled differential equations. This problem is solved as follows:

$$
\begin{array}{cr}
\left(\frac{d x}{d t}\right)_{1 / 2} \approx\left(\frac{d x}{d t}\right)_{0}+K_{x} \frac{\Delta t}{2} & \left(\frac{d y}{d t}\right)_{1 / 2} \approx\left(\frac{d y}{d t}\right)_{0}+K_{y} \\
\left(\frac{d x}{d t}\right)_{i+\frac{1}{2}} \approx\left(\frac{d x}{d t}\right)_{i-\frac{1}{2}}+K_{x} \Delta t & \left(\frac{d y}{d t}\right)_{i+\frac{1}{2}} \approx\left(\frac{d y}{d t}\right)_{i-\frac{1}{2}}+K^{2} \\
x_{i+1} \approx x_{i}+\left(\frac{d x}{d t}\right)_{i+1 / 2} \Delta t & y_{i+1} \approx y_{i}+\left(\frac{d y}{d t}\right)_{i+1 / 2} \\
\text { with }-\frac{G M}{\left(x^{2}+y^{2}\right)^{3 / 2}} x=K_{x} \text { and }-\frac{G M}{\left(x^{2}+y^{2}\right)^{3 / 2}} y=K_{y} .
\end{array}
$$

So, here is some crosstalk (a.k.a. coupling) between \boldsymbol{x} and \boldsymbol{y}. Nevertheless, proceeding like we did in the first example above, the following routine will compute the coordinates \boldsymbol{x} and \boldsymbol{y} of the satellite as functions of time. For ease of handling in a first calculation, we set $G M=1=a$
and the start values $x_{0}=1,\left(\frac{d x}{d t}\right)_{0}=0, y_{0}=0,\left(\frac{d y}{d t}\right)_{0}=1$. These 'variable' start values shall be entered using INPUT here (cf. p. 222):

LBL 'Satell' INPUT ' x ' INPUT ' y ' INPUT ' $\mathrm{dx} / \mathrm{dt}$ ' INPUT 'dy/dt'
. 1
STO ' $\Delta \mathrm{t}$ '
1
STO 'a'
0
STO ' t '
LBL 01
RCL ' ' y ',
RCL ' y '
x^{2}
RCL ' x '
x^{2}
$+$
-1.5
y^{*}
RCLx 'a'
\times
RCL L
RCL x ' x '
RCL ' t '
$x>0$?
GTO 02
DROP
2
1
$x \geqslant y$
2
1
x *
GTO 03
LBL 02
DROP
start of variable initialization
initialize the remaining 'fixed' start values
(for earth satellites, take GM out of CONST instead)
start at time zero
end of initialization
begin of time loop
y^{2}
$y^{2}+x^{2}$
$\left(y^{2}+x^{2}\right)^{-1.5}$
$a\left(y^{2}+x^{2}\right)^{-1.5}$
y a $\left(y^{2}+x^{2}\right)^{-1.5}=-K_{y}$
$\mathrm{a}\left(\mathrm{y}^{2}+\mathrm{x}^{2}\right)^{-1.5}$
$\mathrm{xa}\left(\mathrm{y}^{2}+\mathrm{x}^{2}\right)^{-1.5}=-\mathrm{K}_{\mathrm{x}}$. Stack is $\left[-\mathrm{K}_{\mathrm{x}},-\mathrm{K}_{\mathrm{y}}, \ldots\right]$ now.
check time - it will be zero in $1^{\text {st }}$ run
from $2^{\text {nd }}$ run on go to local label 02
$1^{\text {st }}$ run only: forget t
$1^{\text {st }}$ run only:
$1^{\text {st }}$ run only: $-\mathrm{K}_{\mathrm{x}} / 2$
$1^{\text {st }}$ run only: stack is $\left[-K_{y},-K_{x} / 2, \ldots\right]$ after x 业 y
$1^{\text {st }}$ run only:
$1^{\text {st }}$ run only: $-\mathrm{K}_{\mathrm{y}} / 2$
$1^{\text {st }}$ run only: stack is $\left[-K_{x} / 2,-K_{y} / 2, \ldots\right]$ after $x \geqslant y$
$1^{\text {st }}$ run only: go to common part of time loop
from $2^{\text {nd }}$ run on:
from $2^{\text {nd }}$ run on: forget t

LBL 03
RCLx ' $\Delta \mathrm{t}$ '
STO- ' $\mathrm{dx} / \mathrm{dt}$ '
DROP
RCLx ' $\Delta \mathrm{t}$ '
STO- 'dy/dt'
RCL ' $\Delta \mathrm{t}$ '
STO+ ' t '
RCL \times ' $\mathrm{dx} / \mathrm{dt}$ '
STO+ ' x '
VIEW ' x '
STOP
RCL ' $\Delta \mathrm{t}$ '
RCL× 'dy/dt'
STO+ 'y'
VIEW ' y '
STOP
GTO 01

END

Plotting the points calculated for these start values will result in a perfect circle as shown by the blue symbols in the diagram - taking 64 time steps for one orbit. We added some examples with slightly different start velocities for comparison. The green elliptical orbit takes $46 \Delta t$ only, the dark red one 116. Green and blue marks in the other curves highlight the positions after 46 and $64 \Delta t$ for comparison.

The innermost red ellipse starts with velocity 1 again but directed 45° inwards ('NW'). Note this curve does not close due
$d y / d t \times \Delta t$
calculate the new \mathbf{y} display also the new \mathbf{y} for plotting the new point (\mathbf{x}, \mathbf{y})
end of time loop, return for next run through it
$d x / d t \times \Delta t$
calculate the new \mathbf{x}
display the new \mathbf{x} for plotting
to the perigee speed being too high for the time step Δt chosen. We recommend watching the limits of such numeric models always.

For a descent to a planet or a moon, you can introduce a decelerating force which may even depend on height over ground. Your imagination is the limit - and your ability in mathematical modeling.

The Programmable Menu (MENU)

Your WP $43 S$ has a programmable menu which is used to cause program branching. By this, you can create menu-driven programs. The MENU function selects the programmable menu. The menu is displayed when the program stops. You can define each softkey in this menu so that when this key is pressed, a particular GTO or XEQ instruction will be executed. You can even re-define $\boldsymbol{\Delta}, \boldsymbol{\nabla}$, and EXIT. ${ }^{167}$

To define a softkey in the programmable menu:

1. Store a string of up to seven characters in register \mathbf{K}. This is the text that will appear in the menu space for the softkey specified (If space does not suffice, only the first characters will be displayed). \mathbf{K} is not used when defining $\boldsymbol{\Delta}, \nabla$, or EXIT.
2. Call KEYG (i.e. on key, go to)
or KEYX (i.e. on key, execute). You find them in P.FN.
3. Specify which key you want to define (the menu view changes):
a. Press one of the 18 softkeys available, $\boldsymbol{\Delta}, \boldsymbol{\nabla}$, or EXIT].
b. Alternatively, enter the respective key number, 1 through 21 (unshifted leftmost softkey carries \#1, g-shifted leftmost \#13).

[^93]4. Specify a program label using one of the following three methods (the menu view changes to the one shown on p. 210):
a. Select an existing global label by pressing the corresponding softkey in PROG.
b. Key in a global label character by character using AIM.
c. Key in a two-digit local label.

Repeat this procedure for each softkey in the programmable menu you want to define. The new definition replaces any previous definition that may exist for that softkey.

To display the programmable menu:

Execute the MENU function, e.g. by entering P.FN P.FN2 MENU.

To clear all softkey definitions in the programmable menu:

Call CLMENU (clear the programmable menu), e.g. by entering CLR CLMENU.

Basic Kinds of Program Steps

You have seen various program steps so far. Each step takes a single place in program memory, and each step is numbered automatically. Basically, the contents of these steps fall into four categories - one program step may contain...

- a global or local label (like LBL 'Join' or LBL 07 above) or
- a complete command (like - or $\mathbf{y}^{\mathbf{x}}$ or STOx \rightarrow 'Prd2') or
- an entire alpha string (a.k.a. an alphanumeric constant, like "This is a text." ; such a text will be automatically stored in K) or
- an entire number (a.k.a. a numeric constant, like -1.902×10^{-16} or 12345_{16} or \# λ_{c}; such a constant will be automatically stored in X).

Since each constant takes one step, there is no need for separating them by ENTER \uparrow in a routine.

Example:

Think of calculating $12.3+45.67$ in a routine.
Then pressing 12.3 ENTERT $\leftrightarrows 45.67 \oplus$ will result in a program snippet

```
12.3
45.67
+
```

which will do for returning 57.97. The missing ENTER^ saves two bytes of program space and makes the routine a tiny bit faster. You will achieve the same by 12.3 EXIT $45.67 \oplus$. It may not be really important here but you should know.

Constant vectors and matrices cannot be entered directly in a program; though you can store them in registers or variables and manipulate these stored items (as described in Section 2) in routines as well.

Program steps may require two or more bytes of memory. We think you will hardly ever run out of program space (but you may, of course: if you do while trying to enter a new program step, you will read an error message RaM is full ; see App. B of the ReM for ways to escape from such a situation).

Deleting Programs

To delete some steps of a program, proceed as explained on pp. 211f. Repeat as often as necessary.

To delete an entire program, move the program pointer into this program (e.g. by entering GTO and picking the label of this program) and then press CLR CLP ENTER \mathbb{T}. Note CLP will remove the entire program from memory, not only the routine the program pointer is in. And CLP cannot be undone! The space freed by CLP will be added to the pool of free space your WP $43 S$ features.

To delete all programs stored in RAM, press CLR CLPall and confirm. Thereafter, program memory will be completely wiped out. Note that also CLPALL cannot be undone.

Serial Input and Output of Data and Programs

Xxx

Local Data

After some time with your WP 43S you will have a number of routines stored, so keeping track of their resource requirements may become a challenge. Most modern programming languages take care of this by declaring local variables, i.e. memory space allocated from general data memory and accessible for the current routine only; when the routine is finished, the respective memory is released. On your WP 43S, mainly registers are used for data storage - so we offer local registers to you allocated to your routines exclusively.

Example:

Let's assume you write a routine labeled P1 and need five registers for your computations therein. Then all you have to do is just enter PEM, go into the routine P1, and enter

$$
\text { P.FN LOCR } 5 \text { ENTERT }
$$

specifying that you want five local registers. Thereafter, you can access these registers by using local addresses .00 ... 04 throughout P1.

Now, if you call another routine P2 from P1, also P2 may contain a step LOCR, requesting local registers again. These will also carry local register addresses .00 etc., but the local register .00 of P2 will be physically different from the local register $\mathbf{. 0 0}$ of $\mathbf{P 1}$, so no interference will occur. As soon as the return step is executed, the local registers of the corresponding routine are released and the space they took is returned to the pool of free memory.

In addition, you get sixteen local user flags as soon as you request at least one local register.

Local data holding allows for recursive programs, since every time such a routine is called again it will allocate a new set of local registers and user flags being different from the ones it got before. See the commands LOCR, LOCR?, MEM?, and POPLR in the IOI; and look up App. B of the ReM for more information, also about the limitations applying to local data.

Flash Memory (FM)

In addition to the RAM provided, your WP 43S allows you to access FM for voltage-fail-safe storage of user programs and data. The first section of $F M$ is a backup region, holding the image of the entire RAM (i.e. user program memory, registers, and WP $43 S$ states) as soon as you have executed a SAVE. The remaining part of $F M$ is for programs only.

Global labels in FM can be called using XEQ like in RAM. This allows creating program libraries in FM. Use CATALOG'PROGS'FLASH to see the global labels already defined in FM.

FM is ideal for backups or other relatively long-living data, but shall not be used for repeated temporary storage like in programmed loops. ${ }^{16}$ Conversely, registers and standard user program memory residing in RAM are designed for data changing frequently but will not hold data with the batteries removed for longer than a few minutes. So both RAM and FM have their specific advantages and disadvantages you should take into account for optimum benefit and longevity of your WP 43S.

[^94]
SECTION 4: ADVANCED PROBLEM SOLVING

There are some powerful commands provided for computing programmable sums and products, for solving equations, for computing ADV EQN
1
1 definite integrals as well as $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives. All are contained in ADV or EQN. Pressing ADV in run mode results in

The commands Σ, Π, SLVQ, SOLVE, $\int, \mathrm{f}^{\prime}(\mathrm{x})$, and $\mathrm{f}^{\prime \prime}(\mathrm{x})$ are explained below in this order. All these commands may also be programmed. Integrating, deriving, and solving equations interactively may be reached through EQN. See below for details and examples.

Programmable Sums

The command Σ is called with a loop control number in \mathbf{X} and a label trailing the command. Said loop control number follows the format ccccc.fffii (as it does in DSE etc. mentioned above).

In its heart, Σ then works like this:

1. It sets the sum to 0 initially.
2. It fills all stack registers with ccccc and calls the routine specified by the label. That routine returns a summand in \mathbf{X}.
3. It adds this summand to said sum.
4. It decrements ccccc by ii; if $\operatorname{ccccc} \geq f f f$ then Σ goes back to step 2, else it returns the final sum in \mathbf{X}.
If $i i=0, \operatorname{cccc}$ will be decremented by $\mathbf{1}$ in each loop.

Example:

Compute $\sum_{k=0}^{100} \sqrt{k}$

Solution:

1. Write a little program for the internal calculation of the summands:

LBL ' $\Sigma S Q R T$ '
 \sqrt{x}
 RTN

2. Enter

100
ADV $\Sigma_{n} \propto g S$ SRTT ENTERT
(or pick Σ SQRT from PROG, cf. p. 210)
and get $\quad 671.4629$ returned if FIX 4 is set.
Σ deliberately sums from the last term to the first, on the assumption that summations will often be of convergent series and this summing order should generally increase accuracy.

Programmable Products

The command Π is called with a loop control number in \mathbf{X} and a label trailing the command (like for the command Σ).

In its heart, Π works almost as Σ :

1. It sets the product to $\mathbf{1}$ initially.
2. It fills all stack registers with ccccc and calls the routine specified by the label. That routine returns a factor in \mathbf{X}.
3. It multiplies this factor with said product.
4. It decrements ccccc by ii; if $\operatorname{ccccc} \geq f f f$ then Π goes back to step 2, else it returns the final product in \mathbf{X}.

If $i i=0, \operatorname{ccccc}$ will be decremented by $\mathbf{1}$ in each loop.

Example:

Compute $\prod_{k=1}^{50} \frac{1}{\sqrt{k}}$

Solution:

1. Write a little program for the internal calculation of the factors:

LBL 'PROD'
\sqrt{x}
$1 / x$
RTN
2. Enter
50.001

ADV $\mathrm{n}_{\mathrm{n}} \quad \propto \mathrm{P}$ (R)D ENTERT
(or pick PROD from PROG, cf. p. 210)
and get $\quad 5.734 \times 10^{-33}$ returned if SCl 3 is set.

Solving Quadratic Equations

The command SLVQ finds the real and complex roots of a quadratic equation $a x^{2}+b x+c=0$ with its real parameters on the input stack $[c, b, a, \ldots]$:

- If $r:=b^{2}-4 a c \geq 0, \mathrm{SLVQ}$ returns the 2 real roots $-\frac{b \pm \sqrt{r}}{2 a}$ in \mathbf{Y} and \mathbf{X}. If called in a routine, the step after SLVQ will be executed then.
- Else, SLVQ returns the $1^{\text {st }}$ complex root in \mathbf{X} and the $2^{\text {nd }}$ in \mathbf{Y} (the complex conjugate of the $1^{\text {st }}$). If called in a routine, the step after SLVQ will be skipped then.

So actually, SLVQ tests for real roots at its very end. In either case, SLVQ returns \boldsymbol{r} in \mathbf{Z}. Higher stack registers are kept unchanged. \mathbf{L} will contain equation parameter \boldsymbol{c}.

Example:

Find the roots of $4 x^{2}-3 x-2=0$.

Solution:

4 ENTERT 3 + + ENTERT 2 +
ADV SLVQ returns (with FIX 4 chosen) $\boldsymbol{x}=\mathbf{1 . 1 7 5 4} \mathbf{4}, \boldsymbol{y}=\mathbf{- 0 . 4 2 5 4 ,}$ $z=41.0000$. Since z is positive, x and y are the two real roots of this equation here.

Check:

Store \boldsymbol{x} in \mathbf{J} and \boldsymbol{y} in \mathbf{K}. Then enter

$$
\begin{aligned}
& \text { RCLIJ FIILL } 4 \times 3-\times 2-\text { returning } 2.0000 \times 10^{-33} \text { and } \\
& \text { RCL K (FILL } 4 \times 3-\mathbf{x} 2 \square \text { returning } 0.0000 \text {. }
\end{aligned}
$$

Remember your WP 43S calculates with 34 digits precision, so any result within $\pm 3 \cdot 10^{-33}$ is equal to zero in this matter.

General Equations

The menu EQN lets you store, select, and edit arbitrary equations; you may use each such equation for

- solving it interactively for any variable it contains, for
- integrating and
- deriving.

The number of equations you can store and the number of variables used in each equation are limited only by the amount of free memory available.

Example:

Press EQN. If there are no equations in memory yet, your WP $43 S$ will return:

Press NEW to enter a new equation. You will get immediately:

with alpha input mode turned on (cf. pp. 189ff). Enter your equation now, e.g.

$$
\nabla \text { height } \equiv \mathbf{v} \mathbb{R} \downarrow \times \text { time }-g_{\oplus}(\square) \times \text { time } \wedge\left(2{ }^{169}\right.
$$

for the height of e.g. a ball thrown vertically upwards with velocity $\boldsymbol{v}_{\boldsymbol{0}}$. Press ENTERT for closing the Equation Editor and see: ${ }^{170}$

$$
\left.\begin{aligned}
& \text { height }=v_{0} \cdot \text { time }-g_{\oplus} / 2 \cdot \text { time }^{2} \\
& \begin{array}{|c|c|c|c|c|c|}
\hline \text { DELETE }
\end{array} \\
& \hline \text { NEW } \\
& \text { EDIT } \\
& f^{\prime \prime} \\
& f^{\prime} \\
& \hline f
\end{aligned} \right\rvert\, \text { Solver } \begin{aligned}
& \text { (f }
\end{aligned}
$$

You will get such a display whenever one or more equations are stored. The equation shown is called the current equation. (A dashed line will show up when there are more equations; to select another one as the current equation, press $\boldsymbol{\Delta}$ or until the requested equation appears.)

Pressing EDIT opens the Equation Editor for the current equation:

You may modify this equation at any position by moving the edit cursor to the location behind the character(s) to be corrected and pressing followed by the new character(s) to be inserted here.

For labeling this equation, move the cursor left to its very begin using \leftarrow, and key in:

[^95]```
F]|(R)EE| (F]|
```



ENTER $\uparrow$


ENTERT closes the Equation Editor storing the modifications you made. Note editing an equation clears all its variables.

If an equation become wider than the display ellipses will be displayed at its end(s); then use $\leftrightarrows$ and $\rightarrow$ in the Equation Editor for scrolling.

## The Interactive Solver for Arbitrary Equations

The built-in Solver application of your WP 43S is a special root finder that enables you to solve an equation for any of its variables. It allows for solving for an arbitrary unknown as well as for finding the root(s) of an arbitrary equation. ${ }^{171}$

Press EQN, make the equation you want to solve the current equation (see previous chapter), and press Solver. Your WP 43S will check this equation for syntax errors (missing operators, misspelled functions, illegal variable names, etc.). It will then return a menu of all applicable variables, like the
 one in our example:

[^96]Note your WP $43 S$ knows $g_{\oplus}$ is a constant contained in CONST. Now you can enter values for any variables you know by pressing the respective softkeys, e.g. $\mathbf{- 5 0}$ height $\mathbf{2 0} \mathrm{v}_{0}$ (corresponding to 50 m below start height and a velocity of $20 \mathrm{~m} / \mathrm{s}$ upwards at time zero), until only one variable remains unknown. Optionally, enter one or two initial guesses for the unknown like 5 time 10 time. Set the display format and precision unless done before:

$$
\text { DISP FIX } 01 .
$$

Now, press the softkey for the unknown time once more (but now without any numeric input heading), and your WP $43 S$ will solve the equation for this variable and return its value in $\mathbf{X}$ :
time $=5.8$
FreeFal: height $=\mathrm{v}_{0} \cdot$ time $-\mathrm{g}_{\oplus} / 2 \cdot$ time $^{2}$
corresponding to $5.8 s$ until your ball passes said point. Note entering the known values and guesses disabled automatic stack lifting.

## Another example (from the HP-27S OM):

Carbon-14 Dating. Wood on the outer surface of a giant sequoia tree exchanges carbon with its environment. The radioactivity of this wood is 15.3 counts per minute per gram of carbon. A sample of wood from the center of the tree yields 10.9 counts per minute per gram of carbon. The rate constant for the radioactive form of carbon, ${ }^{14} \mathrm{C}$, is $1.20 \times 10^{-4}$. How old is the tree? What is the half-life of ${ }^{14} \mathrm{C}$ ?

Solution (assuming you continue directly after previous example):
Exit the current equation and enter a new one for radioactive decay:
EXIT

| FreeFal: height $=v_{0} \cdot$ time $-g_{\oplus} / 2 \cdot$ time $^{2}$ |
| :--- |
| DELETE |
| NEW | EDIT

NEW


## Solver


1.2 Eth 4 rate 15.3 no $10.9 n$ time

$$
\text { time }=2825.8
$$

This is the computed age of this tree in years.
Now, calculate the half-life of ${ }^{14} \mathrm{C}$, that is the time required for half the material present to decay:
2 no 1 ntime

$$
\text { time }=5776.2
$$

Good guess! Meanwhile, half-life of ${ }^{14} \mathrm{C}$ is known to be $5730 \pm 40$ years.

One more example:

Find the roots of $7 x^{3}+5 x^{2}-3 x-2=0$.

## Solution:

1. Enter the equation as demonstrated above.
2. Make this equation the current equation and press Solver. You will see:

3. Optionally enter one or two initial guesses for the unknown like $0 \times 1 \times x$.
4. Set the display format and precision

## DISP SCI 3

5. Press the softkey $\mathbf{x}$ for the unknown once more (but now without any numeric input heading), and your WP $43 S$ will solve the equation for this variable and return its value in $\mathbf{X}$ :

6. If you want to crosscheck you can enter RCL $\mathbf{x}$ Calc returning
confirming the result of the Solver. Slightly greater $\boldsymbol{x}$-values, e.g. $.65 \times$ Calc, return positive values for $\boldsymbol{g}(\boldsymbol{x})$, while slightly smaller values, e.g.
.64 Calc, return negative values for $\boldsymbol{g}(\boldsymbol{x})$.
7. There may be one or two more roots:
a. Enter two new initial guesses for the unknown like $-\mathbf{2} \mathbf{x} \mathbf{0}$. Press the softkey for the unknown once more, and you will get:

$$
x=-8.064 \times 10^{-1}
$$

Slightly greater $\boldsymbol{x}$-values, e.g. $\mathbf{- 0 . 8}$, return positive values for $\boldsymbol{g}(\boldsymbol{x})$, slightly smaller values, e.g. $\mathbf{- 0 . 8 1}$, return negative values for $\boldsymbol{g}(\boldsymbol{x})$. Thus, there must be one more root between the two roots found.
b. Enter two new initial guesses for the unknown like $-\mathbf{7} \mathbf{x} . \mathbf{x}$. Press the softkey for $\boldsymbol{x}$ once more and you will get:

$$
x=-5.510 \times 10^{-1}
$$

Note that even a polynomial of same grade deviating just a bit (e.g. $7 x^{3}+$ $\left.4.5 x^{2}-3 x-2=0\right)$ may feature one real root only.

Look into Section 5 of the HP-27S OM for more about interactive solving of equations.

## The Interactive Solver for Expressions Stored in Programs

Instead of operating on an equation as described in previous chapters, your WP $43 S$ can also solve an expression $f$ stored in a program. Then, the procedure is as follows:

1. Write a program for $\boldsymbol{f}$.
2. Press ADV SOLVE.
3. Enter values for all known variables of $\boldsymbol{f}$.
4. Let your WP 43S compute the unknown variable.
5. Leave the Solver.

We will go through this step by step:

1. Write a program for $\boldsymbol{f}$.

- It must begin with a global label.
- It must define all variables required for calculating $\boldsymbol{f}$.
- It shall be as efficient as possible since it is going to be executed many times.

For interactive solving, proceeding as follows is recommended for this program: From its $2^{\text {nd }}$ step on, menu variables shall be declared using MVAR instructions (cf. p. 222) covering all variables of $\boldsymbol{f}$. The subsequent body of the routine shall evaluate $f$ recalling these variables. For a Solver routine, the original expression shall be rewritten in a way that $f=0$ is fulfilled.

## Example:

Let's return to the equation we dealt with in the last two chapters:

This is easily rewritten:

$$
\text { height }=v_{0} \cdot \text { time }-g_{\oplus} / 2 \cdot \text { time }^{2}
$$

$$
v_{0} \cdot \text { time }-g_{\oplus} / 2 \cdot \text { time }^{2}-\text { height }=0
$$

So the required program might look like this:

| LBL 'FreeF' |  |
| :--- | :--- |
| MVAR 'height' |  |
| MVAR ' $v_{0}$ ' |  |
| MVAR 'time' |  |
| \# $g_{\oplus}$ |  |
| -2 | take this out of CONST. |
|  |  |
| RCLx 'time' |  |
| RCL+ ' $v_{0}$ ' |  |
| RCLx 'time' |  |
| RCL- 'height' | now we have got $\boldsymbol{f}$. |
| RTN |  |

2. Press ADV. You will see:


Choose SOLVE. You will get (as expected from p. 210):

Press PROG and pick the proper program for $\boldsymbol{f}$ (here FreeF). You will get the corresponding menu of variables, i.e. here:
height $\mathrm{v}_{0} \quad$ time
3. Enter values for all known variables of $\boldsymbol{f}$ and (optionally) one or two guesses for the unknown.

In our example, we may just take the values we know from above:
-50 height
$20 v_{0}$
5 time 10 time
4. Let your WP 43S compute the unknown variable.

Press time once more but without a heading numeric entry. Your $W P 43 S$ will return time $=5.8$ as you have expected (cf. p. 241).
5. Leave the Solver.

Pressing EXIT will return to the top view of ADV.

| f"(x) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SOLVE | SLVQ | $\mathrm{f}^{\prime}(\mathrm{x})$ | $\mathrm{n}_{\mathrm{n}}$ | $\Sigma_{n}$ | $\int \mathrm{fdx}$ |

## Using the Solver in a Program

For using the Solver in a programs, it has to be told what you did tell it in the examples of previous chapters. Thus, when you press ADV in PEM, you will see a slightly different menu than the one you have seen above:


PGMSLV is for specifying the program calculating $\boldsymbol{f}$. It must be found in your program before SOLVE is called.

Furthermore, define the necessary variables in advance and load them with the known values using STO. Eventually, the unknown variable must be specified calling SOLVE.

## Example:

Let's return to the equation we dealt with in the last chapters. So the required program for $\boldsymbol{f}$ might look like this (like the previous program but without the MVAR steps):

LBL 'FreeFp'

| \# $g_{\oplus}$ | take this out of CONST. |
| :--- | :--- |
| -2 |  |
| $l$ |  |
| RCLx 'time' |  |
| RCL+ ' $v_{0}$ ' |  |
| RCLx 'time' |  |
| RCL- 'height' | now we have got $\boldsymbol{f}$. |

The program one level above could contain a section looking like this:

```
..
PGMSLV 'FreeFp'
SOLVE 'time'
VIEW 'time'
...
```

specify the function to be solved.
solve for time.
display the solution.

Before starting this program (let's call it C), fill the variables of the equation to be solved, e.g. with the start values known from above:

$$
\begin{aligned}
& -50 \text { STO height } \\
& 20 \text { STO } v_{0}
\end{aligned}
$$

Option: Fill the unknown with a $1^{\text {st }}$ guess, e.g. with 5 as we specified above ( $\mathrm{a} 2^{\text {nd }}$ guess will be taken from $\mathbf{X}$ ):

5 STO time
Call C via XEQCC and you will see time $=5.8$ (as expected from p. 241).

Eventually turn to Part 3, Section 12 of the HP-42S OM. Refer to the HP-34C OHPG (Section 8 and App. A) or the HP-15C OH (Section 13 and $A p p . D$ ) for more information about automatic root finding and some caveats.

## Numeric Integration of Equations

The command $\int$ lets your WP $43 S$ compute definite integrals numerically.

## Example:

Let's compute the Bessel function of $1^{\text {st }}$ kind and order 0 . This function can be written as

$$
J_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin t) d t
$$



## Solution:

This is calculated in radians, thus enter MODE RAD and press EQN) :


This function is not in the equation list yet. ${ }^{172}$ So, press NEW and start entering the integrand:

[^97]

Continue with COS ( ) $\leftarrow X \times \operatorname{XDTN}() \leftarrow T$


Close and store this function by pressing ENTERT. The menu will return to the previous one.

Then press $\int \mathrm{f}$. Your WP 43 will check the current equation (cf. pp. 238 ff ) for syntax errors (missing operators, misspelled functions, illegal variable names, etc.). ${ }^{173}$ It will then return a menu of all applicable variables:


You can enter values for any variables (i.e. integration constants) you already know by pressing the respective softkeys now, e.g.

2 x
(For recalling such an integration constant, just press RCL VAR before the respective softkey.)

Then select the variable of integration by simply pressing $\dagger$ here (there must not be any numeric input heading $\oplus$ ). The menu will change:


[^98]Even your WP 43S cannot compute an integral exactly, it approximates its value numerically. The accuracy of this approximation depends on the accuracy of the integrand's function itself as calculated by your program. This is affected by round-off error in the calculator and also by the accuracies of the integration constants specified.

ACC is a real number that defines the relative error of the integration. With $\operatorname{ACC}=0.001$, for example, you can be sure that

$$
\left|\frac{v_{T}-v_{C}}{v_{C}}\right| \leq 0.001
$$

(with $\boldsymbol{v}_{\boldsymbol{T}}$ being the true value and $\boldsymbol{v}_{\boldsymbol{C}}$ the computed value of the integrand) at any point between $\downarrow$ Lim and $\uparrow$ Lim.

We want to see the result accurate to three decimals. Thus we enter
. 001 ACC for the accuracy of computation,

| 0 *Lim for the lower integration limit, |  |
| :--- | :--- |
| $\pi$ *Lim | for the upper integration limit, | and start integrating by pressing $\int$. Your WP $43 S$ will return:



Do not forget to divide this result by $\pi$ to get the correct value for $J_{0}(2)$ :
DISP FIX 3 (TI $]^{174}$


Enter other values for $\boldsymbol{x}$ and integrate again to get $J_{0}(x)$ at other locations.

[^99]
## Interactively Integrating Expressions Stored in Programs

Instead of operating on an 'equation' as described in previous chapter, your WP 43S can also integrate an expression $\boldsymbol{f}$ stored in a program. Then, the procedure is as follows:

1. Write a program for $\boldsymbol{f}$.
2. Press ADV $\int \mathrm{fdx}$.
3. Enter values for all known variables (integration constants) of $\boldsymbol{f}$, for ACC, and for the integration limits. Select the variable of integration.
4. Let your WP $43 S$ compute the definite integral specified. ${ }^{175}$

We will go through this step by step:

1. Write a program for $\boldsymbol{f}$ :

- It shall begin with a global label.
- It shall define all variables required for calculating $\boldsymbol{f}$.
- It shall be as efficient as possible since it is going to be executed many times.

It is recommended proceeding as follows: From the $2^{\text {nd }}$ step of this program on, menu variables shall be declared with MVAR instructions (cf. p. 222) covering all variables of $\boldsymbol{f}$. The subsequent body of the routine shall evaluate $\boldsymbol{f}$ recalling these variables.

## Example:

Let's return to the integrand we dealt with in the last chapter. Then the required program for $\boldsymbol{f}$ might look like this:

```
LBL 'IBessI'
 MVAR 'x'
 MVAR 't'
 RCL 't'
 sin
 RCLx 'x'
 cos now we have got f
 RTN
```

[^100]2. Press ADV. You will see:

| $\mathrm{f}^{\prime \prime}(\mathrm{x})$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SOLVE | SLVQ | $\mathrm{f}^{\prime}(\mathrm{x})$ | $\Pi_{n}$ | $\Sigma_{n}$ | [fdx |

Choose 【fdx. You will get (as expected from p. 210):

| $\rightarrow$ | PROG | ST.X | ST.Y | ST.Z | ST.T |
| :--- | :--- | :--- | :--- | :--- | :--- |

Press PROG and pick the proper program for $\boldsymbol{f}$ (here IBessI). You will get the corresponding menu of variables, i.e. here:
$x \quad t$
3. Enter values for all known variables (integration constants) of $\boldsymbol{f}$ and select the variable of integration.

In our example, we may just take the values we know from above: $2 x$ $\oplus$. So $\mathbf{t}$ will be the variable of integration. The menu will change now:

## ACC $\quad \downarrow$ Lim $\quad \uparrow$ Lim

We enter (like in previous chapter) . 001 ACC 0 LLim $\pi T$ Lim
4. Let your WP $43 S$ compute the definite integral specified.

Press $\int$ to integrate with all the parameters as chosen, and your WP 43S will return $\int \approx 0.704$ as you might have expected (cf. previous chapter). Divide by $\pi$ to get the value for $J_{0}(2)$ as above.

## Using the Integrator in a Program

For using the Integrator in programs, it has to be told what you did tell it in the examples of the two previous chapters. Thus, when you press

ADV in PEM, you will see a slightly different menu than the one you have seen above:

| PGMSLV |  | $\mathrm{f}^{\prime \prime}(\mathrm{x})$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SOLVE | SLVQ | $\mathrm{f}^{\prime}(\mathrm{x})$ | $\Pi_{n}$ | $\Sigma_{n}$ | $\int \mathrm{fdx}$ |

You shall define the necessary variables in advance and load them with the known values using STO. Then call the menu $\int \mathrm{fdx}$. PGMINT is for specifying the program calculating $\boldsymbol{f}$. It must be found in your program before the integration itself is called. And the integration limits as well as the requested accuracy shall be stored as well before integrating:

PGMINT

| STO AC | STO $\downarrow \mathrm{L}$ | STO 4 L |
| :--- | :--- | :--- |

Eventually, the variable of integration must be specified calling $\int$.

## Example:

Let's return to the integrand we dealt with in the last two chapters. So the required program for $\boldsymbol{f}$ might look like this:

```
LBL 'IBessP'
 RCL 't'
 sin
 RCLx ' }x\mathrm{ '
 cos now we have got f
 RTN
```

The program one level above could contain a section looking like this:

```
...
 PGMINT 'IBessP' specifying the function to be integrated.
 0
 STO '$Lim'
 \pi
 STO 'flim'
 0 . 0 0 1
 STO 'ACC'
 \intfd 't' integrate over time.
 VIEW ST.X display the solution.
```

Before starting this program (let's call it $\operatorname{lnP}$ ), fill the variables staying constant under integration, e.g. with the start values known from above:

## 2 STO $x$.

Call InP via XEQ and you will see $\int \approx 0.704$ as you may have expected (cf. previous chapter). Divide by $\pi$ to get $J_{0}(2)$ as above.

Eventually turn to Part 3, Section 13 of the HP-42S OM. Refer to the HP-34C OHPG (Section 9 and App. B) or the HP-15C OH (Section 14 and App. E) for more information about automatic integration and some caveats.

## Differentiating Equations

There are two commands provided returning the values of the first two derivatives of the function $f(x)$ at position $x$. This function $f(x)$ can be specified in an equation.
$f^{\prime}(x)$ returns the $1^{\text {st }}$ derivative. For computing it, ...

1. $\mathrm{f}^{\prime}(\mathrm{x})$ will first look for a user routine labeled ' $\boldsymbol{\delta x}$ ' (or ‘ $\boldsymbol{\delta} \mathbf{X}$ ', ' $\Delta \mathbf{x}$ ', or ' $\Delta \mathbf{X}$ ', in this order), returning a fixed step size $\boldsymbol{d} \boldsymbol{x}$ in $\mathbf{X}$. If that routine is not defined, $\boldsymbol{d x}=0.1$ is set for default.
2. Then, $f^{\prime}(x)$ fills all stack registers with $x$ and calls $f(x)$. It will evaluate $f(x)$ at ten points equally spaced in the interval $x \pm 5 d x$ (if you expect any irregularities within this interval, change $\boldsymbol{d x}$ to exclude them).
3. On return, the $1^{\text {st }}$ derivative will be in stack register $\mathbf{X}$, while $\mathbf{Y}, \mathbf{Z}$, and $\mathbf{T}$ will be clear and the position $\boldsymbol{x}$ will be in $\mathbf{L}$.

## Example (with SCI 3 set):

Take the equation $g(x)=7 x^{3}+5 x^{2}-3 x-2$ again (used on pp. 241 f for solving). Instead of checking two function values left and right of the root you could check the slope $g^{\prime}(x)$ at the root just once.

## Solution:

You have got $\boldsymbol{g}(\boldsymbol{x})$ in EQN already. For each of the three roots found, calculate the root first, then the $1^{\text {st }}$ derivative of $\boldsymbol{g}(\boldsymbol{x})$ at that point:

1. Press $\mathbb{E Q N}$, make $\boldsymbol{g}(\boldsymbol{x})$ the current equation, and press Solver. You will see then:

2. Find the $1^{\text {st }}$ (leftmost) root as shown above:

$$
-2 x-1 x x
$$


3. Pressing EXIT returns to the top view of EQN:

| $-8.064 \times 10^{-1}$ |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| $g(x): 0=7 \cdot x^{3}+5 \cdot x^{2}-3 \cdot x-2$ |  |  |  |  |
| DELETE |  |  |  |  |
| NEW |  |  |  |  |

4. Press f'


Note that $\mathrm{f}^{\prime}$ returned the value of the $1^{\text {st }}$ derivative at this very location immediately since $\boldsymbol{g}(\boldsymbol{x})$ features only one variable; else f' would have needed your input via the softkeys displayed and pressing $\mathrm{f}^{\prime}$ here thereafter.

So the slope of $\boldsymbol{g}(\boldsymbol{x})$ at $\boldsymbol{x}=\mathbf{- 0 . 8 0 6 4}$ is $\mathbf{2 . 5 9 1}$. Get the slopes at the two other root positions the same way:
5. EXIT returns to the top view of EQN as in step 3 .
6. Solver

Find the $2^{\text {nd }}$ root of $\boldsymbol{g}(\boldsymbol{x})$ : $-\mathbf{1} \mathbf{x} \mathbf{x}$

$$
x=-5.510 \times 10^{-1}
$$

EXIT returns to the top view of EQN as in step 3.
f'

$$
f^{\prime}=-2.134
$$

EXIT returns to the top view of EQN as in step 3.

## 7. Solver

Find the third (rightmost) root of $\boldsymbol{g}(\boldsymbol{x}): \mathbf{0} \mathbf{x} \mathbf{x}$

$$
x=6.431 \times 10^{-1}
$$

EXIT returns to the top view of EQN as in step 3.
f'

$$
f^{\prime}=1.211 \times 10^{1}
$$

So the slope of $\boldsymbol{g}(\boldsymbol{x})$ at $\boldsymbol{x}=\mathbf{- 0 . 8 0 6 4}$ is 2.591, at $\boldsymbol{x}=\mathbf{- 0 . 5 5 1 0}$ it is -2.134, and at $x=0.6431$ it is $\mathbf{1 2 . 1 1}$; the sequence of slopes is positive, negative, and positive as expected.
$f^{\prime \prime}(x)$ works in full analogy, computing the $2^{\text {nd }}$ derivative of the function specified.

## Interactively Differentiating Expressions Stored in Programs

Instead of operating on an 'equation' as described in previous chapter, your WP 43S can also derive an expression $f(x)$ stored in a program. Then, the procedure works as follows:

1. Write a program for $f(\boldsymbol{x})$. It must begin with a global label. For interactive derivation, proceeding as follows is recommended: From the $2^{\text {nd }}$ step of this program on, menu variables shall be declared with MVAR instructions (cf. p. 222) covering all variables of $f(x)$. The subsequent body of the routine shall evaluate $f(x)$ recalling these variables.
2. Optionally, write another program labeled ' $\delta x$ ' (see p. 254).
3. Enter values for all known variables (derivation constants) of $f(x)$. Put the location where you want to know he derivative into $\mathbf{X}$.
4. Press ADV. You will get:

5. Press $f^{\prime}(x)$ or $f^{\prime \prime}(x)$. You will get as well:

| PROG | ST.X | ST.Y | ST.Z | ST.T |
| :--- | :--- | :--- | :--- | :--- |

6. Press PROG to pick the label of the program containing the function $\boldsymbol{f}(\boldsymbol{x})$ (or enter its label directly as described on p. 209).
7. Let your WP $43 S$ compute the $1^{\text {st }}$ or $2^{\text {nd }}$ derivative at the location specified in $\boldsymbol{x} .{ }^{176}$

## Computing Derivatives in a Program

For computing derivatives in programs, proceed as demonstrated in previous chapter. Just remember you should omit the MVAR instructions in your program calculating $f(x)$; instead, define the necessary variables in advance and load them with the known values using STO.

[^101]When you press ADV in PEM, you will see a slightly different menu than the one you have seen above:

| PGMSLV |  | $\mathrm{f}^{\prime \prime}(\mathrm{x})$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SOLVE | SLVQ | $\mathrm{f}^{\prime}(\mathrm{x})$ | $\mathrm{n}_{\mathrm{n}}$ | $\Sigma_{n}$ | $\int \mathrm{fdx}$ |

Press $f^{\prime}(x)$ (or $f^{\prime \prime}(x)$ ) and specify the label of your program calculating $\boldsymbol{f}(\boldsymbol{x})$ - or pick it from the list as explained in steps 5 and 6 above. Your WP $43 S$ will compute the requested derivative for you in this program step.

## Nesting Advanced Operations

You can nest SLV, $\int, f^{\prime}(x), f^{\prime \prime}(x), \Sigma$, and $\Pi$ in routines to any depth as far as memory allows and your patience and power last.

## Example:

Light is observed to be diffracted when passing through small circular holes, an effect most obvious when using laser light. Its intensity is $I(r)=I_{0} \times\left(\frac{J_{1}(2 \pi r)}{\pi r}\right)^{2}$ behind the hole; $J_{1}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos [t-$ $x \sin (t)] d t$ is the Bessel function of the $1^{\text {st }}$ kind of order 1 (cf. p. 248). Find the first three roots of the intensity (i.e. the radii where no light will be observed).

## Solution:

1. Write a little program for the internal calculation of the integrand $f(t)=\cos [t-x \sin (t)]:$
LBL 'J1'
$\sin$
RCL× 00
cos RTN
$\sin (t)$
The entire stack is loaded with the integration variable $t$, so $\boldsymbol{x}=2 \pi r$ (see below) must be recalled from a global register for calculating $x \sin (t)$
$t-x \sin (t)$
$\cos [t-x \sin (t)]$
2. Write a $2^{\text {nd }}$ little program for the internal calculation of the intensity $I(r)$. Note that just the parenthesis of the formula above must be evaluated since $I_{0}$ is a constant. And ADV, when called in PEM, displays:

| PGMSLV |  | $f^{\prime \prime}(x)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SOLVE | SLVQ | $\mathrm{f}^{\prime}(\mathrm{x})$ | $\Pi_{n}$ | $\Sigma_{n}$ | $\int f d x$ |

```
LBL 'I'
 \pi
 x
 2
 x
 STO 00
 PGMINT 'J1'
 specifies the program of the integrand. }\mp@subsup{}{}{177
0
 STO '$Lim'
 \pi
 STO '{Lim'
 0.001
 STO 'ACC'
 \intfd ST.X computes }\pi\times\mp@subsup{J}{1}{}(2\pir)
 RCL 00 the stackjust contained the integration results before.
 /
2
*
J
RTN
```

3. Enter DISP SCI 3 MODE RAD
0.1 ENTERT 1 ADV SOLVE

| PROG | ST.X | ST.Y | ST.Z | ST.T |
| :--- | :--- | :--- | :--- | :--- |

4. Enter (1). You will get $6.098 \times 10^{-1}$ after some time. ${ }^{178}$

[^102]5. Enter 1 ENTERT 1.5 SOLVE (I) and you will get 1.117 .
6. Enter 1.5 ENTERT 2 SOLVE (I) and you will get 1.619 .

You will find further instructions and examples in HP-42S RPN Scientific Programming Examples and Techniques. Despite the title of this manual, it also contains significant material about the Solver, integration, matrices, and statistics.

[^103]
## SECTION 5: TWO BROWSERS, TWO APPLICATIONS, AND TWO SPECIAL MENUS

There are two browsers featured for quick and easy checking memory, registers, and flags (RBR and STATUS, see below). And there are two very useful applications: a TIMER (or stopwatch, see pp. 264f) and "time value of money" (TVM, see pp. 266ff). Furthermore, two special menus will ease your path in special areas of application and particular regions of this planet (see pp. 270ff).

## The Browsers RBR and STATUS

These two browsers may be called in all modes except alpha input. Some special keys and special rules apply within these browsers as explained on the two pages following. EXIT works as in menus, however, leaving the respective browser now; and browser (like menu) calls cannot be programmed.

| Keys to <br> press | Contents and special remarks |
| :--- | :--- |
| TRBR | Browses all currently allocated registers showing their con- <br> tents. RBR operates in TAM (cf. pp. 56ff). The first screen <br> you see covers registers $\mathbf{X}$ through I (their contents will <br> deviate on your screen - note numeric contents are shown <br> explicitly in the display format currently set as long as they are <br> individual numbers while strings may be abbreviated and <br> matrices will be. Fractions are displayed with their decimal <br> value. Within the range of lettered registers, every fourth <br> register is displayed overlined to guide the eye: |


goes up the stack, continuing with the remaining lettered registers, then with $\mathbf{R 0 0}, \mathbf{R 0 1}$, etc. as shown below. For $\mathbf{R 0 0}$... $\mathbf{R 9 9}$, every fifth register is displayed overlined to guide the eye. After R99, $\mathbf{X}$ will be shown again:

browses the registers going down from $\mathbf{R 9 9}$ (if starting with the screen on previous page) to $\mathbf{R 0 0}$; then continues with $\mathbf{K}$, $\mathbf{J}$, down to $\mathbf{X}$. After $\mathbf{X}, \mathbf{R 9 9}$ will be shown again.
turns to local registers if allocated, starting with $\mathbf{R} \mathbf{. 0 0}$. Then, $\triangle$ and $\nabla$ browse local registers up and down until another $\square$ returns to the first screen of RBR as shown on p. 261. Else (i.e. if no local registers are allocated) $\odot$ directly returns to this screen.

| 00 ... <br> 9 <br> R/S <br> RCL <br> EXIT | browses immediately to the corresponding (global or local) register. If no such local register is allocated, it returns to the first global register. <br> toggles display to show the register contents or the space allocated for them. <br> in run mode, recalls the register displayed in the lowest row and leaves RBR; in PEM, enters a corresponding step RCL ... and leaves RBR. <br> leaves RBR. |
| :---: | :---: |
| STATUS <br> or FLAGS <br> STATUS $\square$ and $\square$ | Displays the amount of free memory available and the user accessible flags set (inspired by STATUS on HP-16C and WP 34S). Local user flags will only be displayed if local registers are allocated at all. Some global settings and system flags set are shown in the bottom rows (covering only what is not shown in the status bar): <br> 2019-11-06 11:03 RடŁ ${ }^{\circ}$ /max. 2:64 <br> 1516 bytes free in RAM, 12345 in flash. <br> Global user flags set: <br> 11333462106 <br> 64 local registers are allocated. <br> Local user flags set: <br> 01 <br> RM $=\rightarrow 0 \leftarrow$ SDIGS $=34$ ULP of reg $X=10^{-35}$ <br> AUTOFF QUIET SPCRES SSIZE8 TRACE <br> toggle between views if more flags are set. <br> leaves STATUS. |

No other keys will work within RBR and STATUS. And both browsers are not programmable.

## The Timer Application

Your WP 43S provides a timer following the one of the HP-55. ${ }^{179}$ Start it by pressing (TIMER. Then the top numeric row will be replaced by

## 0:00:00.0 [00]

or (depending on the radix mark setting)
0:00:00,0 [00]
unless the timer was running before already (then the accumulated run time will be indicated instead of zero here). In either case the menu section will change to this:


Within TIMER, only the following keys will work:

| Key | Remarks |
| ---: | :--- |
| R/S | starts or stops the timer without changing its value. |
| RESET | resets the timer to zero without changing its status (running or <br> stopped). It deletes the total time if applicable. - Note this is not <br> the global RESET command. |
| $\mathbf{0 . 1 s ?}$ | toggles displaying tenths of seconds (default is 'display'). |
| ADD | adds the present timer value to the statistics registers. This <br> allows for computing e.g. the arithmetic mean and standard <br> deviation of lap times after leaving TIMER. |

[^104]| Key | Remarks |
| :---: | :---: |
| [可]司 | sets the current register address (CRA, startup default is 0 ). The CRA will be displayed between rectangular brackets as shown here: ${ }^{180}$ 27:31:55.6 [01] |
| ENTERT | stores the present timer value in the current register at execution time without changing the timer status or value. Then increments the CRA by one. |
| RCL $n \boldsymbol{n}$ | recalls $r n n$ without changing the status of the timer. The value recalled may be used e.g. as start time for further incrementing. |
| $\triangle$ or $\nabla$ | increments or decrements the CRA by one, respectively. allows for overwriting the last value stored. |
| $\bigcirc$ | combines ENTERT $+\boldsymbol{\square}$ in one keystroke, but the total time since the last explicit press of $\boldsymbol{\square}$ or RESET is shown and updated like: <br> $\square$ allows for recording lap times, for example. Note the total time is volatile - it will disappear without a trace when or RESET is pressed alone. |
| $\pm$ | Combines all the functionality of ADD, ENTERT, and $\boldsymbol{\square}$ in one keystroke. This allows for recording lap times and total time for later offline analysis. |
| EXIT | leaves the application. The time indicated in the top numeric row will vanish from the screen. Unless already stopped, however, the timer continues incrementing in the background (indicated by (0) in the status bar) until ... |

[^105]| Key | Remarks |
| :--- | :--- |
|  | a) stopped explicitly by $\mathbb{R / S}$ within TIMER or ... <br> b) your WP $43 S$ is turned off by you. Note it will not turn off <br> automatically with the timer running. A reliable power <br> supply is recommended in such cases. |

For subtracting split times you have to leave this application.
TIMER is not programmable.

## The Time Value of Money (TVM)

TVM is a well proven financial application (thus found in FIN) computing e.g. the future value ( $F V$ ) of

1. a repeated investment or
2. a regular down-payment for a credit
based on its present value ( $P V$ ), its interest rate per annum

## $\triangle \%$ FIN

+/- (i\%/a), the required payment per period (PMT), number of periods per annum (per/a), and the total number of payment periods ( $\boldsymbol{n}_{\text {PER }}$ ). This kind of financial problems will often occur also to technical people, so we included TVM on your WP 43S. ${ }^{181}$

For your information, the general formula for such problems reads

$$
F V=P V \times(1+i)^{n_{P E R}}+(1+i \times p) \frac{P M T}{i} \times\left[1-(1+i)^{n_{P E R}}\right]
$$

with the deduced parameter $i=\frac{I \% / \text { period }}{100}=\frac{I \% / \text { year }}{100} / \frac{\text { periods }}{\text { year }}$

[^106]and the binary switch value $p$ : If payments occur at the

- end of each period then $p=0$ (choose End in TVM).
- beginning of each period then $p=1$ (choose Begin in TVM).


## TVM uses the convention that cash outlays are input as negative, and cash incomes are input as positive.

The present value $P V$ always occurs at the beginning of the $1^{\text {st }}$ period. It can also be an initial cash flow or a discounted value of a series of future cash flows.

The future value $\boldsymbol{F V}$ is always meant to occur at the end of the $\boldsymbol{n}_{\text {PER }}{ }^{\text {th }}$ period. It can also be a final cash flow or a compounded value of a series of cash flows.

## Example for calculating the number of periods (from the HP-27 OH,

 like all following examples in this chapter; enjoy the amounts and interest rates of a time long ago):
A potential development site currently appraised at $\$ 380000$ appreciates at $30 \%$ per year. If this rate continues, how many years will it be before this land is worth $\$ 750$ 000?

## Solution:

DISP FIX 2 This will suffice. Then all you have to do is keying in the known parameters and boundary conditions:

## EIN TVM Begin



| $\mathbf{3 8 0 0 0 0}$ PV | 380000.00 |
| :--- | ---: |
| $\mathbf{3 0}$ i\%/a | 30.00 |
| present value, |  |
| $\mathbf{0}$ PMT | 0.00 |
| $\mathbf{1}$ per/a | 1.00 |

750000 FV
$n_{\text {PER }}$
750000.00 Now, how long does it take to reach this future value? 2.59 years.

Example for finding the necessary interest rate for compounded

i(?) amounts:
What annual interest rate must be obtained to amass $\$ 10000$ in 8 years on an investment of $\$ 6000$, with quarterly compounding? (Continue keeping the settings of previous example.)

## Solution:

6000 PV
4 per/a
10000 FV
8 ENTERT 4 X $n_{\text {PER }}$
i\%/a
6000.00 present value,
4.00 quarters, 10000.00 future value, 32.00 periods. Now, we need...
6.44 \% interest rate per year to achieve this.

## Example for finding the present value of a compounded amount:



Solution:

| 20000 FV | 20000.00 | future value, |  |
| :--- | ---: | :--- | :--- |
| $\mathbf{6}$ i\%/a | 6.00 | $\%$ interest rate per year, |  |
| $\mathbf{3 6 5}$ per/a |  | 365.00 | days per year, |
| $\mathbf{5}$ ENTERT $\mathbf{3 6 5}$ | $\boldsymbol{x}$ n $_{\text {PER }}$ | 1825.00 | periods. Now, we need... |
| PV |  |  | 14816.73 |

Example for finding the future value of a compounded amount:


The local trading post manager opened up a savings operation 5 years ago, offering $6 \%$ compounded daily. Gold miner Yellowstone Sam deposited $\$ 1000$ at that time, and now wants to know his present balance and the total accrued interest after all this time. (Continue dreaming ...)

## Solution:

| 1000 PV | 1000.00 | original deposit, |
| :---: | :---: | :---: |
| 6 i\%/a | 6.00 | \% interest rate per year, |
| 365 per/a | 365.00 | days per year, |
| 5 ENTERT $365 \times n_{\text {PER }}$ | 1825.00 | periods. Now, Sam has... |
| FV | 1349.83 | present balance meaning... |
| RCL VAR PV - | 349.83 | accrued interest. |

Nominal interest rate converted to effective rate:

## Example for finding the effective annual interest rate:

What is the effective annual rate of interest if the annual nominal rate of $12 \%$ is compounded quarterly? (Continue keeping the settings of previous example.)

## Solution:

| 100 PV | 100.00 | base value, |
| :--- | ---: | :--- |
| $\mathbf{1 2}$ i\%/a | 12.00 | \% nominal rate per year, |
| $\mathbf{4}$ per/a | 4.00 | quarters per year, |
| $\mathbf{4}$ n | 4.00 | compound periods; |
| FV | 112.55 |  |
| RCL VAR PV | 12.55 | \% effective interest rate. |

Turn to App. 3 for more applications of TVM (annuities, savings, etc.), starting on p. 310.

## Constants

Your WP 43S contains a catalog of 80 physical, astronomical, and mathematical constants, sorted alphabetically in CONST. Press CONST
 and the menu section will change to:


Besides by browsing with $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$, you can access the contents of CONST most easily using the alphabetical access method demonstrated in the ReM, Section 2.
Names of astronomical and mathematical constants are printed on colored background in the table starting below. The unit of each physical and astronomical constant is listed here as well. Find the numeric values of the constants and their uncertainties in the ReM, Section 2.

| Name | Unit ${ }^{182}$ | Remarks |
| :---: | :---: | :--- |
| $\mathbf{a}$ | d | Gregorian year |
| $\mathbf{a}_{\mathbf{0}}$ | m | Bohr radius |
| $\mathbf{a}_{\text {Moon }}$ | m | Semi-major axis of the Moon's orbit around the earth. |
| $\mathbf{a}_{\oplus}$ | m | Semi-major axis of the Earth's orbit around the sun. Within <br> its uncertainty, $\mathbf{a}_{\oplus}$ equals 1 AU (astronomic unit). |
| $\mathbf{c}$ | $\mathrm{m} / \mathrm{s}$ | Speed of light in vacuum |
| $\mathbf{c}_{\mathbf{1}}$ | $\mathrm{m}^{2} \mathrm{~W}$ | First radiation constant |
| $\mathbf{c}_{\mathbf{2}}$ | m K | Second radiation constant |
| $\mathbf{e}$ | C | Elementary charge |
| $\mathbf{e}_{\mathbf{E}}$ |  | Euler's $e$ |

[^107]| Name | Unit ${ }^{182}$ | Remarks |
| :---: | :---: | :---: |
| F | C/mol | Faraday constant |
| $F_{\alpha}$ |  | Feigenbaum's $\alpha$ and $\delta$ |
| $\mathrm{F}_{\delta}$ |  |  |
| G | $\mathrm{m}^{3} / \mathrm{kg} \mathrm{~s}^{2}$ | Newtonian constant of gravitation; also known as $\gamma$ from other authors. See also $\mathrm{GM}_{\oplus}$ below. |
| $\mathrm{G}_{0}$ | 1/ $/$ | Conductance quantum |
| $\mathrm{G}_{\mathrm{c}}$ |  | Catalan's constant |
| ge |  | Landé's electron g-factor |
| $\mathbf{G M}{ }_{\oplus}$ | $\mathrm{m}^{3} / \mathrm{s}^{2}$ | Newtonian constant of gravitation times the Earth's mass with its atmosphere included (according to the Earth model WGS84 - see the ReM for more information) |
| $g_{\oplus}$ | $\mathrm{m} / \mathrm{s}^{2}$ | Standard earth acceleration |
| h | J S | Planck constant |
| $\hbar$ | J s | So-called 'Dirac constant', actually only h over $2 \pi$ |
| k | J/K | Boltzmann constant |
| K J | Hz/V | Josephson constant |
| $l_{p}$ | m | Planck length |
| $\mathrm{m}_{\mathrm{e}}$ | kg | Electron mass |
| $M_{\text {Moon }}$ | kg | Mass of the Earth's Moon |
| $m_{n}$ | kg | Neutron mass |
| $\mathrm{m}_{\mathrm{p}}$ | kg | Proton mass |
| $M_{p}$ | kg | Planck mass |
| $\mathrm{mp}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}$ |  | Proton to electron mass ratio |
| $\mathrm{m}_{\mathbf{u}}$ | kg | Atomic mass constant |
| $m_{u} c^{2}$ | J | Energy equivalent of atomic mass constant |


| Name | Unit ${ }^{182}$ | Remarks |
| :---: | :---: | :---: |
| $\mathrm{m}_{\mu}$ | kg | Muon mass |
| $M_{\odot}$ | kg | Mass of the Sun |
| $M_{\oplus}$ | kg | Mass of the Earth. See also $\mathrm{GM}_{\oplus}$ above. |
| $\mathrm{N}_{\mathrm{A}}$ | 1/mol | Avogadro's number |
| NaN |  | "Not a Number", i.e. e.g. $0 / 0$ or $\pm \infty \times 0$ or $\ln (x)$ for $x<0$ or $\tan \left(90^{\circ}\right)$ unless in complex domain. <br> NaN covers poles as well as regions where a function result is not defined at all. Note that infinities, on the other hand, are considered numeric in your WP 43 (see the end of this table). Non-numeric results will lead to an error message thrown - unless SPCRES is set. NaN allows that functions written by you can return it. |
| $\mathrm{p}_{0}$ | Pa | Standard atmospheric pressure |
| R | $\mathrm{J} / \mathrm{mol} \mathrm{K}$ | Molar gas constant |
| $\mathrm{r}_{\mathrm{e}}$ | m | Classical electron radius |
| $\mathrm{R}_{\mathrm{K}}$ | $\Omega$ | Von Klitzing constant |
| $\mathrm{R}_{\text {Moon }}$ | m | Mean radius of the Moon |
| $\mathrm{R}_{\infty}$ | 1/m | Rydberg constant |
| $\mathrm{R}_{\odot}$ | m | Mean radius of the sun |
| $\mathrm{R}_{\oplus}$ | m | Mean radius of the Earth |
| Sa | m | Semi-major axis |
| Sb | m | Semi-minor axis |
| $\mathrm{Se}^{2}$ |  | First eccentricity squared $\ldots \begin{gathered}\text { according to } \\ \text { (see the ReM) }\end{gathered}$ |
| Se ${ }^{2}$ |  | Second eccentricity squared |
| $\mathrm{Sf}^{-1}$ |  | Flattening parameter |
| T0 | K | $=0^{\circ} \mathrm{C}$, standard temperature |


| Name | Unit ${ }^{82}$ | Remarks |
| :---: | :---: | :---: |
| $t_{p}$ | S | Planck time |
| $\mathrm{T}_{\mathrm{p}}$ | K | Planck temperature |
| $V_{m}$ | $\mathrm{m}^{3} / \mathrm{mol}$ | Molar volume of an ideal gas at standard conditions $\approx 22.4 \mathrm{l} / \mathrm{mol}$ |
| $\mathrm{Z}_{0}$ | $\Omega$ | Characteristic impedance of vacuum |
| $\alpha$ |  | Fine-structure constant |
| $\gamma$ | $\mathrm{m}^{3} / \mathrm{kg} \mathrm{~s}^{2}$ | Newtonian constant of gravitation; also known as G from other authors. See also $\mathrm{GM}_{\oplus}$ above. |
| $\gamma_{\text {EM }}$ |  | Euler-Mascheroni constant |
| $\gamma_{p}$ | $\mathrm{Hz} / \mathrm{T}$ | Proton gyromagnetic ratio |
| $\Delta v_{\text {Cs }}$ | Hz | Hyperfine transition frequency of ${ }^{133} \mathrm{Cs}$ |
| $\varepsilon_{0}$ | $\mathrm{F} / \mathrm{m}$ | Electric constant or vacuum permittivity |
| $\lambda_{c}$ | m | Compton wavelengths of the electron, neutron, and proton |
| $\lambda_{\text {cn }}$ |  |  |
| $\lambda_{\text {cp }}$ |  |  |
| $\mu_{0}$ | $\mathrm{H} / \mathrm{m}$ | Magnetic constant or vacuum permeability |
| $\mu_{B}$ | $\mathrm{J}^{\prime} \mathrm{T}$ | Bohr magneton |
| $\mu_{\mathrm{e}}$ |  | Electron magnetic moment |
| $\mu_{\mathrm{e}} / \mu_{\mathrm{B}}$ |  | Ratio of electron magnetic moment to Bohr's magneton |
| $\mu_{n}$ | $\mathrm{J} / \mathrm{T}$ | Neutron and proton magnetic moment |
| $\mu_{p}$ |  |  |
| $\mu_{u}$ |  | Nuclear magneton |
| $\mu_{\mu}$ |  | Muon magnetic moment |
| $\sigma_{B}$ | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}^{4}$ | Stefan-Boltzmann constant |


| Name | Unit ${ }^{182}$ | Remarks |
| :---: | :---: | :--- |
| $\boldsymbol{\Phi}$ |  | Golden ratio |
| $\boldsymbol{\Phi}_{\mathbf{0}}$ | Wb | Magnetic flux quantum |
| $\boldsymbol{\omega}$ | $\mathrm{rad} / \mathrm{s}$ | Angular velocity of the Earth according to WGS84 (see the <br> ReM) |
| $-\infty$ |  | May the Lord of Mathematics forgive us calling these two <br> constants! Both are counted as special numeric values in <br> your WP 43S, however. |
| $\boldsymbol{\omega}$ |  | ( |

Employ the constants stored here for further useful equivalences, e.g.:

- express joules in electron-volts $(1 \mathrm{~J}=1 \mathrm{AsV}=1 \mathrm{eV} / e \approx 6.24 \times$ $\left.10^{18} \mathrm{eV}=6.24 \times 10^{9} \mathrm{GeV}\right)$,
- calculate the wavelength from the frequency of electromagnetic radiation via $\lambda=c / v$ (so 1000 THz correspond to ca. 300 nm ),
- determine the energy of electromagnetic radiation from its frequency via $E=h v \quad\left(\right.$ so $\left.1 \mathrm{THz} \times h=6.63 \times 10^{-22} \mathrm{~J}=4.14 \times 10^{-3} \mathrm{eV}\right)$. Thus, 1 eV corresponds to 241.8 THz (or a wavelength of $1.24 \mu \mathrm{~m}$ ).


## Another example:

If you want to see the energy equivalent (in electron-volts) of one of the small masses given in kg above, multiply its mass by

$$
c^{2} / e \approx 5.610 \times 10^{35} \mathrm{~m}^{2} / \mathrm{A} \mathrm{~s}^{2}
$$

and you are done: $m_{e}$ corresponds to $511.0 \mathrm{keV}, m_{p}$ to 938.3 MeV , etc.
One more final example:
Assume American advanced scientists will succeed in producing a tiny bit of anti-matter in one of their high-tech laboratories one day - e.g. $0.1 \mu \mathrm{~g}$ of anti-hydrogen, carefully stored isolated in ultra-high vacuum. Although in future, most probably American power transmission lines will still look like they do today since this is a well-tried American (first) standard.

Thus, under slightly extreme weather conditions, ${ }^{183}$ an accidental blackout may easily happen for some days - the electric vacuum pumps will stop working, and a subsequent vacuum breakdown will let atmospheric gas leak into the shiny vacuum vessel where it will interact with the precious anti-matter and annihilate immediately. How much energy is going to be released then?

## Solution:

You only need the same tiny amount of (usual) matter, so $0.2 \mu \mathrm{~g}$ will annihilate in total within the vessel. $1 \mu \mathrm{~g}=10^{-6} \mathrm{~g}=10^{-9} \mathrm{~kg}$. Thus enter:

| DISP ENG 3 |  | 0.000 |
| :--- | ---: | ---: |
| .2 E ${ }^{+/-1} 9$ | $.2 \times 10^{-9}$ |  |
| CONST $c$ |  | $299.8 \times 10^{6}$ |
| $x^{2}$ |  | $89.88 \times 10^{15}$ |
| $\boldsymbol{x}$ |  | $17.98 \times 10^{6}$ |

... resulting in 18 MJ set free. The odds are frightening high this lab will need no cleaning anymore. ${ }^{184}$
On the other hand, $0.1 \mu \mathrm{~g}$ of anti-matter require e.g. $N_{A} / 10^{7}$ atoms of anti-hydrogen (with $N_{A}$ being Avogadro's number); this means $6 \times 10^{16}$ atoms or $3 \times 10^{16}$ molecules of this gas (i.e. 30000 million millions molecules). Luckily, this amount is far from being produced in any lab for the time being. ${ }^{185}$
${ }^{183}$ Think of a thunderstorm, blizzard or alike, maybe even fostered by anthropogenic climatic change. Though do not be afraid, this is all fake news created by insane minds according to the greatest president of that blessed nation.
${ }^{184}$ For comparison, 1 kg of TNT releases 4.6 MJ. The official definition is some $10 \%$ less than this value for historical reasons. Anyway, 18 MJ are equivalent to some 4 kg of TNT, enough for a great blast.
${ }^{185}$ And proper UHV vessels show very low leak rates as well, so the annihilation energy may be released in little bits over a longer time interval - power supply may be reestablished in time and vacuum pumps operating again. For crucial applications, however, uninterruptible power sources based on batteries and/or generators should be installed locally wherever supplies are threatened by the actual state of public infrastructure being significantly less than great.
And furthermore, ordering antipasti and pasta together in an Italian ristorante is strictly at your own risk. You have been warned!

## Unit Conversions

Your WP 43S features fourteen angular conversions stored in $\underline{\Delta \rightarrow}$ (as shown on $p$. 126) and 88 unit conversions in $\underline{\longrightarrow} \rightarrow$. The latter menu mainly provides means to convert local to common units and vice versa. ${ }^{186}$


Also the constant $\mathbf{T}_{\text {o }}$ may be useful for converting centigrade temperatures to kelvin. It is found in CONST and is not repeated in $\underline{U \rightarrow}$ because it is only added or subtracted.

In an attempt to bring some order in that heap of units, $\underline{U} \rightarrow$ is structured like a tree. Press $U \rightarrow$ and the menu section will change to:

containing the labels of submenus for conversions of energy, power, force \& pressure, mass, length, area, and volume units. The entire structure of $\underline{U \rightarrow}$ is shown overleaf (with the menu rows printed top down instead of bottom up following common reading habits). Some softkeys require more than six characters due to long unit names - then extra high menu rows will be displayed:

[^108]|  | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underline{\text { U }}$ : | E: | P: | year $\rightarrow$ s | F\&p: | m: | X: | submenu headers, units of temperature, time, torque, and ratios - the latter two in an extrahigh menu row |
|  | ${ }^{\circ} \mathrm{C} \rightarrow{ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{F} \rightarrow{ }^{\circ} \mathrm{C}$ | $s \rightarrow$ year |  | V: | A: |  |
|  | power <br> ratio <br> $\rightarrow \mathrm{dB}$ | $\mathrm{dB} \rightarrow$ <br> power ratio | $\mathrm{Nm} \rightarrow$ lbfxft | lbfxft $\rightarrow \mathrm{Nm}$ | field <br> ratio <br> $\rightarrow \mathrm{dB}$ | $d B \rightarrow$ <br> field <br> ratio |  |
| E: | cal $\rightarrow$ J | $\mathrm{J} \rightarrow \mathrm{cal}$ | Btu $\rightarrow$ J | $J \rightarrow B t u$ | Wh $\rightarrow$ J | $J \rightarrow$ Wh | units of energy |
| P: | $h p_{E} \rightarrow W$ | $\mathrm{W} \rightarrow \mathrm{h} \mathrm{P}_{\mathrm{E}}$ | $\mathrm{hP}_{\mathrm{UK}} \rightarrow \mathrm{W}$ | $W \rightarrow h p_{u k}$ | $h p_{M} \rightarrow W$ | $\mathrm{W} \rightarrow \mathrm{hPM}$ | units of power |
| F\&p: | $\mathrm{lbf} \rightarrow \mathrm{N}$ | $\mathrm{N} \rightarrow \mathrm{lbf}$ | bar $\rightarrow$ Pa | Pa $\rightarrow$ bar | psi $\rightarrow$ Pa | Pa,psi | units of force and pressure |
|  | $\begin{aligned} & \text { in. } \mathrm{Hg} \\ & \rightarrow \mathrm{~Pa} \end{aligned}$ | $\begin{aligned} & \mathrm{Pa} \rightarrow \\ & \text { in. } \mathrm{Hg} \end{aligned}$ | $\begin{aligned} & \text { torr } \\ & \rightarrow \mathrm{Pa} \end{aligned}$ | $\mathrm{Pa} \rightarrow$ torr | atm $\rightarrow \mathrm{Pa}$ | Pa $\rightarrow$ atm |  |
|  |  |  | $\begin{gathered} \mathrm{mmHg} \\ \rightarrow \mathrm{~Pa} \end{gathered}$ | $\mathrm{Pa} \rightarrow$ mmHg |  |  |  |
| m: | lb. $\rightarrow$ kg | $\mathrm{kg} \rightarrow \mathrm{lb}$. | cwt $\rightarrow$ kg | kg $\rightarrow$ cwt | oz $\rightarrow \mathrm{kg}$ | $\mathrm{kg} \rightarrow \mathrm{oz}$ | units of mass |
|  | stone $\rightarrow \mathrm{kg}$ | $\mathrm{kg} \rightarrow$ stone | $\begin{aligned} & \text { short } \\ & \text { cwt } \rightarrow \mathrm{kg} \end{aligned}$ | $\mathrm{kg} \rightarrow$ sh.cwt | $\begin{aligned} & \text { tr.oz } \\ & \rightarrow \mathrm{kg} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \mathrm{kg} \rightarrow \\ & \text { tr.oz } \end{aligned}$ |  |
|  | ton $\rightarrow$ kg | $\mathrm{kg} \rightarrow$ ton | short ton $\rightarrow \mathrm{kg}$ | $\mathrm{kg} \rightarrow$ short ton | carat <br> $\rightarrow \mathrm{kg}$ | $\mathrm{kg} \rightarrow$ <br> carat |  |
| $\underline{x}$ : | au $\rightarrow$ m | $\mathrm{m} \rightarrow \mathrm{au}$ | $l y \rightarrow m$ | $m \rightarrow l y$ | $\mathrm{pc} \rightarrow \mathrm{m}$ | $\mathrm{m} \rightarrow \mathrm{pc}$ | units of length |
|  | $\mathrm{mi} . \rightarrow \mathrm{m}$ | $\mathrm{m} \rightarrow \mathrm{mi}$. | nmi. $\rightarrow \mathrm{m}$ | $m \rightarrow n m i$. | $f t . \rightarrow$ m | $\mathrm{m} \rightarrow \mathrm{ft}$. |  |
|  | in. $\rightarrow$ m | $m \rightarrow$ in. |  |  | yd. $\rightarrow$ m | $\mathrm{m} \rightarrow \mathrm{yd}$. |  |
|  | fathom $\rightarrow \text { m }$ | $m \rightarrow$ <br> fathom | point <br> $\rightarrow$ m | point | survey foot ${ }_{\text {us }}$ $\rightarrow \text { m }$ | $m \rightarrow$ <br> survey foot ${ }_{\text {us }}$ |  |
| A : | acre $\rightarrow \mathrm{m}^{2}$ | $\mathrm{m}^{2} \rightarrow$ <br> acre | $\mathrm{ha} \rightarrow \mathrm{m}^{2}$ | $\mathrm{m}^{2} \rightarrow \mathrm{ha}$ | $\begin{gathered} \text { acre } e_{u s} \\ \rightarrow \mathrm{~m}^{2} \end{gathered}$ | $\mathrm{m}^{2} \rightarrow$ <br> acre $_{\text {us }}$ | units of area |
| V: | $\mathrm{gl}_{\text {UK }} \rightarrow \mathrm{m}^{3}$ | $\mathrm{m}^{3} \rightarrow \mathrm{gl}_{\mathrm{UK}}$ | qt. $\rightarrow \mathrm{m}^{3}$ | $\mathrm{m}^{3} \rightarrow \mathrm{qt}$. | $\mathrm{gl}_{\text {US } \rightarrow \mathrm{m}^{3}}$ | $\mathrm{m}^{3} \rightarrow \mathrm{gl}_{\text {us }}$ | units of volume |
|  | $\mathrm{floz}_{\mathrm{UK}}$ $\rightarrow \mathrm{m}^{3}$ | $m^{3} \rightarrow$ <br> $\mathrm{floz}_{\mathrm{UK}}$ | barrel $\rightarrow \mathrm{m}^{3}$ | $\mathrm{m}^{3} \rightarrow$ <br> barrel | $\begin{aligned} & \text { floz }_{\text {US }} \\ & \rightarrow \mathrm{m}^{3} \end{aligned}$ | $m^{3} \rightarrow$ <br> $\mathrm{floz}_{\text {us }}$ |  |

Find out more about the various units mentioned in these conversions in Section 2 of the ReM.

You may combine conversions as you like (DISP ENG 2 will do for all examples in this chapter):

## Example 1:

For filling your tires with a maximum pressure of 30 psi the following will help you at gas stations in Europe and beyond:

| 30 |  |
| :--- | ---: | :--- |
| Pa F\&p: par | $207 . \times 10^{3} \mathrm{~Pa}$. |
|  | 2.07 bar. |

Now you can set the filler and will not blow your tires.

## Example 2:

Your friend tells you she has got 10 cubic feet of debris on her veranda after flooding (yes, the dams in the Mississippi delta turn out being of less use than once thought). What does this mean in real units?

| $1 \cup \mathrm{X} \rightarrow \mathrm{ft} . \rightarrow \mathrm{m}$ | returns | $305 . \times 10^{-3}$ |
| :---: | :---: | :---: |
| $3 y^{x}$ |  | $28.3 \times 10^{-3}$ |
| $10 \times$ |  | $283 . \times 10^{-3}$ |

OK, some work - but manageable.

## Example 3:

A network switch is specified for $3320 \mathrm{Btu} / \mathrm{h}$. What?!?
$3320 \triangle \mathrm{E}:$ Btu $\rightarrow$ J returns $\quad 3.50 \times 10^{6} \mathrm{~J} / \mathrm{h}$.

Since $1 J=c_{c} W h \Leftrightarrow 1 J / h=c_{c} W$ applies, you can use
$J \rightarrow W h$ for converting and get 973. W.
This is almost 1 kW . Now you know what will be going on there.

## Example 4:

In Section 2, there was an example ending with a box featuring a volume of 19 11/16 cubic inches. So, what does this volume mean in real units
instead? And how much water can such a box contain in areas where people are condemned to deal with Imperial units nowadays still?

| $U \rightarrow$ x: $\Delta$ in $\rightarrow$ m | returns | $25.4 \times 10^{-3}$ |
| :---: | :---: | :---: |
| $3 y^{x}$ |  | $16.4 \times 10^{-6}$ |
| $19 \odot 11 \odot 16 \times$ |  | $323 . \times 10^{-6}$ |

Since $1 \mathrm{~m}^{3}=1000$ liter, this volume is almost $1 / 3$ liter .
And to help those enduring life on the British Imperial islands or exterritories, you must (!) ask them for their location first. Then choose either $U \cup \rightarrow$ V: $\mathrm{m}^{3} \rightarrow \mathrm{floz}_{\mathrm{Uk}}$ or $\mathrm{m}^{3} \rightarrow \mathrm{floz}_{\mathrm{US}}$ and give them the respective result, i.e. $\mathbf{1 1 . 4}$ or $\mathbf{1 0 . 9}$, for what it is worth.

## Example 5:

A celestial object moves with a velocity of 0.1 parsec per year. What does this mean in standard units? What is this in relation to the velocity of light? And how does this translate for air pilots?

| . 1 U $\rightarrow$ X: $\mathrm{pc} \rightarrow \mathrm{m}$ | returns | $3.09 \times 10^{15} \mathrm{~m}$. |
| :---: | :---: | :---: |
| EXIT | returns to the | view of $\underline{U}$. |
| 1 year $\rightarrow$ s (1) | returns | $97.8 \times 10^{6} \mathrm{~m} / \mathrm{s}$ |
| ENTERT | pushes the | t on the stack. |
| CONST C | recalls $c=$ | $300 . \times 10^{6} \mathrm{~m} / \mathrm{s}$ |
| (1) | returns | $326 . \times 10^{-3}=3$ |

Since $1 \mathrm{~h}=3600 \mathrm{~s}$ and $1 \mathrm{~km}=1000 \mathrm{~m}$, you can see directly that

$$
3.6 \frac{\mathrm{~km}}{\mathrm{~h}}=\frac{3600 \mathrm{~m}}{60 \times 60 \mathrm{~s}}=1 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Thus, $R \downarrow 3.6 \mathbb{X}$ returns $352 . \times 10^{6} \mathrm{~km} / \mathrm{h}$.
This corresponds to
$1000 \times \backslash \backslash x_{i} \times n m i$.
$190 . \times 10^{6} \mathrm{nmi} / \mathrm{h}$
or 190 megaknots. ${ }^{187}$

[^109]Supported by your WP 43S, you will find further easy ways to produce whatever conversions you may need personally in addition.
In cases of emergencies of a particular kind, it may be helpful knowing becquerel ( Bq ) equals hertz in your Geiger-Müller counter, gray (Gy) is the unit for deposited or absorbed energy, and sievert ( Sv ) is gray times a radiation dependent dose conversion factor $(\geq 1)$ for the damage caused in biological material including human bodies. ${ }^{188}$ Remember also the example on pp. 91ff.
In this field, some outdated units may be found in older literature as well:

- Pour les fidèles amis de Madame Marie Skłodowska Curie (1903 Nobel laureate in physics and 1911 in chemistry), there was a unit curie with $1 \mathrm{Ci}=3,7 \cdot 10^{10} \mathrm{~Bq}=3,7 \cdot 10^{10}$ decays $/ \mathrm{s}$. You can deduct from this unit that larger pieces of radioactive material were 'absolutely no problem' for the pioneers in this field. ${ }^{189}$
- For those admiring the very first (1901) Nobel laureate in physics, Wilhelm Conrad Röntgen, for discovering the X-rays (ruining his hands in those experiments since he could not know better yet), the charge generated by radiation in matter was measured by the unit roentgen ( $1 R=2,58 \cdot 10^{-4} \mathrm{~A} \mathrm{~s} / \mathrm{kg}$ ). ${ }^{190}$
- A few decades ago, rem (i.e. roentgen equivalent in men ${ }^{191}$ ) measured what sievert does today ( $1 \mathrm{rem}=10 \mathrm{mSv}$ ).
- And $1 \mathrm{~Gy}=100 \mathrm{rad}$ (i.e. radiation absorbed dose), which is pretty much since there is almost nothing greater than millirad in literature.

[^110]
## SECTION 6: CREATING YOUR VERY PERSONAL WP 43S

Your WP 43S is the first calculator worldwide allowing for fully customizing the user interface; i.e. you may assign an arbitrary function to almost any location, unshifted or shifted, on the keyboard or in a menu. User mode will then bring your personal assignments to the front, so you can interact via a user interface you designed yourself.

Even before doing such soft assignments, there are two keyboard variants supported taking care of the demands of people living in different 'mathematical regions'. The keys for multiplication, division, and the radix mark may be labelled according to your preferences:

|  | Default | Alternative |
| :--- | :---: | :---: |
| Division | $\square$ | $[:]^{192}$ |
| Multiplication | $\boxed{x}$ | $\bullet$ |
| Radix mark | $\square$ | $[\square]$ |

Note this manual prints the default key labels throughout its text.
Beyond these variants, use ASSIGN ( (ASN) for storing your personal favorite assignments. It allows for reassigning the entire keyboard except the top row of keys - these will stay softkeys always. Keep basic functionalities accessible (see p. 292 for some caveats).

ASN SAVE
STO
G

In the explanations starting overleaf,

- $\square$ stands for the softkey applicable (optionally headed by a prefix),

[^111]- [key] represents an arbitrary key of your WP 43S (optionally headed by a prefix),
- menu is the name of an arbitrary menu defined, either
- picked from CATALOG by entering CATALOG MENUS, browsing to the target menu, and pressing the respective $\square$, or
- called from the keyboard by pressing the respective key headed by the associated prefix, if applicable; and
- name is the name of an arbitrary item. Remember an item may be an operation, function, digit, character, routine (label), variable, system flag, or a (sub) menu defined. The name of an item consists of up to seven characters and must be unique within its set. There are two sets:
- One contains all operations, functions, constants, global labels, and (sub) menus defined at execution time of ASSIGN.
- The other set contains all the variables and system flags a variable undefined at execution time of ASSIGN will be created (as explained on p. 61).
Note upper and lower case letters are checked, so the system will regard Menu1 and MENU1 as being different names. Superscripts and subscripts are not discriminated from normal characters, so e.g. data1T and data ${ }^{\top}{ }^{\top}$ are interpreted as the same name by your WP 43S but the latter may ease reading for you. Where a name is required, it may be either
- picked from CATALOG by entering CATALOG, choosing the respective branch, browsing to the target item, and pressing the respective $\square$, or
- called from the keyboard by pressing the respective key (optionally headed by a prefix).

Just pressing ENTERT where the operating system expects a name of an item is interpreted as input of an empty name and will delete the user assignment of the respective location.

## Assigning Your Favourite Functions

Now here is how you can tailor the surface of your WP 43S according to your individual preferences:

## ASN name [key]

will assign that named item to [key] in user mode. It will throw an error if said name does not exist.

Note that ASN name $\square$ will assign that named item to the respective position in the bottom menu row displayed at the time you press this $\square$, overwriting the label shown there. In full analogy, ASN name $\ddagger \square$ and ASN name $g \square$ assign said item to the corresponding position in the respective shifted menu row.

Each user assignment will hold until it is overwritten or ENTERT is entered for name (see above).

Note all user assignments will be accessible in user mode only (see pp. 292ff) - except the items assigned to top row of keys in two user menus (see MyMenu and Mya below): they will be displayed as long as no other menu is called.

## Example 1:

Let's assign the statistical sample standard error to $g+C C$ (this location is assigned to $\Varangle$ in startup default). There are three different ways to do this (specified here printing all keystrokes necessary):

## 1) $f$ ASN $f$ CATALOG FCNS $\left(S M \mathbf{s}_{\mathbf{m}}\right.$ g(CC

 This way will be demonstrated step by step starting overleaf.2) $f \mathrm{ASN}$ f STAT $\mathbf{s}_{\mathrm{m}}$ g CC

On the other hand,

will reset $g$-shifted $C C$ to factory default $\nleftarrow$ as explained at the very end of last chapter.

We will walk you through solution 1 step by step here, starting with a clear stack (press $\mathbf{0}$ (FILL if necessary). Only the menu section and the command echo row will be shown in the following since all action will take place there:


This is the top view of the FCNS submenu in CATALOG. Now enter the $1^{\text {st }}$ letter of the requested command:

S
ASSIGN $\ldots$ -

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SETEUR | SETIND | SETJPN | SETSIG | SETTIM | SETUK |
| SDL | SDR | SEED | SEND | SETCHN | SETDAT |
| SAVE | SB | SCI | SCIOVR | SCW $\rightarrow$ kg | SDIGS? |

Quickly entering the $2^{\text {nd }}$ letter helps significantly:
(M) (if you find you waited too long before pressing (M), just wait another few seconds, then key in (S) quickly here instead)

| ASSIGN . - |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Stoel | StoiJ | STOS | STO+ | STO- | STOx |
| Status | STO | STOCFG | Stoel | STOIJ | STOP |
| $\mathrm{s}_{\mathrm{m}}$ | SMODE? | $\mathrm{s}_{\text {mw }}$ | SOLVE | SPEC? | SR |

Now, press the leftmost $\square$ for the function to be assigned:

g

| STOEL | STOIJ | STOS | STO+ | STO- | STOx |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STATUS | STO | STOCFG | STOEL | STOIJ | STOP |
| $\mathbf{s}_{\text {m }}$ | SMODE? | $\mathbf{s}_{\text {mw }}$ | SOLVE | SPEC? | SR |

CC

| STOEL | STOIJ | STOS | STO+ | STO- | STOx |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STATUS | STO | STOCFG | STOEL | STOIJ | STOP |
| $\mathrm{s}_{\mathrm{m}}$ | SMODE? | $\mathrm{S}_{\mathrm{m} . \mathrm{L}}$ | SOLVE | SPEC? | SR |

... and the assignment is done. Note this last menu view will stay on screen until another view or menu is called or this menu is EXITed explicitly. And the function $\Varangle$ will stay accessible also in user mode via CATALOG FCNS ... - or via default $g \measuredangle$ when leaving user mode.

## Example 2:

Assign the weighted arithmetic mean to the $1^{\text {st }}$ key in MyMenu (assume startup default settings):


Note that pressing USER will exit all menus being open at that time so MyMenu (which is empty still) can slip on the screen.
$\square$ (press the leftmost softkey)


Summarizing,

$$
\text { (ASN (STAT) } \overline{\mathbf{x}}_{\mathbf{w}} \text { USER } \square
$$

did this assignment.

Note that MyMenu will show up whenever all other menus are exited completely. It will remain on screen as long as no other menu is called, unless your WP $43 S$ is in alpha input mode. ${ }^{193}$ This applies regardless whether your WP 43S is in user mode or not (see below). Thus, filling MyMenu may well be the first step of customizing your WP 43S. You may, for instance, put the six trigonometric functions into the unshifted row of MyMenu and will have them almost always at hand.

## Creating Your Own Menus

ASN USER new_menu_name ENTERT will define a new user menu. In this sequence, ASN USER turns on alpha input mode so you can immediately enter the new menu name (up to seven characters, no blanks, and the name must be unique).

## Example:

To create a menu FavFun for your favourite functions, enter:

The new name will be inserted in CATALOG'MENUS (ASSIGN will throw an error if the 'new' menu name specified will turn out being defined already). The new menu itself will be created with 18 blank entries - its size is fixed. You may fill it now.

## Example:

Assign the $y$-forecasting function to the fourth key in that new user menu (assuming you did not define any other menu starting with 'Fa' before).

Also the solution of this example will be shown step by step:
It starts with the last display of last paragraph since MyMenu stays on screen as long as no other menu is called, and we assigned one function to it just above.

[^112]ASN


STAI

$\Delta$

$\hat{y}$
$\square_{\text {ASSIGN }} \hat{y}$ _
U.

|  | $\bar{x}_{\text {RMS }}$ | $x_{\text {max }}$ | $x_{\text {min }}$ |  | Orthof |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{x}_{\text {H }}$ |  |  |  |  |  |
|  | $r$ | $s_{x y}$ | cov | $\hat{y}$ | $\hat{x}$ |  |

ASSIGN $\hat{y}$
U.

FCNS $\operatorname{PROGS}$ DIGITS CHARS VARS MENUS

MENUS


Here you see the first view on all the menus defined on your WP 43S. Now, enter (F) and the view jumps to the corresponding position in this submenu:
ASSIGN $\hat{y} \ldots$

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LgNrm: | Logis: | LOOP | L.INTS | MATRS | MATX |
| F\&p | Geom: | Hyper: | INF0 | INTS | I/0 |
| FavFun | FCNS | FIN | FLAGS | FLASH | F: |

Press the leftmost softkey
FavFun


Since FavFun was just created above there is nothing to be seen in the menu section of the display yet. Pressing the fourth softkey, however, you will get now


Summarizing,

$$
\text { ASN STAT } \Delta \hat{\mathbf{y}} \text { CATALOG MENUS © FavFun } \square
$$

did the job here. Note that FavFun will remain on screen until another menu is called or it is EXITed explicitly.

## Browsing and Purging Menus, Variables, and Programs

As seen in last paragraph,
CATALOG'MENUS contains all the menus currently defined. Thus,
CATALOG MENUS ... $\square$ allows for deleting the menu selected. Predefined menus cannot be deleted.

Variables and programs are handled in full analogy:
CATALOG'VARS contains all variables currently defined. Thus,
CATALOG VARS ... $\square \longleftarrow$ allows for deleting the variable selected. Predefined variables cannot be deleted.

New programs must start with a global label. Such labels may be up to seven characters long and must be unique (cf. p. 282).

CATALOG'PROGS contains all programs currently defined. Thus,
CATALOG PROGS ... $\square \longleftarrow$ allows for deleting the program selected (cf. CLP and CLPALL).

## Assigning Special Characters

You must be in alpha input mode (AIM) to do the following. Then,
ASN character [key] will assign the character specified to [key]. You can pick the character to be assigned from the alpha keyboard or an arbitrary alpha menu as introduced above (on p. 194). [key] may be any legal label location, shifted or unshifted, except USER, ENTERT, or EXIT. The assignment will become valid when AIM is called in user mode or when user mode is called in AIM.

## Example 1:

Let's assign the parentheses to $\ddagger+$ TRI and $\ddagger+$ In (these locations are not assigned yet in AIM). Remember $g$ calls $\underline{\alpha}$ MATH in AIM see the ReM for its contents.
(a) ASN
g -
( ITRI $^{\text {( }}$
(1)
f1 1 n

## Example 2:

Assign the Yuan symbol $¥$ (contained in $\underline{\alpha \bullet}$ at a g-shifted position) to the $1^{\text {st }}$ key in My (assume startup default settings once again):
(a) ASN
DASSIGN _ - U.

9
ASSIGN $\mathbf{g}_{\mathrm{w}}-$
U.
$\square$

| \$ | € | \% | \# | £ | ¥ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ! | i | $\cong$ | - | $\sim$ | 1 |
| ! | : | ; | , | " | e |

g $¥$ (press the rightmost softkey)

| \$ | € | \% | \# | £ | ¥ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ; | ¿ | ミ | - | $\sim$ | 1 |
| ! | : | ; | 1 | " | e |

USER
ASSIGN $¥ \ldots$

Note that (USER will exit all menus being open at that time so Mya can slip on the screen (being empty still).
$\square$ (press the leftmost softkey)


Summarizing,

did this assignment.

## User Mode

USER toggles user mode. Therein, your (user) assignments become valid wherever they apply. Everything is wide open for your ideas except the top row of keys (being controlled by MyMenu and Mya, cf. pp. 286ff).

User mode gives you unexcelled freedom for creating
 your personal calculator layout and user interface. Enjoy - and play with the opportunities you have. For obvious reasons, we recommend leaving f, g, ENTER T, CATALOG, EXIT / ON, and OFF untouched (note EXIT and ON are connected). And do not forget you will need USER for returning from user mode.

WARNING: Do not remove inevitably necessary functionalities from the keyboard by assigning. In case of emergency, a hard reset will be your only escape - erasing all your precious programs and
data but those you saved in flash memory. Thus, checking all consequences meticulously before assigning functions is highly recommended; please note all your assignments are strictly at your own risk.

Pressing any function key (or a prefix plus a key) displays a preview of the operation currently assigned to it left in the $\mathbf{T}$ numeric row - if you realize you have picked the wrong key, simply keep it pressed until the display falls back to NOP after 1 second. ${ }^{194}$ This preview is particularly helpful in user mode, when the function executed by a key may not be the one indicated on the keyboard.

Once you have reached a stable user layout, we recommend storing it (using STOCFG) in a register or variable, together with the other settings mentioned on p. 80. This applies especially if you plan having further alternative layouts - you can load any of them using RCLCFG. 195
Think e.g. of storing a dedicated set of assignments for working with short integers featuring Boole's operations as primary functions.

Printing keyboard overlays for your favorite layouts may pay well,


[^113]especially if you reassign just functions printed on the key plate. Overlays cover this plate entirely (see the ReM, App. F, for their dimensions) and are fixed in the slots provided on either side of the keyboard.

Should you get lost in your various user assignments, however, look for U top right in the status bar - and remember that pressing USER will return immediately from user mode to the factory default keyboard of your WP $43 S$ as you know it from the very beginning. And if you want to get rid of outdated user layouts and free the memory allocated for the respective assignments, simply clear the respective registers or delete the allocated variables as described on p. 290.

We sign off wishing you long lasting joy and benefit working with your very own, personalized WP 43S!

## APPENDIX 1: OPERATOR PRECEDENCE

Your WP 43S does not have to care for operator precedence since it executes just one operation at a time (cf. p. 46). Hence it is your job to control the sequence of operations you present to your WP 43S. There are common rules and conventions in mathematics dealing with that you have learned them in school. Here is just one example for affirmation and/or reminding:

$$
1-2 \cdot 3^{4}: 5+\sin \left(6-\sqrt[3]{7^{2}}\right) \cdot 8!+\ln \left[\left(-9^{2^{3}} \cdot 45^{(6 / 7)}\right)^{2}\right]
$$

(or, written for another part of this world needing more space:

$$
\left.1-2 \times 3^{4} \div 5+\sin \left(6-\sqrt[3]{7^{2}}\right) \times 8!+\ln \left[\left(-9^{2^{3}} \times 45^{(6 / 7)}\right)^{2}\right]\right)
$$

This may be solved the following way, for instance, using your WP $43 S$ with startup default settings:


## APPENDIX 2: KEY RESPONSE TABLE

Here you find all direct keystroke inputs explained, top left to bottom right of the keyboard. For each key, its unshifted function is mentioned first, then its $f$-shifted and its 9 -shifted function, if applicable.
Most keys will change functionality in alpha input mode (AIM), hence the "alpha" meanings are listed thereafter. See the pages mentioned explicitly or the ReM for details of all the functions mentioned below.

| R | Keystrokes | Meaning <br> Calls the function displayed at the corresponding position in the bottom softkey row of the LCD. |  |
| :---: | :---: | :---: | :---: |
| 1 | $\square$ |  | Does nothing if there is no function displayedposition. Cf. pp. 27 f. |
|  | T- | Call the function displayed at the corresponding position in the golden or blue softkey row, respectively. |  |
|  | g |  |  |
| 2 | $11 / x$ | Inverts the number $\boldsymbol{x}$ or all elements of the matrix $\boldsymbol{x}$. |  |
|  | $a b / c$ | Enters fraction display mode (FDM), i.e. displays all reals as proper fractions or mixed numbers. If $F D M$ was active already, toggles display between proper and improper fractions. |  |
|  | Q.FN | Opens the menu of operations for alpha string manipulation. Cf. pp. 198f. |  |
|  | $\begin{gathered} A \\ A B \end{gathered}$ | Enters the letter A or a | in $A / M$ (cf. pp. 193ff). |
|  |  | Opens the catalog of all Latin letters provided (also accented ones) |  |
|  | g A | Enters the Greek letter A or $\boldsymbol{\alpha}$ |  |


| R | Keystrokes | Meaning |
| :--- | :--- | :--- |
| 2 | y | Raises $\boldsymbol{y}$ to the power of $\boldsymbol{x}$. |

[^114]| R | Keystrokes | Meaning |
| :---: | :---: | :---: |
| 2 | $e^{x}$ | Raises $e$ to the power of $\boldsymbol{x}$. ${ }^{196}$ |
|  | h.ms | If pressed trailing numeric input, enters a sexagesimal time. Else converts $\boldsymbol{x}$ to such a time. Cf. pp. 189f. |
|  | $10^{x}$ | Raises 10 to the power of $\boldsymbol{x}$. ${ }^{196}$ |
|  | E | Enters the letter E or $\mathbf{e}$ |
|  | g E | Enters the Greek letter E or $\boldsymbol{\varepsilon}$ |
| 2 | ${ }^{2}$ | Returns the square of $\boldsymbol{x}$. ${ }^{196}$ |
|  | 0 | Sets AIM for entering characters (cf. pp. 193ff). |
|  | $\sqrt{1 \times}$ | Extracts the square root of $\boldsymbol{x}$. ${ }^{196}$ |
|  | F | Enters the letter F or f |
|  | f $x^{2}$ | Enters the character $\checkmark$ in AIM. |
|  | g (F) | Enters the Greek letter $\boldsymbol{\Phi}$ or $\varphi$ |
| 3 | STO | Stores (copies) $\boldsymbol{x}$ in the destination specified (cf. pp. 53ff). |
|  | ASN | Assigns an item to a key, allowing you to create your very personal user keyboard layout (cf. pp. 281ff). |
|  | SAVE | Saves all your data in the backup region (cf. p. 234) of FM from where they may be recovered by LOAD entirely. |
|  | G | Enters the letter $\mathbf{G}$ or $\mathbf{g}$ |
|  | g G | Enters the Greek letter $\Gamma$ or $\gamma$ |


| R | Keystrokes | Meaning | |
|---|---|---|---|
| 3 | RCL | Recalls (copies) a stored object into $\mathbf{X}$ (cf. pp. 53ff). - If pressed in RBR, leaves RBR after recalling the object at the bottom line or entering a corresponding step (cf. pp. 261ff). |
|  | RBR | Calls the register browser (cf. pp. 261ff). |
|  | VIEW | Views the destination, i.e. displays its address and contents directly below the status bar until next keystroke (cf. p. 59). |
|  | H | Enters the letter $\mathbf{H}$ or $\mathbf{h}$ |
|  | g (H) | Enters the Greek letter $\mathbf{X}$ or $\chi$ |
| 3 | R | Rolls the stack contents one level down (cf. p. 39). |
|  | RT | Rolls the stack contents one level up. |
|  | CPX | Opens the menu of commands operating on complex numbers like CONJ, CROSS, DOT, and Re₹Im. Cf. pp. 154ff. |
|  | (1) | Enters the letter I or i |
|  | f R $\downarrow$ | Makes next character a subscript (if applicable) in AIM. |
|  | g (1) | Enters the Greek letter I or 1 |
| 3 | CC | Complex closing, composing, cutting, and converting, see pp. 154 ff and 307. |
|  | \|x| | Returns the absolute (unsigned) value of $\boldsymbol{x}$. ${ }^{196}$ |
|  |  | Either returns the phase of $\boldsymbol{x}{ }^{196}$ or the angle between the vectors $\boldsymbol{x}$ and $\boldsymbol{y}$. |
|  | J | Enters the letter $\mathbf{J}$ or $\mathbf{j}$ |
|  | g J | Enters the Greek letter H or $\boldsymbol{\eta}$ |
| 3 | $f$ | Prefix to reach a secondary gold function label. Pressing $\ddagger$ twice will clear this prefix. |
|  | SNAP | Dumps the current screen to a file on the calculator's USB flash drive. |


| R | Keystrokes | Meaning |
| :---: | :---: | :---: |
| 3 | g | Prefix to reach a secondary blue function label. Pressing $g$ twice will clear this prefix. |
|  | USER | Toggles user mode (see pp. 292ff). |
| 4 | ENTERT | Context sensitive key, see p. 307. |
|  | STATUS | Returns free space available, memory currently used, user and system flags set (cf. pp. 263f). |
|  | DROP ${ }^{\text {d }}$ | Drops $\boldsymbol{x}$ from the stack (cf. p. 39). |
| 4 | $x^{2} \geqslant y$ | Swaps the contents of $\mathbf{X}$ and $\mathbf{Y}$ (cf. p. 39). |
|  | FILL | Fills all stack registers with $\boldsymbol{x}$ (cf. p. 39). |
|  | STK | Opens the menu of stack related operations (drop, swap, and shuffle commands). Cf. pp. 38ff. |
|  | K | Enters the letter K or $\mathbf{k}$ |
|  | f $x^{2} \geqslant y$ | Enters the character in AIM (cf. pp. 193ff). |
|  | g K | Enters the Greek letter K or $\mathbf{\kappa}$ |
| 4 | + | If pressed during input of mantissa or exponent, changes its sign (cf. p. 25). Else multiplies $\boldsymbol{x}$ times -1 . |
|  | $\triangle \%$ | Returns $\boldsymbol{x}-\boldsymbol{y} \%$ of $\boldsymbol{y}$. Leaves $\boldsymbol{y}$ unchanged. |
|  | FIN | Opens the menu of financial functions (i.e. \% functions and the application TVM - see pp. 266ff and 310ff). |
|  | (L) | Enters the letter L or I |
|  | f + | Enters the character $\pm$ in AIM. |
|  | g (b) | Enters the Greek letter $\Lambda$ or $\boldsymbol{\lambda}$ |


| R | Keystrokes | Meaning |
| :---: | :---: | :---: |
| 4 | E | Allows entering an exponent of ten for convenient entry of very large or very small numbers (cf. p. 25). |
|  | SHOW | Shows the number $\boldsymbol{x}$ with its maximum precision until next keystroke. |
|  | DISP | Opens a menu containing FIX, SCI, ENG, and more commands for numeric display formatting. Cf. pp. 80ff. |
|  | M | Enters the letter M or m |
|  | $f E$ | Makes next character a superscript (if applicable) $\begin{aligned} & \text { in } A / M \text { (cf. } \\ & \text { pp. 193ff). }\end{aligned}$ |
|  | g M | Enters the Greek letter $\mathbf{M}$ or $\boldsymbol{\mu}$ |
| 4 | $\pm$ | Context sensitive key, see p. 309. |
|  | (n) | Undoes the last command executed (cf. p. 51). |
|  | CLR | Calls a menu containing commands for clearing; cf. p. 52. |
| 5 | (1) | Divides $\boldsymbol{y}$ by $\boldsymbol{x}$. For matrices, multiplies $\boldsymbol{y}$ times $\boldsymbol{x}^{-1}$. |
|  | RMD | Returns the remainder of $\boldsymbol{y}$ divided by $\boldsymbol{x}$. |
|  | MOD | Returns $\boldsymbol{y}$ modulo $\boldsymbol{x}$. |
|  | N | Enters the letter $\mathbf{N}$ or $\mathbf{n}$ |
|  | f] | Enters the character / in AIM. |
|  | g (N) | Enters the Greek letter $\mathbf{N}$ or $\mathbf{v}$ |
| 5 | 7 | If there is an open question like are you sure?, enters $\mathbf{N}$ for 'no'. Else enters the digit 7. |
|  | CONST | Opens a catalog of fundamental physical, mathematical, astronomical, and surveying constants. Cf. pp. 270ff. |
|  | 0 | Enters the letter $\mathbf{O}$ or $\mathbf{0}$ |
|  | f 7 | Enters the character 7 in AIM. |
|  | g 0 | Enters the Greek letter $\boldsymbol{\Omega}$ or $\omega$ |


| R | Keystrokes | Meaning |
| :---: | :---: | :---: |
| 5 | 8 | Enters the digit 8. |
|  | P | Enters the letter $\mathbf{P}$ or $\mathbf{p}$ |
|  | $\pm 8$ | Enters the character 8 in AIM (cf. pp. 193ff). |
|  | g (P) | Enters the Greek letter $\Pi$ or $\boldsymbol{\pi}$ |
| 5 | 9 | Enters the digit 9. |
|  | RTN | Returns to the caller. Cf. pp. 202ff. |
|  | Q | Enters the letter $\mathbf{Q}$ or $\mathbf{q}$ |
|  | f 9 | Enters the character 9 |
| 5 | XEQ | If there is an open question like Are you sure?, confirms it; else - if in PEM - inserts a call to the subroutine with the label specified; <br> else (i.e. in run mode) calls the routine with the label specified and starts executing it. |
|  | GTO | Goes to the specified location in program memory. |
|  | LBL | Enters a label for a particular location in program memory. |
| 6 | $\pm$ | Multiplies $\boldsymbol{y}$ times $\boldsymbol{x}$. |
|  | x! | Returns the factorial of $\boldsymbol{x}$ (or $\Gamma(\boldsymbol{x}+1)$ for non-integer $\boldsymbol{x}$ ). |
|  | PROB | Opens a menu containing combinations, permutations, the Gamma function, a random number generator, and all probability distributions supported. Cf. pp. 96ff. |
|  | R | Enters the letter $\mathbf{R}$ or $\mathbf{r}$ |
|  | f $x$ | Enters the character $\times$ or . in AIM. |
|  | g R | Enters the Greek letter P or $\rho$ |


| R | Keystrokes | Meaning |
| :---: | :---: | :---: |
| 6 | 4 | Enters the digit 4. |
|  | STAT | Opens the menu of sample statistics operations: $\Sigma+, \Sigma-, \operatorname{CL} \Sigma$, various means and measures for scattering, as well as curve fitting functions and settings. Cf. pp. 99ff. |
|  | ( | Opens the menu of accumulated statistical sums, cf. p. 118. |
|  | S | Enters the letter $\mathbf{S}$ or $\mathbf{s}$ |
|  | f 4 | Enters the character 4 in AIM (cf. pp. 193ff). |
|  | g 5 | Enters the Greek letter $\boldsymbol{\Sigma}$ or $\boldsymbol{\sigma}$ |
| 6 | 5 | Enters the digit 5. |
|  | R | Calls $\rightarrow$ REC, converting polar coordinates $\boldsymbol{r}$ (in $\mathbf{X}$ ) and $\boldsymbol{\vartheta}$ (in $\mathbf{Y}$ ) to rectangular (Cartesian) coordinates $\boldsymbol{x}$ and $\boldsymbol{y}$ (cf. p. 128). |
|  | $\rightarrow \mathrm{P}$ | Calls $\rightarrow$ POL, converting rectangular coordinates ( $\boldsymbol{x}$ and $\boldsymbol{y}$ ) to polar coordinates $\boldsymbol{r}$ (in $\mathbf{X}$ ) and $\boldsymbol{\vartheta}$ (in $\mathbf{Y}$, cf. pp. 20f). |
|  | T | Enters the letter $\mathbf{T}$ or $\mathbf{t}$ |
|  | f 5 | Enters the character 5 in AIM. |
|  | g (T) | Enters the Greek letter T or $\tau$ |
| 6 | 6 | Enters the digit 6. |
|  | U $\rightarrow$ | Opens the menu of unit conversions. Cf. pp. 276ff. |
|  | $\square \rightarrow$ | Opens the menu of angular conversions. Cf. p. 126. |
|  | U | Enters the letter $\mathbf{U}$ or $\mathbf{u}$ |
|  | f 6 | Enters the character 6 in AIM. |
|  | g U | Enters the Greek letter $\Theta$ or $\vartheta$ |
| 6 | $\triangle$ | Context sensitive key, see p. 309. |
|  | 辰只 | Moves the program pointer one step back. Cf. pp. 202ff. |
|  | FLAGS | Opens the menu of flag commands. These are of most use in PEM. Cf. pp. 202ff. |


| R | Keystrokes | Meaning |
| :---: | :---: | :---: |
| 7 | $\square$ | Subtracts $\boldsymbol{x}$ from $\boldsymbol{y}$. |
|  | ADV | Opens a menu of advanced operations for solving arbitrary equations, finding roots, integrating, deriving, computing sums and products (cf. pp. 235ff). |
|  | EQN | Opens the menu of all equations currently defined (cf. pp. 238ff). |
|  | V | Enters the letter V or v |
|  | f | Enters the character - in AIM (cf. pp. 193ff). |
|  | g $\square$ | Opens a menu of math symbols |
| 7 | (1) | Enters the digit 1. |
|  | BITS | Opens a menu containing Boole's operations (AND, OR, NOT, etc.) as well as bit manipulating commands. <br> Both menus are most useful with |
|  | INTS | Opens a menu of operations for pp. 136 and 140 ff . integers as well as sign mode settings. |
|  | W | Enters the letter W or w |
|  | g W | Enters the Greek letter $\Psi$ or $\Psi$ |
| 7 | 2 | Enters the digit 2. |
|  | MATX | Opens the menu of matrix operations including e.g. $[\mathrm{M}]^{-1},\|\mathrm{M}\|$, $\left[\mathrm{M}^{\top}\right.$, CROSS, DOT, and the Matrix Editor (cf. pp. 163ff). |
|  | X.FN | Opens a menu of advanced mathematical (extra) functions. See the ReM. |
|  | X | Enters the letter $\mathbf{X}$ or $\mathbf{x}$ |
|  | f 2 | Enters the character 2 in AIM. |
|  | g X | Enters the Greek letter $\Xi$ or $\xi$ |


| R | Keystrokes | Meaning |
| :---: | :---: | :---: |
| 7 | 3 | If there is an open question like are you sure？，enters $\mathbf{Y}$ for ＇yes＇．Else enters the digit 3. |
|  | TIMER | Calls the timer application（cf．pp．264ff）． |
|  | CLK | Opens the menu of time and date commands．Cf．pp．189ff． |
|  | Y | Enters the letter $\mathbf{Y}$ or $\mathbf{y}$ |
|  | f 3 | Enters the character 3 in AIM（cf．pp．193ff）． |
|  | g Y | Enters the Greek letter Y or $\mathbf{v}$ |
| 7 | T | Context sensitive key，see p． 309. |
|  | 辰》 | Moves the program pointer one step forward（cf．pp．202ff）． |
|  | MODE | Opens a menu of operations for setting modes like angular display format，max．denominator，etc．（cf．pp． 125 ff and 151 ff ）． |
| 8 | $\pm$ | Adds $\boldsymbol{x}$ to $\boldsymbol{y}$ ． |
|  | $1 / 0$ | Opens the menu of I／O－related operations．Cf．pp．233f． |
|  | PRINT | Opens the menu of print－related operations． |
|  | Z | Enters the letter $\mathbf{Z}$ or $\mathbf{z}$ |
|  | f + | Enters the character $+\quad$ in AIM． |
|  | g］ | Enters the Greek letter $\mathbf{Z}$ or $\zeta$ |
| 8 | 0 | Enters the digit 0. |
|  | LOOP | Opens a menu containing INC and DEC and the related loop control commands ISG，DSE，etc．Cf．pp．218f． |
|  | TEST | Opens the menu of comparisons，conditionals，and other binary tests．Cf．pp． 214 ff ． |
|  | ？ | Enters the character？ |
|  | 90 | Enters the character 0 in $A 1 M$ ． |
|  | g 0 | Enters the printer character 國 |


| R | Keystrokes | Meaning |
| :---: | :---: | :---: |
| 8 | $\bigcirc$ | Usually enters a decimal radix mark in numeric input. If pressed twice in numeric input, allows for entering a fraction (cf. pp. 68 f and 151 ff ). In register or flag addressing, $\square$ heads a local address (cf. pp. 57ff). |
|  | PARTS | Opens a menu containing FP, IP, SIGN, DECOMP, etc. <br> These operations are most |
|  | INFO | Opens a menu of commands to return system information. Cf. p. 217. <br> useful in PEM. <br> Cf. pp. 202ff. |
|  | $\square$ | Enters a comma |
|  | f. | Enters a point in AIM (cf. pp. |
|  | g $\square$ | Opens a menu of punctuation marks etc. |
| 8 | R/S | Context sensitive key, see p. 308. |
|  | $P / R$ | Toggles program-entry and run mode. |
|  | P.FN | Opens a menu of dedicated programming functions. These are of most use in PEM. Cf. pp. 202ff. |
|  | $\square$ | Enters a blank space in AIM. |
| 8 | EXIT/ON | Context sensitive key, see p. 308. |
|  | CATALOG | Opens the catalog of everything (functions, variables, menus, programs, etc.). See the ReM for its structure and contents. |
|  | OFF | Turns your WP 43S off unless in PEM, where it inserts OFF behind the current step (cf. p. 204). |

Seven context sensitive keys need longer explanations - find them in the table below, sorted alphabetically. If any of these keys is pressed, your WP $43 S$ will run top down through a sequence of key-specific tests whichever test becomes true first, your WP $43 S$ will execute the corresponding operation and return, waiting for next input.

| Key | Condition(s) | Meaning |
| :---: | :---: | :---: |
| CC | $\mathbf{X}$ contains an open (input) number, cf. p. 25 | If PoLAR is clear, CC closes input, checks, and saves it as real part of a forthcoming complex number, then waiting for your input of its imaginary part. <br> Else CC closes, checks, and saves the input as magnitude and waits for your input of the phase. <br> Cf. pp. 154ff for more. |
|  | X contains a closed complex number, vector, or matrix | If POLAR is clear, CC splits ('cuts') $\boldsymbol{x}$ into its real and imaginary part, returning the real part in $\mathbf{Y}$ and the imaginary part in $\mathbf{X}$. <br> Else CC splits $\boldsymbol{x}$ into its magnitude $\boldsymbol{r}$ and phase $\boldsymbol{\vartheta}$, returning $\boldsymbol{r}$ in $\mathbf{Y}$ and $\boldsymbol{\vartheta}$ in $\mathbf{X}$. |
|  | $\mathbf{X}$ and $\mathbf{Y}$ contain two closed reals | Interprets $\boldsymbol{y}$ and $\boldsymbol{x}$ either (for POLAR set) as magnitude and phase, or (for POLAR clear) as real and imaginary parts. CC combines $\boldsymbol{y}$ and $\boldsymbol{x}$ to compose one complex number $\boldsymbol{x}$, then drops $\boldsymbol{y}$. |
|  | $\mathbf{X}$ and $\mathbf{Y}$ contain closed real vector matrices) of iden dimen | (or Returns one complex vector (or matrix) tical $\boldsymbol{x}$, working in analogy to previous row. |
|  | Else | Throws an error. |
| ENTER $\uparrow$ | Waiting for parameter input | Closes pending command input and executes said command (cf. p. 63 for more). |
|  | Asking for confirmation | Confirms the question. |
|  | In TIMER | Is honored as described on pp. 264f. |
|  | In RBR, STATUS | Does nothing. |
|  | Else | Closes alphanumeric input and enters data in the stack (cf. pp. 33 fand 39 for details). |


| Key | Condition(s) | Meaning |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { EXIT / } \\ & \hline \mathbf{O N} \end{aligned}$ | WP $43 S$ turned <br> off$\|$Waiting for <br> parameter input | Works as ON turning your WP 43S on. |
|  |  | Cancels the pending command. |
|  | Waiting for alphanumeric input | Closes input (note alphanumeric includes numeric input). |
|  | Temporary information displayed | Clears this information (e.g. an error message) returning to the calculator state as was before it was thrown. Cf. p. 68. |
|  | Asking for confirmation | Denies the question. |
|  | In RBR, <br> STATUS, TIMER | Leaves the application (cf. pp. 261ff). |
|  | In a (sub-) menu or browser | Leaves the current (sub-) menu or browser without executing anything, returning to the status of your WP 43S as it was before. |
|  | \% flashing | Stops executing the running program immediately. 9 will be lit until next keystroke. |
|  | In PEM | Leaves program-entry mode like (P/R. |
|  | A or $\boldsymbol{\alpha}$ | Closes $\boldsymbol{x}$ and leaves alpha input mode. |
|  | Else | Does nothing. |
| R/S | In TIMER | Starts or stops the timer without changing its value (cf. pp. 264f). |
|  | \% flashing | Stops executing the running program immediately. 9 will be lit until next keystroke. |
|  | In PEM | Enters the command STOP. |
|  | Else | Runs the current routine (cf. pp. 202ff) or resumes its execution starting with the step after the current step. |


| Key | Condition(s) | Meaning |
| :---: | :---: | :---: |
|  | After STO or RCL | Honored as described on pp. 58ff. |
|  | In RBR, <br> STATUS, TIMER | Honored as described in Sect. 5 (pp. 261ff). |
|  | A \& in (alNTL or | $\underline{\text { A... }}$ ) $\nabla$ sets lower case. |
|  | $\alpha$ \& in (alNTL or | A...ת) $\triangle$ sets upper case. |
|  | A else | $\nabla$ sets lower case. Else continue testing. |
|  | $\alpha$ else | $\triangle$ sets upper case. Else continue testing. |
|  | In EQN | goes to next and... to previous equation, if applicable. |
|  | In a multi-view menu | goes to next and... to previous view in the current menu. |
|  | In PEM | goes to previous and... to next program step. Will repeat with 2 Hz when pressed longer than 0.5 s . |
|  | In run mode | Browses the current routine with... going to previous program step and... executing the current program step and going to next step. |
| 4 | Open alphanumeric input | Deletes the last character entered. If none is left, cancels pending command like EXIT. |
|  | Temporary information displayed | Clears the information returning to the calculator state as was before this (e.g. an error message) was thrown. See p. 68. |
|  | Asking for confirmation | Denies the question. |
|  | In TIMER | Resets the timer (cf. pp. 264f). |
|  | In PEM | Deletes the current program step. |
|  | Else | Calls the command CLX. |

## APPENDIX 3: FURTHER APPLICATIONS OF TVM

Throughout TVM pictures, amounts received a represented by arrows pointing up, money laid out (paid, invested) by arrows pointing down. Various types of financial problems can be sketched like this then: ${ }^{197}$


The following examples as well as all the other text printed blue in this appendix are quoted from the $H P-27 \mathrm{OH}$. All calculations are executed in FIX 2. Enjoy the boundary conditions of that time - those were the days ...

[^115]
## Ordinary Annuities (a.k.a. Payments in Arrears)

An annuity is a series of equal payments made at regular intervals. The time between annuity payments is called the payment interval or payment period. If your payment is due at the end of each payment period, it's called an ordinary annuity or payment in arrears. Examples of ordinary annuities are a car loan (where you drive away now and pay later) or a mortgage (where the payments start one month after you get your loan).

The time / money relationship for an ordinary annuity with monthly payments for a year would look like this $\rightarrow$


## Example for finding the number of periods for an ordinary annuity:

 Through an insurance fund, you have accumulated $\$ 50000$ for your retirement. How long can you withdraw \$3 000 every 6 months (starting 6 months from now) if the fund earns $5 \%$ per annum compounded semiannually?

## Solution:

FIN TVM End
5 ENTERT 2 i\%/a 50000 PV

3000 PMT $n_{\text {PER }}$ withdrawals are due at the end of each period,

| ENTERT | 2 (1) | i\%/a | 2.50 | \% semiannual interest rate, |
| :---: | :---: | :---: | :---: | :---: |
| 50000 PV |  |  | 50000.00 | principal (capital), |
| 3000 PMT | $\mathrm{n}_{\text {PER }}$ |  | 21.83 | semiannual withdrawals, so |
|  |  |  | your saving | will last for almost 11 years. |

## Example 1 for finding the interest rate for an ordinary annuity:

What is the annual interest rate (a.k.a. APR for annual percentage rate) on a 2-year, $\$ 1775$ loan with $\$ 83.65$ monthly payments?

## Solution:

| 12 per/a |  | 12.00 | months per year, |
| :---: | :---: | :---: | :---: |
| 12 ENTERT | $2 \times \mathrm{n}_{\text {PER }}$ | 24.00 | periods in total, |
| 1775 PV |  | 1775.00 | principal (capital), |
| 83.65 PMT |  | 83.65 | payment; |
| i\%/a |  | 12.11 | \% APR. |

Borrowers are sometimes charged fees related to the issuance of a mortgage, which effectively raises the interest rate. Given the basis of the fee charge, the true annual percentage rate may be calculated.

## Example 2 for finding the interest rate for an ordinary annuity:

A borrower is charged 2 points for the issuance of his mortgage. If the mortgage amount is $\$ 50000$ for 30 years, and the interest rate is $9 \%$ per year, with monthly payments, what annual percentage rate is the borrower paying? (1 point is equal to $1 \%$ of the mortgage amount.)

## Solution:

First, compute the payment amount which is based on $\$ 50000$

9 i\%/a
12 per/a
12 ENTERT $30 \times n_{\text {PER }}$
50000 PV
PMT
PMT
RCL $n_{\text {PER }} n_{\text {PER }}$
RCL PV $2 \%$ PV
i\%/a
9.00
12.00
360.00
50000.00 83.65
83.65
360.00
49000.00
12.11

What's really happening? For a mortgage with fees, the borrower is making payments on the original loan amount, which corresponds with the initial calculation of the payment amount. If you borrow $\$ 10000$, but are immediately charged \$500 in fees, you really only receive \$9 500 .

But, your payments are based on $\$ 10000$. With fees, then, you're really paying the same for less money, which generates the need to compute the true $A P R$.

## Example for finding the payment amount for an ordinary annuity:

Find the monthly payment amount on a 30-year, \$52 000 mortgage at 9.75\% annual interest rate.

## Solution:

| 12 per/a |  | 12.00 | months per year, |
| :---: | :---: | :---: | :---: |
| 12 ENTER 1 | $30 \times n_{\text {PER }}$ | 360.00 | payment periods in total |
| 52000 PV |  | 52000.00 | mortgage, |
| 9.75 i\%/a |  | 9.75 | \% annual interest rate; |
| PMT |  | 446.76 | monthly payment. |

A common financial occurrence is an annuity that has a large payment at the end. The last payment - usually considerably larger although it could also be smaller than the others - is called a balloon payment or balloon.

By subtracting the present value of the balloon payment from the loan amount, the problem effectively becomes "What is the monthly payment on a direct reduction loan?"

## Example (finding the payment for an ordinary annuity with balloon):

Yellowstone Sam is heading north, and will invest in an $\$ 8000$ dog sled and team. His loan specifies 60 monthly payments at $10 \%$ with a balloon payment in the $60^{\text {th }}$ month of $\$ 3000$. What will his monthly payments be?

## Solution:

| 12 per/a | 12.00 | months per year, |
| :--- | ---: | :--- | :--- |
| $\mathbf{6 0} \mathrm{n}_{\text {PER }}$ | 60.00 | payment periods in total, |
| $\mathbf{1 0} \mathrm{i} \% / \mathrm{a}$ | 10.00 | $\%$ annual interest rate; |
| $\mathbf{3 0 0 0} \mathrm{FV}$ | 3000.00 | future value of balloon, |
| PV | 1823.37 | present value of balloon; |


| PV |  | 1823.37 | input of $P V$ of balloon; |  | | |
|---|---|---|---|---|---|---|
| RCL | i\%/a | i\%/a | 10.00 | recall \& reuse interest rate, |
| RCL | $n_{\text {PER }}$ | $n_{\text {PER }}$ | 360.00 | recall and reuse periods, |
| $\mathbf{8 0 0 0}$ |  | 8000.00 | gross value of loan amount, |  |
| RCL | PV | - | PV | 6176.63 | | net present value of loan |
| :--- |
| amount less balloon; |

## Example for finding the present value of an ordinary annuity:

Yellowstone Sam decides to purchase a snowmobile. He plans to pay $\$ 80$ per month for 3 years, and he's willing to pay $10 \%$ annual interest. How much can he afford to pay for the snowmobile?

## Solution:


12.00 months per year, 36.00 payment periods in total,
10.00 \% annual interest rate;
9.00 monthly payment,
2479.30 price he can pay for the snowmobile.

With loan calculations, you generally solve for $n, i, P M T$, or $P V$. There is another type of ordinary annuity called a "sinking fund", where you make payments at regular intervals into a fund to discharge a debt (for example, to pay off a bond issue at maturity). With sinking fund calculations, you solve for $\boldsymbol{n}, \boldsymbol{i}, \mathbf{P M T}$, or $\boldsymbol{F V}$ (how much you will have in the fund at a future date).

Sinking fund payments start at the end of the first period, like so $\rightarrow$ Today

This is different from opening a


FV
savings account with a starting deposit today. Savings are annuity due calculations and will be described later in this section.

## Example for finding the future value of an ordinary annuity:

A $\$ 100000$ bond is to be discharged by the sinking fund method. If, starting 6 months from now, you deposit $\$ 3914.75$ twice a year into a sinking fund that pays $5 \%$ compounded semiannually, will you be able to pay off the bond in 10 years?

## Solution:

| 2 per/a |  |  | 2.00 | halves per year, |
| :---: | :---: | :---: | :---: | :---: |
| 10 ENTERT $2 \times$ |  | $\mathrm{n}_{\text {PER }}$ | 20.00 | payment periods in total, |
| 5 i\%/a |  |  | 5.00 | \% annual interest rate; |
| 3914.75 PMT |  |  | 3914.75 | semiannual deposit, |
| FV |  |  | 100000.95 | balance of the fund after 10 years - it will just make it! |

## Annuities Due (a.k.a. Payments in Advance)

With some annuities - like insurance premiums or a lease - the payment is due at the beginning of the month. This is called an annuity due because the payment falls at the beginning of the payment period. Other terms are payments in advance or anticipated payments.
An annuity due with monthly payments for a year - say, a car insurance policy ${ }^{198}$ looks like this $\rightarrow$

Notice that with an


Policy Purchased annuity due, you have a payment right away at the beginning of the first interval (with an ordinary annuity, your payment is not due until the end of the first period, but you also have a payment at the end of the entire term).

The following calculations all deal with annuity due problems, e.g. savings, insurance, leases, and rents.

[^116]Example 1 for finding the number of periods for an annuity due:


Given an investment possibility of $\$ 325000$ that will immediately produce rental income of $\$ 7500$ per month, how long must the investment be held to yield $10 \%$ per annum? ${ }^{199}$

## Solution:

EIN

## TVM Begin

12 per/a
10 i\%/a
325000 PV
7500 PMT $\mathrm{n}_{\text {PER }}$
payments are due at the begin of each period,

| 12.00 | months per year, |
| ---: | :--- |
| 10.00 | \% annual interest rate, |
| 325000.00 | investment; |
| 53.43 | months. |

## Example 2 for finding the number of periods for an annuity due:

If you deposit $\$ 50$ a month in a savings account that pays $6 \%$ interest, how long will it take to reach $\$ 1000$ ?

## Solution:

12 per/a
6 i\%/a
0 PV
1000 FV
50 PMT $\mathrm{n}_{\text {PER }}$
12.00 months per year,
6.00 \% annual interest rate,
0.00 start balance,
1000.00 future value;
19.02 months.

## Example for finding the interest rate for an annuity due:

Equipment worth $\$ 12000$ is leased for 8 years with monthly payments in advance of $\$ 200$. The equipment is assumed to have no salvage value at the end of the lease. What yield rate does this represent?

[^117]
## Solution:

| 12 per/a |  | 12.00 | months per year |
| :---: | :---: | :---: | :---: |
| 8 ENTERT | $12 \times{ }_{\text {PER }}$ | 104.00 | payment periods in total, |
| 12000 PV |  | 12000.00 | start value of equipment, |
| 0 FV |  | 0.00 | final value of equipment, |
| 200 PMT |  | 200.00 | payments; |
| i\%/a |  | 13.07 | \% annual yield. |

## Example for finding the payment amount for an annuity due:

The owner of a building presently worth $\$ 70000$ intends to lease it for 20 years at the end of which time he assumes the building will be worthless (i.e., has no residual value). How much must the quarterly payments (in advance) be to achieve a $10 \%$ annual yield?

## Solution:

4 per/a
20 ENTERT $4 \times n_{\text {PER }}$
10 i\%/a
70000 PV
0 FV
PMT
4.00 quarters per year, 240.00 payment periods in total, 10.00 \% annual target yield, $70000.00 \quad P V$ of the building;
$0.00 \quad F V$ of the building; 1982.27 quarterly payments.

Example for finding the present value for an annuity due:


The owner of a downtown parking lot has achieved full occupancy and a $7 \%$ annual yield by renting parking spaces for $\$ 40$ per month payable in advance. Several regular customers want to rent their spaces on an annual basis. What annual rent, also payable in advance, will maintain a $7 \%$ annual yield rate?

## Solution:

| 12 | per/a | 12.00 | months per year, |
| :--- | ---: | :--- | :--- |
| $\mathbf{1 2} \mathrm{n}_{\text {PER }}$ | 12.00 | payment periods in total, |  |
| $\mathbf{7} \mathrm{i} \% / \mathrm{a}$ | 7.00 | $\%$ annual target yield, |  |
| $\mathbf{4 0} \mathrm{PMT}$ | 40.00 | monthly payments; |  |
| PV | 464.98 | equivalent annual payment. |  |

## Example for finding the future value for an annuity due:



If you can afford to deposit $\$ 50$ per month in an account with $6 \frac{1}{4} \%$ interest compounded monthly, how much will you have 2 years from now?

## Solution:

| 12 per/a | 12.00 | months per year, |
| :---: | :---: | :---: |
| 2 ENTERT $12 \times \mathrm{n}_{\text {PER }}$ | 24.00 | payment periods in total, |
| 6.1.4 i\%/a | 6.25 | \% annual target yield, |
| 50 PMT | 40.00 | monthly payments; |
| 0 PV | 0.00 | start balance; |
| FV | 1281.34 | balance after two years. |

## APPENDIX 4: POWER SUPPLY

Your WP 43 is powered by a single CR2032 coin cell (3 V). Alternatively, it may be powered through its USB port - running with even higher speed then. Watch p. 16 and see the ReM, App. A for more.
WARNING: Removing the battery for longer than xxx seconds may erase all data in RAM - only data in flash memory will remain.

See what sufficed for explaining the basic functionality of the HP-45 on its back in 1973:


Though it featured only 59 functions, neither menus, catalogs, data types, browsers, applications, advanced operations (just four statistical sums, means, and standard deviations), named variables, programming, nor customizing - but your WP 43S does.

## APPENDIX 5: TIME LINE OF QUOTED MANUALS

HP-35 OM ..... 1972
HP-55 OH, HP-21 OH, HP-25 OH ..... 1975
HP-27 OH, HP-67 OHPG ..... 1976
HP-97 OHPG, HP-32 OH, HP-33 OH ..... 1978
HP-34C OHPG ..... 1979
HP-41C/41CV OHPG ..... 1980
HP-16C Computer Scientist OH ..... 1982
HP-15C OH ..... 1987
HP-27S OM, HP-42S OM ..... 1988


In 1976, Continuous Memory was a breathtaking innovation; and a grand total of 72 built-in functions, 8 GP storage registers, and 49 merged program steps sufficed for professional engineers and scientists doing their work as well as for students striving for their Ph.D. Note that 200 US\$ of 1976 correspond to 911 US\$ of today! Though linear regressions, correlations, and forecasting had to be programmed by you if you needed them - the respective routine as recommended by HP took 44 precious steps.

## APPENDIX 6: RELEASE NOTES

|  | Date | Release notes |
| :--- | :--- | :--- |
| 0 | 29.11 .12 | Official project start with first publication of the 43S <br> concept and a layout on one of the forums of the <br> Museum of HP Calculators (https://www.hpmuseum.org/cgi- <br> sys/cgiwrap/hpmuseum/archvo21.cgi?read=234685\#234685). <br> Though there are found far older traces of a '43S denoting a 'Super <br> HP-42S, though in various more or less fictional cases - pure <br> vapourware'T. |
| 0.1 | 2.2 .14 | Manual setup based on the one of WP 34S. <br> Passed to Jake Schwartz, Eric Smith, and Richard Ottosen for first |
| information. |  |  |


|  | Date | Release notes |
| :---: | :---: | :---: |
|  | 2．4．18 | Specified data types more precisely in ReM App．D．Reduced the maximum number of local registers from 888 to 100．Deleted JG1582 and JG1752．Renamed two commands for TVM．Replaced the heading apostrophe for menu names．Put SUMS in STAT．Renamed the trigonometric and hyperbolic functions according to mathematical standards，and 䊆CHR to 目CHAR．Redistributed the chapter about constants．Modified STATUS display．Refined the unit conversions to ensure SI on one side．Specified 0 SEED．Expanded ReM App．A． Added formula output for L．R．Modified CPX？，DBL？，and REAL？． Changed output of binary tests for compatibility with HP－42S． |
| 0.8 | $\begin{gathered} 7.5 .18 \\ 20.9 .18 \end{gathered}$ | Changed keyboard layout：introduced TRG containing trigonometric functions，removed HYP into EXP and $\pi$ to g－shifted（1），swapped some shifted labels．Refined the chapters about register arithmetic， Command Parameter Input，Alphanumeric Input，Matrix Calculations， and Orthogonal Polynomials．Introduced CLCVAR and more vintage examples．Rearranged temporary information on the screen．Renam－ ed REGS to RBR and CLx to CLX．Deleted ANGLE． <br> Corrected errors and inconsistencies．Added one more example． Moved the key response table into an appendix． |
| 0.9 | 3．1．19 | Removed angle data type．Added another industrial application and many more examples．Exchanged keyboard pictures due to changed bezel．Expanded App．B．Added SHOW for displaying full precision of $D P$ numbers and FBR for browsing our two fonts．Split a chapter． Expanded some titles．Added the overlay drawing．Modified func－ tionalities of EXIT and $1 / 1 / x$ to match HP－42S．Added a chapter about curve fitting．Modified functionalities of ENTERT and $\leftrightarrows$ ．Expanded App．K．Renamed DOUBLE to $\rightarrow$ DP．Added $\rightarrow$ SP and conversions of quarts．Rearranged X．FN．Replaced USR by UM．Changed keyboard moving UM，$\sqrt{\boldsymbol{x}}$ ，and（TRI）．Moved 国 to f （R／S）．Added XIN and XOUT．Added a chapter in App．E and information about infinite integers Extended the domain of GCD and LCM．Refined and corrected． |
| 0.10 | 3．3．19 | Returned angle data type and aSR．Added IDIVR and VANGLE． Refined FP，IP，IMPFRC，PROFRC，SDIGS？，$\rightarrow$ DP，$\rightarrow$ HR，$\rightarrow$ INT， $\rightarrow$ REAL，$\rightarrow$ SP，explanation of ALL，the summary of integer functions， and handling of long alpha strings．Modified contents of CPX，MATX， and $\underline{\alpha}$ ．Added a summary of matrix functions．Removed the ON－ key combinations．Modified MEM？．Rewrote the angular conver－ sions．Renamed infinite and finite integers to long and short integers． Added a chapter about $\pm \infty$ and NaN．Modified RBR and the menu for STO and RCL．Removed 目 from the keyboard．Renamed $X_{u}$ to $X_{e}$ for the distributions． |


|  | Date | Release notes |
| :---: | :---: | :---: |
| 0.11 | 8.5.19 | Changed keyboard making (CC primary and user mode shifted, removing $x^{2}, x$, and DSP, adding $\|x\|$, DROP, and SHOW, and moving some shifted labels. Modified BITS, CLREGS, CNST, CPX, DISP, EXP, INTS, MODE, PARTS, SHOW, STAT, U $\mathcal{O}$, $\underline{\text { aMATH, }}$, the division matrix, data type conversions, and the Quick Reference Guide. Added conversions of barrels, carats, and fathoms. Deleted DSP. Separated predefined variables. Refined Sect. 6. Added $\overline{\mathbf{x}}_{\mathrm{H}}, \overline{\mathbf{x}}_{\text {RMS }}$, nine statistical sums and five curve fit models. Split STAT in STAT and SUMS; renamed RMDR to RMD, $L_{n}$ to $L_{m}, L_{n a}$ to $L_{m a}, \Pi$ to $\Pi_{n}, \Sigma$ to $\Sigma_{\mathrm{n}}$, and some constants to avoid search ambiguities. Refined App. $J$, Sect. 3 and 4, $\rightarrow$ INT, CLR, and the functions of $\Delta$ and $\boldsymbol{\nabla}$. Put SUMS instead of RMD on the keyboard, moved ADV, BITS, CATALOG, EQN, FILL, INTS, MATX, MODE, PROB, RTN, SHOW, STAT, and $\alpha$.FN. Rearranged A.... and Sect. 2 of the OM. |
| 0.12 | 16.10.19 | Rearranged the appendices of the ReM from App. D on. Expanded App. A of the OM and App. K. Deleted the standardized normal distribution $\Phi$ and rearranged PROB. Updated CNST following CODATA 2018. Renamed the angular conversions. Changed the composing and cutting functionality of (CC). Refined exiting short integer input. Expanded App. D. Specified maximum size of long integers. Changed keyboard adding $\Varangle$, moving $\mathrm{CPX}, \mathrm{FIN}$, RBR, R $\uparrow$, and SHOW, removing \%. Renamed VANGLE to $\mathrm{V}_{\mathrm{K}}$. Modified CPX, MATX, TRI, and X.FN. Rearranged Section 1 of the OM. Added some internal data types to App. B; reduced the range of long integer results and $D P$ real inputs to $10^{ \pm 999}$. Defined the domains of ex-1, IDIVR, LN $(1+\mathrm{x})$, MOD, and RMD according to the HP-42S; modified PLOT and $\Sigma+$. Refined the Addressing Tables. Added a data type matrix for IDIVR. Refined the Special Results in App. B. |
| 0.13 | 30.11.19 | Expanded the alpha keyboard and App. I. Modified CPX, INTS, MODE, PROB, STK, TEST, $\underline{a}_{\bullet}$, SHOW, and STATUS. Refined the sorting order of items, ALL, CX $\rightarrow$ RE, MEM?, RE $\rightarrow$ CX, RBR, RM, SLVQ, and UT. Started filling App. Fand G. Refined App. 2. Added a long integer example, CPXR?, LZ?, $\Delta v_{\mathrm{Cs}}$, conversions of hectares, and a proposal for system status information. |
| 0.14 | 7.3.20 | Introduced system flags for status information. Split I/O. Added CATALOG'SYS.FL, PRINT, PROG, RANI\#, VAR, auxiliary constants, some predefined variables, and an index in App. I. Changed keyboard swapping MODE and $\underline{F L A G S}, \underline{U} \rightarrow$ and $\underline{\underline{ }}$, moving $\underline{\text { CPX }}$, FILL, RBR, R $\uparrow$, USER, $\alpha$.FN, alNTL, $\sqrt{x}$, and 且, displaying PRINT, RMD, STATUS, $x^{2}$, and ' $\because$ ', and removing (c/d), 国, $\rightarrow S P$, and $\rightarrow D P$. Renamed DISP to DSP and SUMS to $\underline{\underline{\Sigma}}$, changed $(\boxed{G}$ to $(\curvearrowleft)$. Refined the addressing tables and catalog access, ab/c, ADV, BATT?, BITS, CATALOG'CHARS and 'MENUS, CLALL, CLFALL, CPX, EXP, |


|  | Date | Release notes |
| :---: | :---: | :---: |
|  |  | GAP, INTS, I/O, MODE, NEIGHB, PARTS, PRIME?, P.FN, SHOW, STAT, STK, X.FN, alNTL, and $\underline{\text { ae. Deleted all 16-digit (i.e. SP) data }}$ types as well as A...Z and the commands CLK12, CLK24, CPXi, CPXj, CPXRES, CPXR?, DBL?, DENANY, DENFAC, DENFIX, ENGOVR, FAST, IMPFRC, LZOFF, LZON, LZ?, MULTx, MULT•, POLAR, PROFRC, QUIET, RDX., RDX,, REALRE, RECT, SCIOVR, SLOW, SSIZE4, SSIZE8, $\rightarrow$ DP, and $\rightarrow$ SP. Corrected. |
| 0.15 | 14.6.20 | Added BESTF?, RANGE, RANGE?, REGIST, SNAP, and $s(a)$, as well as errors 28 and $31-35$. Changed DSZ and ISZ to comply with HP16C. Changed keyboard shifting N, O, P, and Q, swapping ? and Z, moving CNST, CPX, FLAGS, RBR, RTN, R $\uparrow$, VIEW, and 且, removing $:$, and adding MOD, $\checkmark$, and SNAP. Renamed DSP to DISP, CNST to CONST, CONST to CNST, ASL.BLK to ASLIFT, SSIZE to SSIZE8, TDM to TDM24, and the left and right sided probabilities. Refined ASSIGN, CATALOG, CNST, DISP, INFO, NEXTP, PRIME?, PROB, RBR, RESET, SHOW, SINC, STAT, $\underline{U}$, VIEW, $x=+0$ ?, $x=-0$ ?, $y^{x}, a \rightarrow x$, 4, pp. 54-57 and 205-207 (and consequences) as well as Section 6 of the OM, pp. 108-117, App. B, C, and E of the ReM, and some looping and statistical explanations. Reduced the maximum number of local registers from 100 to 99. Changed ALLSCI to ALLENG and RECTN to Polar. Added data type matrices for powers. Corrected. |
| 0.16 | 4.7.20 | Added torque and mmHg conversions, $\mathrm{x}_{\text {max }}$ and $\mathrm{x}_{\text {min }}$, ISM, and LOADV. Added UNDO to the IO . Refined $\mathrm{I} / \mathrm{O}$ and the descriptions of LOAD, LOADSS, RESET, and UNDO. Marked the not-undoable items in the IOI. Renamed the constants according to the OM and kicked them out of the IOI. Corrected. |

## INDEX

This index lists special terms and keywords used in this manual. Furthermore, it points to the most prominent of the 167 examples included, marked '(ex.)'.

Items are listed below only if they are extensively treated in this manual (remember you find each and every item provided explained in the IOI printed in the ReM; and the $I O I$ will also point you to further explanations if applicable). Looking at the Table of Contents above is recommended as well - titles are not repeated below.

42 (ex.) 134
about to die (ex.) 194
account balancing (ex.) 31
address space 53
addressing, indirect 64
ADM 124
advertising pictures (ex.) 95
AIM 192
air pressure and altitude (ex.) 86
aircraft navigation (ex.) 129
alpha input mode 76, 192
altimeter (ex.) 86
angular display mode 124
APR 310
archery statistics (ex.) 99
arithmetic shift 141
ASSIGN 280
automatic stack lift 35
balloon trip (ex.) 84
base conversions 138
bicycle gearing (ex.) 85
bit numbering 139
black or white cats (ex.) 195
Boolean operations 141
branching 213, 217
bubble sort (ex.) 218
caesium-137 91
calculator stand (ex.) 152
cannery (ex.) 204
carbon-14 dating (ex.) 240
carry 140
CDF 97
chain calculation (ex.) 34
chi-square statistic (ex.) 106
cleaning a veranda (ex.) 277
closing numeric input 24
complex aircraft navigation (ex.) 157
compound interest (ex.) 48
confidence limits (ex.) 108
connecting peaks (ex.) 94
continuous distribution 97
cross product (ex.) 159, 176
cubic inches (ex.) 277
current step 203
data type 68
data type conversions 74
dating (ex.) 189
debugging 212
decrement and skip 217
dice from Las Vegas (ex.) 107
diffraction pattern (ex.) 257
digit group separation 79
discrete distribution 97
dot product 158, 176
dyadic functions 31
earthquakes (ex.) 89
electron-volts (ex.) 273
engineer's notation 80
enter exponent 24
ENTER4 33
error probability 97
extrapolation (ex.) 105
falling around the earth (ex.) 226
falling in Pisa (ex.) 102
falling with drag (ex.) 224
fencing land (ex.) 19
FILL 38
filling tires (ex.) 277
fixed point notation 81
flags 54,55
forecasting (ex.) 105
free fall (ex.) 102
Fukushima accident (ex.) 91
general purpose registers 44, 54, 55
Golden Bow (ex.) 99
great circle distance (ex.) 126
Greek letters 192
Horner scheme (ex.) 49
improper fraction 151
increment and skip 217
indicators, status bar 75
indirect addressing 61, 62
integer sign mode 136
interpolation (ex.) 104
ISM 136
item 26
keystroke programming 201
logical operations 141
long integers 134
Mach number (ex.) 44
markup and margin (ex.) 121
measuring capability (ex.) 114
measuring system analysis (ex.)
112
menu 26
menu section 27
menu view 26
modulo 143
monadic functions 30
Mother's Kitchen (ex.) 204
Mt. Everest (ex.) 87
MyMenu 285
Mya 290
navigating in space (ex.) 131
overflow 137
parachutist (ex.) 224
PDF 97
PEM 21, 202, 204, 245, 262
PMF 97
prefix 18
primary function 17
process capability 100
program editing 210
program pointer 203
proper fraction 151
proton in magnetic field (ex.) 176
quantile function 98
$R \downarrow$, R4 37
radioactivity (ex.) 91, 240
radioactivity (units) 279
radix mark setting 79
RCL 58, 61
remainder of division 142
Rigel Centaurus (ex.) 50
rotate bits 140
rotate text 197
RPN 14, 23, 31, 37, 40, 42, 45
satellite orbits (ex.) 226
scientific notation 80
scrap rate (ex.) 108
search text 197
secondary function 17
shift bits 140
shift text 198
short integers 135
significant change (ex.) 114, 116
significant improvement (ex.) 101
Sirius (ex.) 50
skiing (ex.) 83
skydiving (ex.) 224
softkey 27, 28
sorting numbers (ex.) 218
special registers 54
squaring circles (ex.) 82
stack 32
stack overflow 43
startup default 52
statistical registers 52,54
status bar 75
submenu 27
surfaces of Jupiter's moons (ex.) 21
TAM 56, 209, 260
tax deduction (ex.) 122
temporary alpha mode 56
temporary information 68
Tower of Pisa (ex.) 102
triadic functions 36
Upper Lagunia (ex.) 94
user flags 55
variables 56
vector operations in 2D 177
VIEW 59
virtual keyboard 57, 193, 209
Willie's Widget Works (ex.) 95
XEQ 22


[^0]:    ${ }^{1}$ RPN stands for Reverse Polish Notation, a very effective and coherent method for most efficient solutions to complicated problems. It is based on a mathematical logic known as Polish Notation (since invented by the Polish logician Jan Łukasiewicz, see https://www.youtube.com/watch?v=qRrAj-GCTQM). He placed operators before numbers or variables instead between them as in conventional mathematical notation. Thus, $\underline{R P N}$ places operator behind numbers. See Section 1 of this manual for more.
    Our hardware platform, the DM42 of SwissMicros, was developed in parallel and launched in 2017. This is due to the fact that the layout of the DM42 is very closely linked to the HP-42S of Hewlett-Packard produced until 1995 and its firmware uses Thomas Okken's Free42 simulating HP-42S.
    ${ }^{2}$ Translator's note for German readers: Root bedeutet hier Nullstelle.

[^1]:    ${ }^{3}$ The firmware of your WP $43 S$ is based to a large extent on the experience Paul and me gained with the WP 34S RPN Scientific calculator on the market since 2011. We started the WP 34S project in 2008. You find specific information about the WP 34S

[^2]:    ${ }^{6}$ Only Liberia, Myanmar, and the USA are not participating yet. We do not know what they are afraid of - and they obviously do not know what they miss.
    If you should need basic information about $S I$ and its foundations, please turn to https://en.wikipedia.org/wiki/International System of Units. See also the chapters about Constants and Unit Conversions in Section 5 below.

[^3]:    ${ }^{7} \ldots$ although WP 43S is distributed in the USA as well.

[^4]:    ${ }^{8}$ No, we do not think you are stupid, irresponsible, and lack any experience. Blame the lawyers of the respective people and the courts of that great nation who made such a waste of print space inevitable.

[^5]:    ${ }^{11}$ Forget the number displayed above for the time being. We will talk about it later.
    ${ }^{12}$ Reading some of HP's vintage calculator manuals may be fun and interesting for you.
    They are still available at low cost - together with almost complete information about

[^6]:    all the other HP calculators built between 1968 and 1990 - in one package on media distributed by the online Museum of HP Calculators (see http://www.hpmuseum.org/cd/cddesc.htm ).

[^7]:    ${ }^{13}$ Program L as recorded above is a very short one: its center part contains four keystrokes only ( $\boldsymbol{x}^{2} \quad \underline{g} \pi \mathbb{X}$ ). You may store far, far more keystrokes in program memory - the overall procedure of storing and running programs, however, will remain unchanged. Only the center part of the program will grow.
    Programming is comprehensively covered in Section 3 of this manual.
    ${ }^{14}$ ALL may well be on your screen still since you called (DISP) on p. 19.

[^8]:    ${ }^{15}$ We print them underlined throughout this manual for the same reason. Note, however, they are stored in your WP $43 S$ without that underline and hence displayed also in menu views without it. The labels $\underline{A}, \leq$, and $\bullet$ will be treated further below.

[^9]:    ${ }^{16}$ A quick and simple unit analysis is strongly recommended before starting a calculation of a formula you may have derived yourself. The big advantage of $S /$ is that this is the largest coherent set of units available on this planet. Unit prefixes in SI simply represent powers of 1000 (look up the ReM if necessary).

[^10]:    ${ }^{17}$ Your WP 43S features also monadic functions operating on other data than reals and/or returning a different kind of data in output. These functions work the same way: $x$ will be replaced by $f(x)$, everything else remains untouched.

[^11]:    ${ }^{22}$ This completely eliminates the need for an $\Xi$ on the keyboard.

[^12]:    ${ }^{30}$ You would not execute this step manually since you will see immediately that $\boldsymbol{x}$ is positive. In an automatic evaluation of such a formula, however, this step is important unless you know in advance that a negative intermediate result will not occur.
    ${ }^{31}$ We admit we were cautious seeing this formula and set SSIZE8 before starting the calculation here.
    Additional remark: In the fifth step of last diagram, we have got the complete result for the numerator in $\mathbf{X}$. And the result for the denominator is in $\mathbf{Y}$ whereto it silently traveled during all the other calculations (see above). In the subsequent step, we swapped $\boldsymbol{x}$ and $\boldsymbol{y}$ to put the operands in proper order for division of the numerator $\boldsymbol{y}$ by the denominator $\boldsymbol{x}$.

[^13]:    ${ }^{32}$ Thus, operator precedence is your job. Look up App. 1 for confirmation or reminder.

[^14]:    ${ }^{33}$ Assuming you begin your calculations with a clear stack, you could think of writing a little routine checking the contents of the top stack register, and displaying a warning when this register deviates from zero. Though that routine will turn useless at this very moment since the top stack register contents will stay nonzero further on. See previous page and trick \#1 three pages below.
    ${ }^{34}$ The ancient British Imperial unit knot survived in aviation business and navigation: 1 knot $=1$ nautical mile $/$ hour $=463 / 900 \mathrm{~m} / \mathrm{s} \approx 0.5144 \mathrm{~m} / \mathrm{s} \approx 1.85 \mathrm{~km} / \mathrm{h}$.
    The foot is another one from that heap of pre-modern units made obsolete by $S /$ for two centuries (see $\underline{U} \rightarrow$ in Sect. 5). It also survived in aviation. We quote that USAmerican Mach-number formula without having verified it.
    Translator's note for Europeans: CAS does not mean $C \cdot A \cdot S$, and PA does not mean $P \cdot A$ in that formula!

[^15]:    ${ }^{35}$ Of course, constructing an example leading to stack overflow even for eight registers is trivial. But first of all it will be exactly that: a constructed example - no real-world formula. And last not least, we assume there will be still an intelligent person operating the calculator, solving from inside out as recommended above.

[^16]:    ${ }^{36}$ You might ask: With the opportunity of an 8-register stack, why are there only up to four stack registers displayed, not more?
    The reason is simple: Once you have accustomed to $R P N$, you know the way it deals with your data on the stack. Consistently. Thus, watching the entire stack mechanics reliably working all the time does not carry any valuable information and will become boring or even distracting very soon.
    Actually, the overwhelming majority of RPN pocket calculators displayed $\boldsymbol{x}$ only although there were $\mathbf{Y}, \mathbf{Z}$, and $\mathbf{T}$ quietly acting unseen always. Users were doing all sorts of tricks on that stack - just tracking $\boldsymbol{y}, \boldsymbol{z}$, and $\boldsymbol{t}$ in their minds. Even HP's RPL calculators (although they feature a so-called 'infinite' stack) did and do not display more than four registers.
    Assuming people's mental abilities did not deteriorate generally in last decades, displaying more than four stack registers carries no lasting benefit. This holds especially since the odds for stack overflow in real-world calculations are reduced to zero when you follow our recommendations above. For the same reason, we omit heading indicators X, Y, Z, and T in display. Since you chose this calculator for yourself, you are obviously able to remember these four letters naming the bottom four stack registers.
    On the other hand, if you feel distracted or even annoyed by the screen showing more than necessary, you may reduce the number of stack registers displayed to three, two, or even just one (using DSTACK), letting your brains compete with the ones of your fellow RPN users since 1972. Free space will flow in the display top down $-\boldsymbol{x}$ will always be displayed directly above the menu section. And multi-line output will be shown entirely always, regardless of current DSTACK setting.

[^17]:    ${ }^{37}$ Translator's note for German readers: Compound interest = Zinseszins.
    ${ }^{38}$ Those were the times, my friend...! Inflation was balancing those interest rates but saving was definitely more fun then, nevertheless.

[^18]:    ${ }^{39}$ This is identical with Alpha Centauri. Rigel usually means a star in constellation Orion.
    ${ }^{40}$ There are only very few commands changing $\boldsymbol{x}$ but not loading $\mathbf{L}$. Those are mentioned explicitly in the IOI. - Allocating a dedicated label to LASTx on the keyboard (like on the HP-42S) would not pay here since no keystrokes will be saved.

[^19]:    $41 \curvearrowleft \sim$ operates on stack, statistic registers and system flags. Note, however, $\curvearrowleft \sim$ will not revert any operations you have confirmed explicitly (like RESET, see next page). And $(\curvearrowleft)$ will undo the very last operation before $(\curvearrowleft)$ only, nothing more - i.e. $(\curvearrowleft)(\curvearrowleft)=(\curvearrowleft)$. Previous RPN calculators used LASTx for error correction - $\curvearrowleft \sim$ works easier and more comprehensive.

[^20]:    ${ }^{42}$ Find more about GP registers in next chapter. Note stack and statistical registers as well as variables are not touched by CLREGS.
    ${ }^{43}$ Note display formats as well as other user settings and assignments will remain unchanged. Only RESET clears everything except flash memory (see Sect. 3 and 6). ${ }^{44}$ If you cannot reach RESET for any reason whatsoever, a hard reset will do almost the same. Use the RESET hole on the calculator back side.

[^21]:    ${ }^{45}$ What is printed white on your physical WP 43S, on the other hand, is called a default primary function.
    ${ }^{46}$ Comparisons are most useful in programming - see Section 3.

[^22]:    ${ }^{47}$ For commands operating on labels, PROG will be displayed instead of VAR, granting access to the global labels specified (see Section 3, Labels).

[^23]:    ${ }^{48}$ In Section 3, you will learn about a method preventing your programmed routines from interfering with data of other programs.

[^24]:    ${ }^{49}$ It is recommended calling variables being already defined via VAR instead of keying them in using $\alpha$.
    ${ }^{50}$ Note you can skip pressing $f$ here (cf. the virtual keyboard above).

[^25]:    ${ }^{51}$ For $(\mathbb{R C L}$ and STO only, any of the keys $\oplus, \boxed{\square}, \boldsymbol{\otimes}, \rrbracket, \boxed{\Delta}$, or $\nabla$ may precede step 2 here. Entering such a key twice will cancel it (e.g. RCL (1) (1) equals (RCL). See the chapter after next chapter for more about this store and recall arithmetic.
    Such operators are not allowed in RCL Config (calling RCLCFG), RCL Stack (calling RCLS), RCLEL, RCLIJ, and the corresponding store operations, however.
    ${ }^{52}$ This name must be unique. If a variable with this name is not defined at execution time yet, it will be created automatically, containing zero initially.

[^26]:    ${ }^{53}$ Where applicable, it is recommended calling system flags via SYS.FL or their shortcuts, and variables already defined via VAR, instead of keying them in using $\boldsymbol{\alpha}$.

[^27]:    ${ }^{55}$ Several vintage calculators, on the opposite, featured just a single dedicated register for indirect addressing if at all. See the HP-34C or HP-15C, for instance.

[^28]:    56 If you choose less than three stack registers to be displayed (see DSTACK), temporary information will nevertheless show up at the positions mentioned above, whenever applicable. And operations resulting in multiple output rows will display their entire output independent of the DSTACK setting always.
    ${ }^{57}$ Furthermore, it can also deal with real and complex vectors and matrices as well as with alphanumeric character strings, - these data types are covered comprehensively in dedicated chapters further below in this section.
    All data types provided are listed in the ReM.

[^29]:    ${ }^{62}$ For example, 15 / 3 returns 5 while $14 / 5$ returns 2.8 .
    ${ }^{63}$ The matrix $\boldsymbol{x}$ must be invertible. Dividing by $\boldsymbol{x}$ is equivalent to multiplying times $\boldsymbol{x}^{-1}$. (see the chapter Vectors and Matrices: Calculating below).

[^30]:    ${ }^{64}$ For example, $16^{\wedge}(1 / 4)=2$ but $16^{\wedge}(1 / 3)=2.5918 \ldots$ and $16^{\wedge}(1 / 2)=4$. Compare the matrix for divisions.

[^31]:    ${ }^{65}$ The symbol $\urcorner$ means "not", i.e. the trailing system flag cleared, while " $\&$ " denotes a logical "and" and a comma a logical "or" in this table.

[^32]:    ${ }^{66}$ As far as we know, the WP $43 S$ is the first pocket calculator displaying numbers the way internationally agreed on. Previous calculators featuring limited displays had to use e.g. points or commas as crutches since they could not display narrow blanks .
    ${ }^{67}$ Officially, the Gregorian calendar became effective at 1582-10-15 in the catholic world. Many states and territories switched later for various reasons (check the dates in Wikipedia). You can enter the date applicable at your location using J/G (see the IOI for this command). Note there are still other calendars widespread, e.g. in the Muslim world. See also the chapter Dates below.

[^33]:    ${ }^{73}$ Actually, it stores even more - see Section 6.
    ${ }^{74}$ No matter what display format or notation you select, these rounding options affect the display only. Your WP 43S continues using its full precision (typically 34 digits for real numbers) internally always; this can be displayed by SHOW until next keystroke.

[^34]:    ${ }^{75}$ Deviating from previous calculators, output of $\times 10^{0}$ is suppressed on your WP 43S.

[^35]:    ${ }^{76}$ In the HP-21 Owner's Handbook, the balloonist Ike Daedalus had to increase the radius from 25 to 27 feet in 1975. Sometimes some progress was observable.

[^36]:    ${ }^{77}$ Note that you will get just 12 out of $3 \times 7$ theoretically possible gears this way. This is due to gear overlaps; and you will want to avoid extreme chain skew for sake of chain life. On the other hand, if you plan for a recumbent bike, the latter restriction might not apply anymore. Then you may think about a combination of three sprockets with a seven-gear cluster leading to 17 different, usable gears following the so-called "half-step-and-granny" scheme; speed increase in half-step range will be $9 \%$ per gear step; this gearing will cover velocities from 5 to over $40 \mathrm{~km} / \mathrm{h}$.
    For detailed specifications as well as pictures, graphics, diagrams, tables, and further information about gearing bicycles yourself, please order "Die Fahrradschaltung" (144 pages written in German) written by the same author - just contact me.
    ${ }^{78}$ You may be used to a calculator label LOG for the decadic logarithm; though this is a mathematically ambiguous notation or worse, so we avoided it (cf. ISO 80000, 2-12.5 and 2-12.6).

[^37]:    ${ }^{79}$ Emphases in these quoted examples were added by me.

[^38]:    ${ }^{80}$ Maybe this is the reason why the last three countries on this planet do not switch to $S /$ - do they fear the recalibrations inevitably necessary for their measuring equipment?
    ${ }^{81}$ This name is still popular in the news although not quite true anymore. The actual moment magnitude scale for earthquakes differs but is logarithmic as well.

[^39]:    ${ }^{82}$ With a probability of $94 \%,{ }^{137} \mathrm{Cs}$ decays emitting an electron with a kinetic energy of up to 512 keV plus a $\gamma$-ray of 662 keV . These facts are just for your information - they do not affect the calculation here.

[^40]:    ${ }^{83}$ Note that different limits are considered 'reasonably safe' for the public by different national authorities. By nature, all such limits are arbitrary to some extent since we talk about probabilities here, and there are no step functions in probability but smooth transitions (cf. the chapter after next chapter). Furthermore, a large fraction of worldwide knowledge about damage caused by radiation in human bodies in the long range is still based on extrapolation of experiences collected since 1945 following two largescale events in Japan (and 67 more near Bikini until 1958). Another experiment well known was started in the USSR in 1986 - Belarus and the Ukraine have to bear the consequences until today. Mankind knows of the physics of radioactivity for some 120 years only so far, that's short!
    Note there are further risks linked to agriculture in the area around Fukushima - they are beyond the scope of this simple sample calculation though.
    Also note this example covers a worst case scenario. Actually, radioactivity is washed to deeper layers of soil with time, reducing the activity seen at the surface. And there are mitigation efforts in the area (many $\mathrm{km}^{2}$ ): at some places the contamination was washed off houses and trees, and the top layers of contaminated soil were removed, storing them in big black plastic bags 'elsewhere'; 2.3 million $\mathrm{m}^{3}$ of soil are deposited there already, 12 million more are expected by the authorities - an area of $1.6 \mathrm{~km}^{2}$ is provided for 'interim storage'. Cost of disposal is going to be $1.9 \times 10^{12} ¥$ (estimated by the administration in 2019). Furthermore, 1.1 million $\mathrm{m}^{3}$ of contaminated water are stored separately - no idea yet where that shall go (see Frankfurter Allgemeine Zeitung of 2019-03-10). I guess where it will go, though...
    Success of all these mitigation efforts may reduce the waiting time calculated above; failure will not extend it at least. Today is too early for a definitive assessment - we still know too little about long term effects. None of these efforts, however, can ever reduce the given natural half-lifes of the radioactive isotopes set free and spread in this nuclear accident.

[^41]:    ${ }^{84}$ Surprise! Mankind has absolutely no experience with locking something away reliably for several thousand years (look at the pyramids of Gizeh, for instance). Note the material must also be tagged properly (KEEP OFF!) in a way staying readable and comprehensible for all that time - zero experience either.

[^42]:    ${ }^{86}$ Translator's note: British readers might frown here at least.

[^43]:    87 These challenging tasks changed the photographer significantly within one year.
    ${ }^{88}$ In a nutshell, discrete statistical distributions deal with "events" governed by a known mathematical model. Such statistical events may be persons entering a store, radioactive nuclei decaying, faulty parts appearing, etc. The PMF then tells the probability to observe a certain number of such events, e.g. 7. And the CDF gives the probability to observe up to 7 such events, but not more.
    For doing statistics with continuous statistical variables - e.g. the heights of three-yearold toddlers - similar rules apply: Assume we know the applicable mathematical model; then the respective CDF gives the probability for their heights being less than an arbitrary limit, for example less than 1 m . And the corresponding $P D F$ tells how these heights are distributed in a sample of let's say 1000 kids of this age.

    BEWARE: This is a very rudimentary sketch of this topic only - turn to a good textbook to learn dealing with statistics properly.
    Translator's note for German readers: PMF und PDF entsprechen der Wahrscheinlichkeitsdichte, CDF der Verteilungsfunktion bzw. Wahrscheinlichkeitsverteilung.

[^44]:    ${ }^{89}$ Many of our customers live in a country where long range weapons play a significantly greater role than in most civilized societies, hence this explanatory example. Foreigners travelling through that country, watch out! Please note that we refrained from using firearms here, though our resistance was strained almost to the limit.

[^45]:    91 I hope not! A pebble would have done as well if not better.
    92 These raw data really do not look very plausible, and actually it is dubious whether Galileo made such experiments using the Tower of Pisa at all, but at least HP believed that its calculator customers would believe in that story in 1976.

[^46]:    ${ }^{93}$ Remember $\Sigma+$ disables stack lift. Though note that accumulation of 2D data will slowly overwrite the stack.

[^47]:    94 Differentiating from Los Estados Unidos Mexicanos, for example.
    ${ }^{95}$ Maybe his ancestors emigrated from Greece: Hephaistos is the ancient Greek god of fire and forging (and maybe of underground natural resources as well?).

[^48]:    ${ }^{96}$ The boss computes himself! And he also seems being even able to do it properly! Looks like that was a time before general managers, CEO's, and large staffs became fashionable. But see also next footnote.

[^49]:    ${ }^{97}$ If he had plotted his data, Hephaestus should have been warned looking at his last three data points. Often, plots carry extra information which may be lost easily when dealing with numbers only. Actually, HP's example is not a good choice for extrapolating without plotting.

    98 'Goodness of fit' tells us how good both sets match.
    ${ }^{99}$ Do not confuse this $X^{2}$ defined here with the $X^{2}$ distribution mentioned in previous chapter (and employed below very soon). They are different! Unfortunately, however, both chi-squares are called and spelled equally. It looks like the naming commission was inattentive here at the crucial time, perhaps distracted by discussing the outcome of a recent casino visit.

[^50]:    100 Translator's note: Scrap is a very interesting word to follow through various languages: Ausschuss, brak, desecho, detriti, rebut, schroot, Schrott, skrot, šrot, sucata, utskrot, брак, хпам, etc. The latter is pronounced almost like spam. Note in German and Swedish, the same word may be used for scrap and committee.

[^51]:    ${ }^{101}$ The value of $95 \%$ is called the confidence level of this calculation. In this example, you calculate the 95\% confidence limits for the mean value. Instead of 95\%, also 99\% are frequently applied. We recommend checking the applicable valid standards before blindly copying any example calculations here. Of course, you are free to apply other confidence levels wherever they fit your needs.
    Translator's note for German readers: Confidence limit entspricht der Vertrauensbereichsgrenze und confidence level dem Vertrauensniveau.
    $102 \overline{\bar{x}}$ returns $\bar{x}$ and $\bar{y}$ (as was shown above). Only $\bar{x}$ is interesting in this example, however, so pressing $x^{2} \geqslant y, R \downarrow$ moves $\bar{y}$ quickly out of the way. In a program, DROPy will be a better alternative since it leaves the stack order as is (see. Sect. 3).

[^52]:    ${ }^{103}$ The upper confidence limit can be calculated this easy way since $t^{-1}(p)$ is symmetric around the mean value. Else it would have been necessary to repeat the above calculation (except the last two steps) for an input value of 0.975.
    104 Statisticians call these chances 'probabilities of a type I error' or 'probabilities of an error of the first kind .
    Translator's note for German readers: Type I error entspricht dem Fehler 1. Art.

[^53]:    decisions far better than staring at numbers only - actually plotting is just required to verify there are no bad surprises hidden in your setup and data acquisition. With capable measuring systems, the resolution required for showing all measured points clearly separated from each other might, however, exceed the capability of a pocket calculator screen by far. The calculations will be correct nevertheless.

[^54]:    107 This test assumes your samples are both drawn from a Gaussian process which is frequently the case in real life (but shall be verified).

[^55]:    ${ }^{108}$ Actually, that's the (almost only) real benefit of the function \%.

[^56]:    ${ }^{109}$ Markup is the price difference as a percentage of cost (wholesale) price.
    ${ }^{110}$ Margin is the price difference as a percentage of selling (retail) price.
    ${ }^{111}$ I still wait for somebody convincing me of the use of this financial function. Well, it preserves $\boldsymbol{y}$, but else? Please see also \%+MG and the corresponding footnote.

[^57]:    ${ }^{112}$ Every engineer or scientist will be able to produce the very same result significantly faster via 221.82 ENTERT 1.19 ( 1.
    Seeing functions like $\%+M G$ and $\% \mathrm{~T}$ in particular provided on financial calculators, however, you may get the impression that average financial people might be mathematically slightly challenged and need some extra support. On the other hand, there is a saying in technical quarters (before 2008 already): 'Looking at the results financial people produce with plus and minus alone, their access to more advanced operations should be strictly limited" (originally: "Wenn man sieht, was Kaufleute mit plus und minus alles anstellen, sollte man sie an höhere Rechenarten erst gar nicht ranlassen").

[^58]:    ${ }^{113}$ All ADM setting commands except D.MS are found in MODE.

[^59]:    115 This example was reprinted thereafter in each and every HP scientific pocket calculator manual until the HP-41C/41CV OHPG.
    ${ }^{116}$ This formula means that 1 nmi corresponds to 1 angular minute on a great circle. This doesn't hold exactly but precisely enough for practical sailing. See $\underline{U \rightarrow}$ for nmi. Translator's note: Latitude means "geographische Breite" in German. Hence B is used in the formula above.

[^60]:    120 Those looking for an extra challenge can compute now how flat the crew of Felicity will become within seconds after the auxiliary engine is ignited.
    By the way, the plane of action in 3D space seems to be defined sufficiently by Felicity, Ultima, and said hyperspace entrance (hopefully its center) here with all parameters specified to three digits maximum - a proper error calculation would have been

[^61]:    appreciated. This problem was reprinted in the HP-34C OH one year later. It vanished in hyperspace thereafter, without a trace.

[^62]:    ${ }^{121}$ Unless $\bmod (\boldsymbol{n} ; 9)=4$ or 5 . See two chapters below for the function $\bmod$.

[^63]:    ${ }^{122}$ This shortcut will be left as soon as you enter a $\square,[\mathbf{E}, \mathbf{C C}$, or \# in input, even if deleted thereafter.
    Illegal digits keyed in (e.g. $\mathbf{2}$ in base 2 or $\mathbf{B}$ in base 10) can be detected no earlier than said input is completed, so an error will be thrown then. You may key in more than the current word size can take - also this will be checked when input is closed.

[^64]:    124 This needs explanation, since changing signs should have no meaning in unsigned mode per definition. Thus, $+/$ should be illegal here or result in no operation at least. "In unsigned mode, the most significant bit adds magnitude, not sign, so the largest value represented by a 12-bit word is 4095 instead of 2047" (quoted from the HP-16C Computer Scientist Owner's Handbook of April 1982, p. 30).
    Unfortunately, however, $+\ldots$ in unsigned mode was allowed by the designers of the HP-16C and implemented as shown above; so we follow that implementation for sake of backward compatibility, though frowning.

[^65]:    ${ }^{125}$ During numeric input, however, a gap is inserted every 3 digits as for real numbers your WP 43S cannot know in advance what you have in mind.

[^66]:    126 The picture for ASR correctly describes this operation for 1 's and 2's complement modes only. In all modes of the HP-16C, however, ASR 3 equals a signed division by $2^{3}$, hence the different results for the latter two modes shown above. The other bitwise operations are insensitive to $I S M$ setting. Turn to the $I O I$ for further details.

[^67]:    ${ }^{128}$ Note FLOOR and CEIL are functions operating on a real number and returning a long integer.

[^68]:    ${ }^{130}$ E.g. $\sqrt{\boldsymbol{X}}$ returns 8 for an input of 64 , i.e. for a proper square, and $8.062 \ldots$ for an input of 65 , for instance. For an input of -64 , it may return $0 .+\mathrm{i} \times 8$ (see the chapters about Complex Numbers below). In analogy, $\sqrt[3]{x}$ returns 2 for an input of 8 , $\mathrm{lb} \times$ returns 10 for an input of 1024, (Ig) returns 3 for an input of 1000, etc.

[^69]:    ${ }^{131}$ This display of a pure integer number tells you unambiguously your WP $43 S$ is in proper fraction display mode. In improper fraction display mode, $1 / 1=$ will be displayed instead. For comparison, note the HP-32SII reads 1 (.) (2) as $1 / 2-$ though this is not coherent with its other input interpretations (and does not even save keystrokes but adds confusion only).

[^70]:    132 Translator's note for German readers: Proper fractions decken sowohl echte Brüche (wie $3 / 4$ ) als auch gemischte Brüche (wie $21 / 2$ ) ab. Bei improper f. wird der ganzzahlige Anteil nicht herausgezogen, so dass hier der Zähler größer als der Nenner sein kann.
    ${ }^{133}$ This conversion was newly introduced on RPN calculators with the WP 34S.

[^71]:    ${ }^{134}$ Honestly, unless you grew up in such a place we bet you have assumed fluid ounces being a unit of mass, haven't you? Since you have heard of ounces once before and just thought ... terribly wrong! Do not think there - you may run into deep troubles easily (though thinking less you might achieve top positions in administration - see recent experimental evidence).

[^72]:    ${ }^{135}$ Entering both parts vice versa would be more like RPN: first the imaginary part, then CC interpreted as $\boldsymbol{i} \times$, finally the real part to be added. But it was decided differently for the HP-42S already. So we follow tradition here.
    For those of you working on the field of electronic engineering, an alternate format is provided employing the letter $\mathbf{j}$ for the complex unit (the respective is called CPXj for obvious reasons).

[^73]:    ${ }^{136}$ Whenever a complex number is returned, your WP $43 S$ will set CPXRES and $\mathbb{C}$ will be lit in the status bar unless set before.

[^74]:    ${ }^{137}$ Choosing rectangular notation and multiplication dots allows for displaying real and imaginary components using large font within ( $10^{-999}, 10^{999}$ ) in SCI 4 together. It will work in SCI 5 for both components within ( $10^{-99}, 10^{99}$ ). Staying with the startup default (i.e. MULTX) instead will cost you one displayed decimal in complex domain.

    In polar display mode, angles will be normalized to ( $-\pi, \pi$ ] always, so there will be no space for a power of ten needed for an angle; hence this will allow for SCI 6 within $\left(10^{-999}, 10^{999}\right)$ regardless of the multiplication symbol chosen, and for SCI 7 within ( $10^{-99}, 10^{99}$ ). See the ReM.

[^75]:    ${ }^{138}$ If the problem you're working requires a true (three-dimensional) vector as a result, use a $1 \times 3$ or $3 \times 1$ matrix to represent each vector in three dimensions. See next chapters.

[^76]:    ${ }^{139}$ Remember matrix multiplication behaves different than multiplication of numbers. Generally, for two arbitrary matrices $A$ and $B$ of matching sizes, $A \cdot B \neq B \cdot A$. Also note that only square matrices can be squared.
    And matrix division is special: it is defined as multiplication of the numerator times the inverse of the denominator. Therefore, $\mathbf{X}$ must contain a nonsingular (i.e. invertible) matrix here - else you cannot divide by that matrix. Only square matrices can be inverted.

[^77]:    ${ }^{140}$ This works the same way as it did on the HP-42S. The number of unknowns is only limited by the free memory available in your WP 43S at execution time.

[^78]:    ${ }^{141}$ Steps 5 and 6 are actually the same as shown in the application above with input of separate real numbers (instead of one matrix) already. They are just repeated here for sake of completeness.

[^79]:    ${ }^{142}$ Note the real time clock in your WP 43S may deviate from true time by up to one minute per month (i.e. $\pm 25 \mathrm{ppm}$ approximately, caused by parts tolerances; you live with this wearing a quartz watch as well - mechanical watches are less accurate generally). This deviation does neither affect real-world time calculations nor the TIMER application described in Section 5. If you are accustomed to radio controlled timepieces, however, you might find regular adjustments necessary.

[^80]:    ${ }^{143}$ Translator's note: Numeric output of WDAY corresponds to Chinese weekdays 1 to 6 directly. For Portuguese weekdays ('segunda-feira' etc.), add 1 to days 1 to 5 .

[^81]:    ${ }^{145}$ For people writing German, for example, Mya might look like pictured overleaf. Feel free to put other letters in - see Section 6 for learning how to populate Mya.
    ${ }^{146}$ This will work wherever applicable, with "homophonic" following classical Greek pronunciation. Kudos to Thales, Pythagoras, Heraclitus, Leucippus, Democritus, Aristotle,
    
     o Eúk $\lambda \varepsilon i \delta \eta$ ), and their colleagues for laying the foundations of logics, mathematics,
     know them today - starting some 2600 years ago (note that the first two were called "practical arts" and the latter "theoretical science"). And kudos to the unnamed Babylonian mathematicians who built the foundations for these Greeks, actually recording e.g. what we now call "Pythagoras' theorem" 1200 years before Pythagoras.
    We assigned Gamma also to (C) following the alphabet, and Chi to $\mathbb{H}$ since this Latin letter comes next in pronunciation. Three Greek letters require special handling since they lack single-letter equivalents in English: Psi is accessed via g (2) (since looking like w in a way), Theta via $g$ (U) (following $\mathbf{T}$ corresponding to Tau), and Eta via $g$ (J). These three letters are printed in blue on the keyboard as reminders. Omicron is not featured since looking exactly like the Latin letter $\mathbf{O}$ in either case.
    There is an 'alpha helper' printed on the calculator back supporting users challenged by Greek.

[^82]:    ${ }^{147}$ You cannot see that first END but the last one is visible - as pictured e.g. overleaf.

[^83]:    148 This freedom has a price: Take care that the routines do not interfere with each other in their quest for data storage space. It is good practice to record the global registers, variables, and user flags a particular routine uses, and to document their purposes and contents for later reference.
    An alternative - using local registers and flags - will be explained further below.

[^84]:    149 There is no routine-specific step counting like in the HP-42S or HP-35S.

[^85]:    150 These search procedures for local and global labels are as known from the HP-41C. ${ }^{151}$ Note you can skip pressing $f$ here - see overleaf. See also an alternative there.
    152 Works with all these operations except LBL .
    ${ }^{153}$ Said label must contain at least one letter. Labels are case sensitive. The $7^{\text {th }}$ character will terminate entry and close AIM - shorter labels need a closing ENTERT.
    154... if the respective local register is allocated. Some lettered registers may be dedicated to special applications. Check Addressing and Manipulating Objects in RAM in Sect. 1.

[^86]:    155 ... or you interrupt it manually by pressing R/S or EXIT - then it stops after the current step is completely executed. For resuming its execution, press R/S again.
    ${ }^{156}$ This is the standard way to run routines. Furthermore, you can define shortcuts to your favorite routines by customizing your WP $43 S$ as described in Section 6.

[^87]:    ${ }^{157}$ Pressing (or $\bar{E} \boldsymbol{E}$ if a multi-view menu is displayed), on the other hand, moves the program pointer backwards in the current routine without executing anything.
    ${ }^{158}$ Watch that your additional checks, if applicable, do not alter the status of your WP 43S in a way deviating from its status in automatic execution; else you shall compensate. Also take care when browsing backwards.

[^88]:    159 The one and only exception: KEY? skips if true.

[^89]:    ${ }^{160}$ A similar picture is printed on the back of your WP $43 S$.
    ${ }^{161}$ This example follows an idea of Gene Wright.

[^90]:    162 The standard menu as shown on p. 57 will not appear after (RCL here.
    ${ }^{163}$ The standard menu as shown on p. 56 will not appear after VIEW here. Note that the HP-42S allowed for just viewing the present value of one of the variables displayed by pressing $f$ and the corresponding softkey, we cannot support this on your WP 43S since it offers you three menu rows.

[^91]:    164 Note R/S and EXIT cannot be queried since they stop program execution immediately.

[^92]:    165 Turn to the ReM, App. H, for background information about the method applied here. ${ }^{166}$ Note the contents of the rectangular brackets must be $\geq 0$ always. Thus, this routine will work for velocities $<\sqrt{g / b}$ only, not for abruptly decelerating fast initial movements (e.g. by opening a parachute).

[^93]:    ${ }^{167}$ See HP-42S Programming Examples and Techniques, pp. 29-39, 92-99, 158-160, and 184-192, for some sample programs using the programmable menu.

[^94]:    ${ }^{168}$ FM may not survive more than some 100000 flashes. Thus, we made commands writing to FM (SAVE or PSTO) non-programmable.

[^95]:    ${ }^{169}$ The index of the earth acceleration constant is found in the punctuation menu $\underline{\alpha} \boldsymbol{\bullet}$, reached via $g$ in AIM.
    ${ }^{170}$ Note MULT. is set here for sake of better readability of equations. And some spaces are inserted automatically for the same reason.

[^96]:    171 Translator's note for German readers: Der eingebaute Gleichungslöser („Solver") Ihres WP 43S erlaubt Ihnen das Auflösen nach einer beliebigen Unbekannten bzw. das Finden der Nullstellen einer beliebigen Gleichung.

[^97]:    ${ }^{172}$ Actually, a function $J_{y}(x)$ is implemented in your WP 43S directly returning values of the Bessel function of $1^{\text {st }}$ kind and order $\boldsymbol{y}$. Feel free to compare the results.

[^98]:    ${ }^{173}$ You will have noticed already that IBess is not an equation but just one side of it. To keep the system lean, such functions are listed under EON nevertheless, but cannot be evaluated by the Solver, of course.

[^99]:    ${ }^{174}$ Note that $\int \approx$ vanishes with $\pi$ like every temporary information disappears with the next keystroke.

    We could have included that division by $\pi$ in our function IBess. We did not, however, since IBess is evaluated many times during the integration process; thus the fewer steps the integrand contains the faster the result can be returned.

[^100]:    ${ }^{175}$ Note this follows closely the procedure as described for the Solver above.

[^101]:    ${ }^{176}$ Note this follows loosely the procedures as described for the Solver and Integrator above.

[^102]:    ${ }_{177}$ You shall press the rightmost softkey to get the menu for accessing PGMINT etc.
    ${ }^{178}$ I.e. after some 25 s using the WP 43 emulator (cf. ReM, App. I) on a PC running Windows 10. It will take xxx minutes on your calculator. Nesting advanced operations may require very many of calculations to be performed! We recommend connecting

[^103]:    your WP 43 S to an USB outlet for external power supply when dealing with such applications. - Note the Solver was not started at $\mathbf{0}$ since that would cause an error when dividing by $2 \pi r$.

[^104]:    ${ }^{179}$ This application works exactly as in the WP 34S but the display differs. With respect to the HP-55, there are two deviations:

    1. Your WP 43 S will not take the content of $\mathbf{X}$ at the time calling TIMER as start time of the timer; start times are supported by RCL within TIMER here instead.
    2. Your WP $43 S$ will display tenths instead of hundredth of seconds. Reaction times of the hardware do not allow for more precision anyway.
[^105]:    180 Think about specifying the CRA so there will be sufficient unused registers following. Attempts to specify a $C R A<0$ or $>99$ will be blocked.
    On the HP-55, input of a single digit sufficed for storing, since only 10 registers were featured for this purpose there. Furthermore, there was no automatic address increment.

[^106]:    181 TVM was launched with HP's very first financial 'problem solver', the HP-80 of 1972, and was implemented on each and every HP 'business calculator' thereafter. An early advertising sheet promised 'you can improve and simplify your time-and-money management' applying TVM quickly. 'Random-entry financial keys let you key in problems in any order. And you can change any number at any time.' All this was true for certain (remember it was a time before spreadsheet software became available) and may even hold nowadays to some extent since hardly any modern financial tool solving such problems is more compact than a pocket calculator featuring TVM.

[^107]:    ${ }^{182}$ Find all unit symbols used here explained in the chapter about unit conversions in the ReM, Section 2.

[^108]:    ${ }^{186}$ The SI system of coherent units of measurement is agreed on internationally and adopted by almost all countries on this planet for long, as was mentioned above already. Thus, most of the material appearing in $\underline{U \rightarrow}$ will look quirky or obsolete for the overwhelming majority of mankind. Those units die hard, however, in some corners of this world (English is spoken in all of those).
    Thus, $\underline{U} \rightarrow$ may also help you when you get caught in a time loop and happen to be thrown back into such an obstinate environment. For symmetry reasons, we think about including some traditional Indian and Chinese units in $\underline{U \rightarrow}$, too.
    $\underline{U \rightarrow}$ may also give you a slight idea of the mess we had in the world of measuring before going metric following the French Revolution over 200 years ago. In the ReM, you find comprehensive explanations of all conversions provided.
    Without Imperial and US-American units, $\underline{U \rightarrow}$ would contain eighteen entries only.

[^109]:    ${ }^{187}$ Sounds like a unit created for Alexander the Great visiting Gordion in 333 BC.

[^110]:    ${ }^{188}$ Our warmest regards go to Algeria*, Australia*, Belarus*, Canada, China, France, India, Japan, Kazakhstan*, Kiribati*, the Marshall Islands* (e.g. Bikini, Eniwetok), North Korea, Pakistan, Russia, the Ukraine*, the United Kingdom, the USA, and XinkiangUigur* (in alphabetical order) so far. The countries marked with a star suffer from actions of their respective 'mother states' at those times (the task to find out about those colonialists is left for the reader). The states without marks controlled their industry and/or military in a way that activated areas within their own territory could happen, too. After all, mankind gathers experience with radioactivity.
    ${ }^{189}$ Marie Curie died from aplastic anemia, aged 66.
    ${ }^{190}$ Conrad Röntgen died from carcinoma of the intestine, aged 77.
    ${ }^{191}$ This unit must be outdated - it is not regarded gender equitable nowadays anymore.

[^111]:    192 You also find $\div$ on calculators frequently. Though ISO 80000-2 unambiguously states: "The symbol $\div$ should not be used." Thus, this label is not supported on the WP43S.

[^112]:    ${ }^{193}$ In AIM, Mya will appear instead when no other menu is called and will stay on screen until these conditions will change.

[^113]:    ${ }^{194}$ Preview and fallback apply for all key functionalities except $0 \ldots, 9, \square, \mathbb{E}, \boldsymbol{\Psi}$, and EXIT (and $\dagger$ in numeric entry). $f$ and $g$ are echoed but will not fall back. (On the HP-42S, preview and fallback are absent also for PRGM, ASSIGN, STO, RCL, XEQ, SHOW, and OFF.)

    195 RCLCFG will throw an error if you try recalling something different than a configuration.

[^114]:    ${ }^{196}$ I.e. either of the number $\boldsymbol{x}$ or of all elements of the matrix $\boldsymbol{x}$.

[^115]:    ${ }^{197}$ Translator's note: You can use this picture as a dictionary of some financial terms in (American) English. The word "with" is abbreviated by "w/" although this does not save any space here. Abbreviomania ...

[^116]:    198 Translator's note for German readers: "Policy" entspricht hier einer Police.

[^117]:    199 I frankly admit I understand neither this problem nor its solution.

