

WP 43S U v0.16 --- Page 1 of 328

WP 43S OWNER’S MANUAL
This manual documents WP 43S, a free scientific software for
the calculator DM42 of SwissMicros. You can redistribute
WP 43S and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later
version.
WP 43S is published and distributed in the hope that it will be
useful, but without any warranty; without even the implied
warranty of merchantability or fitness for a particular purpose.
Please see the GNU General Public License at
http://www.gnu.org/licenses/ for more details.
This manual is very preliminary; it will change while we

develop WP 43S in course of this project. We reserve
the right to do so at any time. The very basic principles of

WP 43S will stay constant, however. Stay informed by
watching https://gitlab.com/Over_score/wp43s .

http://www.gnu.org/licenses/
https://gitlab.com/Over_score/wp43s

Page 2 of 328 -- WP 43S U v0.16

Copyright © 2015 - 2020 Walter Bonin, Auf der Platte 9, 61440 Oberursel, Germany

All rights reserved. No part of this publication may be reproduced or distributed in any
form or by any means, or stored in a data base or retrieval system, without prior written
permission of the author. For the time being, the locations highlighted cyan are open
construction sites – information is missing there or needs further discussion and
investigation to be determined. Any contributions in this matter are highly appreciated.

HP is a registered trade mark of Hewlett-Packard.

The pictures on pp. 53, 200f, and 321, the stack graphics on pp. 33 (top), 34 (top), and
37, as well as the paintings and drawings on pp. 22, 45, 50, 65, 82f, 88f, 95-97, 105- 108,
119, 129-132, 155, 158-160, 205, 213, 237, 240, 248, and in Appendix 3 were taken from
various calculator manuals and advertisements published by Hewlett-Packard between
1974 and 1989. The diagrams on p. 98 are based on material found in Wikipedia. All
WP 43S keyboard graphics as well as the other photographs, pictures, graphics, and
diagrams printed in this manual were created by the author.

Internet addresses are specified as found and verified at 2019-06-26 (just the map
printed on p. 92 is not found online anymore). Please note such addresses may change
without notice at any time.

This manual is published in English since it became the lingua franca of our time (after
Greek, Latin, and French) – using it we can reach the maximum number of people without
further translations. I apologize to the people of other languages and inserted some
‘translator’s notes’ where applicable.

Printed in the USA

ISBN-13: 978-172950098-9
ISBN-10: 172950098-6

WP 43S U v0.16 --- Page 3 of 328

WP 43S would not have been created without our love for Classics, Woodstocks, Stings,
Spices, Nuts, Voyagers, and Pioneers. Thus we want to quote what was printed in
Hewlett-Packard pocket calculator manuals until 1980, so it will not fade:

“The success and prosperity of our company will be assured only if we
offer our customers superior products that fill real needs and provide
lasting value, and that are supported by a wide variety of useful services,
both before and after sales.”

Statement of Corporate Objectives
Hewlett-Packard

Page 4 of 328 -- WP 43S U v0.16

TABLE OF CONTENTS

Welcome! 8

Print Conventions and Common Abbreviations 12

Section 1: Getting Started 15

Problem Solving, Part 1: First Steps 18

How to Enter Common Numbers (and How to Edit Them) 25

How to Enter and Execute Commands 26

Menus – Items à la carte 27

How the Keyboard is Organized 29

Problem Solving, Part 2: Elementary Stack Mechanics 31

Looking Closer at the Automatic Stack 38

Problem Solving, Part 3: The Stack in Advanced Calculations 41

Special Tricks, #1: Top Stack Level Repetition 48

Special Tricks, #2: LASTx for Reusing Numbers 50

Error Recovery: , , and ↶ 51

Clearing and Resetting Your WP 43S 52

Addressing and Manipulating Objects in RAM 53

Addressing Tables 60

Indirect Addressing – Working with Pointers 64

Store and Recall Arithmetic 64

Section 2: Dealing with Various Objects and Data Types 67

Some Display Basics 67

Supported Data Types 68

Recognizing Calculator Settings and Status 74

Getting Special Information: RBR, STATUS, VERS, etc. 77

Localising Numeric Output 78

Real Numbers: Changing the Display Format 80

Real Numbers: Squares and Cubes and their Roots 82

Real Numbers: Percent Change 85

Real Numbers: Logarithms and Powers (a.k.a. Antilogs) 86

WP 43S U v0.16 --- Page 5 of 328

Real Numbers: Hyperbolic Functions 94

Real Numbers: Probabilities – Factorials, Combinations, Permutations,
and Distributions 96

Real Numbers: From Probability to Statistics – Accumulating Data,
Calculating Means, Standard Deviations, and Confidence Limits;
Curve Fitting, Forecasting, and Checking Dices 99

Real Numbers: Some Industrial Problems Solved 109

Real Numbers: Summary of Functions 118

Angles and Trigonometric Functions 125

Mixed Calculations: Coordinate Transformations in 2D, Flight
Directions, Courses over Ground, etc. 128

Angles: Summary of Functions 134

Integers: Input and Displaying 135

Integers: Bitwise Operations on Short Integers 140

Integers: Arithmetic Operations 143

Integers: Overflow and Carry with Short Integers 145

Integers: Summary of Functions 148

Rational Numbers (Fractions) 151

Complex Numbers: Introduction 154

Complex Numbers Used for 2D Vector Algebra 158

Complex Numbers: Summary of Functions 161

Vectors and Matrices: Introduction and Input 163

Vectors and Matrices: Displaying and Editing Larger Objects 168

Vectors and Matrices: Complex Stuff 172

Vectors and Matrices: Calculating 174

Vectors and Matrices: Solving Systems of Linear Equations 179

Vectors and Matrices: Eigenvalues and Eigenvectors 180

Vectors and Matrices: Dealing with Statistical Data 185

Vectors and Matrices: Summary of Functions 187

Times 189

Dates 191

Alpha Input Mode: Introduction and Virtual Keyboard 193

Alpha Input Mode: Entering Simple Text and More 195

Combining Alpha Strings and Numeric Data 197

Working with Alphanumeric Strings 198

Page 6 of 328 -- WP 43S U v0.16

Section 3: Programming 202

Recording a New Routine 204

Labels 208

Editing a Routine 211

Running a Routine from the Keyboard (also for Debugging) 212

Subroutines: Running a Routine from another Routine 213

Automatic Testing and Conditional Branching 214

Loops and Counters 218

Programmed User Interaction and Dialogues 221

Solving Differential Equations 225

The Programmable Menu (MENU) 230

Basic Kinds of Program Steps 231

Deleting Programs 232

Serial Input and Output of Data and Programs 233

Local Data 233

Flash Memory (FM) 234

Section 4: Advanced Problem Solving 235

Programmable Sums 235

Programmable Products 236

Solving Quadratic Equations 237

General Equations 238

The Interactive Solver for Arbitrary Equations 240

The Interactive Solver for Expressions Stored in Programs 244

Using the Solver in a Program 246

Numeric Integration of Equations 248

Interactively Integrating Expressions Stored in Programs 251

Using the Integrator in a Program 252

Differentiating Equations 254

Interactively Differentiating Expressions Stored in Programs 256

Computing Derivatives in a Program 257

WP 43S U v0.16 --- Page 7 of 328

Nesting Advanced Operations 258

Section 5: Two Browsers, two Applications, and two Special
Menus 261

The Browsers RBR and STATUS 261

The Timer Application 264

The Time Value of Money (TVM) 266

Constants 270

Unit Conversions 276

Section 6: Creating Your Very Personal WP 43S 281

Assigning Your Favourite Functions 283

Creating Your Own Menus 287

Browsing and Purging Menus, Variables, and Programs 290

Assigning Special Characters 290

User Mode 292

Appendix 1: Operator Precedence 295

Appendix 2: Key Response Table 296

Appendix 3: Further Applications of TVM 310

Ordinary Annuities (a.k.a. Payments in Arrears) 311

Annuities Due (a.k.a. Payments in Advance) 315

Appendix 4: Power Supply 319

Appendix 5: Time Line of Quoted Manuals 320

Appendix 6: Release Notes 322

Index 326

Page 8 of 328 -- WP 43S U v0.16

WELCOME!

Congratulations, you are holding your very own WP 43S in your hands

now. It is a true pioneer: the very first entirely community-designed

and -built RPN pocket calculator.1

All the hardware, firmware, and user interface of your WP 43S were

thoroughly thought through, discussed, designed and assembled, written

and tested by us over and over again. We did this to create a new fast,

compact, and solid problem solver like you did never own before –

instant on, fully programmable, incorporating a state-of-the-art LCD, cus-

tomizable by you, still comfortably fitting into your shirt pocket, and RPN

– a serious scientific instrument supporting you in your professional

activities. It readily provides several advanced capabilities never
before combined so conveniently in a pocket calculator:

+ A Solver (root2 finder) that can solve for any variable in an arbitrary

equation.

+ A numeric integrator for computing definite integrals of arbitrary

functions.

+ Numeric derivation, programmable sums and products.

+ A wealth of functions, operating on real and complex numbers and

matrices, integers, fractions, dates, times, and text strings.

+ A comprehensive set of statistical operations including probability

distributions, data analysis functions, curve fitting, and forecasting.

+ Matrix operations including a comfortable Matrix Editor, a solver for

systems of linear equations, eigenvalues, eigenvectors, and many

more matrix and vector functions in real and complex domain.

1 RPN stands for Reverse Polish Notation, a very effective and coherent method for most

efficient solutions to complicated problems. It is based on a mathematical logic known

as Polish Notation (since invented by the Polish logician Jan Łukasiewicz, see

https://www.youtube.com/watch?v=qRrAj-GCTQM ). He placed operators before

numbers or variables instead between them as in conventional mathematical notation.

Thus, RPN places operator behind numbers. See Section 1 of this manual for more.

Our hardware platform, the DM42 of SwissMicros, was developed in parallel and

launched in 2017. This is due to the fact that the layout of the DM42 is very closely

linked to the HP-42S of Hewlett-Packard produced until 1995 and its firmware uses

Thomas Okken’s Free42 simulating HP-42S.

2 Translator’s note for German readers: Root bedeutet hier Nullstelle.

https://www.youtube.com/watch?v=qRrAj-GCTQM

WP 43S U v0.16 --- Page 9 of 328

+ Base conversions and integer arithmetic in fifteen bases from binary

to hexadecimal. Bit manipulations in words of up to 64 bits.

+ A timer based on a real-time clock.

+ An easy-to-use menu system using the bottom part of the display to

assign up to eighteen operations to the top six keys according to

your actual needs.

+ Keystroke programming including branching, looping, tests, flags,

subroutines, and program-specific local data.

+ Easy system control via named system flags and variables provided.

+ A catalog for reviewing all items stored in memory – be they provided

by us or defined and programmed by you.

+ A keyboard layout and menus you can customize. You can save

your various custom layouts on-board and recall them one by one

as you need them. Keyboard overlays are supported.

+ Battery-fail-safe on-board backup memory for all your data (in

registers, variables, menus, programs, layouts, and mode settings).

+ A micro USB socket allowing for external auxiliary power supply as

well as for exchanging your programs with a computer, so you can

edit, debug, and test them there and return them proven thereafter.

+ An infrared port for immediate recording of results, calculations,

programs, and data using e.g. an HP 82240A/B Infrared Printer.

Your WP 43S provides the most ample function set ever seen in an RPN

pocket calculator, presumably in any pocket calculator at all:

+ More than 650 functions, including Euler’s Beta and Riemann’s

Zeta, Lambert’s W, the error function, Bessel functions of first kind,

Bernoulli and Fibonacci numbers, as well as the Chebyshev,

Hermite, Laguerre, and Legendre orthogonal polynomials – no more

need for carrying heavy printed tables or running computer software

for this matter.

+ 14 probability distributions: general Normal, Student’s t, chi-square,

Fisher’s F, Poisson, binomial, geometric, hypergeometric, Cauchy-

Lorentz, exponential, logistic, Weibull, and more.

+ 10 curve fitting models with two or three parameters (two kinds of

linear, exponential, logarithmic, power, root, hyperbolic, parabolic,

Cauchy and Gauss peak).

Page 10 of 328 -- WP 43S U v0.16

+ Over 50 fundamental physical constants as accurate as used today

by national standards institutes such as NIST or PTB (following

CODATA 2018), plus a set of important mathematical, astronomical,

and surveying constants.

+ More than 100 unit conversions, mainly from old British Imperial to

universal SI units and vice versa.

+ Plus a complete set of financial functions and applications for the

inevitable business matters.

Furthermore, your WP 43S features lots of space for your data,

programs, and ideas:

+ A high-resolution low-power dot-matrix LCD (240 × 400 pixels),

showing crisp results and menus, allowing for natural matrix display

as well as for a wide variety of mathematical symbols, Greek and

extended Latin letters.

+ Your choice of 4 or 8 stack registers and up to 107 global general

purpose registers, each taking any object of arbitrary data type (be

it a matrix, a vector, a string, or any number of arbitrary kind).

+ Up to 1000 named variables. Also each such variable can take any

object of arbitrary data type.

+ 112 global user flags and 40 named system flags.

+ 16 local user flags and up to 99 local registers per program, allowing

e.g. for recursive programming.

+ Up to 10 000 program steps in RAM, up to 20 000 program steps in

flash memory.

WP 43S is the result of an international collaboration of two teams:

SwissMicros (https://www.swissmicros.com/) – i.e. Swiss Michael

Steinmann and Czech David Jedelsky – created the hardware, French

Martin Lorang, German Gert Menke and Friedrich Mütschele, Italian

Gianluca Puggelli, Dutch Harald Overbeek, South African Jaco Mostert,

Australian Paul Dale, and me designed the user interface and wrote the

software.3

3 The firmware of your WP 43S is based to a large extent on the experience Paul and
me gained with the WP 34S RPN Scientific calculator on the market since 2011. We
started the WP 34S project in 2008. You find specific information about the WP 34S

https://www.swissmicros.com/

WP 43S U v0.16 --- Page 11 of 328

As our WP 34S and WP 31S before, also WP 43S is a hobbyist’s project.

It started in public in 2012 and was presented and discussed on

https://www.hpmuseum.org/forum/forum-8.html until June 2016 and on

https://forum.swissmicros.com/ from 2017 on. 4 Prototypes of the

SwissMicros hardware were publicly shown first on the HHC2016

conference in Nashville (USA) and on the Allschwil Meeting 2016 in

Switzerland. Martin and me presented the first version of the WP 43S

simulator on the Allschwil Meeting 2018. We thank the participants of

said meetings and all members of the international community who

contributed their ideas, put their votes, and lent their support at various

phases throughout this project. We greatly appreciate your

contributions!

We baptized our baby in honor of the HP-42S of 1988, the most powerful

RPN pocket calculator available before these activities.5 May it be a

worthy and valiant successor of the HP-42S – though we would have

preferred Hewlett-Packard making it (the company as we knew it until

the 80’s of last century). In any way, WP 43S stands in the tradition of

almost 50 years of RPN pocket calculators.

We carefully checked all aspects of WP 43S to the best of our ability.

Thus we hope it is free of severe bugs. This cannot be guaranteed,

however, so we promise to continue improving WP 43S whenever

necessary. Should you discover any strange results, please report them

to us. If they turn out being caused by internal bugs, we will correct the

firmware and provide you with an update as soon as possible. As we did

since 2011, we will continue maintaining short response times.

Enjoy!

Walter Bonin

and its derivative, the WP 31S, at https://sourceforge.net/projects/wp34s/ and the links
mentioned there. Both these calculators are based on HP hardware.

4 If you are interested in the long and winding road how your WP 43S got the features,
shape, and layout you’re facing now, see the Release Notes in App. 5 at the end of this
manual and the two websites mentioned.

5 For us, a pocket calculator per definition is a device fitting comfortably in your shirt
pocket. Marketing people are observed to see this term more elastic – our shirt pockets
are not elastic enough for that. Being at it, we generally recommend not to put your
calculator in the back pocket of your jeans – it may break or multiply there.

https://www.hpmuseum.org/forum/forum-8.html
https://forum.swissmicros.com/
https://sourceforge.net/projects/wp34s/

Page 12 of 328 -- WP 43S U v0.16

Print Conventions and Common Abbreviations

• Throughout this manual, standard text font is Arial. Emphasis is

added by underlining or bold printing. Calculator COMMANDS,

MENUS, PREDEFINED VARIABLES and SYSTEM FLAGS are generally

called by their names, printed capitalized in running text (menus

underlined). Quoted text is printed blue (as well as translator’s notes).

Specific terms, titles, trademarks, names or abbreviations are printed

in italics, hyperlinks in blue underlined italics. The latter will beam you

to its target in the original .pdf file – it cannot work in a printed copy

for obvious reasons; thus, such links generally refer to page numbers,

to the Table of Contents, or to fully specified external addresses.

Bold italic Arial letters such as n are employed for variables; bold

regular letters for constant sample values (e.g. specific labels,

numbers, or characters).

• Times New Roman regular letters are for unit symbols and for

mathematical functions; italics are for unit names in running text.

Times New Roman bold capitals are used for REGISTER
ADDRESSES, lower case bold italics for register contents. So e.g.

the variable value y lives in register Y and r45 in R45. Overall stack

contents are generally quoted in the order [x, y, z, …]. We keep the

term register for the space where an individual object is stored,

although the actual size of such a register may vary widely following

the size of the object stored therein.

• This font (created by Luiz Vieira of Brasil) is taken for references

to calculator keys, including in general. For shifted

operations like or , the respective color is used.

  Alphanumeric and numeric calculator outputs (like 1.234×⒑⁻⁵⁶ or

7,089·⒑⁻ⁱ²) are printed as you see them on the calculator screen.

• Courier is used for file names and describing numeric formats.

• Regarding mathematical symbols and notation, we generally follow

ISO 80000-2. We use decimal points and multiplication crosses in

most parts of this manual (but you may set your WP 43S to decimal

commas and/or multiplication dots as well, of course). Although that

point is less visible than a comma, ‘comma people’ seem to be more

WP 43S U v0.16 --- Page 13 of 328

tolerant against decimal points than ‘point people’ against decimal

commas (based on the number of complaints read so far).

All this holds unless stated otherwise locally.

The following abbreviations, listed alphabetically, are used throughout

this manual – find detailed information about the respective terms at the

locations referred to in the Index on pp. 326f, if applicable:

AIM = alpha input mode.

App. = Appendix.

DT = data type.

GP = general purpose.

HP = Hewlett-Packard.

IOI = Index of all Items provided in the WP 43 (see ReM below).

LCD = liquid crystal display.

OH = Owner’s Handbook.

OHPG = Owner’s Handbook and Programming Guide.

OM = Owner’s Manual.

PEM = program-entry mode.

RAM = random access memory, allowing read and write operations.

ReM = WP 43S Reference Manual, containing also the IOI.

RPN = Reverse Polish Notation (cf. footnote 1 on p. 8).

SI = système international d’unités, a coherent system of units of
measurement agreed on internationally and adopted by almost all

countries on this planet.6

Further abbreviations are listed in the Index. A few more may be used

and explained locally.

6 Only Liberia, Myanmar, and the USA are not participating yet. We do not know what
they are afraid of – and they obviously do not know what they miss.

If you should need basic information about SI and its foundations, please turn to
https://en.wikipedia.org/wiki/International_System_of_Units. See also the chapters
about Constants and Unit Conversions in Section 5 below.

https://en.wikipedia.org/wiki/International_System_of_Units

Page 14 of 328 -- WP 43S U v0.16

Finally: WARNING indicates the risk of severe errors. There are only
three warnings printed in this manual.7 Resetting your calculator will help
in almost all cases – but it will erase your data in RAM.

7 … although WP 43S is distributed in the USA as well.

WP 43S U v0.16 --- Page 15 of 328

SECTION 1: GETTING STARTED

At its heart, your WP 43S is an extremely powerful, versatile problem-

solving tool. It allows you to solve even very elaborate mathematical and

computational problems in either of two different ways:

• Manual problem solving: Using the calculator’s RPN logic system,

you can manually work step-by-step through the toughest problems

while seeing intermediate answers each and every step of the way.

The advantages of RPN become particularly apparent when working

with exploratory type problems where intermediate answers are an

important part of the problem solving process.

• Programmed problem solving: Your WP 43S can remember any

sequence of keystrokes you entered, and it can then run it repeatedly

as often as you need it. This simple programming paradigm is

particularly useful in providing answers to repetitive problems that

require different inputs. Advanced programs may also be written for

solving more elaborate tasks, e.g. iterative computations containing

automatic decisions and branching. Thousands of keystrokes can be

recorded in your WP 43S and can be exchanged with your computer

or laptop.

If you know how to deal with a good old HP RPN scientific

calculator, you can start using your WP 43S right away.

Browse this manual to learn about some fundamental design concepts

putting your WP 43S ahead of previous scientific pocket calculators.

On the other hand, if RPN is new to you, we recommend going through

Sections 1 and 2 of this manual thoroughly. This will enable you to easily

solve problems manually benefitting from this unique logic system

implemented. Once learned, RPN forms a lifelong lasting, reliable basis

of your work.

Most commands on your WP 43S work as they did on its antecessors, in

particular on the WP 34S and HP-42S. This manual is designed to

supplement your prior knowledge, focussing on the new features of your

WP 43S and providing information about them. It includes also some

formulas and technical explanations; but it is not intended to replace text-

books on mathematics, statistics, physics, engineering, economy,

computer science, or programming.

Page 16 of 328 -- WP 43S U v0.16

The following text starts with presenting you the keyboard of your

WP 43S, so you learn where to find what you are looking for. It continues

demonstrating basic calculation methods, the memory of your WP 43S

and addressing objects therein.

Section 2 covers the display and its indicators giving you feedback about

what is going on. Furthermore, the various data types supported by your

WP 43S are presented and demonstrated comprehensively.

Programming your WP 43S (as shown in Section 3) follows field proven

concepts known from successful previous pocket calculators up to and

including the HP-42S and WP 34S.

Sections 4 and 5 present advanced functionalities implemented in your

WP 43S. You will find everything about the opportunity of customizing

your WP 43S according to your very personal preferences in Section 6.

This Owner’s Manual is supplemented by a Reference Manual. A major

part of the latter is taken by the IOI, an index of all available operations

(and more), what they do, and how to call them. It also contains full

information about all the menus and system flags provided. The ReM

closes covering special topics (e.g. memory management, a WP 43S

emulator for your computer, and advanced mathematical functions

implemented). There you also find instructions for keeping your WP 43S

up-to-date whenever new firmware revisions will be released. Continue

using both manuals for reference.

Before diving into the OM, here is something we ask you to remember:

Your WP 43S is designed to support you solving analytical

problems. But it is just a mathematical tool (although a very

powerful one): it can neither think for you nor check the

sensibility of a problem you apply it to.

Thus, please do not blame us nor it for errors you may have made.

Gather information, think before and while keying in and calculating,

and check your results: these tasks will remain your responsibilities

always. We will not be liable for any of your results.

SAFETY WARNING: Your WP 43S is not designed to be used by

children under 3 years. This is not a toy. Do not use it before you

can read. Your WP 43S contains small parts which if swallowed are

WP 43S U v0.16 --- Page 17 of 328

hazardous for health. Swallowing the battery can be fatal within 2

hours – seek medical advice immediately! 8

Do not use your WP 43S for any other purposes than specified

above (e.g. not as a hammer, a lever, a door stop, or a missile);

else you may destroy your WP 43S and / or other objects easily,

or even hurt animals or human beings including yourself. 8

Do not drop your WP 43S on solid ground – it may break. 8

Your WP 43S shall be operated in a clean and dry environment (relative

humidity less than 35%) at ambient temperatures between

5 and 40 °C (41 to 104 °F).

Do not leave your WP 43S laying in the sun; its dark surface may

become hot, and hot surfaces may cause burns. Do not leave your

WP 43S laying in the cold; humidity may condense on its surface when

a cold WP 43S is put in a warmer environment then.

Should your WP 43S become wet, turn it off, remove the battery (see

Disassembly below), and let your WP 43S dry for sufficient time before

turning it on again. Do not try to accelerate drying by blowing hot air

(exceeding 60 °C or 140 °F) into your WP 43S or by putting it into a

microwave oven or the like – you may destroy it. 8

Disassembly: Do not disassemble your WP 43S unless you are

qualified for such work and have the proper tools handy. You will need

1 small Phillips screwdriver and 2 hands for opening it. 8

Inserting / replacing the battery: Your WP 43S contains a battery.

When it runs out of power, will appear top right on the screen. Then

open your WP 43S (cf. Disassembly above) and replace its battery by a

fresh one. Dispose of old batteries responsibly in the appropriate in-

store containers or at your local disposal center; do neither take them

apart nor throw them in a bin nor in fire nor in your environment.8

Disposal of the calculator: Your WP 43S must not be disposed of

along with household waste. Remove its battery (cf. Inserting / replacing

the battery above) and dispose of your WP 43S according to applicable

laws and regulations at your electronics collection point.

8 No, we do not think you are stupid, irresponsible, and lack any experience. Blame the

lawyers of the respective people and the courts of that great nation who made such a
waste of print space inevitable.

Page 18 of 328 -- WP 43S U v0.16

Problem Solving, Part 1: First Steps

Start exploring your WP 43S by turning it on: Press its bottom right key

– notice that .ON. is printed below that key. Doing this the very first time,

you will get a display like this:

For turning your WP 43S off again, press the blue (notice a little  ⒢ 
appearing top left in the display), then press (which has OFF printed

below it). Since your WP 43S features Continuous Memory, turning it off

and on does not affect the information it contains (there is no “All Clear”

at power up). For conserving battery power, your WP 43S will shut down

automatically some ten minutes after you stopped using it – turn it on

again and you can resume your work right where you left off.

This works as on preceding pocket calculators (like a WP 34S or an

HP-42S). Your new WP 43S, however, looks cleaner than a WP 34S

while more colorful than an HP-42S. This is due to your WP 43S

featuring two prefixes and and menus – offering you up to four

functions per calculator key.

Looking at an arbitrary one of its 41 black keys, white print is for the

primary function of this key. For additional (secondary) functions, golden

and blue labels are printed on the key plate above 37 keys, and grey

characters are printed bottom right of 29 keys.

WP 43S U v0.16 --- Page 19 of 328

For accessing a primary function, just press the corresponding key. For

a golden or blue (a.k.a.  - or  -shifted) function, first press the

respective prefix or , then the corresponding key.

For better readability within the manuals, we will refer to keys using dark

print on white from here on (like e.g. or). And referring to

secondary functions (like or), we will omit the prefixes or

most times since redundant by color print.

Take the key , for example. Pressing...

• alone will execute a multiplication,

•  +  will call

 calculating

the factorial –

e.g. press  
 and you will

get 9 × 8 × 7 ×

6 × 5 × 4 × 3 ×

2 × 1 = 362 880.

•  +  will call

, a menu of

functions related

to probability

(  will let

you leave the

menu again).

Each label

printed un-

derlined on the

keyplate refers to

a menu.

• The grey letter R

will become relevant when entering alphanumeric data.

Note all the 145 labels printed on the keyboard of your WP 43S are

explained individually top left to bottom right in App. 2 from p. 296 on.

Page 20 of 328 -- WP 43S U v0.16

Time for a little problem solving example:

Turn your WP 43S on again if necessary. Press . Your display will

show  0. in each of its four rows then.

Now, let’s assume you want to fence a rectangular patch of land, 40 yards

long and 30 yards wide.9 You have already set the 1st corner post (A),

and also the 2nd (B) in a distance of 40 yards from A. Where do you set

the 3rd and 4th corner posts (C and D) to be sure that the fence will form

a proper rectangle? Simply key in:

   0.
   0.
   0.
30  .

 10
  0.0

  30.0 .

Note the cursor vanished from the bottom row and the number

30 is adjusted to the right, indicating this input being closed

now; so the next number can be entered:

  0.0

  30.0

40    .

9 Assume this little patch of land in suburbia. We use outdated British Imperial units here

so our US-American readers can follow, but this example will work with meters instead

of yards as well.

10 Press   +  to access ; the menu DSP will open in the lower third of the

screen. Press the leftmost top row key for . Then enter telling your

WP 43S it shall display only 1 decimal digit (internally, everything is handled with full

precision always). See Section 2 for more about output formatting.

Generally, we will print no more than one display row containing just zero from here on
for print space reasons.

WP 43S U v0.16 --- Page 21 of 328

 0.0
  θ = 36.9°
  r =      50.0

All you need is the number in the bottom row,11 a friend, and

80 yards of rope now:

Ask your friend to hold both ends of the rope firmly for you, take the loose

loop and walk away as far as you can – when the loop is stretched, mark

that position on the rope and return to your friend. Ask him or her to hold

this point of the rope as well, fetch the two loose loops and walk again as

far as possible – when the loops are stretched, mark both positions on

the rope. Return again; hand over the two new points and walk once

more, now with four loose loops. After

marking as before, your rope will show

marks every 10 yards.

Nail its one end on post A and its other

end on B, fetch the loose loop and

walk 5 marks away as calculated. As

soon as both sections of the rope are

tightly stretched, stop and place post

C there. You may set post D the same

way on the other side.

This method works for arbitrary rect-

angles, whatever other distances may

apply (you will need a tapeline in the general case). As soon as you press

, your WP 43S does the necessary calculation of the diagonal

automatically for you. You just provide the land, posts, rope, hammer and

nails. And it will be up to you to set the posts!

Another introductory example (basically quoted from the HP-25 OH

though updated following progress in research in the meantime – only

12 moons of Jupiter were known in 1975): 12

11 Forget the number displayed above for the time being. We will talk about it later.

12 Reading some of HP ’s vintage calculator manuals may be fun and interesting for you.
They are still available at low cost – together with almost complete information about

Page 22 of 328 -- WP 43S U v0.16

To calculate the surface area of a sphere, the

formula 𝐴 = 𝜋 𝑑2 can be used, where A is the

surface area, 𝜋 is 3.141 5..., and d is the diameter

of the sphere.

Ganymede, one of Jupiter’s 79 moons, has a

diameter of 5262 km. To use your WP 43S to

manually compute the area of Ganymede, you can

press the following keys in order:

 5 262 diameter of Ganymede

 27 688 644 square of the diameter

   3.1 the constant 𝜋 (rounded to
1 decimal as set above)

 86 986 440.6 area of Ganymede (in km2,

i.e. square kilometers).

If you wanted the surface areas of each of Jupiter's 79 moons,

you could repeat the above procedure 79 times. However, you

might wish to write a program that would calculate the area

of a sphere from its diameter, instead of pressing all the keys

for each moon.

To calculate the area of a sphere using a program, you should first write

the program, then you must record the program into the calculator, and

finally you run the program to calculate the answer.

Writing the program: You have already written it! A program is nothing

more than the sequence of keystrokes you would execute to solve the

same problem manually.

Recording the program: To record the keystrokes of the program into

the calculator, press the following keys in order.

 switch to program-entry mode (PEM).

 go to the point in program memory where free space
begins.

all the other HP calculators built between 1968 and 1990 – in one package
on media distributed by the online Museum of HP Calculators (see
http://www.hpmuseum.org/cd/cddesc.htm).

http://www.hpmuseum.org/cd/cddesc.htm

WP 43S U v0.16 --- Page 23 of 328

 This is the opening step of your program

labelled L – for just press here as you

see a grey L printed next to it.

 This is the closing step of the program. Finally,

 exits PEM and returns to run mode.

So a straight program on your WP 43S consists of an opening step

and a closing framing the keystrokes you need for solving the

respective problem manually.

Running the program: Now all you have to do to calculate the area of

any sphere is keying in the value for its diameter and press

 (meaning ‘execute program L’).

When you press the sequence of keystrokes you recorded is

automatically executed by the calculator, giving you the same answer you

would have obtained manually:

For example, to calculate the surface area of Ganymede, press

   5 262 Ganymede's diameter

 86 986 440.6 its surface area – as
you calculated manually above. So you
know your routine works properly.

With the program you have recorded, you can now calculate the

respective surface area of any of Jupiter's moons – in fact, of any sphere

– using its diameter. You have only to leave the calculator in run mode

and key in the diameter of each sphere that you wish to compute, and

then press . For example, to compute the surface area of Jupiter's

moon Io with a diameter of 3643 km:

   3 643 Io's diameter

  41 693 486.7 its surface area;

These keys are the same you pressed

to solve this problem manually above.

Page 24 of 328 -- WP 43S U v0.16

   3 122 Europa's diameter

   30 620 739.2 its surface area;

   4 821 Callisto's diameter

   73 017 025.3 its surface area; etc.

Programming your WP 43S is that easy! It remembers a series of key-

strokes and then executes them automatically when you press ...13

There is no need memorizing a complicated formula after you keyed it in

once – your WP 43S will remember it for you (and provides space for

dozens more). Furthermore, you can even define individual shortcuts to

your favorite routines by customizing the keyboard of your WP 43S.

The early portions of this handbook show you how easy it is to manually

use the power of your WP 43S; while in Section 3: Programming you will

find a complete guide to WP 43S calculator programming. Even if you

have used other pocket calculators …, you will want to take a good look

at this handbook. It explains the unique HP logic system that makes

simple answers out of complex problems, and WP 43S features that

make programming painless. When you see the simple power of your

WP 43S, you'll become an apostle just as have some millions of RPN

calculator owners before you.

First, let’s demonstrate how to generally enter common decimal numbers

in your WP 43S. Therefore, please return to startup default display

format via  ALL   .14

13 Program L as recorded above is a very short one: its center part contains four

keystrokes only (  ). You may store far, far more keystrokes in program
memory – the overall procedure of storing and running programs, however, will remain
unchanged. Only the center part of the program will grow.

Programming is comprehensively covered in Section 3 of this manual.

14 ALL may well be on your screen still since you called on p. 19.

WP 43S U v0.16 --- Page 25 of 328

How to Enter Common Numbers (and How to Edit Them)

Numeric entry is as straightforward as typing: for 12.3456, for instance,

simply press and you will see

12.345 6 .

You may key in up to 43 digits at once, echoed immediately in the bottom

numeric row of the screen (note the gap inserted automatically after each

group of three digits for easier

reading). Any digit mistyped

may be erased by and can

be replaced then.

For entering negative numbers

such as −7.8 , key in or or  :

pressing changes the sign of the number being keyed in. Only

negative signs will be displayed.

For a huge figure such as the age of the universe in years as we know it

today, just enter which is echoed

13.8×⒑⁹

in ‘mantissa plus exponent’ format. The key stands for ‘enter

exponent’. Note your WP 43S allows for a naturally readable display

instead of showing you cryptic machine formats like 13.8E9 .

During numeric input, your keystrokes are generally just echoed in the

bottom numeric row. Input is closed and released for interpretation by a

command – e.g. by . Here, this will change the display to the

equivalent:

 13 800 000 000. .

Note the number moved to the right (cf. p. 20). Closed numbers in the

bottom row may be cleared at once by pressing . This puts 0. in

said row, and subsequent input will overwrite this 0. then.

Really tiny numbers such as a typical diameter of an atom (i.e.

0.000 000 000 1 m – with ten zeroes heading the digit 1) are entered in

full analogy to huge numbers: will do here, and this will be

displayed when closed by as

Page 26 of 328 -- WP 43S U v0.16

 0.000 000 000 1 in startup default format.

By the way, this may be shown significantly more compact as

 1.×⒑⁻ⁱ⁰ or even

 1,·⒑⁻ⁱ⁰ with other display settings
 (as treated in Section 2).

Note you did not have to enter   here: If there is no

numeric input heading , 1 is assumed for the mantissa per default.

And pressing after will change the sign of the exponent – if

you want to change the sign of the mantissa, press before entering

or after closing the entire input.

There are also other numeric data types like integers, times, or dates

available on your WP 43S – these (and more) will be covered in Section

2 together with more output formats provided.

How to Enter and Execute Commands

This is easy as well: Just enter the keystrokes required to access the

label calling the command you wish to be executed (cf. p. 19). Pending

input will be echoed at left end of the top numeric row in the LCD until

the command is completed. Therein, pending prefixes or will be

echoed by ⒡ or ⒢ , if applicable; these characters will be replaced by

the name of the command accessed as soon as it can be decoded.

For many commands, ⒡ or ⒢ will be the only echo

you will really see during command entry since the next

keystroke may well terminate command input already

(as observed with above), call and execute the

command, and display the result.

Some commands, however, require trailing parameters and will thus stay

in the top numeric row for longer. STO and RCL are commands of this

kind, and there are many more (see pp. 60f and the ReM).

WP 43S U v0.16 --- Page 27 of 328

Menus – Items à la carte

Your WP 43S features more than 650 operations, far too many for

showing all of them on the keyboard. Hence most operations live in

menus. In addition to commands, also arbitrary characters, constants,

conversions, digits, programs, submenus, system flags, or variables

defined may be stored in menus: we collectively call them menu items or

simply items. By using menus we can keep the keyboard relatively tidy.

Your WP 43S features 30 menus on its keyboard, printed underlined for

easy recognition there (except TRI).15 In alphabetic order, these are

ADV, BITS, CATALOG, CLK, CLR, CONST, CPX, DISP, EQN, EXP,

FIN, FLAGS, INFO, INTS, I/O, LOOP, MATX, MODE, PARTS, PROB,

P.FN, STAT, STK, TEST, TRI, U →, X.FN, α.FN, Σ, and ∠→.

Call any menu by simply accessing its label (cf. p. 19). This will open

the menu and cause the lower part of the calculator screen (called the

menu section from here on) displaying the respective menu view.

Example: Press

and EXP will open

with a menu view as

pictured here.

As long as this view

is displayed, simply

press, for example, ...

• the 2nd  for ,

• and the leftmost

 (1st) for ∛Ϳ,

• and the 3rd

 for , known

 as the hyperbolic

 cosine.

15 We print them underlined throughout this manual for the same reason. Note, however,

they are stored in your WP 43S without that underline and hence displayed also in
menu views without it. The labels   A  ,   <  , and   ●   will be treated further below.

Page 28 of 328 -- WP 43S U v0.16

• If you would press and the 2nd , nothing will happen since no

label is displayed there – no operation is linked to this  -shifted .

We may as well print  ∛Ϳ  if we want to indicate the access path to this

 -shifted in most compact way. In analogy, blue background may

be printed for a  -shifted (like   cosh here), and grey background for

an unshifted function (like  ∜Ȳ  here).

Generally, whenever a menu is called, its top view will be displayed in

the menu section. Any such view may contain up to 18 items:

• up to six assigned to the unshifted top row of keys,

• up to six to the  -shifted (note the golden stripes framing the LCD

there), and

• up to six to the  -shifted top row of keys (note the blue stripes).

For calling a specific item contained in such a view, use the correspond-

ing , preceded by or if applicable (this is called a softkey from

here on).

Any predefined menu may contain more than just one view. This will be

indicated by a dashed line limiting the menu section on the screen.

Whenever such a multi-view menu shows up, will advance to the next

view and will return to the previous one, changing the labels

displayed. Because multi-view menus are circular, also pressing

repeatedly will return to the first view after all other stored views were

displayed (thus, for a menu containing just two views, both and

will display the next menu view).

Any menu view will stay constant – granting direct access to the

up to 18 functions displayed – until you leave it (e.g. via or ,

if applicable, or via  ) or call another menu.

To indicate the access path via a menu and the corresponding softkey,

we will generally print the background colors as explained at top of this

page from here on. Note that submenus contained in a menu are

displayed just   inverted without the ‘menu underline’. Pressing in

a submenu will bring you back to its parent menu (containing the label of

said submenu).

WP 43S U v0.16 --- Page 29 of 328

How the Keyboard is Organized

You might have already recognized that labels on your WP 43S are

printed grouped according to their purposes. Beyond the digits and

the four arithmetic operations , , , and  , five larger groups

are provided:

Menu keys calling

items from the menu

displayed above

Modes, data types,

and ‘common’ trans-

cendental functions.

SIN, COS, TAN, and

their inverses are in

TRI (no underline on

this key for space

reasons)

Stack and register

operations

General navigation,

information and con-

trol keys: e.g. for

deleting, ↶ for un-

doing the last com-

mand, and for

browsing, for

general escaping

Functions for programming and calling programs:

E.g. for executing a program,

 for running or stopping it

, , and the menus in particular allow for easily accessing a multiple

of the 43 primary functions this keyboard could take.

Page 30 of 328 -- WP 43S U v0.16

Before showing the operation of your WP 43S in detail, let’s return to our

introductory problem solving examples for four general remarks:

1. We presume you have graduated from an US High School at

minimum, passed Abitur, Matura, or an equivalent graduation. So we

will not explain basic mathematical rules and concepts here. Please

turn to respective textbooks.

2. There is absolutely no need to enter units in your calculations:

Just stay with a coherent set of units while calculating and you will get

meaningful results within this set.16 If you need to convert special

inputs into SI units or require results expressed in particular units,

however, and will help (see pp. 276ff).

3. Although you entered just integers for both edges of your little patch

of land in the example on pp. 20f, your WP 43S calculated the

diagonal using real numbers. This allows for decimals in input and

output as well. Alternatively you may enter fractions such as e.g. 6 ¼

if this carries a benefit for you. Your WP 43S features also more data

types – we will introduce them to you in Section 2.

4. In four decades of scientific pocket computing, a wealth of sample

applications has been created and published by different authors –

more and better than we can ever invent ourselves. We do not intend

to copy all of them; instead, we recommend the media mentioned on

p. 21 once again: they contain almost all the user guides, application

handbooks, and manuals printed for vintage HP calculators in two

heroic decades beginning with HP’s very first desktop calculator, the

HP-9100A of 1968 (without any IC, but with a cathode ray tube built

in). Be assured that all computations described there for any scientific

or engineering calculator can be done on your WP 43S – most of them

significantly faster and in a more elegant way. Nevertheless, we

included more than 160 new and vintage examples in this manual to

support you learning your new tool.

16 A quick and simple unit analysis is strongly recommended before starting a calculation
of a formula you may have derived yourself. The big advantage of SI is that this is the
largest coherent set of units available on this planet. Unit prefixes in SI simply
represent powers of 1000 (look up the ReM if necessary).

WP 43S U v0.16 --- Page 31 of 328

Problem Solving, Part 2: Elementary Stack Mechanics

Most of the commands your WP 43S provides are mathematical

operations or functions taking and returning real numbers. Real

numbers (or shortly reals) are numbers like 0.12 or 3.141 592 653 59

or − 5.67×10− 8 . Note that integers like 3 or 12 345 678 or −121,

as well as fractions like 2 / 5 or 137/ 7 are mere subsets of reals.

Depending on the particular command you choose, it may operate on

one, two, or three such numbers at once to generate a result. In spite of

the over 650 functions available, you will find your WP 43S functions

simple to operate by using a single, all-encompassing rule:

When you press a function key, your WP 43S will execute the

operation assigned to it immediately (if it requires parameters it

will execute with parameter input completed).

One-number (monadic) functions: Many functions provided on your

WP 43S operate on one number only.

Ten monadic functions are found on the keyboard, starting top left: the

reciprocal , the logarithms and , the exponentials and ,

square and square root , (making negative numbers positive),

 (multiplying closed numbers by −1), and the factorial .

Examples:

 returns 64 ,

 0.015 625 ,

 -0.015 625 ,

 0.015 625 ,

 0.125 ,

 8. ,

   100 000 000. ,

   8. ,

 2 980.957 987 041 728 ,

   8. , and

 returns 40 320. .

Page 32 of 328 -- WP 43S U v0.16

Generally, monadic functions replace the value (called x) displayed in

the lowest numeric row on the screen before calling the function by the

respective function result f(x) (e.g. f(x) = 𝒙! in the last example).

Everything else on the screen stays as it was.17

Check the IOI for the many monadic functions provided (more

logarithmic, exponential, root, trigonometric, and hyperbolic functions,

unit conversions, etc.).

Two-number (dyadic) functions: Some of the most popular mathe-

matical functions operate on two numbers and return one. Think of the

four basic arithmetic operators + and −, × and / .

Example:

Assume owning an account of 1234 US$ and taking 56.7 US$ away from

it. What will remain? An easy way for solving such a problem works as

follows:

On a piece of paper On your WP 43S

Write down the 1st
number: 1234

 Key in the 1st
number: 1 234

Start a new line. Close 1st input:
Write down the 2nd
number:

Draw a line below.

56.7
Key in the 2nd
number: 56.7

Subtract: 1177.3 Subtract: 1 177.3

This is the essence of RPN:

Provide the necessary operands,

then execute the requested operation

by pressing the corresponding function key.

17 Your WP 43S features also monadic functions operating on other data than reals

and/or returning a different kind of data in output. These functions work the same way:

x will be replaced by f(x), everything else remains untouched.

WP 43S U v0.16 --- Page 33 of 328

HP itself explain-

ed this method

using a very com-

pact picture. 18

And a major ad-

vantage of RPN

compared to all

other calculator

operating sys-

tems known to us

is that it sticks to

this basic rule –

always.19

As the paper holds your operands

while you are calculating manually,

some space holding your operands

on your WP 43S is required as well.

The stack does this job. Think of it

like a pile of registers, a work space

for your calculations.

Bottom up, these registers are tradi-

tionally called X, Y, Z, and T,

18 This picture is copied from the brochure ‘ vs. ’ of 1974.

19 This rule applies for functions regardless of the kind of objects they operate on.
This way of writing operations is called postfix notation since the operator is entered
after the operands (hence RPN, cf. footnote 1). It suits electronic calculating very well;
and it eases work for human brains, too – see further below.

Some people might claim that the above global rule strictly holds for RPL only.
RPL (meaning Reverse Polish Lisp) is a programming language and notation develop-
ed from RPN in the 1980’s. Maybe those people are even right. In my opinion,
however, RPL strains the postfix principle beyond the pain barrier, exceeding the limit
where it becomes annoying for human brains. Not for everybody, of course, but also
for many scientists and engineers. Thus, we stick to classic RPN on the WP 43S
as we did on the WP 34S and WP 31S.

Page 34 of 328 -- WP 43S U v0.16

optionally followed by A, B, C, and D on your WP 43S.20 New input is

always entered in X, and at least x is always displayed in run mode –

y, z, and t may be (so you may see the contents of up to four stack regis-

ters on the screen at the same time if you want).

 separates two input numbers by closing the first number x

and copying it into Y, so X can take a new number then without loss

of information (cf. above). The

contents of the upper stack

registers are lifted out of the way

before. In a 4-register stack, z is

copied into T and y into Z before

x will be copied into Y.

This is the classical function of

 from the HP-35 of 1972 until the HP-42S ceased production

in 1995. affects all stack registers, and the previous content

of the top register gets lost. It is often said ‘pushes x on the

stack’ (although it pushes x under the stack in the usual pictures).

Let’s look at our account example again, putting it in a stack diagram:21

T

Z

Y 1 234 1 234

X 1 234 1 234 56.7 1 177.3

Input 1234 56.7

20 This optional 8-register stack was invented by Pauli and me and launched with WP 34S

in 2011. WP 31S features it as well. See the further text for its advantages.

21 The stack diagram is presented here for a traditional 4-register stack. At beginning,

some arbitrary data may be present in the upper stack registers Y, Z, and T, remaining

from earlier operations. These data are irrelevant for this calculation, so we left them

aside here; in further stack diagrams we will omit entirely all stack registers not con-

taining any data relevant for the particular calculation, for sake of clarity and print space.

And we will generally use plain bold text denoting numeric input from here on for the

same reasons.

WP 43S U v0.16 --- Page 35 of 328

After having entered the 2nd number (56.7, the new x), pressing

subtracts this from the 1st number (1234 in Y) and puts f(x, y) = y – x =

1177.3 in X. This procedure applies to the overwhelming majority of

functions featured on your WP 43S:

Put the operands on the stack,

then execute the operation f(x, ...),

and the result will be displayed.22

A large part of mathematics is covered by such dyadic functions and

combinations of them. Let’s look at a chain calculation:

Example:

(12.3−45.6) (78.9+1.2)

(3.4−5.6)7
 .

This is as a combination of six dyadic functions: two subtractions, one

addition, a multiplication, an exponentiation, and a division.

And this is how that problem is solved on your WP 43S, starting top left

in the formula, and what happens on the stack while solving:

Y 12.3 12.3

X 12.3 12.3 45.6 -33.3

Input 12.3 45.6

You will have recognized that this 1st parenthesis in the numerator was

solved exactly as demonstrated in our little account example above. Now

proceed to the 2nd parenthesis:

Z -33.3 -33.3

Y A -33.3 78.9 78.9 -33.3

X 78.9 78.9 1.2 80.1 -2 667.33

 78.9 1.2

22 This completely eliminates the need for an on the keyboard.

Page 36 of 328 -- WP 43S U v0.16

It is solved like the first. Though in the 1st step of this sequence, the prior

result (of 1st parenthesis) is lifted automatically (A) to Y to avoid overwriting

it with the next number keyed in. This move is called automatic stack lift.

Actually, such an automatic stack lift works as if was pressed

before the first digit of the new input number (i.e. before 7 here).

Automatic stack lifting is standard on RPN calculators, reducing the

number of keystrokes necessary, and will not be indicated from here on

anymore.23
 Remember you need pressing just for separating

two consecutive numbers in input – cf. the flow diagram on p. 33.

Due to automatic stack lifting, there is also no need for clearing your

WP 43S before starting a new calculation – old data are just lifted out of

the way when new input is entered. In consequence, we need neither

any nor any and can solve problems with a minimum of keystrokes.

After having solved the 2nd parenthesis of the chain calculation by pressing

, the results of both upper parentheses were on the stack in X and Y –

so everything was well prepared for the multiplication to complete the

numerator. Thus, we just did it.

Now we start calculating the denominator – once again the intermediate

result is lifted automatically in the 1st step:

 -2 667.33 -2 667.33 -2 667.33

-2 667.33 3.4 3.4 -2 667.33 -2.2 -2 667.33

3.4 3.4 5.6 -2.2 7 -249.43… 10.693…

3.4 5.6 7

Note the automatic stack lift when entering 7 affects two intermediate
results now. Thus, everything is well prepared for the exponentiation in the

23 Also an automatic stack lift affects all stack registers, and the previous content of the

top register gets lost again. Of all commands provided on your WP 43S (more than

650), there are only 4 disabling automatic stack lift: ENTER, CLX, Σ+, and Σ-. Some

reasoning:

• After , you generally want to key in the consecutive number.

• CLX (called by or) is for clearing X to make room for a corrected value

instead of the one deleted (and we do not want a useless extra zero on the stack).

• Regarding and  , please see the chapters about statistical functions in

Section 2 for the reasons.

WP 43S U v0.16 --- Page 37 of 328

penultimate step and the final division of the numerator (in Y) by the de-

nominator (in X). Voilà!

Following this example, you have seen the five most popular dyadic

functions in action: , , , , and . Your WP 43S provides many

more dyadic functions.

As you have observed several times now, the contents of the stack

registers drop whenever a dyadic function is executed. Like the

automatic stack lift mentioned above, also this automatic stack drop

affects all stack registers as pictured here:

x and y are combined resulting

in f(x, y) = y + x put into X;

then z drops to Y, and t to Z;

since nothing is available above

t on a 4-register stack for drop-

ping, the top register content is

repeated (see also p. 40 – ‘Last

X’ will be covered on p. 50).

There are also a few three-number (triadic) functions featured (e.g.

→DATE, %MRR). Executing such a function replaces x by f(x, y, z);

then t drops into Y and so on, and the content of the top stack register is

repeated twice (see p. 40 for an example). All triadic functions provided

on your WP 43S are found in menus.

And some functions operate on one number but return two (like

DECOMP) or three (e.g. DATE→). Other operations do not consume

any stack input at all but may just return one, two, or three objects (like

RCL, SUM, or L.R.). Then these extra objects will be pushed on the

stack, taking one register each (see p. 40).

Page 38 of 328 -- WP 43S U v0.16

Looking Closer at the Automatic Stack

For understanding the genius of RPN, we will look a bit closer to the

functions operating on the stack. In addition to the one-, two-, and three-

number (monadic, dyadic, and triadic) functions explained in previous

chapter, there are some dedicated stack and register commands:

The memory control opera-

tions , , ,

, , , and

are known from previous RPN

calculators already. They are

all found within this small area

of the keyboard, together with

, , , and .

Your WP 43S contains even

more stack and register commands, e.g. CLSTK, CLREGS, DROPy,

STOCFG and RCLCFG, STOS and RCLS, x⇄, y⇄, z⇄, t⇄, and ⇄. Most

of them are found in STK.

And your WP 43S allows for expanding the traditional 4-register stack to

eight registers: just enter

  SF SYS.FL  SSIZE8.

In consequence, the fate of stack contents will depend on the particular

operation executed as well as on the stack size set at execution time.

Operations on the 4-register stack work as known from vintage HP RPN

calculators since the HP-45. On the optional 8-register stack of your

WP 43S, everything works in analogy – just with more registers available

for intermediate results; so you will hardly ever run into a stack overflow

(see p. 44 for an example).

Please find below what , , , , , , ,

and further representative functions do in detail on stacks of either size.

Then you will also know why and the stack rotation command

 show arrows pointing up while and point down.

WP 43S U v0.16 --- Page 39 of 328

S

ta
c
k
 r

e
g

is
te

r

A
s
s
u

m
e
d

in

it
ia

l

c
o

n
te

n
ts

Stack contents after executing …

W
it
h

 4
 s

ta
c
k

re
g

is
te

rs
 T t = 4. 3. 1.1 4. 4. 4. 1.1 3.

Z z = 3. 2. 1.1 4. 4. 3. 4. 2.

Y y = 2. 1.1 1.1 3. 3. 1.1 3. 1.1

X x = 1.1 1.1 1.1 2. 1.1 2. 2. 4.

W
it
h

 8
 s

ta
c
k
 r

e
g

is
te

rs

D d = 8. 7. 1.1 8. 8. 8. 1.1 7.

C c = 7. 6. 1.1 8. 8. 7. 8. 6.

B b = 6. 5. 1.1 7. 7. 6. 7. 5.

A a = 5. 4. 1.1 6. 6. 5. 6. 4.

T t = 4. 3. 1.1 5. 5. 4. 5. 3.

Z z = 3. 2. 1.1 4. 4. 3. 4. 2.

Y y = 2. 1.1 1.1 3. 3. 1.1 3. 1.1

X x = 1.1 1.1 1.1 2. 1.1 2. 2. 8.

Clearing the entire stack can be done by most easily.

Nevertheless, a dedicated command CLSTK is provided in CLR for

backward compatibility and program space economy (see p. 52).

 takes the initial stack contents (as listed in the third column left) and

swaps the contents of registers X and Y. Depending on the problems

you solve and the way you proceed, you may sometimes find that x and

y should be swapped before executing e.g. , , or .

 and may come handy for reviewing stack registers else unseen

(unless you use the register browser RBR – see Section 5).

Page 40 of 328 -- WP 43S U v0.16

S
ta

c
k
 r

e
g

is
te

r

A
s
s
u

m
e
d

in

it
ia

l

c
o

n
te

n
ts

Stack contents after executing …

2
4

2
5

2
6

2
7

2
8

2
9

T t = 4. 3. 2. 4. 4. 4. 2.

Z z = 3. 2. 1.1 3. 4. 4. 20.

Y y = 2. 1.1 sy 2. 3. 4. 10.

X x = 1.1 last x sx 1.21 3.1 1-02-03 1.

D d = 8. 7. 6. 8. 8. 8. 6.

C c = 7. 6. 5. 7. 8. 8. 5.

B b = 6. 5. 4. 6. 7. 8. 4.

A a = 5. 4. 3. 5. 6. 7. 3.

T t = 4. 3. 2. 4. 5. 6. 2.

Z z = 3. 2. 1.1 3. 4. 5. 20

Y y = 2. 1.1 sy 2. 3. 4. 10

X x = 1.1 last x sx 1.21 3.1 1-02-03 1

 represents the vintage command LASTx (see p. 50 for more

about it). Note that the previous contents of the top stack register are

lost when or are executed. Functions like or

24 This represents an arbitrary function pushing one object on the stack.

25 This represents an arbitrary function pushing two objects on the stack.

26 This represents an arbitrary monadic function.

27 This represents an arbitrary dyadic function.

28 Assume →DATE is called in startup default date mode (i.e. YMD). It represents an
arbitrary triadic function here.

29 Assume 1.102 or 1-10-20 in X initially here and startup default mode set, cf. Sect. 2.

WP 43S U v0.16 --- Page 41 of 328

will even cost the contents of two stack registers,. We recommend

mitigating the effects of such losses by setting the stack to eight registers

(cf. p. 38). – Please see the IOI for further information about the

commands mentioned above.

Problem Solving, Part 3: The Stack in Advanced Calculations

Using the stack as described, RPN eliminates the need for an key as

well as for any parentheses keys. See the following example,

showing a more elaborate formula than above. Find below a way for

solving it step by step, and the corresponding stack diagrams. Enter

  RAD and start calculating at the red 7:

2 + √
1 + |(

30
7 − 7.6 × 0.8

)
4

− (√5.1 −
6
5
)
2

|

0.3

{𝑠𝑖𝑛 [𝜋 (
7
4 −

5
6
)] + 1.7(6.5 + 5.9)3 7⁄ }

2

− 3.5

Z 1.75 1.75

Y  7  7 1.75  5  5 1.75

X 7  7 4 1.75 5  5 6 0.83... 0.91...

 7 4 5 6

 0.25... 0.25...

 0.25... 0.25... 0.25... 12.4 12.4

0.91... 0.25... 6.5 6.5 0.25... 12.4 3 3

3.14... 2.87... 0.25... 6.5 6.5 5.9 12.4 3 3 7

    sin6.5 5.9 3 7

0.25... 0.25...

12.4 0.25... 2.94... 0.25... 27.6...

0.42... 2.94... 1.7 5.00... 5.25... 27.6... 3.5 24.1...

 1.7 3.5

Page 42 of 328 -- WP 43S U v0.16

This was the solution of the entire denominator. Let’s continue with

calculating the numerator now, basically following the same procedure,

i.e. calculating from inside out (as you would do with pencil and paper):

 24.1... 24.1...

 24.1... 24.1... 24.1... 6.08 6.08 24.1... 24.1...

24.1... 7.6 7.6 24.1... 6.08 30 30 6.08 24.1... 1.79...

7.6 7.6 .8 6.08 30 30 7 4.28... 1.79... 4

7.6 .8 30 7 4

 24.1... 24.1... 24.1... 24.1...

 24.1... 10.3... 10.3... 24.1... 10.3... 10.3... 24.1... 24.1...

24.1... 10.3... 6 6 10.3... 1.2 1.2 10.3... 10.3... 24.1...

10.3... 6 6 5 1.2 5.1 2.25... -1.05... 1.12... 9.24...

 6 5 5.1

 24.1... 24.1...

24.1... 9.24... 24.1... 1.94... 24.1... 2.94... 0.34...

9.24... .3 1.94... 1 2.94... 24.1... 0.12... 0.34... 2 2.349...

 30 .3 1 2

Even solving this formula requires only four stack registers.31 Note there

are no pending operations – each operation is executed individually, one

30 You would not execute this step manually since you will see immediately that x is
positive. In an automatic evaluation of such a formula, however, this step is important
unless you know in advance that a negative intermediate result will not occur.

31 We admit we were cautious seeing this formula and set SSIZE8 before starting the
calculation here.

Additional remark: In the fifth step of last diagram, we have got the complete result for

the numerator in X. And the result for the denominator is in Y whereto it silently
traveled during all the other calculations (see above). In the subsequent step, we

swapped x and y to put the operands in proper order for division of the numerator y by

the denominator x.

WP 43S U v0.16 --- Page 43 of 328

at a time, allowing perfect control of each and every intermediate

result. 32

Note this is another characteristic advantage of RPN. In many real-

life applications, intermediate results carry their own value, so further

calculations may depend on the numbers you see there – this is called

‘exploratory math’ and may well occur more frequently in your

professional work than evaluating textbook formulas.

Experienced RPN calculator users have determined that by starting

every problem at its innermost number or parenthesis and working

outwards, you maximize the efficiency and power of your calculator.

If, instead, you had tried solving the formula on p. 41 starting with the

numerator of the root straight ahead, stubbornly calculating from left to

right, you would have needed more keystrokes and six stack registers for

the entire solution instead of only four (the colors in the record below

represent the top stack register involved in each step):

1 30 7 7.6 .8 4

5.1 6 5 .3

 7 4 5 6

1.7 6.5 5.9 3 7

 3.5 2

Admittedly, this way is not very smart though you see it is viable.

There are, however, some problems where four stack registers will just

not suffice regardless of the way you tackle with them:

Example:

Solve
(1+2)(9+8) + (3+4)(11+6)

(5−7)(10+12) − (13+14)(15+16)
 .

This highly symmetric formula lacks an unambiguous ‘inside’, so it does

not matter where we start solving it. Let’s begin with the numerator:

32 Thus, operator precedence is your job. Look up App. 1 for confirmation or reminder.

Page 44 of 328 -- WP 43S U v0.16

Z 3 3

Y 1 1 3 9 9 3 51

X 1 1 2 3 9 9 8 17 51 3

 1 2 9 8 3

T 51 51

Z 51 51 51 7 7 51

Y 3 3 51 7 11 11 7 51 170

X 3 4 7 11 11 6 17 119 170 5

 4 11 6 5

T 170 170 170

Z 170 170 170 -2 -2 170 170 -44

Y 5 5 170 -2 10 10 -2 170 -44 13

X 5 7 -2 10 10 12 22 -44 13 13

 7 10 12 13

A 170 170

T 170 170 -44 -44 170

Z -44 170 -44 27 27 -44 170

Y 13 -44 27 15 15 27 -44 170

X 14 27 15 15 16 31 837 -881 -0.192 96…

 14 15 16

If you had set your WP 43S to four stack registers (as all of HP’s pocket

calculators featured so far), however, the last stack diagram would have

deviated since register A could not be loaded automatically then:

T 170 170 170 -44 -44 -44 -44 -44 -44

Z -44 170 -44 27 27 -44 -44 -44 -44

Y 13 -44 27 15 15 27 -44 -44 -44

X 14 27 15 15 16 31 837 -881 0.049 94…

 14 15 16

Then it would return a wrong result due to stack overflow in step 4 and

WP 43S U v0.16 --- Page 45 of 328

subsequent repetition of wrong top register contents. Note this is possible

– and there is (and will be) no warning since your WP 43S cannot know

what you still need or what may be discarded without a problem.33 Thus,

we recommend setting SSIZE8 to play safe.

We will close this chapter with another

real-life example:

For decades, solving the following formula for

the Mach number of an airplane as a function

of its calibrated airspeed (CAS) in knots 34

(here: 350) and pressure altitude (PA) in

feet (here: 25 500) was used for demonstrating

the simplicity and coherence of RPN:

√5([{(1+ 0.2 [
𝐶𝐴𝑆

661.5
]
2

)

3.5

− 1} {1 − 6.875 × 10−6 × 𝑃𝐴}−5.2656 + 1]

0.286

− 1)

Solve it like this:

350 661.5 .2 1 3.5 1

6.875 6 25500 1 5.2656

1 .286 1

5 resulting in 0.84, i.e. 84% of the speed of sound. You need
only three stack registers for solving this.

33 Assuming you begin your calculations with a clear stack, you could think of writing a
little routine checking the contents of the top stack register, and displaying a warning
when this register deviates from zero. Though that routine will turn useless at this very
moment since the top stack register contents will stay nonzero further on. See previous
page and trick #1 three pages below.

34 The ancient British Imperial unit knot survived in aviation business and navigation:

 1 𝑘𝑛𝑜𝑡 = 1 𝑛𝑎𝑢𝑡𝑖𝑐𝑎𝑙 𝑚𝑖𝑙𝑒 ℎ𝑜𝑢𝑟⁄ = 463 900⁄ 𝑚
𝑠⁄ ≈ 0.5144 𝑚 𝑠⁄ ≈ 1.85𝑘𝑚 ℎ⁄ .

The foot is another one from that heap of pre-modern units made obsolete by SI for

two centuries (see U→ in Sect. 5). It also survived in aviation. We quote that US-
American Mach-number formula without having verified it.

Translator’s note for Europeans: CAS does not mean C·A·S, and PA does not mean
P·A  in that formula!

Page 46 of 328 -- WP 43S U v0.16

As you have seen, the way to solve a problem using RPN stays the same

regardless of the problem size. You are always in control.

With an 8-register stack as provided on your WP 43S, you will be on the

safe side, even dealing with the most advanced mathematical

expressions you will meet in your professional life as a scientist or

engineer. Promised. 35

Let’s quote a part of the HP-25 OH once more, just replacing all strings

‘HP-25’ by ‘WP 43S’:

Now that you've learned how to use the calculator, you can begin to

fully appreciate the benefits of the Hewlett-Packard logic system. With

this system, you enter numbers using a parenthesis-free,

unambiguous method called RPN (Reverse Polish Notation).

It is this unique system that gives you all these calculating advantages

whether you're writing keystrokes for a WP 43S program or using the

WP 43S under manual control:

• You never have to work with more than one function at a time. The

WP 43S cuts problems down to size instead of making them more

complex.

• Pressing a function key immediately executes the function. You

work naturally through complicated problems, with fewer key-

strokes and less time spent.

• Intermediate results appear as they are calculated. There are no

"hidden" calculations, and you can check each step as you go.

• Intermediate results are automatically handled. You don’t have to

write down long intermediate answers when you work a problem.

• Intermediate answers are automatically inserted into the problem

on a last-in, first-out basis. You don't have to remember where they

are and then summon them.

35 Of course, constructing an example leading to stack overflow even for eight registers
is trivial. But first of all it will be exactly that: a constructed example – no real-world
formula. And last not least, we assume there will be still an intelligent person operating
the calculator, solving from inside out as recommended above.

WP 43S U v0.16 --- Page 47 of 328

• You can calculate in the same order you do with pencil and paper.

You don't have to think the problem through ahead of time.

RPN takes a few minutes to learn. But you'll be amply rewarded by

the ease with which the WP 43S solves the longest, most complex

equations. With RPN, the investment of a few moments of learning

yields a lifetime of mathematical bliss.

And calculations with other data types (see Section 2) follow the same

simple rules. So at the bottom line, we recommend:

Set SSIZE8 and

let your WP 43S care for the arithmetic 

while you care for the mathematics! 36

36 You might ask: With the opportunity of an 8-register stack, why are there only up to
four stack registers displayed, not more?

The reason is simple: Once you have accustomed to RPN, you know the way it deals
with your data on the stack. Consistently. Thus, watching the entire stack mechanics
reliably working all the time does not carry any valuable information and will become
boring or even distracting very soon.

Actually, the overwhelming majority of RPN pocket calculators displayed x only

although there were Y, Z, and T quietly acting unseen always. Users were doing all

sorts of tricks on that stack – just tracking y, z, and t in their minds. Even HP’s RPL
calculators (although they feature a so-called ‘infinite’ stack) did and do not display
more than four registers.

Assuming people’s mental abilities did not deteriorate generally in last decades,
displaying more than four stack registers carries no lasting benefit. This holds
especially since the odds for stack overflow in real-world calculations are reduced to
zero when you follow our recommendations above. For the same reason, we omit
heading indicators X, Y, Z, and T in display. Since you chose this calculator for
yourself, you are obviously able to remember these four letters naming the bottom four
stack registers.

On the other hand, if you feel distracted or even annoyed by the screen showing more
than necessary, you may reduce the number of stack registers displayed to three, two,
or even just one (using DSTACK), letting your brains compete with the ones of your

fellow RPN users since 1972. Free space will flow in the display top down – x will
always be displayed directly above the menu section. And multi-line output will be
shown entirely always, regardless of current DSTACK setting.

We count on your abilities and are very confident you will succeed.

Page 48 of 328 -- WP 43S U v0.16

Special Tricks, #1: Top Stack Level Repetition

Whenever a dyadic or triadic function is executed, the stack will drop and

the content of its top register will be repeated as illustrated on pp. 37 and

40. You may employ this top stack register repetition for some nice

tricks.

See the following compound interest calculation: 37

Example:

Assume your bank pays you 3.25% p.a.38 on an amount of 15 000 US$;

what would be your status after 2, 3, 5, and 8 years?

Solution:

Here, you are interested in currency values only, so set the display format

by   FIX . This causes the output being rounded to cents

(internally, numbers are kept and calculated with far higher precision):

T 1.03 1.03 1.03 1.03 1.03 1.03

Z 1.03 1.03 1.03 1.03 1.03 1.03

Y 1.03 1.03 1.03 1.03 1.03 1.03

X 1.032 5 1.03 15 000 15 990.84 16 510.55 17 601.17 19 373.66

 1.0325 15000

 after 2 years 3 years 5 years 8 years

Each multiplication consumes x and y for the new product

x × y put in X, followed by z dropping into Y, and t copied into

Z. Due to top stack register repetition the interest rate is auto-

matically kept as a constant on the stack, so the accumulated

capital value computation becomes a simple series of strokes.

This is demonstrated here for a 4-register stack. It works for an 8-register

stack as well – with the contents of D repeated then.

37 Translator’s note for German readers: Compound interest = Zinseszins.

38 Those were the times, my friend... ! Inflation was balancing those interest rates but
saving was definitely more fun then, nevertheless.

WP 43S U v0.16 --- Page 49 of 328

Debt calculations are significantly more complicated – so avoid debts

whenever possible! In the long run, it is better for you and your economy.

Nevertheless, you can cope with such calculations as well using your

WP 43S (see Section 5).

Another application making use of top stack register repetition is the

Horner scheme for calculating polynomials. It tells:

𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛𝑥

𝑛

= (…(𝑎𝑛𝑥 + 𝑎𝑛−1)𝑥 + ⋯+ 𝑎1)𝑥 + 𝑎0

Example:

Solve 7 + 6.4𝑥 − 2.1𝑥2 + 5.2𝑥3 − 3𝑥4 for 𝑥 = 0.908 .

Solution:

This problem can be rewritten to

{ [(−3𝑥 + 5.2) 𝑥 − 2.1] 𝑥 + 6.4 } 𝑥 + 7

and is easily solved this way (with the display set to   FIX):

 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

.908 0.9 -3 -2.7 5.2 2.3 2.1 0.1 6.4 5.9 12.9

.908 3 5.2 2.1 6.4 7

Note how the x values float automatically down the stack to be used in

multiplications.

 loads the entire stack always – be it 4 or 8 registers deep – it is far

more convenient than hitting multiple times.

Page 50 of 328 -- WP 43S U v0.16

Special Tricks, #2: LASTx for Reusing Numbers

Your WP 43S copies x into the special register L (for ‘Last x’)

automatically just before a function is executed – as previous RPN

calculators did (cf. the picture on p. 37). What is the benefit for you?

Example (from the HP-15C OH):

Two close stellar neighbors of Earth are Rigel

Centaurus 39 (4.3 light-years away) and Sirius

(8.7 light-years away). Use the speed of light, c

(2.997 92 ×108 meters / second, or 9.460 54 ×1015

meters / year), to figure the distances to these

stars in meters.

Solution (with SCI 1 set):

4.3 4.3  

 4.3

9.46073 15 9.460 54×⒑ⁱ⁵

 4.1×⒑ⁱ⁶

8.7 8.7  

 9.5×⒑ⁱ⁵

 8.2×⒑ⁱ⁶

 is reached by pressing , then ;

note the grey L printed bottom right of .

Result: Rigel Centaurus has a distance of 4.1×1016 m (or 4.1×1013 km)

to our planet, Sirius 8.2×1013 km.

So, recalling the last x via may save you from keying in lengthy

numbers more than once. It also allows for reusing intermediate results

without the need for storing them explicitly.40

39 This is identical with Alpha Centauri. Rigel usually means a star in constellation Orion.

40 There are only very few commands changing x but not loading L. Those are mention-
ed explicitly in the IOI. – Allocating a dedicated label to LASTx on the keyboard (like on
the HP-42S) would not pay here since no keystrokes will be saved.

WP 43S U v0.16 --- Page 51 of 328

Error Recovery: , , and ↶

Nobody is perfect – errors will happen although you are equipped with

such a powerful tool. Stay cool – your WP 43S allows you undoing the

last command executed, restoring the calculator state exactly as it was

before that error occurred.

1. If you receive an error message in response to your function call,

press or  ; this will erase that message and

return to the state before that error happened (see pp.

68 and 308f). Then do it right!

2. If you have erroneously executed a wrong function,

just press ↶ to undo it immediately. ↶ recalls the entire

calculator state as it was before that wrong operation was executed.

Then resume calculating where you were interrupted. 41

Example:

Assume – while you were watching an attractive fellow student or

collaborator – you pressed inadvertently instead of in the fourth

last step solving the lengthy formula on p. 41. Murphy’s Law! Luckily,

however, there is absolutely no need to start that calculation all over

again – that error is easily undone as follows:

T yzx … yzx … …

Z xyz yzx xyz yzx yzx

Y numerator xyz num xyz xyz

X denominator num × den den num / den correct result

 ↶

 Fine so far. Oops! Undo Resume

So don’t worry – be happy!

41 ↶ operates on stack, statistic registers and system flags. Note, however, ↶ will not
revert any operations you have confirmed explicitly (like RESET, see next page). And

↶ will undo the very last operation before ↶ only, nothing more – i.e. ↶ ↶ = ↶.

Previous RPN calculators used LASTx for error correction – ↶ works easier and

more comprehensive.

Page 52 of 328 -- WP 43S U v0.16

Clearing and Resetting Your WP 43S

There are several ways you can remove obsolete

information from your WP 43S. The most basic one is

– you have learned about it on p. 25. Almost all other

clearing commands are contained in CLR:

CLX Clears stack register X
(i.e. sets it to zero)

CLSTK Clears all stack
registers

CLΣ Clears all statistical
registers

CLREGS Clears all global and
local GP registers 42

CF Clears the flag specified CLFALL Clears all user flags

CLP Clears current program CLPALL Clears all programs

CLMENU Clears the programmable
menu

CLCVAR Clears all variables of
the current program

CLALL Clears all programs and
data (variables, user
flags, and all registers
including the stack)43

RESET Resets your WP 43S to
startup default (just
flash memory contents
will stay untouched)44

For your reference, startup default settings are:

2COMPL, ALL 0, DEG, DENMAX 9999, DSTACK 4,

GAP 3, J/G 1752-09-14, LinF, LocR 0, RM 0, TDISP −1,

WSIZE 64, and Y.MD. RANGE is set to 6145.

The system flags AUTOFF, DECIM., DENANY, MULT×, TDM24,

and αCAP are set, all others are clear.

Red commands ask you for confirmation. Turn to the ReM for more

information about the commands and system flags mentioned above.

42 Find more about GP registers in next chapter. Note stack and statistical registers as

well as variables are not touched by CLREGS.

43 Note display formats as well as other user settings and assignments will remain
unchanged. Only RESET clears everything except flash memory (see Sect. 3 and 6).

44 If you cannot reach RESET for any reason whatsoever, a hard reset will do almost the
same. Use the RESET hole on the calculator back side.

WP 43S U v0.16 --- Page 53 of 328

That’s almost all you have to know about number crunching for the time

being – calling commands and calculations with real numbers on the

stack. Such capabilities did suffice for high flying applications already –

see the picture above. There are, however, far more places than just the

stack where you may store and save your data in your WP 43S. Let’s

present them to you.

Addressing and Manipulating Objects in RAM

You have learned about the stack providing work space and temporary

storage during your calculations. For long term storage, feel free to use

other registers, variables, flags, and program memory. The remaining

chapters of this section will tell you how to use the first three.

The pictures on the next two pages show the entire address space of

your WP 43S. Depending on the way you configure its memory, a subset

of all these addresses will be accessible for you.

Depending on the stack size you choose, either T or D will be the top

stack register; A – D will be allocated for the 8-register stack if applicable.

I, J, and K may carry parameters of statistical distributions (see pp. 97ff);

I and J will also serve as index pointers in matrix editing (see pp. 163ff),

Page 54 of 328 -- WP 43S U v0.16

and K is also the default alpha register for some special operations (see

pp. 230f). Unless required for the purposes mentioned, A, B, C, D, I, J,

and K may be employed as additional global GP registers.

Special registers and stack

Statistical summation
registers

 D * K **

 C * J **

n, Σx, Σx², Σx³, … B * I **

 A *

 T

 Z

 Y

Display X L = Last x

Turn overleaf to see all registers available as well as all user flags.

Generally, registers or flags can be addressed as shown in the tables on

pp. 60ff. Addresses ≥112 are used for local data (see pp. 233f).

Flags are elementary items having only two states, set and clear. You

may think of them as switches being either on or off. You can employ

user flags for signaling whatever you want. There are also system flags

reflecting specific system states (overlapping with some lettered user

flags for easier access, see also the ReM). Since flags are most useful

in programming, they will be dealt with in Section 3.

Statistical data are accumulated in a set of dedicated summation

registers not interfering with your other data (like in WP 34S and 31S

before). You may enter your gathered statistical data value by value,

point by point, or in a single matrix all at once (see Section 2 for more).

Like the stack registers, also each GP register can hold any object you

store therein – more than just a common real number (you will learn

about these other objects in Section 2). These registers are beneficial

e.g. for storing intermediate results for repeated use.

WP 43S U v0.16 --- Page 55 of 328

GP registers Program steps User flags

Local registers 0000 .15 = 127

 0001 …

R.98 = R210 0002

R.97 = R209 …

…

 …

 .00 = 112

 … K = 111

… 9998 J = 110

R.02 = R114 9999 I = CPXRES

R.01 = R113 L = LEAD0

R.00 = R112 D = SPCRES

 K = R111 C = CARRY

 J = R110 B = OVERFL

 I = R109 A = ALLENG

 L = R108 see T = TRACE

 D = R107 previous Z = 102

R99 C = R106 page Y = 101

R98 B = R105 X = POLAR

R97 A = R104 99

… T = R103 …

 Z = R102

 Y = R101

 X = R100

… …

R02 02

R01 01

R00 Global registers 00

Page 56 of 328 -- WP 43S U v0.16

Example (with startup default settings):

Solve

√3+ (
1.09

1.78
)
2

×
𝑙𝑛 [3 + (

1.09
1.78

)
2

]

4 𝑐𝑜𝑠 [3 + (
1.09
1.78)

2

]

Solution:

First calculate the repeating term 3 + (
1.09

1.78
)
2

 and store it:

1.09 1.78 6.123 595 505 617 978×⒑⁻ⁱ

3 3.374 984 219 164 247

Then solve the entire expression, e.g. like this:

 solves the 1st factor of the expression,

 solves the numerator,

 2.234 647 088 154 349

  cos solves the 2nd part of the denominator,

 2.238 529 534 683 649

4 5.596 323 836 709 123×⒑⁻ⁱ

That’s it – solving this expression has become really easy this way.

Variables are named storage locations. As well as each register, also

each variable can hold any type of data (see Section 2).

During input processing in memory addressing, e.g. while entering

parameters for storing, recalling, swapping, copying, clearing, or

comparing, you will not need all the labels presented on the keyboard.

Just 29 labels plus the prefixes will do instead. The calculator mode

supporting exactly these 29 exclusively is called temporary alpha mode

(TAM). As shown in examples on the next pages, it may be automatically

set in memory addressing.

Entering TAM, the operational keyboard is temporarily reassigned as

pictured overleaf.

WP 43S U v0.16 --- Page 57 of 328

This kind of picture is

called a virtual key-

board since it may

deviate from the

physical keyboard of

your WP 43S. In

such a picture, dark

red  background is

used to highlight

changed key func-

tionalities. White

print denotes prima-

ry functions also on

virtual keyboards,

such as the left key

in row two directly

accessing (stack)

register A in TAM. 45

 → VAR X Y Z T

 A B C D

 I J f g

 ENTER K L

 / 7 8 9

 × 4 5 6

 – 1 2 3

 + 0 ● R/S EXIT

Also all other lettered registers can be called directly – the stack registers

X, Y, Z, and T via unshifted softkeys. And accessing numbered

registers stays as easy as can be. is for indirect addressing (see p.

60), for local memory addresses here (see p. 233).

Variables already defined at execution time will show up in the submenu

VAR in alphabetical order – so you can select the variable of your choice

by pressing the respective softkey. You can also access them via (or

create new variables this way – see pp. 60f for how to do this).

Note that you will not need or except for softkeys. These may be

context sensitive in TAM. If a comparison (e.g. x< ?) is called,46 for

instance, the  -shifted row will look like this:

45 What is printed white on your physical WP 43S, on the other hand, is called a default

primary function.
46 Comparisons are most useful in programming – see Section 3.

Page 58 of 328 -- WP 43S U v0.16

 x< ? __

 0. 1.
 → VAR ST.X ST.Y ST.Z ST.T

This allows for directly comparing x with the numbers 0 or 1 (see p. 60).

If or is called, on the other hand, the shifted rows will look like

this instead:
 STO __

 …EL …IJ

 Config Stack max min
 → VAR ST.X ST.Y ST.Z ST.T

This allows for storing and recalling all your specific settings easily via

 Config and  Config, respectively (see p. 80).  Stack
stores the entire stack in a block of 4 or 8 registers (depending on

stack size set),  Stack recalls it. And  max (or  min) lets you work

with the maximum (or minimum) of x and the contents of the source

automatically (see the IOI). You may press as shortcut for

  and for here. …EL and …IJ may be helpful

when dealing with matrices (see Section 2).

For commands operating on flags,  SYS.FL  grants access to the system

flags provided:
 SF __

 → SYS.FL X Y Z T

For all other operations asking for one trailing parameter, the menu will

stay with a single row of softkeys as pictured on p. 57.47

47 For commands operating on labels,  PROG  will be displayed instead of  VAR , granting
access to the global labels specified (see Section 3, Labels).

WP 43S U v0.16 --- Page 59 of 328

TAM will be terminated as soon as sufficient characters are entered for

the respective operation. You may delete pending parameter input

keystroke by keystroke using and correct it if necessary – or just abort

the pending command by ; this will leave TAM immediately, return-

ing to the mode set and the menu displayed before, if applicable.

If you just want to look up the current contents of a storage location

without disturbing the stack, use .

Example:

   FIX

 returns K =  3.374 98
  0.000 00
  0.000 00
  0.559 63

… as expected from previous example.

Note the view into register K is displayed adjusted to the left immediately

below the status bar.

For inspecting a row of various registers, take instead; press

 (or    STATUS) for checking the status of all flags

(RBR and STATUS are explained in Section 5 from p. 261 on).

 You are granted unlimited access to all the global registers and user

flags allocated; there are no safety constraints like ‘memory

protection’ on your WP 43S. You are the sole and undisputed

master of its memory. Thus, it is also your responsibility to take care

of it – keep suitable records to avoid inadvertently overwriting or

deleting your precious data.48

 You will not get 10 000 program steps and 212 registers and 128

user flags all together at the same time – see the ReM, App. B, for

the reasons and for resource management.

48 In Section 3, you will learn about a method preventing your programmed routines from

interfering with data of other programs.

Page 60 of 328 -- WP 43S U v0.16

Addressing Tables

Parameterized Comparisons:

1 User

input
 x< ?, x≤ ?, x= ?, x≈ ?, x≠ ?, x≥ ?, x> ?

Echo OP _ ? (with TAM set),

e.g. x<_?

2 User

input

 or Stack or

lettered

register

(i.e. -

,

 - , ,

 -  )

or variable

defined 49

Register

number

(range as

specified on

p. 63)

opens

indirect

addressing

 50

turns on

alpha input

mode (see

pp. 193ff)

for a (new)

variable

name

 Echo OP n ?

e.g.

x= 0.?

OP? x

e.g.

x≥ ? ST.Y

OP? nn

e.g.

x≠ ? r23

OP? → _ OP? ‘_

3 User

input

Echo

Compares x

with the

number 0.

Compares x

with the

content of

stack register

Y.

Compares x
with the

content of

R23.

See overleaf

and p. 64 for

more about

indirect

addressing.

Variable
name

(see over-
leaf for
more)

OP? ‘xx’
e.g.

x> ? ‘ST1’

Compares x with the content of the variable called ‘ST1’.

Press   x> ? for this.

49 It is recommended calling variables being already defined via  VAR  instead of keying

them in using .

50 Note you can skip pressing here (cf. the virtual keyboard above).

WP 43S U v0.16 --- Page 61 of 328

Register operations (requiring just a register or variable trailing):

1 User

input

, , , , , , ,

, , , , , , , , etc.

Echo OP _ (with TAM set),

e.g.   RCL _ 51

2 User

input

Stack or

lettered

register

(i.e. -  )

or variable

defined 49

Register

number (range

as specified on

p. 63)

opens indirect

addressing

where applic-

able (see p. 64

and the IOI)

 50

turns on alpha

input mode

(see pp. 193ff)

for a (new)

variable name

 Echo OP x

e.g.   DEC K

OP nn

e.g.   VIEW 10
OP → _ OP ‘_

 Decrement k. Variable name

(up to 7 charac-

ters incl. one

letter at least)52

3 User

input

 Register number

(range as speci-

fied on p. 63)

Stack or letter-

ed register

or variable

defined 49

 Echo OP → nn

e.g.

  STO →45

OP → x

e.g.

  x⇄ →L

OP ‘xx’

e.g.

  INC ‘Zähler1’

 Stores x in the location where r45
is pointing to (see p. 64).

 Swaps x and the content of the register where l  is pointing to.

 Increments the variable called Zähler1.

51 For and only, any of the keys , , , , , or may precede step

2 here. Entering such a key twice will cancel it (e.g. equals  ). See

the chapter after next chapter for more about this store and recall arithmetic.

Such operators are not allowed in   Config (calling RCLCFG),   Stack (calling

RCLS), RCLEL, RCLIJ, and the corresponding store operations, however.

52 This name must be unique. If a variable with this name is not defined at execution

time yet, it will be created automatically, containing zero initially.

Page 62 of 328 -- WP 43S U v0.16

Clearing an individual register or variable is most easily done by storing

zero in it. Deleting a variable from memory is demonstrated on pp. 290f.

Other operations requiring one trailing parameter:

1 User

input
, , , , , , , ,

, , , , , , , ,

, , , , , ,

bit and flag tests, etc. (see the IOI for a complete list)

Echo OP _ (with TAM set),

e.g.   FIX _

2 User

input

Lettered flag

(i.e. - , ,

 - , , -  )

or system flag or

variable defined,53

if applicable

Flag number or

number of bit(s) or

decimals (see p. 63

for valid ranges) or

any other number

applicable

opens indirect

addressing where

applicable (see p.

64 and the IOI)

 Echo OP x

e.g.

OP nn

e.g.   SCI 12
OP → _

 Sets flag 110.

3 User

input

Register number

(range as specified

on p. 63)

Stack or

lettered register

or variable defined 49

 Echo OP → nn

e.g.

  DSTACK →12

OP → x

e.g.

FIX →A

 Shows as many stack

levels as specified in

R12 (see p. 64).

Sets fix point format

with # of decimals

stored in A.

53 Where applicable, it is recommended calling system flags via  SYS.FL  or their short-

cuts, and variables already defined via  VAR, instead of keying them in using .

WP 43S U v0.16 --- Page 63 of 328

 Valid number range54

Registers 0 … 99 for direct addressing of
global numbered registers

upper limits
depend on

current
allocation

 .0 … .98 for direct addressing of
local registers

 0 … 210 for indirect addressing
(≤111 without local registers)

Flags 0 … 99 for direct addressing of
global numbered user flags

 .0 … .15 for direct addressing of
local user flags if allocated

 0 … 127 for indirect addressing
(≤111 without local user
flags)

Decimals 0 … 15
(entering any digit except 0 or 1 will terminate
waiting for a further digit and close input)

Integer bases 2 … 16

Bit numbers 1 … 64

Word size 1 … 64 bits

Please see the ReM for all other parameters and their valid ranges, as

well as for a list of all system flags.

54 Specifying low numbers (and numeric addresses), you may key in e.g.

instead of .

Remember some registers and user flags may also be addressed by single letters.

Variables and system flags are generally called by their names.

Page 64 of 328 -- WP 43S U v0.16

Indirect Addressing – Working with Pointers

Parameters for many functions can be specified using indirect

addressing. I.e. rather than entering the parameter itself as part of the

instruction, you may supply the register or variable pointing to the actual

parameter.

Example:

Assume x = 12.3, j = 45.67, and r12 = 8.9. Then…

 will return 8.9 since (at the time this

command is executed) J is containing 12.3 and

thus is pointing to R12. And now…

  SF will set flag 8, while...

  FIX will display 8.900 000 00 showing 8 decimals.

Since the content of the register specified is used as a pointer to the

register wherefrom we want to read (or whereto we want to write), this

method is called indirect addressing. Each and every register of your

WP 43S can be used for indirect addressing.55 And each and every

register can be accessed this way (also the stack). Indirect addressing

is most beneficial in programs when the parameter for a function is

calculated (see Section 3, also for examples).

Store and Recall Arithmetic

As mentioned in footnote 51 on p. 61, arithmetic (and two conditional

picks, i.e. max or min) can be performed upon the contents of registers

or variables by pressing or followed by the respective operator

key (, , , , , or) trailed in turn by the address or name of

the storage space.

55 Several vintage calculators, on the opposite, featured just a single dedicated register
for indirect addressing if at all. See the HP-34C or HP-15C, for instance.

WP 43S U v0.16 --- Page 65 of 328

Example for store arithmetic:

123.4

 closes input and subtracts 123.4 from k. The difference is

stored in K. The stack and L remain unchanged here.

The same result could be achieved by the keystroke sequence

123.4

 but that is far clumsier (replacing one step by five) and
would cost one stack register in addition.

The general rule for store arithmetic reads:

new content of the
register or variable

specified
=

old content of this
register or variable

{

 +
−
×
/

𝑚𝑎𝑥
𝑚𝑖𝑛}

 x

Example (from the HP-67 OHPG):

During harvest, farmer Flem Snopes trucks

tomatoes to the cannery for three days. On Monday

and Tuesday he hauls loads of 25 tons, 27 tons, 19

tons, and 23 tons, for which the cannery pays him

$55 per ton. On Wednesday the price rises to

$57.50 per ton, and Snopes ships loads of 26 tons
and 28 tons. If the cannery deducts 2% of the price

on Monday and Tuesday because of blight on the

tomatoes, and 3% of the price on Wednesday, what

is Snopes' total net income?

Solution:

  FIX

25 27 Total of Monday’s & Tuesday’s

19 23 94.00 tonnage

55 5 170.00 Gross amount for these days

 5 170.00 Take J for accounting

Page 66 of 328 -- WP 43S U v0.16

2   % 103.40 Deduction for these days

 103.40 Subtracted from the total in J

26 28 54.00 Wednesday’s tonnage

57.5 3 105.00 Gross amount for Wednesday

 3 105.00 Added to the total in J

3   % 93.15 Deduction for Wednesday

 103.40 Subtracted from the total in J

 8078.45 Snopes’ total net income from
his tomatoes

Example for recall arithmetic:

78.91

 closes numeric input and divides 78.91 by r23. This

operation is performed in X alone. L is loaded with

78.91. The rest of the stack and R23 stay unchanged.

Alternatively, the same result could be achieved by the sequence

78.91

 but that would replace one step by two and also cost

one additional stack register. And L would differ here.

General rule for recall arithmetic:

new x = old x

{

 +
−
×
/

𝑚𝑎𝑥
𝑚𝑖𝑛}

content of the

register or variable
specified

Stack-wise, both store and recall arithmetic work like monadic functions.

Note these functions may operate on each and every register or variable

provided, also on the stack and even on L. Indirect addressing may be

used as well. See pp. 218ff for more examples and advantages and the

IOI for further details.

Although these techniques have been more important in times when

program memory was very limited, they may be still beneficial today.

WP 43S U v0.16 --- Page 67 of 328

SECTION 2: DEALING WITH VARIOUS OBJECTS
AND DATA TYPES

Some Display Basics

The screen is your window to your WP 43S – there you see what is going

on and what the current results are. Going top down, you find ...

• the status bar,

• space for up to four

rows of standard

numeric output

(and more – see

points 1 to 4 be-

low), and

• the menu section

displaying up to

three rows of soft-

keys (cf. pp. 27f).

The numeric rows deserve some additional explanations first – the status

bar will be covered further below:

1. The left side of the top (T) numeric row is also used for output of

VIEW (cf. p. 59) and SHOW (see the IOI) and for echoing command

input until completed, i.e. until all the required command parameters

are entered and the command can be executed. Prefixes (like

and  ) will be displayed (using   ⒡ and   ⒢ ) until they are resolved

(if, however, you pressed or erroneously, recovery is as easy

as = = NOP). And you may edit any pending operation

character by character using or cancel it by (cf. p. 59).

2. The left side of the Z numeric row is used for displaying any error

message or the output of a binary test, if applicable. Then, pending

command input will stay in the top numeric row.

Page 68 of 328 -- WP 43S U v0.16

3. The left side of the Y numeric row is used for displaying additional

(temporary) information heading y, if applicable.

4. The left side of the bottom (X) numeric row is used for...

a. echoing numeric or alphanumeric input (see pp. 25 and 193ff).

Note it can take up to 42 digits, a sign, and a radix mark in startup

default numeric format or some 40 alphanumeric characters. You

may edit pending input character by character using . Numeric

input will be checked and interpreted as soon as it is completed

and closed, according to the calculator settings at closure time.

b. showing additional (temporary) information heading x, if applicable.

In run mode, any information exceeding the plain contents of the stack

registers X, Y, and Z is temporary information.56 It will vanish with the

next keystroke you enter: pressing or will just clear messages,

returning (for DSTACK > 2) to the pure display of x, y, and z – any other

key will be executed in addition, if applicable.

Supported Data Types

You learned how your WP 43S calculates with real numbers in Sect. 1.

It can do more for you: it can deal with integers, fractions, and complex

numbers as well as angles, times, and dates in various formats.57

But how shall your WP 43S learn about the particular meaning of your

input? Some examples will explain (showing X in startup default

format):

56 If you choose less than three stack registers to be displayed (see DSTACK), temporary
information will nevertheless show up at the positions mentioned above, whenever
applicable. And operations resulting in multiple output rows will display their entire
output independent of the DSTACK setting always.

57 Furthermore, it can also deal with real and complex vectors and matrices as well as
with alphanumeric character strings, – these data types are covered comprehensively
in dedicated chapters further below in this section.

All data types provided are listed in the ReM.

WP 43S U v0.16 --- Page 69 of 328

Input Display Meaning

12345.678901 12 345.678 901
Real numbers, see

pp. 80ff
12 345 12.×⒑³⁴⁵

123.45678901 123°45'67.89"
Sexagesimal angle;

see pp. 125ff also for

other angular formats

1234567890 1 234 567 890

Integers of various

bases, see pp. 135ff
1234567890 12 34 56 78 90⑯

10100110111 101 0011 0111②

901.23.4567 901 ²³/₄ ₅₆₇ > Fraction, see pp. 151ff

12.3 −4.56

12.3  -  i  × 4.56
Complex numbers in

rectangular or polar

notation; mantissa plus

exponent format is set-

table as well; see pp.

154ff
12.3  ∡   - 4.56°

1.2345678901 1:23:45.678 901
Sexagesimal time, see

pp. 189f

1.0203045 0001-02-03 Date, see pp. 191f

Some of these inputs may be interpreted and displayed differently

depending on particular mode settings. Startup default displays are

printed in light blue, further widespread formats in grey fields overleaf.

Page 70 of 328 -- WP 43S U v0.16

 DECIM. set DECIM. clear

GAP 4 1 2345.6789 01 1 2345,6789 01

GAP 3 12 345.678 901 12 345,678 901

GAP 2

GAP 1

GAP 0 12345.678901 12345,678901

MULT× set 12.×⒑³⁴⁵ 12,×⒑³⁴⁵

clear 12.·⒑³⁴⁵ 12,·⒑³⁴⁵

 123°45'67.89" 123°45'67,89"

MULT×, ¬ CPXj 12.3  -  i  × 4.56 12,3  -  i  × 4,56

¬ MULT×, ¬ CPXj 12.3  -  i  · 4.56 12,3  -  i  · 4,56

MULT×, CPXj 12.3  -  j  × 4.56 12,3  -  j  × 4,56

¬ MULT×, CPXj 12.3  -  j  · 4.56 12,3  -  j  · 4,56

 12.3  ∡-   4.56° 12,3  ∡-  4,56°

 1:23:45.678 901 1:23:45,678 901

 1:23:45.678 901 a.m. 1:23:45,678 901 a.m.

 Y.MD D.MY M.DY

 0001-02-03 01.02.0304 01/02/0304

Obviously, your WP 43S allows for interpreting and displaying your input

very flexibly. And it allows you immediately recognizing the various data

types and format settings looking at the screen.

Now, how can you use and combine data of various types in

calculations? The matrix below lists in its 1st column ten data types your

WP 43S U v0.16 --- Page 71 of 328

WP 43S supports; and it shows what will happen when you combine

various objects: an object of the DT as indicated in one of the lean

columns at right (y) plus or minus an object of the DT in column 1 (x) will

return an object of the DT at the intersection (thus, wherever a DT

number is printed at the intersection, the corresponding combination is

legal for addition or subtraction).

 DT and meaning
y

x 1 2 3 4 5 6 7 8 9 10

1 ℤ Long integer 1 2 3 4 5 6 7 - - 1

2 ℝ Real number 2 2 3 4 5 6 7 - - 2

3 ℂ Complex number 3 3 3 - - - 7 - - 3

4 Angle (in various formats) 58 4 4 - 4 - - 7 - - 4

5 Time interval (in H.MS) 5 5 - - 5 - 7 - - -

6 Date (in various formats) 6 6 - - - 159 7 - - -

7 Alpha string 60 - - - - - - 7 - - -

8 Real matrix or vector - - - - - - 7 8 9 -

9 Complex matrix or vector - - - - - - 7 9 9 -

10 Short integer 1 2 3 4 - - 7 - - 10 61

Example:

A complex number (DT 3) plus or minus a real number (DT 2) will result in

a complex number.

58 Angular output is tagged according to the current angular display mode chosen.

59 A date minus a date returns an integer number of days (there are no other arithmetic
operations on two dates). And a date plus a real number takes the integer part of that
number and adds the respective number of days to said date.

60 In additive operations on alpha strings, such a string must be present in Y at the begin-

ning. Adding corresponds to appending x (converted to a string according to the

display format set at execution time, if applicable) to string y. Adding a matrix appends

its abbreviation (e.g.   [3×4 ℂ matrix], see the chapters about vectors and matrices
below). Subtractions from strings are not allowed.

61 If short integers of different bases are combined by an arithmetic operation, output will

be a short integer of the base given in Y.

Page 72 of 328 -- WP 43S U v0.16

The following matrix shows the resulting data types of products and

ratios in the same way (note that dates and alpha strings cannot be

multiplied or divided):

 An object y of DT …

 1 2 3 4 5 8 9 10

… times an object x of the DT below
returns a product of the DT printed at
the intersection.

1 ℤ Long integer 1

2 ℝ Real number 2 2

3 ℂ Complex number 3 3 3

4 Angle 4 4 - -

5 Time interval 5 5 - - -

8 Real matrix or vector 8 8 9 - - 8

9 Complex matrix or vector 9 9 9 - - 9 9

10 Short integer 1 2 3 4 5 8 9 1061

… divided by an object x of the DT
below returns a ratio of the DT
printed at the intersection.

1 ℤ Long integer 62 1/2 2 3 4 5 8 9 10

2 ℝ Real number 2 2 3 4 5 8 9 2

3 ℂ Complex number 3 3 3 - - 9 9 3

4 Angle - - - 2 - - - -

5 Time interval - - - - 2 - - -

8 Real matrix 63 8 8 9 - - 8 9 8

9 Complex matrix 63 9 9 9 - - 9 9 9

10 Short integer 1 2 3 4 5 8 9 1061

62 For example, 15 / 3 returns 5 while 14 / 5 returns 2.8.

63 The matrix x must be invertible. Dividing by x is equivalent to multiplying times x−1.
(see the chapter Vectors and Matrices: Calculating below).

WP 43S U v0.16 --- Page 73 of 328

This is for powers:

 Any number y > 0 of DT …

 1 2 10

… raised to a power of x > 0 of the DT below
returns a result of the DT printed at the

intersection.

1 ℤ Long integer 1 2 10

2 ℝ Real number 1 / 2 64 2 10 / 2

10 Short integer 1 2 10  61

… raised to a power of x < 0 … returns ...

1 ℤ Long integer and 10 short integer 2

2 ℝ Real number 2

 Any number y < 0 of DT …

 1 2 10

… raised to a power of x > 0 of … returns …

1 ℤ Long integer 1 2 10

2 ℝ Real number
FP(x) = 0 1 2 10

else 3 3 3

10 Short integer 1 2 10  61

… raised to a power of x < 0 … returns ...

1 ℤ Long integer and 10 short integer 2

2 ℝ Real number
FP(x) = 0 2

else 3

Any numbers of data type 1, 2, or 10 raised to complex powers will return
complex numbers, as well as any complex numbers raised to arbitrary
powers. – Other powers – involving data types 4, 5, 6, 8, or 9 – are not
supported.

64 For example, 16^(1/4) = 2 but 16^(1/3) = 2.591 8… and 16^(1/2) = 4. Compare the

matrix for divisions.

Page 74 of 328 -- WP 43S U v0.16

Furthermore, this is for integer divisions and remainders:

 An object y of data type …

 1 2 10

… IDIVR-divided by an object x of the data type
below returns an integer ratio in X and a
remainder in Y of the data types printed at the
intersection.

1 ℤ Long integer 1; 1 1; 2 1; 10

2 ℝ Real number 1; 2 1; 2 1; 2

10 Short integer 1; 1 1; 2 10; 1061

Additionally, explicit type conversions are available where necessary:

An object x of data type …

1 2 4

angle

5

time

6

date

10
… will be converted in an

object x of the data type
below by the command
printed at the intersection.

- IP - - - - 1 ℤ Long integer

→REAL (press  ) 2 ℝ Real number

 ... - - - 4 Angle

→INT

(press  )
- - - →INT 10

Short integer (option-

ally of another base)

Recognizing Calculator Settings and Status

As seen above, radix marks and gap settings are recognized in the

numeric display immediately; so are date and time display modes

(Y.MD / D.MY / M.DY and CLK24 / CLK12) in the time string top left

within the status bar. Also program-entry mode (PEM) is easily

recognized (see pp. 202ff).

WP 43S U v0.16 --- Page 75 of 328

Further modes and system states as well as many settings for specific

data types are indicated in the status bar: The following specific

characters may appear trailing the date and time string there, listed from

left to right in various groups – indicators shown in startup default are

printed in a light blue field again: 65

Indicator Set by Deleted by Explanation, remarks

ℂ CPXRES ¬ CPXRES
With CPXRES set, complex results
of real number calculations are

allowed, like √−1 . Else a domain
error would be thrown in such a
case (see the ReM, App. C).

ℝ ¬ CPXRES CPXRES

∟ ¬ POLAR POLAR Rectangular or polar notation
chosen for displaying complex
numbers. ⊙ POLAR ¬ POLAR

∡° DEG

setting any
other ADM

Current angular display mode

(ADM) setting: decimal degrees,

grades or gon, radians, multiples

of π, and sexagesimal degrees.

∡⒢ GRAD

∡⒭ RAD

∡π MULπ

∡”

/max
DENANY

Can only be
modified by
DENMAX

Fraction display settings. The
current value of the maximum
displayable denominator is shown
behind the fraction bar (startup
default and absolute maximum is

9999, displayed as   /max).

With DENANY clear, DENFIX

toggles a specific character trailing
DENMAX in the status bar.

or
/2345

/2345f
DENFIX &

¬ DENANY

¬ DENFIX,

DENANY

/2345×
or

/2345·

¬ DENFIX &

¬ DENANY

DENFIX,

DENANY

65 The symbol ¬ means “not”, i.e. the trailing system flag cleared, while “&” denotes a

logical “and” and a comma a logical “or” in this table.

Page 76 of 328 -- WP 43S U v0.16

Indicator Set by Deleted by Explanation, remarks

64∶1 1COMPL

setting any
other integer
sign mode
(ISM)

Settings for short integers. First
two digits tell the word size, the
character after the colon the ISM.

Startup default is 64 bits (the
maximum) and 2’s complement.
CARRY and OVERFLow may trail the
ISM but are only lit if set.

64∶2 2COMPL

64∶u UNSIGN

64∶s SIGNMT

A
, ALPHA;

 if   α is set

pressing

 in AIM
unless in a
menu,
¬ ALPHA

Alpha input mode (AIM) is set.

Upper (  A) or lower (  α) case letters

can be entered now.
α if   A is set

program
waiting for
user input

program
running

Will also be lit if a program is stop-

ped by or – then      will

be cleared by next keystroke.

⌛ see remarks
WP 43S
idling

Flashes while a program is running;

steady while a function is executing.

top of pro-
gram memory

else Program pointer at step 0000.

⌚ timer running
in background

idle timer
See the TIMER (or stopwatch)
application on pp. 263f.

↕
serial I/O in
progress idle commu-

nication line
See Serial Input and Output of
Data and Programs on pp. 233f.

⎙
data are being
sent to printer

 Toggles user mode (see pp. 292f).

 low battery
battery volt-
age > 2.5 V

A low battery will reduce processor
speed automatically. Your WP 43S will
shut off when voltage drops < 2.0 V.

WP 43S U v0.16 --- Page 77 of 328

The startup default configuration is indicated in a status bar like this:

On the other hand, choosing 12h time format (or M.DY), setting CPXRES,

FRACT, DENFIX and a four-digit DENMAX, selecting unsigned short

integers, setting CARRY and OVERFLow, having a program waiting for

input with AIM set, timer and printer running in background, user mode

set, and a low battery would be reflected in the following status bar:

Note also ⌛ and ↕ might show up at right end of the status bar.

Getting Special Information: RBR, STATUS, VERS, etc.

Some commands and tools use the display in a special way. These

operations are listed below:

1. The Matrix Editor is described comprehensively on pp. 163ff.

2. allows for browsing the contents of all registers currently

allocated (see pp. 261ff).

3. (or  ) returns free space available, memory

currently used, user and system flags set (see pp. 263f).

4. calls the timer or stopwatch application (see pp. 264ff).

5. FBR browses all the characters defined in the fonts provided.

Further commands throw temporary information as defined on p. 68:

1. ERR and MSG display the corresponding error message. See the

IOI and App. C of the ReM for more.

2. , , , and return results headed by text.

3. Commands returning two or three values at once (like , ,

, , , , , , , , and

 ) tag their output (see e.g. pp. 20 and 109f).

Page 78 of 328 -- WP 43S U v0.16

4. VERS generates a string showing version and build of the firmware

running on your WP 43S (WHO works in a similar way):

WP  43S v0.1 b0123 by Pauli, Walter & Martin

A few far-reaching commands (like CLALL, CLPALL, or RESET) ask you

for confirmation before executing. Answer either es by pressing

(or or) or o by pressing (or or); any other

input will be ignored. Note that such an action explicitly confirmed cannot

be undone by ↶.

Localising Numeric Output

You can summon display preferences for reals, times, and dates all at

once according to your region's customs and practices

using dedicated commands (all contained in DISP).

In the table starting overleaf, …

• radix mark denotes the decimal separator;

• GAP states the digit group interval – after n digits a narrow blank is

displayed (cf. examples on p. 70); this follows ISO 80000-1.66

• JG states the year the Gregorian calendar was introduced in the

particular region, typically replacing the Julian calendar (or national

calendars in East Asia); 67

• background colors are chosen as on pp. 69f.

Most people using radix commas employ multiplication dots while those

using radix points need a cross for multiplication to avoid misunder-

66 As far as we know, the WP 43S is the first pocket calculator displaying numbers the
way internationally agreed on. Previous calculators featuring limited displays had to
use e.g. points or commas as crutches since they could not display narrow blanks .

67 Officially, the Gregorian calendar became effective at 1582-10-15 in the catholic world.
Many states and territories switched later for various reasons (check the dates in
Wikipedia). You can enter the date applicable at your location using J/G (see the IOI
for this command). Note there are still other calendars widespread, e.g. in the Muslim
world. See also the chapter Dates below.

WP 43S U v0.16 --- Page 79 of 328

standings. This latter convention causes further ambiguities in vector

multiplication (see pp. 174ff).

Com-
mand GAP

Radix

mark
68

 Time Date
69

 JG Remarks

SETCHN 4 70 point 24h Y.MD 1949

SETEUR 3 comma 24h D.MY 1582 Also applies to South America
(and – with other JGs – to Indo-

nesia, South Africa,  the area of
the former Soviet Union, and
Vietnam ).

SETIND 3 71 point 24h D.MY 1752 Also applies to India, Pakistan,
Nepal, Bhutan, Myanmar,
Bangladesh, and Sri Lanka.

SETJPN 3 point 24h Y.MD 1873

SETUK 3 point 12h D.MY 1752 Also applies to Australia and

New Zealand.
72

SETUSA 3 point 12h M.DY 1752

68 See https://en.wikipedia.org/wiki/Decimal_separator for a world map of radix mark use.
Looks like an even score in this matter. Thus, the international standard ISO 80000-1
allows either a decimal point or a comma as radix mark and requires a narrow blank as
unambiguous separator of digit groups (it explicitly states that points or commas shall
not be used as group separators to avoid ambiguity).

69 See https://en.wikipedia.org/wiki/Date_format_by_country also for a world map of date
formats used. The international standard ISO 8601 states Y.MD for dates and 24h for
times. This combination is common in East Asia (see SETCHN and SETJPN).

70 Chinese counting and traditional mathematics work with powers of 10 000 while
(originally Indian, then Persian, then) European counting and mathematics work with

powers of 1000. Thus, Chinese count using intervals 一 (= 1), 十 (= 10), 百 (= 100),

千 (= 1000), 万 (= 10 000), 十万 (= 10 × 10 000), 百万 (= 100 × 10 000), 千万 (=

1000 × 10 000), 亿 (= 108), 十亿 (= 109), 百亿 (= 1010), 千亿 (= 1011), etc. The

command GAP 4 takes care of this notation while GAP 3 formats the European way.

71 Proper South Asian (a.k.a. Indian) formatting would require separators every two digits

for numbers over thousand. Think of lakh = 105 and crore = 107. Actually, an amount

of 50 cr. Rupees (=5×108) reads 50,00,00,000 Rs. in Indian newspapers.

72 24h is taking over in the UK, so SETIND will work there then as well.

https://en.wikipedia.org/wiki/Decimal_separator
https://en.wikipedia.org/wiki/Date_format_by_country

Page 80 of 328 -- WP 43S U v0.16

Note that the following settings and formats can be stored collectively at

one location: entire decimal display format (see next chapter), angular

display mode, date and time display settings, parameters of integer and

fraction display modes, curve fit model chosen, rounding mode, and the

status of all system flags. STOCFG stores this configuration in the

register or variable you specify.73 RCLCFG recalls such information and

will set (or reset) your WP 43S accordingly.

Real Numbers: Changing the Display Format

As mentioned in Section 1, the numbers you calculate with (decimal

numbers or measured values) are reals frequently. Any number you

enter containing one and/or an is interpreted by your WP 43S as

a real number unless there is additional information given (cf. pp. 68f).

The majority of functions provided by your WP 43S operate on reals.

As soon as input of a real number is closed, its mantissa will be displayed

right adjusted as far as possible (cf. p. 25). Startup default format (ALL 0)

shows all digits of the number if less than 16 are needed to do so. Your

WP 43S will automatically turn to mantissa plus exponent format (cf. pp.

25f) if more than 15 digits are needed.74

There are two flavors of the latter format: SCI and ENG. SCI is called

scientific notation. ENG looks almost like SCI but the exponent will

always be a multiple of three, corresponding to the SI unit prefixes – thus

it is called the ENGineer’s notation (see examples below).

You can choose whether ALL shall turn either to SCI or to ENG. And

you can define the switch point from ALL to SCI or ENG by specifying a

positive parameter for ALL (telling up to how many decimal zeros you

allow before the output shall be switched):

73 Actually, it stores even more – see Section 6.

74 No matter what display format or notation you select, these rounding options affect the
display only. Your WP 43S continues using its full precision (typically 34 digits for real
numbers) internally always; this can be displayed by SHOW until next keystroke.

WP 43S U v0.16 --- Page 81 of 328

Example (beginning with startup default settings):

Input: Display:

–700 -700  

 -1.428 571 428 571 429×⒑⁻³

   ALL -0.001 428 571 428 571

10 -1.428 571 428 571 429×⒑⁻⁴

 SF  SYS.FL ALLENG -142.857 142 857 142 9×⒑⁻⁶

  ALL -0.000 142 857 142 857

10 -14.285 714 285 714 29×⒑⁻⁶

CF  SYS.FL ALLENG -1.428 571 428 571 429×⒑⁻⁵

There is one more format provided: FIX. With FIX, the radix mark is set

at a fixed position on the screen and stays there (a.k.a. fixed point

notation); it floats in the other formats – see the examples below.75

You can specify the number of decimals you want to see with SCI, FIX,

or ENG (note the parameter of FIX and SCI specifies the number of

decimals to be shown while the parameter of ENG specifies the total

number of digits displayed within the mantissa minus one):

Input

 Format Startup default format

(ALL 00, SCIOVR)

FIX 5 SCI 5

107.12345678

107.123 456 78 107.123 46 1.071 23×⒑²

 2 1.867 004 725 311 852×⒑⁻² 0.018 67 1.867 00×⒑⁻²

See more examples of displays varying according to popular choices for

GAP, decimal radix mark, and multiplication symbol (cf. the examples

shown on p. 70): 

75 Deviating from previous calculators, output of ×⒑⁰  is suppressed on your WP 43S.

Page 82 of 328 -- WP 43S U v0.16

Input
 Format FIX 3 ENG 6

89012345678.9

-89 012 345 678.900

-89 012 345 678,900

-890 1234 5678.900

-89.012 35×⒑⁹

-89,012 35·⒑⁹

-89.0123 5×⒑⁹

Nearly all functions for real number display format control

are found in DISP: FIX, SCI, ENG, ALL, GAP, rounding,

and more. Please see the ReM.

Real Numbers: Squares and Cubes and their Roots

You find and on the keyboard of your WP 43S,

while       x³    and       ∛Ϳ       are in EXP (cf. p. 27). The following

example using these four functions contains some of the

most popular problems of antique mathematics:

WP 43S U v0.16 --- Page 83 of 328

What size square has the same area as a circle whose radius is 3

arbitrary units? And what size cube has the same volume as a sphere

whose radius is 3 again? And what can we tell about their surface areas?

Solutions:

The area of a circle is 𝐴𝐶 = 𝜋𝑟
2. The area of a square is 𝐴𝑠𝑞 = 𝑎

2. The

volume of a sphere is 𝑉𝑆 =
4

3
𝜋𝑟3, while its surface is 𝐴𝑆 = 4𝜋𝑟

2. And the

volume of a cube is 𝑉𝑐𝑢 = 𝑎
3, while its surface is 𝐴𝑐𝑢 = 6𝑎

2.

Thus,

   FIX

3 returns 28.274 for the area of the circle. Then

 returns 5.317 for the edge length of the square.

Furthermore,

3    x³ 

4 3 returns 113.097, the volume of the sphere. Then

 ∛Ϳ returns  4.836 for the edge length of the cube
with same volume. Thus,

 6 returns 140.320 for the surface of the cube.

Finally,

3 4 returns 113.097 for the surface of the sphere.

Actually, there was no necessity calculating this last surface here – why?

Here a little winter sports problem of our time:

Example:

Chuck Carver swings down a ski run with moderate 30 km/h. The

curvature of his skis allows for turns with 12 m radius. He claims carving

this way without any sliding on an almost flat part of the run. If true then

how many g he had to withstand there? Can we believe his story?

Solution:

The centrifugal force is 𝐹𝑐 = 𝑟𝜔
2𝑚 = 2𝜋

𝑣2

𝑟
𝑚, thus the corresponding

acceleration is 𝑎𝑐 = 2𝜋
𝑣2

𝑟⁄ . In consequence, the total acceleration

Page 84 of 328 -- WP 43S U v0.16

acting along Chuck’s body axis is 𝑎𝑇 = √𝑔2 + 𝑎𝑐
2 . Measured in

multiples of g, this means
𝑎𝑇

𝑔⁄ = √1 + (
𝑎𝑐

𝑔⁄)
2
 .

   FIX

30 3 30 000.0

3600 8.3 Chuck’s speed in m/s

 69.4

12 2 36.4

   g 3.7

 1 3.8 meaning 3.8 g.

Even if this might be possible to stand shortly for a young sportsman like

Chuck, the snow under him can hardly bear the corresponding forces –

it will break so Chuck will inevitably slide in a greater radius leading to

less acceleration.

Another problem, found in a calculator manual of 1976:

Example:

Finding himself floating dangerously close to the jagged peaks of the

Canadian Rockies, intrepid balloonist Chauncy Donn frantically cranks

open the helium valve on his spherical

balloon. Gas from the helium tank increases

the balloon's radius from 7.5 meters to 8.25

meters. 76 Donn clears the mountain tops

safely. How much did the volume of the

balloon increase?

Solution:

Since the volume of a sphere is 𝑉 =
4

3
𝜋𝑟3,

the difference of two such volumes is ∆𝑉 =
4

3
𝜋(𝑟2

3 − 𝑟1
3). One decimal shall do.

76 In the HP-21 Owner’s Handbook, the balloonist Ike Daedalus had to increase the

radius from 25 to 27 feet in 1975. Sometimes some progress was observable.

WP 43S U v0.16 --- Page 85 of 328

8.25    x³  561.5

7.5    x³  139.6

 438.7

43 returns 584.9 m3 for the volume increase.

Real Numbers: Percent Change

 calculates the percentage of change from y to x.

Example (continued from above):

This is a volume increase of how many percent?

Solution:

7.5   x³  421.9

8.25    x³  561.5

 returns 33.1 % increase.

Another example:

How about designing an almost optimum bicycle gearing for hilly areas? Feel

free to choose sprockets and gear clusters to your liking.

Solution:

As long as drag may be neglected, an optimum gearing will show equal velocity

ratios between subsequent gears (or uniform increase of distances per crank

revolution). There are several ways you can reach this, depending on the

number of sprockets chosen at front and rear.

One inexpensive way is taking three front sprockets of 48, 36, and 24 teeth and

getting a standard seven-gear cluster featuring 13, 15, 17, 20, 23, 26, and 30

teeth at the rear. This will result in the following distances travelled per crank

revolution (d/rc in meter) for a 26” MTB:

Gear 1 2 3 4 5 6 7 8 9 10 11 12 

Front 24 36 48

Rear 30 26 23 20 26 23 20 23 20 17 15 13

Page 86 of 328 -- WP 43S U v0.16

d / rc 1.66 1.92 2.17 2.49 2.87 3.25 3.73 4.33 4.98 5.86 6.64 7.66

 - 15.7 13.0 15.3 15.3 13.2 14.8 16.1 15.0 17.7 13.3 15.4

Assuming you pedal with 60 rpm constantly, such a bicycle will cover velocities

between 6 and 28 km/h (or up to 37 km/h for 80 rpm). Using also some

statistical functions provided on your WP 43S (i.e. , , and explained on

pp. 99ff), you will determine a mean speed increase per gear step of

(15.0 ± 1,4)%, being quite uniform and convenient for town and country.77 Feel

free to try other configurations.

Real Numbers: Logarithms and Powers (a.k.a. Antilogs)

Your WP 43S features two logarithmic functions on its keyboard and two

more in EXP (cf. p. 27):

 calculates the natural logarithm of x,

i.e. the logarithm of x to the base e

(being Euler’s constant, see CONST ).

Thus, inverts .

 returns the (common) decadic

logarithm, i.e. the logarithm of x to the base 10. inverts .78

 calculates the binary logarithm, i.e. the logarithm of x to the

base 2. inverts x.

77 Note that you will get just 12 out of 3×7 theoretically possible gears this way. This is
due to gear overlaps; and you will want to avoid extreme chain skew for sake of chain
life. On the other hand, if you plan for a recumbent bike, the latter restriction might not
apply anymore. Then you may think about a combination of three sprockets with a
seven-gear cluster leading to 17 different, usable gears following the so-called “half-
step-and-granny” scheme; speed increase in half-step range will be 9% per gear step;
this gearing will cover velocities from 5 to over 40 km/h.

For detailed specifications as well as pictures, graphics, diagrams, tables, and further
information about gearing bicycles yourself, please order “Die Fahrradschaltung” (144
pages written in German) written by the same author – just contact me.

78 You may be used to a calculator label LOG for the decadic logarithm; though this is a
mathematically ambiguous notation or worse, so we avoided it (cf. ISO 80000, 2-12.5
and 2-12.6).

WP 43S U v0.16 --- Page 87 of 328

x is the most general of these four functions: it returns the

logarithm of y to the base x. x can be used to invert .

The operating manual of the world’s very first electronic pocket calculator

featuring transcendental functions, the HP-35 (cf. p. 53), presented just

a single example concerning this then new class of pocket-able

functions:

Example:

Suppose you wish to use an ordinary barometer as an altimeter. After

measuring the sea level pressure (30 inches of mercury) you climb until

the barometer indicates 9.4 inches of mercury. How high are you?

Although the exact relationship of pressure and altitude is a function of

many factors, a reasonable approximation is given by:79

𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒

[𝑓𝑒𝑒𝑡]
= 25 000 × 𝑙𝑛(

30
𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

[𝑖𝑛𝑐ℎ𝑒𝑠 𝑜𝑓 𝐻𝑔]⁄
)

Solution:

  FIX should suffice here.

30 9.4

25 3 returns 29 012. .

[We suspect that you may be on Mt. Everest (29 028 feet).]

Note the concise and factual style of this text. The HP-35 was a calcula-

tor made by engineers for engineers, and the manual was alike. – This

example was reprinted in the HP-45 OH. Thereafter, it underwent slight

modifications:

Example (from the HP-21 OH):

Having lost most of his equipment in a blinding snowstorm, ace explorer

Buford Eugobanks is using an ordinary barometer as an altimeter. After

measuring the sea level pressure (30 inches of mercury) he climbs until

79 Emphases in these quoted examples were added by me.

Page 88 of 328 -- WP 43S U v0.16

the barometer indicates 9.4 inches of mercury. Although the exact

relationship of pressure and altitude is a function of many factors,

Eugobanks knows that an approximation is given by the formula …

This problem remained in subsequent calculator manuals though the

explorers changed for unknown reason. A picture of the scenery was

added in 1976, and not every snowstorm was worth mentioning

anymore. Then, however, a switch of units reached the Himalayas – and

also the weather and the methods changed:

Example (in Solving Problems with Your Hewlett-Packard Calculator of

1978):

With most of his equipment lost in an avalanche, mountaineer Wallace

Quagmire must use an ordinary barometer as an altimeter. Knowing the

pressure at sea level is 760 mm of mercury,

Quagmire continues his ascent until the

barometer indicates 238 mm of mercury.

Although the exact relationship of pressure

and altitude is a function of many factors,

Quagmire knows that an approximation is

given by the formula:

𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒

[m]
= 7 620 × 𝑙𝑛(

760
𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

[𝑚𝑚 𝑜𝑓 𝐻𝑔]⁄
)

Where is Wallace Quagmire?

Solution:

760 238

 7620 returns 8 847.

Quagmire appears to be near the summit of Mt. Everest (8 848 m).

WP 43S U v0.16 --- Page 89 of 328

And it seems neither he nor his barometer returned from this expedition

since this example did neither show up in the HP-41C OHPG nor later

anymore. Perhaps there was something wrong with the recalibration of

his instrument? 80

By the way, the altitude approximation

formula for standard SI units reads:

𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒

[m]
= 7 620

× 𝑙𝑛(
1 013

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
[mbar]⁄

)

= 7 620

× 𝑙𝑛(
101 300

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
[Pa]⁄

)

Beyond the barometric scale, there are more logarithmic scales used in

science and engineering, e.g.

• in astronomy for assessing the brightness of stars or

• in chemistry for the power of acids (pH); most popular may be

• the decibel (dB) in acoustics and electronics (see U→, pp. 276f) and

• the so-called upwardly unlimited Richter scale for magnitudes of

earthquakes.81

Example:

One of the strongest earthquakes observed recently was the one causing

the devastating tsunami in the Indian Ocean (near Indonesia) in

December 2004. It had a magnitude of 9.1. Another one near Japan in

March 2011 – with a magnitude of 9.0 – led to another tsunami and the

80 Maybe this is the reason why the last three countries on this planet do not switch to SI
– do they fear the recalibrations inevitably necessary for their measuring equipment?

81 This name is still popular in the news although not quite true anymore. The actual
moment magnitude scale for earthquakes differs but is logarithmic as well.

Page 90 of 328 -- WP 43S U v0.16

‘Fukushima nuclear accident ’. Compare with the

‘great San Francisco earthquake’ of 1906 with a

magnitude of 7.9.

Solution:

The formula for comparing the energies released

in two different earthquakes (with their

magnitudes known) reads

𝐸2
𝐸1
= 101.5(𝑀2−𝑀1)

Again, no decimals are needed here – we can continue with the display

settings as they are:

9.1 7.9

1.5 returns 63. and

9 7.9

1.5 returns 45. .

So the energy released in said Japanese earthquake in 2011 was 45

times greater than the so-called ‘great San Francisco earthquake’. And

said earthquake in the Indian Ocean was even 63 times more intense.

Taking into account that published magnitudes of earthquakes never

show more than one decimal, we did not lose anything real setting the

WP 43S to FIX 0 here.

Even small numeric differences will gain significance when raised to

powers. Human brains are not well equipped for such operations, so we

recommend taking good care in such cases.

Example:

What difference in magnitude will cause double destruction?

Solution:

Rewriting the formula above results in ∆𝑀 =
2

3
𝑙𝑔 (

𝐸2

𝐸1
). Thus, for

double destruction we need a magnitude difference of

   FIX

2 2 3 equalling 0.2 only.

WP 43S U v0.16 --- Page 91 of 328

But there are also friendlier applications of logarithms:

Example:

How many bits are required if the unsigned integer 3.7×109 shall be the

maximum to be handled by a microprocessor?

Solution:

3.7 9  lb x returns 31.8 , so 32 bits will suffice.

If we had a tri-state logic, however,

3  log⒳y returned 20.1 , so 21 cells would suffice.

Providing , your WP 43S also allows for raising any positive real

number to an arbitrary real power, as well as any negative real number

to an arbitrary integer power, all returning real results. Compare e.g. the

Mach number formula on p. 45.

In combination with , also provides a simple way to extract roots:

Example (with startup default settings):

What is the fifth root of 17 ?

Solution:

This is equivalent to 17
1 / 5 , so 17  5    will do.

This solution path may be faster accessed and executed than the

alternative 17  5     ∜Ȳ . Both keystroke sequences,

however, will return   1.762 340 347 832 317.

Let’s return to Fukushima for a final and (alas!) more down-to-earth

application of powers and logs:

Example:

Locations in a distance of 30 km to the nuclear plant being devastated by

the tsunami in March 2011 showed radioactivity in the soil of some

1...3 MBq/m2 corresponding to an annual radiation dose of 4 mSv in 2013

(see the map). Assume this was mainly caused by 137Cs then; this

Page 92 of 328 -- WP 43S U v0.16

radioactive caesium isotope has a half-life of 30.2 years.82

To the best of our knowledge today, an unborn child must not receive a

dose of more than 1 mSv before birth. So when will it be reasonably safe

to let the evacuated inhabitants of the villages in that area return to their

homes finally?

Solution:

Assuming there will be no further nuclear accident there, the isotopes set

free will stubbornly decay following the inevitable laws of physics. Having

had a radioactivity a0 at time zero, the activity a at an arbitrary later time

t will be

𝑎 = 𝑎0 × 2
−(𝑡 𝑇1 2⁄⁄)

 . Hence, 𝑡 = 𝑇1 2⁄ × 𝑙𝑏 (
𝑎0

𝑎
).

82 With a probability of 94%, 137Cs decays emitting an electron with a kinetic energy of

up to 512 keV plus a -ray of 662 keV. These facts are just for your information – they

do not affect the calculation here.

Original map found at
http://www.odonata.jp/ico2012/radioactivity/radiation_contour_large_map.gif

http://www.odonata.jp/ico2012/radioactivity/radiation_contour_large_map.gif

WP 43S U v0.16 --- Page 93 of 328

1 mSv in nine months corresponds to an annual dose of 4/3 mSv.

Well, the 2013 annual dose of 4 divided by 4/3 equals 3, and

  FIX

3  lb x

30.2 returns 48. years.

So you can recommend reproductive people shall rather not live in that

area earlier than 2061. Senior inhabitants may return far sooner.83

Quite similar considerations apply to nuclear waste of power plants – at

the bottom line, there are many tons of radioactive material produced

decaying with half-lifes exceeding thousand years; and this means you

83 Note that different limits are considered ‘reasonably safe’ for the public by different
national authorities. By nature, all such limits are arbitrary to some extent since we talk
about probabilities here, and there are no step functions in probability but smooth
transitions (cf. the chapter after next chapter). Furthermore, a large fraction of world-
wide knowledge about damage caused by radiation in human bodies in the long range
is still based on extrapolation of experiences collected since 1945 following two large-
scale events in Japan (and 67 more near Bikini until 1958). Another experiment well
known was started in the USSR in 1986 – Belarus and the Ukraine have to bear the
consequences until today. Mankind knows of the physics of radioactivity for some 120
years only so far, that’s short!

Note there are further risks linked to agriculture in the area around Fukushima – they
are beyond the scope of this simple sample calculation though.

Also note this example covers a worst case scenario. Actually, radioactivity is washed
to deeper layers of soil with time, reducing the activity seen at the surface. And there
are mitigation efforts in the area (many km2): at some places the contamination was
washed off houses and trees, and the top layers of contaminated soil were removed,
storing them in big black plastic bags ‘elsewhere’; 2.3 million m3 of soil are deposited
there already, 12 million more are expected by the authorities – an area of 1.6 km2 is
provided for ‘interim storage’. Cost of disposal is going to be 1.9×1012 ¥ (estimated by
the administration in 2019). Furthermore, 1.1 million m3 of contaminated water are
stored separately – no idea yet where that shall go (see Frankfurter Allgemeine Zeitung
of 2019-03-10). I guess where it will go, though…

Success of all these mitigation efforts may reduce the waiting time calculated above;
failure will not extend it at least. Today is too early for a definitive assessment – we
still know too little about long term effects. None of these efforts, however, can ever
reduce the given natural half-lifes of the radioactive isotopes set free and spread in this
nuclear accident.

https://www.faz.net/aktuell/wirtschaft/jahrestag-des-fukushima-ungluecks-endstation-tomioka-16079107.html
https://www.faz.net/aktuell/wirtschaft/jahrestag-des-fukushima-ungluecks-endstation-tomioka-16079107.html

Page 94 of 328 -- WP 43S U v0.16

have to ‘put them away’ safely for really long times – a task kept under

wraps for decades but not solved by waiting so far. 84

The formula above is a nice example of a mathematically simple law of

physics linking science and society quite closely.

Real Numbers: Hyperbolic Functions

Hyperbolic functions tell us something about free hanging ropes, cables,

chains, and the like. Your WP 43S provides three hyperbolic functions

and their inverses in the -shifted row of EXP (see p. 27) and TRI:

 sinh  Hyperbolic sine.   arsinh Inverse hyperbolic sine.

 cosh  Hyperbolic cosine.   arcosh Inverse hyperbolic cosine.

 tanh  Hyperbolic tangent.   artanh Inverse hyperbolic tangent.

We found the following in the HP-32 OH85 though we modified it a bit:

84 Surprise! Mankind has absolutely no experience with locking something away reliably
for several thousand years (look at the pyramids of Gizeh, for instance). Note the
material must also be tagged properly (KEEP OFF!) in a way staying readable and
comprehensible for all that time – zero experience either.

Sad example: A huge concrete coffin holds almost 90 million liters (equivalent to

90 000 m3) of US nuclear waste on the Marshall Islands (remember Bikini). Now sea-
level rise (caused by anthropogenic global warming) is eating away at the dome, and
the USA is not interested in helping the tiny Pacific Ocean republic to do anything about
it (see the Los Angeles Times of 2019-11-10).

Sometimes you might meet people talking about ‘transmuting’ that entire long-living
radioactive waste by converting it to isotopes with significantly shorter half-lifes by
some nuclear reactions (never met anybody being more specific in this matter so far).
If that would be physically possible for all that material, however, the energy needed
for that transmutation process would easily outweigh the energy ‘produced’ by nuclear
power plants before. As a matter of fact, the companies who made profits with those
power plants for decades are very reluctant in definitely solving the waste problem they
created so far.

As far as mankind knows today, prospective fusion plants will not produce any long-
lived isotopes in operation. Wait and watch.

85 This was HP’s first pocket calculator featuring hyperbolic functions. It was launched
in 1978. Note that the SR50 of Texas Instruments (HP’s arch rival in those years of the
so-called ‘calculator wars’) provided hyperbolic functions four years earlier already.

https://www.latimes.com/projects/marshall-islands-nuclear-testing-sea-level-rise/

WP 43S U v0.16 --- Page 95 of 328

Example:

In Upper Lagunia, a tram86 carries tourists between two peaks in the

Baruvian Alps that are

the same height and

437 meters apart. How

long does it take the

tram to travel from one

peak to the other if it

moves along its cable

at 135 meters per

minute? Before the

tram latches onto the

cable, the angle from

the horizontal to the cable at its point of attachment is found to be 43°.

Solution:

The travel time is given by the formula

 𝑡 =
𝑑

𝑣
×

tan 𝛼

𝑎𝑟𝑠𝑖𝑛ℎ(tan𝛼)
.

Let’s set

   FIX  since we do not need more decimals displayed.

Then

43  tan

 duplicates this intermediate result on stack for
numerator and denominator.

  arsinh

437 489.30 m is the length of the cable.

135 3.62, i.e. a bit more than 3 ½ minutes.

86 Translator’s note: British readers might frown here at least.

Page 96 of 328 -- WP 43S U v0.16

Real Numbers: Probabilities – Factorials, Combinations,
Permutations, and Distributions

Besides the keyboard commands and , you find a lot of

probability and statistical operations in your WP 43S, going far beyond

the Gaussian distribution. It contains all the preprogrammed functions

implemented in WP 34S and more –

presumably the maximum set available

in a pocket calculator world-wide.

These operations are stored in the

adjacent menus PROB and STAT.

PROB includes also the functions for combinations and permutations.

Example (from the HP-32 OH):

Willie's Widget Works wants to take photographs of its product line for

advertising. How many different ways can the photographer arrange their

eight widget models?

Solution:

The total number of possible arrangements

possible is given by the factorial 8 × 7 ×
6 × 5 × 4 × 3 × 2 × 1 = 8!

8 returns 40 320 for this number.

Example (continued):

The photographer looks through his view-

finder (in 1978) and decides that he can show only five widgets if his

camera is to capture the intricate details of the widgets … How many

different sets of five widgets can he select from the eight?

Solution:

The number of sets equals the number of possible combinations (i.e. the

number of possible different sets of y different objects taken in quantities

of x objects at a time; no object appears more than once in a set, and

different orders of the same x objects are not counted separately here):

85

WP 43S U v0.16 --- Page 97 of 328

   C⒴⒳  returns   56 for the number of sets.

Example (continued):

Again, there are different arrangements feasible. How many pictures of

different widget arrangements are possible within these limits?

Solution:

The number of possible arrangements is 5!
according to the statement above. Thus,

5 returns     120 for that number. And

 returns    6 720 for the number of

significantly different pictures.

This is the number of possible permutations

of 5 items out of 8 (i.e. the number of possible

different arrangements of y different objects

taken in quantities of x objects at a time; no object appears more than

once in an arrangement, and different orders of the same x objects are

counted separately here). 87 It can be obtained in one step by keying in

8 5    P⒴⒳  returning 6 720 .

Furthermore, PROB contains ten continuous and five discrete

distributions for calculating probabilities, confidence intervals, etc. 88

These functions share a few features:

87 These challenging tasks changed the photographer significantly within one year.

88 In a nutshell, discrete statistical distributions deal with “events” governed by a known
mathematical model. Such statistical events may be persons entering a store,
radioactive nuclei decaying, faulty parts appearing, etc. The PMF then tells the
probability to observe a certain number of such events, e.g. 7. And the CDF gives the
probability to observe up to 7 such events, but not more.

For doing statistics with continuous statistical variables – e.g. the heights of three-year-
old toddlers – similar rules apply: Assume we know the applicable mathematical model;
then the respective CDF gives the probability for their heights being less than an

arbitrary limit, for example less than 1 m. And the corresponding PDF tells how these
heights are distributed in a sample of let’s say 1000 kids of this age.

BEWARE: This is a very rudimentary sketch of this topic only – turn to a good
textbook to learn dealing with statistics properly.

Translator’s note for German readers: PMF und PDF entsprechen der Wahrschein-
lichkeitsdichte, CDF der Verteilungsfunktion bzw. Wahrscheinlichkeitsverteilung.

Page 98 of 328 -- WP 43S U v0.16

• Discrete distributions (like Poisson, binomial, negative binomial,

geometric, and hypergeometric) are confined to integers. Whenever

your WP 43S sums up a probability mass function (PMF ) 𝑝(𝑛) to get

a cumulated distribution function (CDF) 𝑃(𝑚) , it starts at

𝑛 = 0. Thus,

𝑃(𝑚) = ∑ 𝑝(𝑛)

𝑚

𝑛 = 0

• Continuous distributions (like Cauchy, exponential, logistic, log-

normal, two kinds of normal, Fisher’s F, Student’s t, Weibull, and chi-

square) operate on reals. Whenever your WP 43S integrates a

function, it starts at left end of the integration interval. Thus, inte-

grating a continuous probability density function (PDF) 𝑓(𝑥) to get a

CDF works as

𝑃(𝑥) = ∫ 𝑓(𝜉)𝑑𝜉
𝑥

−∞

• Many frequently used continuous PDFs look more or less like the

ones plotted in the upper diagram overleaf. The lower diagram shows

their corresponding CDFs, using the same scale and colors.

Typically, any CDF starts at 0

with a slope of almost zero,

becomes steeper then, and

runs out at 1 with its slope re-

turning to zero. This holds

even if the respective PDF

does not look as nicely sym-

metric as the sample normal

distributions plotted here.

Thus, obviously you will get

the most precise results for

the CDF on its left side using

P. On its right side, however,

where P slowly approaches

1, the error probability 𝑄 =
1 − 𝑃 will be more precise.

Thus, also the right sided Q

WP 43S U v0.16 --- Page 99 of 328

is computed in your WP 43S for each distribution, independently of P.

Definitions are:

o for discrete distributions: 𝑄(𝑚) = ∑ 𝑝(𝑛)

∞

𝑛 = 𝑚

o for continuous distributions: 𝑄(𝑥) = ∫ 𝑓(𝜉)𝑑𝜉
∞

𝑥

• With an arbitrary CDF, e.g. NORML (returning P ), you will find the

name NORML  used for

the function returning Q,

NORML−1 for the inverse

of the CDF (the so-called

quantile function), and

NORMLP for its PDF on

your WP 43S. This nam-

ing scheme applies also to

the binomial, Cauchy

(a.k.a. Lorentz or Breit-

Wigner), exponential,

Fisher’s F, geometric, hypergeometric, log-normal, logistic, nega-

tive binomial, Poisson, Student’s t, and Weibull distributions. The

Chi-square distribution is denoted differently following mathematical

tradition. See PROB on p. 111 or the ReM.

Find application examples of distributions in the next two chapters.

Real Numbers: From Probability to Statistics – Accumulating

Data, Calculating Means, Standard Deviations, and

Confidence Limits; Curve Fitting, Forecasting, and

Checking Dices

There is also a wealth of commands for sample and population statistics

in STAT, applicable in one or two dimensions. After clearing the

summation registers by initially, use to accumulate your

Page 100 of 328 -- WP 43S U v0.16

experimental data (typically counted or measured values); weighted data

require the weight in Y, pairs of data or coordinates of data points shall

be entered in X and Y. is provided for easy data correction.

Data analysis functions are found in STAT as well: e.g. arithmetic

mean    , sample and population standard deviations   s and   σ , and

standard error   s⒨ (a.k.a. standard deviation of the mean).

Example:

Archibald is champion of the Golden Bow, his archers club. In his

standard exercise, aiming at a target disk of 1.5 m diameter at a distance

of 50 m, his arrows scatter symmetrically around the center of the target

showing quite a small variance. Actually, Archibald’s statistics tells his

arrows have a standard deviation (SD) of 1 foot at that distance. Assume

his shots are distributed normally around the center of the disk, how often

must he walk further than 50m to collect an arrow? 89

Solution:

  FIX

0 Archibald’s mean = center of disk.

1  x:     feet→m 0.305 , 1 foot in meters, Archibald’s SD.

 store this SD for later re-use.

1.52 0.750 , the radius of the target disk.

 Norml:  Norml 0.007 , the error probability.

2 72.102 so Archibald has to collect an
arrow in the green only once in 72
shots on long term average.

Example (continued):

One of his buddies and competitors, Bill, also sends his arrows to the

same target disk with his hits scattering symmetrically around the center

of said disk, too. He, however, has to pick up about one out of 15 arrows

in the green on average. What is his SD in the target plane?

89 Many of our customers live in a country where long range weapons play a significantly
greater role than in most civilized societies, hence this explanatory example.
Foreigners travelling through that country, watch out! Please note that we refrained
from using firearms here, though our resistance was strained almost to the limit.

WP 43S U v0.16 --- Page 101 of 328

Solution:

15 0.067 , i.e. about 7% of Bill’s arrows
miss the target disk.

2 0.033 ~3% misses on either side.

1 to get the standard normal distribution.

  Norml -1.834 , the corresponding lower limit of
this distribution.

.75 0.409 m = Bill’s SD. Just store it since
we will need it again soon:

 Note that the SD of Archibald’s arrows is just...

 -25.47 % narrower than Bill’s, but his
rate of misses is more than 10 times less.

There are applications of this methodology in industry, where the

scattering (a.k.a. variation, variance) of a production process is com-

pared with its tolerance limits. Resulting from such comparisons, so-

called capability indices are computed, directly linked to the amount of

scrap to be expected in the process investigated. Please consult

applicable literature and standards – look for process capability.

On the other hand, we may continue with our example as is, guiding you

to advanced statistics:

Example (continued):

Bill quietly practiced in a Zen cloister during his summer vacation.

Returning, he went to the Golden Bow immediately on next weekend and

sent 50 arrows to his club’s standard disk. Only two missed, with one of

them scratching the very edge of the disk. Cheers! But is this just a lucky

chance success (within the usual scattering of results to be expected) or

probably a consequence of his extra training efforts?

Solution:

Calculate Bill’s new SD:

1.550 0.030

2 0.015 = 1.5% misses on either side.

Page 102 of 328 -- WP 43S U v0.16

  Norml  -2.170 , the corresponding lower limit of

the standardized normal distribution.

.75 0.346 m = Bill’s new SD.

Now, is this significantly better than his previous SD? Statisticians have

found it is better (based on a confidence level of 95%) if it is lower than

the 95% confidence limit of his old SD. We assume his old SD (so) was

computed based on 60 shots. Then the formula for the single-sided lower

95% confidence limit of this old SD reads:

𝜎𝐿 = 𝑠𝑜 ×√
59

(𝜒59; 0.95
2)

−1

The expression in the denominator is the inverse chi-square for 95%

probability and 59 degrees of freedom. Calculate inside out as usual:

59 the degrees of freedom must be stored in J.

.95   χ²:    (χ²) calls the inverse chi-square, returning

  77.931 .

 0.757

 0.870

 0.356 m for 𝜎𝐿.

Looks like Bill’s training made a difference!

Well … within 95% confidence. If we had required 99% confidence

instead, the lower confidence limit had been 0.337 m (you can easily

verify this now) – then Bill’s new weekend result would have been an

insufficient indicator for a significant improvement.90

STAT contains also functions for curve fitting, featuring ten different

regression models (linear, exponential, logarithmic, power, root,

90 Applying statistics may cause that you might have more doubts than without – but such
is life: doubts increase with knowledge. Only very dumb people have no doubts and
may easily feel great therefore.

Generally, standard confidence limits and levels (also those defined for indicating
significant differences) may depend on the country or industry or science you are
working in. Note the term significant is well defined in statistics – this definition may
deviate from common language. Be sure to check the applicable valid standards before
blindly copying the exemplary calculations demonstrated in this manual.

WP 43S U v0.16 --- Page 103 of 328

hyperbolic, and more – see the ReM), their parameters, the forecasting

functions and , and the coefficient of correlation . The fit model

applied will be displayed heading numeric output after any command

related to fitting (i.e. after CORR, COV, L.R., sXY, x̂, and ŷ). And after

, even the generic formula of the regression model applied will be

shown (see examples below).

The command BESTF tells your WP 43S to select the regression model

fitting your data ‘best’ (i.e. resulting in the largest absolute coefficient of

correlation, approx. 1). Then, an elevated asterisk () will trail the name

of the fit model chosen this way automatically. Like with all other auto-

functionality, you should know what you are doing here.

Example (from the HP-27 OH):

If Galileo had wished to investigate quantitatively the relationship

between the time (t) for a falling object to hit the ground and the height

(h) it has fallen, he might have released a rock91 from various levels of

the Tower of Pisa (which was leaning even then) and timed its descent

by counting his pulse. The following data are measurements Galileo

might have made:

t (pulses) 2 2.5 3.5 4 4.5 92

h (Pisan feet) 30 50 90 130 150

Unlike Galileo, you are equipped with a WP 43S; so what can you learn

from this experiment? Let’s look what we may find:  

  FIX

 CLΣ Ⓖ ε ε⒫ ε⒨ PLOT

 Σ- ⒲ s⒲ σ⒲ s⒨⒲

 Σ+ s σ s⒨ SUM

  CLΣ

91 I hope not! A pebble would have done as well if not better.

92 These raw data really do not look very plausible, and actually it is dubious whether
Galileo made such experiments using the Tower of Pisa at all, but at least HP believed
that its calculator customers would believe in that story in 1976.

Page 104 of 328 -- WP 43S U v0.16

302

   Σ+  returns

0.355 9
Data point 001   30.000 0

2.000 0

Note that   Σ+ takes x and y, adds them to the statistical sums, increments

the count of data points, and gives you feedback (note this output

contains temporary information as explained on p. 68). Your next input

after   Σ+ will overwrite x : 93

 502.5   Σ+

 903.5   Σ+

1304   Σ+

1504.5   Σ+

Data point 005   150.000 0
4.500 0

 GaussF CauchF ParabF HypF RootF

 LinF ExpF LogF PowerF BestF

  BestF 0 instructs your WP 43S to pick the curve fit model matching

these experimental data best (as explained above).

 ⓇⓂⓈ x⒨⒜⒳ x⒨⒤⒩ OrthoF

 Ⓗ

 L.R. r s⒳⒴ cov ŷ

  L.R.

93 Remember Σ+ disables stack lift. Though note that accumulation of 2D data will slowly
overwrite the stack.

WP 43S U v0.16 --- Page 105 of 328

4.500 0
  Power a₁ = 1.994 0
  y = a₀x^a₁ a₀ = 7.722 6

Your WP 43S chose power regression as the model fitting these given

data best. Let’s check the correlation coefficient:

   r

 returns   Power        0.997 6

This is an almost perfect correlation. The equation expressing the

experimental results best is hence ℎ ≈ 7.72 × 𝑡1.99 (with t measured in

pulses and h in Pisan feet). Galileo could not know around 1600 yet, but

we know today that ℎ =
1

2
 𝑔 𝑡2 .

The task to determine the size of a Pisan foot and Galileo’s heartbeat

frequency is left for the reader.

In addition, we found the following linear regression example in various

HP calculator owners’ manuals of 1976 - 78.

It reads typical for the thinking at that time:

Big Lyle Hephaestus, owner-operator of the

Hephaestus Oil Company, wishes to know the

slope and y-intercept of a least squares line for the

consumption of motor fuel in the United States (of

America  94) against time since 1945 (in 1978!). He

knows the data given in the table:

Motor fuel demand

(millions of barrels )
696 994 1330 1512 1750 2162 2243 2382 2484

Year 1945 1950 1955 1960 1965 1970 1971 1972 1973

Solution:

Hephaestus 95 could draw a plot of motor fuel demand against time.

94 Differentiating from Los Estados Unidos Mexicanos, for example.

95 Maybe his ancestors emigrated from Greece: Hephaistos is the ancient Greek god of
fire and forging (and maybe of underground natural resources as well?).

Page 106 of 328 -- WP 43S U v0.16

However, with his WP 43S, Hephaestus has only to key the data into the

calculator using the key, then press . 96

  FIX

  CLΣ

6961945  Σ+ 9941950  Σ+

13301955  Σ+ 15121960  Σ+

17501965  Σ+ 21621970  Σ+

22431971  Σ+ 23821972  Σ+

24841973  Σ+

   L.R.

Linear a₁ = 61.16
 y = a₀+a₁x a₀ = -118 290.63

Your WP 43S chose linear regression as the model fitting the given data

best here. Let’s check the correlation coefficient:

 r returns   Linear         0.99

Based on this good correlation result, Hephaestus confirms the automatic

choice and is even tempted to extrapolate the observed trend of motor

fuel demand to (then) future years.

Example (continued):

If Hephaestus wishes to predict the

demand for motor fuel for the years

1980 and 2000, he keys in the new x

values and presses    ŷ .

Similarly, to determine the year that

the demand for motor fuel is expected

to pass 3 500 million barrels,

Hephaestus keys in 3 500 (the new

value for y) and presses     .

96 The boss computes himself! And he also seems being even able to do it properly!

Looks like that was a time before general managers, CEO’s, and large staffs became
fashionable. But see also next footnote.

WP 43S U v0.16 --- Page 107 of 328

1980   ŷ returns   Linear    2 808.63

2000   ŷ returns   Linear    4 031.85
These were forecasts (i.e. extrapolations based on the fit model

employed) of the demands in 1980 and 2000 at that time.

3500    returns   Linear    1 991.30

– the demand was expected to pass 3.5 billion barrels in 1992. 97

Another example from the HP-27 OH:

The chi-square statistic measures the goodness of fit between two sets

of frequencies.98 It's used to test whether a set of observed frequencies

differs from a set of expected ones sufficiently to reject the hypothesis

under which the expected frequencies were obtained.

In other words, you are testing whether discrepancies between the

observed frequencies (Oi) and the expected frequencies (Ei) are

significant, or whether they may reasonably be attributed to chance. The

formula generally used is 

𝜒2 =∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑛

𝑖=1

If there is a close agreement between the observed and expected

frequencies, χ2 will be small. If the agreement is poor, χ2 will be large.

Let’s demonstrate the application of such a chi-square statistic 99 using

the following problem, presuming startup default settings of your WP 43S:

97 If he had plotted his data, Hephaestus should have been warned looking at his last
three data points. Often, plots carry extra information which may be lost easily when
dealing with numbers only. Actually, HP’s example is not a good choice for
extrapolating without plotting.

98 ‘Goodness of fit’ tells us how good both sets match.

99 Do not confuse this χ2 defined here with the χ2 distribution mentioned in previous
chapter (and employed below very soon). They are different! Unfortunately, however,
both chi-squares are called and spelled equally. It looks like the naming commission
was inattentive here at the crucial time, perhaps distracted by discussing the outcome
of a recent casino visit.

Page 108 of 328 -- WP 43S U v0.16

A suspect dice from a Las Vegas casino is brought to

an independent testing firm to determine its bias, if any.

The dice is tossed 120 times and the following results

obtained:

Number 1 2 3 4 5 6

Frequency 25 17 15 23 24 16

Solution:

Expected frequency is 120 / 6 = 20 for each number here. For calculating

χ2, just enter:

   FIX

25 20 25

17  20 34

15  20 59

23  20 68

24  20 84

16  20 100

20 5

Now, is this χ2 large or small? Statisticians have found it is to be

considered ‘small’ if χ2 is less than the value of the inverse χ2 CDF for the

degrees of freedom (DOF, here n – 1 = 5) and the significance level

applicable (here 5%). As seen above already, also this χ2 function is

provided in your WP 43S. Note that a significance level of 5% equals an

error probability of 5% and a confidence level of 95%. Simply key in:

5 5 for the DOF;

.95    χ²:    (χ²)  11.

Since 5 is less than 11, χ2 is small enough to conclude that this dice is

fair (with 95% confidence).

WP 43S U v0.16 --- Page 109 of 328

Real Numbers: Some Industrial Problems Solved

To get an idea of further real-life opportunities covered by your WP 43S

and of some constraints inherent to statistics, see the sample

applications shown below. All of them are demonstrated employing the

traditional 4-register stack but will work with the 8-register stack as well.

Application 1 (scrap rate, confidence limits):

Assume you own a little tool shop, produce axis pins in series, and

want to know the quality of the parts you produce. You drew a

representative sample of pins (all being nominally equal parts!) and

precisely measured their real sizes using a proper instrument. How

can you know your batch will be ok?

Example:

Ten turned pins drawn from a batch produced on a precision lathe, dia-

meters measured: 12.356, 12.362, 12.360, 12.364, 12.340, 12.345,

12.342, 12.344, 12.355, and 12.353. From earlier large scale

investigations, you know that diameters from this production process

follow a Gaussian (or normal) distribution.

Now you should just know your objective:

• Do you want to know what pin diameters you will get in your batch?

Statistics cannot tell you about all of them but it will tell you where

to find almost all (e.g. 99%) of them.

Example (continued):

   FIX

  CLΣ

0  12.356   Σ+

Data point 001   0.000
12.356

Continue accumulating the remaining measured sample data:

Page 110 of 328 -- WP 43S U v0.16

12.362   Σ+ 12.360   Σ+ 12.364   Σ+ 12.340   Σ+

12.345   Σ+ 12.342   Σ+ 12.344   Σ+ 12.355   Σ+

12.353   Σ+

Data point 010 0.000
12.353

Knowing these pins are drawn from a Gaussian process, you get the

best estimates for mean and standard deviation of your batch by

pressing

   

ȳ =  0.000
 =  12.352

   s

 12.352
s⒴ =   0.000
s⒳ =   0.009

 We stored x̅ and sx for the next steps already.

Now, if 99% of a batch is found

inside some arbitrary symmetric

limits of a Gaussian process

then 0.5% will be out on either

side since the Gaussian distri-

bution is symmetric around its

mean.

Thus, based on the ten pins analyzed, you may expect 0.5% of all pins with

diameters less than

.005

WP 43S U v0.16 --- Page 111 of 328

 0.005
 NBin: Geom: Hyper: Binom: Poiss:

 LgNrm: Cauch: Expon: Logis: Weibl:

 Norml: t: C⒴⒳ P⒴⒳ F: χ²:

 Norml:

 Norml⒫ Norml Norml⒠ Norml

  Norml 12.330

and another 0.5% with diameters greater than

.995   Norml 12.375

If you should observe significantly more than 0.5% of your pins beyond

either limit, this indicates your process may be running out of control.

Assume the pins shall have a nominal diameter of 12.35. Then – based on

this sample analysis – you can safely commit to hold a tolerance of ±0.05

(you will hardly produce any scrap as long as your process continues

running the way you found it). If your customer would try, however, to force

you to accept a tighter tolerance of ±0.02, you must expect some losses:

12.35 12.350

.02 12.330 = lower limit.

  Norml 0.006 = lower scrap = 0.6%.

 12.350

.02 12.370 = upper limit.

  Norml 0.021 = upper scrap = 2.1%.

 0.026 = total scrap.100

What will hurt you even more than these 2.6% scrap you must expect now

(i.e. more than 1 out of 40 pins) will be the inevitable necessity to establish

a very precise and constant sorting tool or machine to ensure only good

pins will pass to your customer. Thus, stay firm (if you can afford it) and

100 Translator’s note: Scrap is a very interesting word to follow through various
languages: Ausschuss, brak, desecho, detriti, rebut, schroot, Schrott, skrot, šrot,
sucata, utskrot, брак, хпам, etc. The latter is pronounced almost like spam. Note in
German and Swedish, the same word may be used for scrap and committee.

Page 112 of 328 -- WP 43S U v0.16

refuse that customer request to constrict your tolerance limits – it may well

be you cannot afford becoming weak here.

• Are you interested in the mean pin diameter of your batch? So you

know how much space you must provide to store a stack of e.g. 50

pins? Then determine the applicable mean and the size of its

variation; then use them to find both upper and lower limit confining

the mean with a probability of e.g. 95%.

Example (continued):

Since we have got a sample drawn out of a Gaussian process, the

arithmetic mean is applicable, the standard error tells its variation, and

Student’s t is required. For the latter, we need its degrees of freedom.

Press

      n 10.000 recall the number of points.

1 9.000 store the degrees of freedom.

     s⒨ 0.003 is the standard error.

Having 95% inside means having 2.5% outside at either end (cf. previous

diagram). 101 Thus, one must generally take 0.025 and 0.975 as

arguments in two subsequent calculations using the quantile function of t

to get both 95% limits below and above the sample result:

.025    t:    t(p) -2.262

 0.006

 12.352

 102
 12.352

101 The value of 95% is called the confidence level of this calculation. In this example,

you calculate the 95% confidence limits for the mean value. Instead of 95%, also 99%
are frequently applied. We recommend checking the applicable valid standards before
blindly copying any example calculations here. Of course, you are free to apply other
confidence levels wherever they fit your needs.

Translator’s note for German readers: Confidence limit entspricht der Vertrauens-
bereichsgrenze und confidence level dem Vertrauensniveau.

102 returns x̅ and y̅ (as was shown above). Only x̅ is interesting in this example,

however, so pressing moves y̅ quickly out of the way. In a program,

will be a better alternative since it leaves the stack order as is (see. Sect. 3).

WP 43S U v0.16 --- Page 113 of 328

 0.006

 12.346 = lower limit.

 0.006 = last x.

2 103 12.358 = upper limit.

Now you know what to expect for the future average diameter of such

batches. Hence a stick being

50 617.900 long inside will suffice for holding
50 pins in 97.5% of all cases.

12.346 and 12.358 are the 95% confidence limits of the mean calculated

above. So here is a chance of 2.5% that the mean will be < 12.346 and

an equal chance that it will be > 12.358. These chances are an inevitable

consequence of the fact that you know something about a small sample

only (drawn out of a large population), but want or have to tell something

about said total population.104 If you cannot live with these uncertainties

or the widths of the confidence limits, do not blame statistics but collect

more or more precise data instead.

Application 2 (quick and easy measuring system analysis):

Your colleagues in R&D have specified that particle accelerator beam

pipes made of a special stainless steel shall have a magnetic

susceptibility ≤ 0.01. How can you verify whether or not the susceptibility

meter available in the laboratory is sufficiently precise to control the

series production of those tubes?

Solution:

1. Collect 30 samples of material covering the susceptibility range you are

interested in. This range could extend e.g. from 0 to about 0.015

103 The upper confidence limit can be calculated this easy way since t -1(p) is symmetric
around the mean value. Else it would have been necessary to repeat the above
calculation (except the last two steps) for an input value of 0.975.

104 Statisticians call these chances ‘probabilities of a type I error’ or ‘probabilities of an
error of the first kind’.

Translator’s note for German readers: Type I error entspricht dem Fehler 1. Art.

Page 114 of 328 -- WP 43S U v0.16

here.105 Mark each sample unambiguously (e.g. by numbering it).

2. Use the measuring instrument under investigation to measure all

samples carefully under controlled conditions. Record as many

decimals as possible. Write each measured value in a table next to the

respective sample number.

3. Measure a 2nd time under ‘the same’ conditions, but following another

sample sequence (just shuffle the samples). Don’t allow for looking at

the data measured previously (hiding these data will be very helpful if

you acquire the values manually)! Write each 2nd measured value

behind the 1st one in the row carrying the respective sample number.

4. Get your WP 43S. Clear its statistical registers via   CLΣ. Then

enter all 30 pairs of values using  Σ+ . The 1st measured value

shall be y, the 2nd be x – thus, input will be

mv1 mv2  Σ+ 

for each sample (alternatively,

you can enter your statistical

data into a matrix, then accu-

mulate all points at once – see

pp. 185f).

5. It is recommended to plot

these 30 points. The plot shall

look like an ant trail following

the center line y = x (see a

typical scatter plot here). 106

105 Nature allows for positive susceptibilities only. Note there is no requirement to know
the exact susceptibilities of your samples beforehand – they shall just fall in said range,
cover it fairly homogenously (cf. the plot overleaf), and the samples must be resilient
enough to stay constant in your measurements. No need for any investment in
expensive gauges here – real life has proven scrap may well do.

106 Even pencil plotting on quadrille paper will do. Since important here, we might
implement some basic scatter plot abilities in this calculator. See the ReM.

Go to an expert in metrology if your diagram should deviate fundamentally from the one
pictured here.

In four decades professional experience, I found such correlation diagrams being the
most powerful though easy tools for assessing the quality of real-life measuring
processes. Even manually drawn clean correlation diagrams will support your

WP 43S U v0.16 --- Page 115 of 328

6. Let your WP 43S fit a straight line through the points and compute

2

222

0
130 r

srs

ss

T
c

yx

yx −

+
=

with T being the width of the tolerance zone you want to control. So select

the orthogonal linear fit model:

  OrthoF 

   r get the coefficient of correlation and store its square.

   s get sx
2.

 roll it out of the way.

 get r2 sy
2.

 return sx
2 from the top stack register and calculate the

numerator.

1 calculate the denominator.

 this is the 2nd factor now.

   s  30 divide by 30 sx sy .

.01 this returns c
0
 for our exemplary T now.

If you get c
0
 ≥ 1 then this measuring device may be used for controlling

series production with this tolerance zone under these conditions (i.e. it is a
capable instrument for this control job) – else look for a more precise
instrument, better measuring conditions, or a wider tolerance.

Application 3 (significant changes):

Assume you have taken a sample out of an arbitrary industrial production

process at day 1. Then you have changed the process parameters,

waited for stabilization, and have taken another sample of same size at

day 2 (there may well have been a longer time interval between both

sampling days). Being serious, you have meticulously measured and

recorded a critical quantity (e.g. a characteristic dimension) for each

decisions far better than staring at numbers only – actually plotting is just required to
verify there are no bad surprises hidden in your setup and data acquisition. With
capable measuring systems, the resolution required for showing all measured points
clearly separated from each other might, however, exceed the capability of a pocket
calculator screen by far. The calculations will be correct nevertheless.

Page 116 of 328 -- WP 43S U v0.16

specimen investigated at both days. Now: do these two samples show

any significant difference?

The following simple three-step test is well established. 107 It may easily

save yourself some unwanted embarrassments in your next presentation

or after your next publication:

1. Accumulate your sample data. Then let your WP 43S compute the
means and standard errors for both samples, and their normalized

distance 𝑑 = |�̅� − �̅�| √𝑠𝑥
2 + 𝑠𝑦

2⁄ . If you are working with four stack

registers, this calculation could look like the following:

 s⒨ returns both standard errors in X and Y.

 so this is the entire denominator.

    returns both x̅ and y̅.

 thus, this is the numerator

 and this is d.

2. Let your WP 43S calculate the critical limit tcr of Student’s t for f degrees

of freedom and a probability of 97.5% now:

    n recall the number of samples measured.

1 calculate the degrees of freedom f and
store them for Student’s t.

.975   t:    t(p) as mentioned above, the requested quantile

function lives in PROB. It takes the degrees

of freedom stored in I to get tcr.

If crtd , the test indicates the difference between both samples is

due to random deviations only. Congratulations – you have
got a robust process regarding the parameters you changed!

Else continue.

3. Let your WP 43S compute a new critical limit tcs for f and 99.5%:

.995   t(p) get tcs.

If cstd now, then the test indicates a significant difference

107 This test assumes your samples are both drawn from a Gaussian process which is

frequently the case in real life (but shall be verified).

WP 43S U v0.16 --- Page 117 of 328

between both samples. Congratulations – your parameter
change caused a significant effect!

Else (i.e. for cscr tdt) you simply cannot decide seriously based

on the information provided – your samples may contain too
little data or your measurements were not precise enough or
the process is scattering too far etc. Though do not let your
audience lead you in temptation: stay silent or mumble
something like “investigation in progress” at the utmost.

Application 4 (operating characteristics):

Assume you draw a sample of 20 parts out of a production batch of 100

parts and check the sample thoroughly. What is the probability P to find

at least one random defect in such a sample if the overall probability for

a defect in such a batch is 5%, 2%, or 1%?

This is a textbook example for applying the hypergeometric distribution.

P(n ≥ 1) equals 100% – p(n = 0). Thus, the solution is as simple as this:

   FIX

100 store batch size

20 store sample size

0.05 store 5% overall defect probability

0   Hyper:    Hyper returns 0.319

1 returns 0.681

0.02 store 2% overall defect probability

0    Hyper returns 0.638

1 returns 0.362

0.01 store 1% overall defect probability

0    Hyper returns 0.800

1 returns 0.200

Even with 5% defects in the batch the odds are about 1 out of 3 that no

defect at all is detected in such a relatively large sample. And note that

such sample tests are certainly not adequate for controlling industrial

processes with overall defect probabilities less than 1%.

Page 118 of 328 -- WP 43S U v0.16

STAT encompasses many more statistical functions (e.g. covariances,

means and standard deviations for weighted data, geometric means and

scattering factors) – just look them up there and check the respective

entries in the IOI.

You will find all accumulated sums of your data in Σ. Summon these

sums individually by calling their names (no need to memorize any

register numbers in this matter).

More examples of statistical applications can be found in the manuals of

various vintage HP calculators, especially the HP-27 and HP-21S.

We strongly recommend you consult a good statistics textbook for more

information about statistical methods in general, the terminology used,

and the mathematical models provided, before applying them.

Real Numbers: Summary of Functions

The majority of the functions your WP 43S features are for calculations

operating on reals. It provides many more than the numeric functions

shown on pp. 20ff, 29ff, and 82ff in various applications and examples.

See all real functions listed below:

• General mathematics:

o Monadic functions:

, , , and ,   ∛Ϳ   and   x³,   2ᵡ and   lb x, and ,

 and ,   sin,   cos,   tan, and their inverses work as

demonstrated above and you learned in school (see also

pp. 125ff for more information about angular I/O),

  eᵡ-1 and   ln(1+x) return more accurate results for x ≈ 0,

 ceil returns the smallest integer ≥ x , while   floor returns the

greatest integer ≤ x ,

  SDL n shifts digits left by n decimal positions, equivalent to

multiplying x times 10n,

WP 43S U v0.16 --- Page 119 of 328

  SDR n shifts digits right by n decimal positions, equivalent to

dividing x by 10n,

for   sinh,   cosh,   tanh, and their inverses cf. pp. 94f,

  (-1)ᵡ returns 𝑐𝑜𝑠(𝜋𝑥) for non-integer x.

o Dyadic functions:

, , , , , and ∜Ȳ work as was shown above and you

learned in school; use …

  IDIV for integer division

(e.g. 7.8 3.2   IDIV returns 2)

(and   IDIVR if you want also the remainder returned in Y),

  logₓy for the logarithm of y for the base x

(e.g. 625 5   logₓy returns 4),

 for the remainder of y/x (see p. 143 for examples),

  MOD for y mod x (see p. 144 for examples),

  max (or   min) for the maximum (or minimum) of x and y; and

  |   | returns (
1

𝑥
+
1

𝑦
)
−1

 for 𝒙 × 𝒚 ≠ 0 and

0 else, being handy in electrical engi-

neering in particular.

o Triadic functions:

  ×MOD returns (z ∙ y) mod x for x > 1 , y > 0 , z > 0, and

  ̂ MOD returns (z y) mod x for x > 1 , y > 0 , z > 0

(e.g. 73 55 31   ^MOD returns 26).

• Isolating parts of numbers: Use…

  EXPT for the exponent of x and   MANT for its mantissa,

  FP (or   IP) for the fractional (or integer) part of x,

 for the absolute value of x, and

Page 120 of 328 -- WP 43S U v0.16

  SIGN for the signum of x; thus, SIGN returns 1 for x > 0 , –1 for

x < 0 , and 0 for x = 0 or non-numeric data.

• Rounding:

  RDP n rounds x to n decimal places in FIX format

(e.g. 1.234 567 89E−95 RDP 99 will return 1.2346×⒑⁻⁹⁵),

  ROUND rounds x using the current display format (like RND did on

HP-42S),

  ROUNDI rounds x to next integer (½ rounds to 1), and

  RSD n rounds x to n significant digits.

• Conversions:

 converts rectangular coordinates to polar ones (cf. pp. 20f),

while converts vice versa.

Angular, time, and date conversions are covered on pp. 125ff and

189ff.

For unit conversions see pp. 276ff.

• Boole’s algebra:

  AND,   NAND,   OR,   NOR,   XOR,   XNOR, and   NOT operate on reals like

these operations did in the HP-28S, i.e. x and y are interpreted

before executing the operation. Zero is ‘false’ (= 0); any other

number is ‘true’ (= 1).

Example: 13.5 –7.2   AND returns 1.

• Probability and statistics (unless introduced and explained on pp. 96ff

already):

  Γ(x) calculates the Gamma function,

  lnΓ returns the natural logarithm of the Gamma function, allowing

also for calculating really great factorials:

Example: What is 5432! ?

WP 43S U v0.16 --- Page 121 of 328

Remember Γ ( x + 1 ) = x! So, entering 5433   lnΓ

10  returns 17 931.480 374 010 87 as decadic logarithm

of the result. Calling   FP will return some

3.023 553 598 420 006 for its mantissa. Thus, 5 432! ≈

3.024 × 10 17 931.

  RAN# returns a (pseudo) random real number between 0 and 1,

  SEED stores a seed (i.e. a start value) for RAN#,

  RANI# returns a (pseudo) random integer number ∈ [𝒙, 𝒚];

and the other contents of

PROB cover combinations, permutations, and the 14 distributions

introduced on pp. 97ff.

Σ contains all accumulated sums of your data, callable by their

names.

In STAT, you find the summation commands Σ+  and Σ- , various

mean values (   ,  ⒲  ,  Ⓖ  ,  Ⓗ  ,  ⓇⓂⓈ  ), sample standard

deviations ( s , s⒲) and standard errors (s⒨ , s⒨⒲),
population standard deviations ( σ , σ⒲), various scattering

factors ( ε , ε⒨ ,  ε⒫ ), as well as all commands related to curve

fitting ( L.R.   etc.).

Turn to the ReM for comprehensive information about all the

statistical and probability functions provided on your WP 43S.

• Percentages:

  % calculates
𝑥𝑦

100⁄ , leaving y unchanged (so you can easily

calculate another percentage of the same base after CLX).108

Example (from the HP27 OH):

If you buy a new car, you have to figure the sales tax percentage,

then add that to the purchase price to find the total cost of the car.

... For example, if the sales tax on a $6200 car is 5%, what is the

amount of the tax and total cost of the car?

108 Actually, that’s the (almost only) real benefit of the function .

Page 122 of 328 -- WP 43S U v0.16

6200 5   % returns 310. US$ for the sales tax;

 returns 6 510. US$ for the total cost.

If the dealer gives you a 10% discount on the car, what will your

total cost be?

6200

10   % returns 5 580. US$ for the discounted price;

5   % returns 5 859. US$ for the total cost.

 calculates the percentage of change from y to x, returning

100
𝑥−𝑦

𝑦
 , leaving y unchanged (for same reason as with   % ).

You can use also for calculating markup109 or margin:110

Example:

You purchase ink cartridges for 21.99 US$ wholesale and retail

them for 26.50 US$. What percent is your markup and what

percent is your margin?

21.99 26.5 returns 20.5 % markup.

26.5 21.99 returns −17.0, i.e. 17 % margin.

  %MRR calculates the mean rate of return in % per period, i.e.

100 (√
𝑥

𝑦

𝑍
− 1) with y = present value, x = future value after

z periods,

  %T calculates 100 𝑥 𝑦⁄ (called “% of total”), leaving y un-

changed,111

  %Σ returns 100 𝑥 ∑𝑥⁄ , and

109 Markup is the price difference as a percentage of cost (wholesale) price.

110 Margin is the price difference as a percentage of selling (retail) price.

111 I still wait for somebody convincing me of the use of this financial function. Well, it

preserves y, but else? Please see also %+MG and the corresponding footnote.

WP 43S U v0.16 --- Page 123 of 328

  %+MG calculates a sales price by adding a margin110 of x % to the

cost y; you may use %+MG for calculating net amounts as well

– just enter a negative percentage in x.

Example:

Total billed = 221,82 €, VAT = 19%. What is the net?

221.82 19   %+MG returns 186,40.112

• Advanced mathematics (see the ReM, App. H for comprehensive

information about the functions following):

o Monadic functions:

  B⒩ and   B⒩ return the Bernoulli numbers,

 erf and   erfc the error function and its complement,

  FIB the extended Fibonacci number,

  g⒟ and   g⒟ the Gudermann function and its inverse, and

  NEXTP the next prime number greater than x ;

  sinc returns 𝑠𝑖𝑛(𝑥) ⁄ 𝑥 for x ≠ 0 and 1 for x = 0 (input shall be

supplied in radians – see pp. 125f),

  W⒫ returns the principal branch of Lambert’s W for given

x ≥ –1/e,   W⒨ the negative branch of it,

  W returns x for given Wp (≥ −1), and

  ζ(x) Riemann’s Zeta function.

112 Every engineer or scientist will be able to produce the very same result significantly

faster via 221.82 1.19  .

Seeing functions like %+MG and %T in particular provided on financial calculators,

however, you may get the impression that average financial people might be mathe-

matically slightly challenged and need some extra support. On the other hand, there

is a saying in technical quarters (before 2008 already): ‘Looking at the results financial

people produce with plus and minus alone, their access to more advanced operations

should be strictly limited’ (originally: “Wenn man sieht, was Kaufleute mit plus und

minus alles anstellen, sollte man sie an höhere Rechenarten erst gar nicht ranlassen”).

Page 124 of 328 -- WP 43S U v0.16

Call   H⒩ for the Hermite polynomials for probability and

  H⒩⒫ for the Hermite polynomials for physics,

  L⒩ for Laguerre’s polynomials and

  L⒩ for Laguerre’s generalized polynomials,

  P⒩ for the Legendre polynomials,

  T⒩ for the Chebyshev polynomials of 1st kind and

  U⒩ for the Chebyshev polynomials of 2nd kind.

o Dyadic functions:

  AGM returns the arithmetic-geometric mean,

  J⒴(x) the Bessel function of 1st kind and order y ,

  β(x,y) Euler’s Beta function,

  lnβ the natural logarithm of Euler’s Beta function,

  γₓ⒴ the lower incomplete gamma function,

  Γₓ⒴ the upper incomplete gamma function, and

  IΓ⒫ and   IΓ⒬ return the regularized gamma function (1 of 2 kinds).

o Triadic function:

  I⒳⒴⒵ returns the regularized beta function.

WP 43S U v0.16 --- Page 125 of 328

Angles and Trigonometric Functions

For dealing with angles on your WP 43S, you may choose out of five

angular display modes (ADM) featured: DEG, RAD, GRAD, MULπ, and

D.MS.113 Angles are entered as reals. They are interpreted according

to the current ADM as indicated in the status bar by   ∡°,   ∡⒭,   ∡⒢,   ∡π, or

  ∡” (cf. p. 75) as soon as a function expecting angular input is called.

Exception: Sexagesimal angles must be entered in the format

ddddd.mmsspp – with ddddd standing for integer

degrees, mm for angular minutes, ss for seconds, and

pp for hundredth of seconds – terminated by .

Example:

Entering 12.3454321 returns 12°34'54.32".

There are some functions (e.g. ARCSIN) operating on reals and

returning angles. The returned values will be automatically tagged

according to the current ADM. Assume FIX 3 and RDX. set for the

following examples:

In ADM5   arccos will return …

 ∡⒭ 1.047⒭

 ∡π 0.333π

 ∡° 60.000°

 ∡” 60° 0' 0.00"
114

 ∡⒢ 66.667⒢

113 All ADM setting commands except D.MS are found in MODE.

Translator’s note: The traditional calculator notations DEG and GRAD are misleading

in German at least: DEGrees on your WP 43S mean “Grad”, while calculator GRADes

are generally called “Gon” in Continental Europe.

114 Note there are no leading zeroes in the angular minutes and seconds sections. And
this ADM can neither take nor display anything smaller than 0.01”. On the other hand,
it will display down to that fraction always and cannot be shortened.

Page 126 of 328 -- WP 43S U v0.16

Whenever you see a number formatted alike on your WP 43S you know

it is an angle. – Other functions presume their inputs

being angles, e.g. SIN. Decimal inputs are generally

interpreted as angles of the current ADM.

14 angular conversions are provided, all found in :

From …

to …

sexa-

gesimal

degrees

decimal

degrees

radians grades/

gon

multiples

of π

current
ADM or
tagging

sex. degrees —  D→D.MS — — —   →D.MS

dec. degrees   D.MS→D —   R→D — —   →DEG

radians —   D→R — — —   →RAD

grades/gon — — — — —   →GRAD

multipl. of π — — — — —   →MULπ

current ADM   D.MS→   DEG→   RAD→   GRAD→   MULπ→ —

Example:

   FIX

   MULπ Choose multiples of π as ADM and   ∡π will appear in

the status bar and stay there for the time being.

300 0.003 33 So / 300 …

   →RAD 0.010 47⒭ are 0.010 47 radians

  →DEG 0.600 00° or exactly 0.6°

  →D.MS  0°36' 0.00" or 36 angular minutes

  →MULπ 0.003 33π equivalent to / 300 still.

Note   →RAD ‘knew’ it had to convert from multiples of π since this function

expects angular input and took the current ADM setting into account.

Angular output of operations is tagged and will stay so. Thus,   →DEG
above converted from radians,   →D.MS from decimal and   →MULπ from

sexagesimal degrees since the respective inputs were tagged.

WP 43S U v0.16 --- Page 127 of 328

You have learned about trigonometric functions in school. Thus, we just

demonstrate their operation on angles with one example.

Example (found in the HP-25 OH):

Lovesick sailor Oscar Odysseus dwells on the island of Tristan da Cunha

(37°03'S, 12°l8'W), and his sweetheart, Penelope, lives on the nearest

island. Unfortunately for the course of true love, however, Tristan da

Cunha is the most isolated inhabited spot in the world. If Penelope lives

on the island of St. Helena (15°55'S, 5°43'W), use the following formula

to calculate the great circle distance that Odysseus must sail in order to

court her. 115

Solution:

The formula for the great circle distance d in nautical miles is:

𝑑 = 60 × 𝑎𝑟𝑐𝑐𝑜𝑠[𝑠𝑖𝑛(𝐵𝑠)𝑠𝑖𝑛(𝐵𝑑) + 𝑐𝑜𝑠(𝐵𝑠)𝑐𝑜𝑠(𝐵𝑑)𝑐𝑜𝑠(𝐿𝑑 − 𝐿𝑠)]

with Bs and Ls being the latitude  and longitude of the start (Tristan da

Cunha) and Bd and Ld being the latitude and longitude of the destination

(St. Helena). 116 Hence, with the numbers inserted, this formula reads:

𝑑 = 60 × 𝑎𝑟𝑐𝑐𝑜𝑠[𝑠𝑖𝑛(37°03′𝑆) 𝑠𝑖𝑛(15°55′𝑆)
+ 𝑐𝑜𝑠(37°03′𝑆) 𝑐𝑜𝑠(15°55′𝑆)
× 𝑐𝑜𝑠(5°43′𝑊 −12°18′𝑊)]

Set the appropriate number of decimals and calculate from inside out,

remembering the trigonometric functions assume their input being in the

current ADM as indicated in the status bar.

 Since we will use sexagesimal degrees throughout
this calculation, we set ADM accordingly.

   FIX We will not need more decimals displayed.

5.43   5°43' 0.00"

12.18 12°18' 0.00"

 -7°15' 0.00"

115 This example was reprinted thereafter in each and every HP scientific pocket

calculator manual until the HP-41C/41CV OHPG.
116 This formula means that 1 nmi corresponds to 1 angular minute on a great circle.

This doesn’t hold exactly but precisely enough for practical sailing. See U → for nmi.
Translator’s note: Latitude means “geographische Breite” in German. Hence B is used
in the formula above.

Page 128 of 328 -- WP 43S U v0.16

   cos   0.99

15.55  cos 0.96

  0.96

37.03  cos  0.80

  0.76

  sin  0.60

  sin  0.27

  0.17

  0.93

  arccos 21°55'24.66"

 21.92 convert to a real number.

60 returning  1 315.41 nmi that Odysseus must
sail to visit Penelope.

Mixed Calculations: Coordinate Transformations in 2D,

Flight Directions, Courses over Ground, etc.

Two functions are provided for converting polar or rectangular coordi-

nates in two dimensions. Input and output data are in

stack registers X and Y here.

 converts 2D Cartesian coordinates x and y to polar

magnitude or radius r in X and angle ϑ in Y.

Example (assuming startup default settings):

Convert (x, y) = (6, 4.5) to polar. Two decimals shall do.

Solution:

   FIX

4.56 returns

  θ =  36.87°
  r =   7.50

i.e. a vector of magnitude 7.5 pointing up right from the

origin with an angle of some 37° to the positive x-axis.

WP 43S U v0.16 --- Page 129 of 328

 does the reverse, it converts 2D polar magnitude or radius r in X

and angle ϑ in Y to Cartesian coordinates x and y. Both functions

honour the ADM settings and tags as described in previous chapter.

Example (continued):

Convert the returned angle of the conversion executed above to radians,

and then convert the resulting coordinates (r, ϑ) to rectangular.

Solution:

      7.50
 36.87°

   →RAD   7.50
 0.64⒭

 returns   y = 4.50
  x = 6.00
as expected.

Note angular input can range from −∞ to +∞;

angular output, however, is confined to −180°

to +180° or its equivalents, i.e. − π to + π in

radians, −200g to +200g in grades, and

−1 to +1 in multiples of π.

Example (triggered by the HP-67 OHPG):

In an electronic circuit designed for alternating current, an overall

impedance of 82.4 Ω is measured, and voltage lags current by 28°.

Replacing said circuit by an equivalent containing just a resistor and a

capacitor in series, what would be

the resistance R and the capacitive

reactance XC therein?

Solution:

The values measured correspond to

an impedance vector of magnitude

Page 130 of 328 -- WP 43S U v0.16

82.4 pointing down right at an angle of −28° to the positive x-axis. R is

its component parallel to the x-axis, and XC is its perpendicular com-

ponent parallel to the y-axis:

   FIX

−2882.4

 returns

 y =     -38.7
x =   72.8

i.e. a resistance of 72.8 Ω and a reactance of 38.7 Ω.

By the way, you can use and also to convert 3D cylinder

coordinates to Cartesian and vice versa, since z is kept unchanged.

Having learned about and as well as about and , we

can profit from combining these functions. Here is an example:

Example (from the HP-25 OH):

The instruments in fearless bush pilot Apeneck Sweeney's converted

P-41 indicate an air speed of

125 knots and a heading of

225°. However the aircraft is

also being buffeted by a steady

25-knot wind that is blowing

from north to south. What is the

actual course and speed of the

aircraft?

Solution:

Combine the vector indicated on the aircraft instruments with the wind

vector to yield the actual course and speed. Convert the vectors to rect-

angular, then combine the x- and y-coordinates in the statistical

summation registers. Finally, recall the summed x- and y-coordinates and

convert them to polar coordinates giving the actual vector of the aircraft.

(North becomes the x-coordinate in order that the problem corresponds

with navigational convention.)

  CLΣ clears the summation registers.

WP 43S U v0.16 --- Page 131 of 328

  FIX

225125 indicated air speed and heading.

 returns   y =      -88.39
  x =     -88.39

 Σ+ adds x and y to the summation registers.

18025 north wind.

 returns   y =     0.00
  x =      -25.00

 Σ+ adds x and y to the summation registers.

  SUM recalls the summation registers Σx and Σy

 returns   θ =     -142.06°
  r =     143.77

360 returns 217.94°

(we have to change the angle to become positive
for being in line with navigational convention).

So, Mr. Sweeney is actually flying at 143.77 knots on a course of 217.94°

over ground. Note we will demonstrate an alternative way for solving this

kind of 2D vector problems on p. 158.

A similar example appeared first in the HP-55 OH and was copied then

for some years. We quote the respective text from the HP-33 OH:

Example:

On his way to search for an albino caribou,

grizzled bush pilot Apeneck Sweeney's

converted Swordfish aircraft has a true air

speed of 150 knots and an estimated

heading of 45°. The Swordfish is also being

buffeted by a headwind of 40 knots from a

bearing of 25°. What is the actual ground

speed and course of the Swordfish?

Page 132 of 328 -- WP 43S U v0.16

Start of solution:

Method 1: The course and ground

speed are equal to the difference

of the two vectors.

Method 2: Taking into account

that a bearing of 25° equals a

heading of 25° + 180° = 205°, the

corresponding headwind vector

may be added (cf. the HP-97

OHPG).

We leave it to you to solve this

problem using and (but

give you the results for crosschecking: 51.94° and 113.24 knots).

Additionally, here is an advanced problem from a universe far, far away:

Example from the HP-32 OH:117

Federation starship Felicity has

emerged victorious from a furious

battle with the starship

Θανατος 118 from the renegade

planet Maldek. However, its auto-

matic pilot is kaput,119 and its main

thrust engine is locked on at 37.2

meganewtons (MN) directed

along an angle of 25.2° from the

star Ultima (= Latin for ‘the last’).

Consulting the ship's star map,

the navigator reports a hyper-

space entrance vector of 51 MN

at an angle of 41.3° from Ultima.

117 … of 1978. Note the first episode of Star Wars was launched in 1977.

118 Translator’s note: This is the ancient Greek word for ‘death’, pronounced like
‘Tunnatoss’ in English but like ‘Thanatos’ in Spanish, Italian, French, German, and
Finnish, for example. Actually, they printed Thanatos in the English handbook.

119 Oh, why can’t the (American) English learn to speak … ummh … spell?

WP 43S U v0.16 --- Page 133 of 328

To what thrust and angle should the auxiliary engine be set, for Felicity to

achieve alignment with the hyperspace entrance vector?

Solution:

The required thrust vector of the auxiliary engine is equal to the hyperspace

entrance vector minus the thrust vector of the main engine. The vectors are

converted to rectangular coordinates using , and their difference is cal-

culated using and . This difference is recalled to the X- and Y-

registers using . Then, these rectangular coordinates of the auxiliary

engine thrust vector are converted to polar coordinates using .

  CLΣ clears the summation registers.

41.3 51 hyperspace entrance vector

 returns   y =   33.66
  x = 38.31

 Σ+ adds the x and y components of the hyperspace entrance
vector to the summation registers.

25.2 37.2 main engine thrust vector

 returns   y = 15.84
  x = 33.66

 Σ- subtracts the x and y components of the main engine thrust

vector from the summation registers.

 SUM recalls the summation registers:

   Σy =  17.82
  Σx =  4.65

 returns   θ = 75.36°
  r = 18.42

meaning the auxiliary engine shall be set at 18.42 MN

and an angle of 75.36° from Ultima.120

120 Those looking for an extra challenge can compute now how flat the crew of Felicity

will become within seconds after the auxiliary engine is ignited.
By the way, the plane of action in 3D space seems to be defined sufficiently by Felicity,
Ultima, and said hyperspace entrance (hopefully its center) here with all parameters
specified to three digits maximum – a proper error calculation would have been

Page 134 of 328 -- WP 43S U v0.16

Real adepts of vector algebra may prefer subtracting the main engine

thrust vector first and adding the hyperspace entrance vector second.

This will work as well although the count of ‘data points’ will become

negative once – simply don’t bother.

See the operating manuals of vintage HP calculators (especially the

HP-27) for further applications from the areas of mathematics (e.g.

triangle solutions), navigation, and surveying.

Angles: Summary of Functions

The number of functions operating on and with angles is quite limited.

They are important nevertheless. See all functions listed below:

• General mathematics:

o Monadic functions:

  sin,   cos, and   tan operate on angles and return reals,

  arcsin,   arccos, and   arctan operate on reals and return

angles,

 returns x × (−1) for closed input (a.k.a. ‘unary minus’).

o Dyadic functions:

, , , and work as specified in the matrices on pp. 71f,

  max (or   min) return the maximum (or minimum) of x and y.

• Rounding:

  ROUND rounds x using the current display format (cf. pp. 118f),

• Conversions:

 converts rectangular coordinates to polar ones (cf. pp. 20f),

while converts vice versa. Cf. the examples on pp. 128ff.

Angular conversions are covered comprehensively on p. 126.

appreciated. This problem was reprinted in the HP-34C OH one year later. It vanished
in hyperspace thereafter, without a trace.

WP 43S U v0.16 --- Page 135 of 328

Integers: Input and Displaying

Any single number (e.g. a counted value) you enter without using or

 is regarded as an integer by your WP 43S (cf. pp. 68f). It allows for

integer computing in fifteen bases from binary to hexadecimal.

Any single number displayed without any punctuation on your WP 43S

is an integer (see examples below). And it will stay integer as long as it

is exclusively combined with other integers and only integer functions

operate on it; else it will be converted to another data type (cf. the

matrices on pp. 71f and Section 3 of the ReM). Note that any closed

integer x will be converted to a real number by , while even an open

one will be converted to an angle by any angular conversion  (cf. p. 74).

There are two kinds of integers provided on your WP 43S : integers of

finite length (called short) and of almost arbitrary length (called long).

Long integers are useful e.g. for numeric tasks. If you enter a number

of arbitrary length just without using or , it is taken as a long integer

of base 10. For example,

111 111 111 returns 12 345 678 987 654 321

Note the number is adjusted to the right again when closed, though no

point (or comma) is displayed. A 17-digit result is shown with ease.

Large long integers (> 1021) will be displayed using the small font. Very

large ones (> 1042) will be shown with an exponent instead of their least

significant digits; nevertheless, all their digits are kept internally, so long

integers can be of very high precision.

Example (a mathematical problem solved in 2019):

It was proven for integers n from 1 up to 100 that they 121 can be

expressed as sum of three integer cubes n = i3 + j3 + k3 – except for 42.

In September 2019, two mathematicians of Bristol and Boston published

that the numbers 12 602 123 297 335 631, 80 435 758 145 817 515, and

−80 538 738 812 075 974 should solve this problem. Verify!

121 Unless mod(𝒏;9) = 4 𝑜𝑟 5. See two chapters below for the function mod.

Page 136 of 328 -- WP 43S U v0.16

12 602 123 297 335 631  x³  returns

 2 001 387 454 481 788 542 313 426 390 100 466 780 457 779
  044 591

80 435 758 145 817 515  x³  returns

522 413 599 036 979 150 280 966 144 853 653 247 149 764 3 
 62 110 466

−80 538 738 812 075 974  x³  returns 42 !

This is all you need to know about entering and displaying long integers

– turn to pp. 143ff for further information about calculating with them.

Short integers feature a finite word size (up to 64 bits) and are

especially useful for computer logic and system design tasks incl.

debugging. Your WP 43S encompasses all the integer and bit manipu-

lation operations of the dedicated Computer Scientist’s HP-16C and

even all the bases and the entire extended function set of the WP 34S.

Short integers are

entered with trailing

 base (= 2 …16).

For decimal short

integers, you may

use instead of

, for hexa-

decimal in-

stead of .

Open INTS (see its

top view displayed

here) for the digits A

… F required for nu-

meric input in

bases >10.

WP 43S U v0.16 --- Page 137 of 328

From the 2nd integer input on, you can save keystrokes: If you enter a

new number omitting and base (as well as , , and  ), your

WP 43S takes it as a short integer of the same base you keyed in before

– as long as you did not enter any other data type in between.122

Word size and integer sign mode (ISM) settings are indicated in the

status bar using a format ww:x. Therein, ww denotes the word size in

bits and x is   1 or   2 for 1’s or 2’s complement, respectively,   u for

unsigned, or   s for sign-and-mantissa mode (cf. p. 76); these ISM’s

control the handling of negative numbers (see examples below).

Carry and Overflow – if set – will be shown as   ⒞ or   º or   ©, respectively,

trailing ISM display in the status bar. Both behave like they did on

HP-16C or WP 34S, corresponding to system flags (cf.

p. 55) – if you want to set, clear, or check them one by

one, use the commands provided in FLAGS.

Example:

Enter SF  SYS.FL  LEAD.0 (or SF  )

   WSIZE This allows seeing all bits at a glance easily.

147 Enters 147 (base 10)

 Converts decimal 147 to binary.

  1COMPL and you will see 123

    0000 1001 0011② and – after –     1111 0110 1100②.

Obviously in 1COMPL flips every bit, equivalent to NOT here.

Return to the original number via , press  2COMPL, and you will get

    0000 1001 0011② and – after –     1111 0110 1101②.

Note the negative number equals the inverse + 1 in 2COMPL.

122 This shortcut will be left as soon as you enter a , , , or in input, even if
deleted thereafter.

Illegal digits keyed in (e.g. 2 in base 2 or B in base 10) can be detected no earlier than
said input is completed, so an error will be thrown then. You may key in more than the
current word size can take – also this will be checked when input is closed.

123 Note the gap automatically inserted every four bits here for easy reading this output.

Page 138 of 328 -- WP 43S U v0.16

Return via again, press  SIGNMT and you will see

    0000 1001 0011② and – after –     1000 1001 0011②.

Negating a number will just flip the top bit in SIGNMT (hence the name of

this mode).

Return via once more, press   UNSIGN and you will get

    0000 1001 0011② and – after –   1111 0110 1101②.

Note the 2nd number looks like in 2COMPL, but in addition an overflow is

set here – see the   º in the status bar trailing the ISM.124 Thus, pressing

 will not suffice anymore for returning to the original number here;

you must clear the overflow flag explicitly by CF  SYS.FL OVERFL.

As you have seen, positive numbers stay unchanged in all those four

modes. Negative short integers, on the other hand, are displayed in

different ways. Therefore, taking a negative integer in one mode and

switching to another one will lead to different interpretations.

Example:

The fixed bit pattern representing

  -147⑩ in   12∶2 will be displayed as…

 -146⑩ in   12∶1 , as…

 -1 901⑩ in   12∶s , and as…

 3 949⑩ in   12∶u . You can verify this easily.

Keeping the mode and changing bases will produce different views of

the constant bit pattern as well.

124 This needs explanation, since changing signs should have no meaning in unsigned

mode per definition. Thus, should be illegal here or result in no operation at least.

“In unsigned mode, the most significant bit adds magnitude, not sign, so the largest

value represented by a 12-bit word is 4095 instead of 2047” (quoted from the HP-16C

Computer Scientist Owner’s Handbook of April 1982, p. 30).

Unfortunately, however, in unsigned mode was allowed by the designers of the

HP-16C and implemented as shown above; so we follow that implementation for sake

of backward compatibility, though frowning.

WP 43S U v0.16 --- Page 139 of 328

Example:

Compare the outputs for different bases in 12∶2 :

 -147⑩ corresponds to…

  1111 0110 1101② ,

  -12 110③ ,

 33 12 31④ ,

   -1 042⑤ ,

   -403⑥ ,

   -300⑦ ,

 75 55⑧ , and

   -173⑨ .

You may have noticed that the displays for bases 2, 4, and 8 look similar,

presenting all twelve bits to you, while in the other bases a signed

mantissa is displayed instead. There are also different separator

intervals; they are fixed for short integers unless GAP 0 is set by you.

These different display formats (and more) take into account that bases

2, 4, 8, and 16 are most convenient for bit and byte manipulations and

further close-to-hardware applications. The bases in between will

probably gain most interest in dealing with different number

representations and calculating therein, where base 10 is the common

reference standard.125

Let’s look to bigger words now:

Example (continued):

Enter CF

   WSIZE   UNSIGN

   9 3   A 1 4   C 6  (cf. the menu shown on p. 136).

Then your WP 43S will display

 9 3A 14 C6⑯

125 During numeric input, however, a gap is inserted every 3 digits as for real numbers –

your WP 43S cannot know in advance what you have in mind.

Page 140 of 328 -- WP 43S U v0.16

In binary representation, this number will need 28 digits and would look

like

 1001 0011 1010 0001 0100 1100 0110②.

Obviously, your WP 43S cannot display a binary number of this size this

way in a single row (no pocket calculator can as far as we know). Look

what it does instead – enter for converting x to binary and you

will see:

  1001 0011 1010 0001 0100 1100 0110₂

This binary number is displayed using the small font provided. If leading

zeros were turned on via   SF , all 64 bits would be displayed

in one row making use of a minimal font:

∎∎∎∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ ‧∎∎‧ ∎∎‧‧ ‧∎‧∎ ∎∎∎‧ ∎‧∎∎ ‧‧∎∎ ∎‧‧∎₂

… with the 36 most significant bits all containing 0.

Integers: Bitwise Operations on Short Integers

Your WP 43S carries all the bitwise operations you may know from the

vintage HP-16C Computer Scientist, plus some more you may have

learned with the WP 34S. You find them all in BITS. Generally, bits in a

word are counted from right to left, starting with number 1 for the least

significant bit. This convention is important for specifying correct bit num-

bers in the operations BC?, BS?, CB, FB, and SB.

The following examples deal with 8-bit words

showing leading zeros for easy reading.

   WSIZE

  SF

1011 0011

This is the common initial number for the operations presented in the table

below. You find seven shift and rotate functions with schematic pictures

WP 43S U v0.16 --- Page 141 of 328

herein like they were printed on the backplane of the HP-16C, wherein

the boxed C represents the carry bit indicated in the status bar if set.

Operation
Schematic picture if

applicable E. g.
Output

Clear Bit CB 5 1010 0011②[c]

Flip Bit FB 6 1001 0011②

Set Bit SB 7 1111 0011②

Negate NOT (¬) 0100 1100②

Mirror MIRROR 1100 1101②

Rotate Left

RL 1 0110 0111② Ⓒ
RL 2 1100 1110②

Rotate Left
through

Carry

RLC 1 0110 0110② Ⓒ

RLC 2 1100 1101②

Rotate Right

RR 1 1101 1001② Ⓒ
RR 2 1110 1100② Ⓒ
RR 3 0111 0110②

Rotate Right
through

Carry

RRC 1 0101 1001② Ⓒ
RRC 2 1010 1100② Ⓒ
RRC 3 1101 0110②

Shift Left

SL 1 0110 0110② Ⓒ
SL 2 1100 1100②

Shift Right

SR 1 0101 1001② Ⓒ

SR 2 0010 1100② Ⓒ

Page 142 of 328 -- WP 43S U v0.16

Operation
Schematic picture if

applicable E. g.
Output

Arithmetic
Shift Right

ASR 3

in 1/ 2COMPL:

1111  0110②

in UNSIGN:126

0001  0110②

in SIGNMT:

1000  0110②

Now let’s also look at the bitwise dyadic functions. We will continue using

8-bit words displayed as above for the following examples:127

Common
input

Y 0110  1011②

X 1011  1001②

Operation Symbol Output

   AND ∧ 0010  1001②

  NAND ⊼ 1101  0110②

  OR ∨ 1111  1011②

  NOR ⊽ 0000  0100②

  XOR ⊻ 1101  0010②

  XNOR 0010  1101②

See the IOI for these and further commands operating on bit level on

integers (LJ and RJ, MASKL and MASKR, #B, and the tests BS? and

126 The picture for ASR correctly describes this operation for 1’s and 2’s complement
modes only. In all modes of the HP-16C, however, ASR 3 equals a signed division by
23, hence the different results for the latter two modes shown above. The other bitwise
operations are insensitive to ISM setting. Turn to the IOI for further details.

127 Remember:

WP 43S U v0.16 --- Page 143 of 328

BC?). Most of them are found in BITS.

Finally, note that no such operation will set an Overflow. Carry is only

settable by shift or rotate functions as demonstrated above. And ASR is

the only bitwise operation being sensitive to ISM – ASR is the link to

integer arithmetic operations.

Integers: Arithmetic Operations

Of the four basic arithmetic operations ( +, −, ×, and / ), the first three

work with both kinds of integers as they do with reals; the only difference

lies in precision: up to 64 digits precision for short integers in binary

representation on your WP 43S or even (almost) infinite precision for

data type 1. Take as a multiplication times −1, and yx as repeated

multiplication. Depending on input parameters and mode settings, the

OVERFLow or CARRY flags may be set in such an operation (see pp.

146ff).

Divisions, however, must be handled differently in integer domain since

the result cannot feature a fractional part here. Generally, the formula

𝑎

𝑏
= (𝑎 div 𝑏) +

1

𝑏
× rmd(𝑎; 𝑏)

applies; therein, the horizontal bar denotes real division, div represents

integer division, and rmd stands for the remainder of the latter. While

remainders for positive parameters are simply found, remainders for

negative dividends or divisors may lead to confusion sometimes. The

formula above, however, is easily employed for calculating such

remainders (also for reals – see the first row of the examples here):

25

7
= 3 +

1

7
× 4 (and for a real case:

25

7.5
= 3 +

1

7.5
× 2.5)

−25

7
= −3 +

1

7
× (−4) rmd(−25; 7) = −4

25

−7
= −3 +

1

−7
× 4 rmd(25;−7) = 4

−25

−7
= 3 +

1

−7
× (−4) rmd(−25;−7) = −4

Page 144 of 328 -- WP 43S U v0.16

In general, rmd(𝑎; 𝑏) ≔ 𝑎 − 𝑏 × (𝑎 div 𝑏) applies.

Unfortunately, there is a second function doing almost the same: it is

called mod. With the same pairs of numbers as above, it returns:

mod(25; 7) = 4 ,

mod(−25; 7) = 3 ,

mod(25;−7) = −3 ,

mod(−25;−7) = −4 .

So mod (i.e. modulo) returns the same as rmd only if both parameters

have equal signs. The general formula for mod is a bit more

sophisticated than the one above:

mod(𝑎; 𝑏) ≔ 𝑎 − 𝑏 × floor (
𝑎

𝑏
) with e.g. floor (

25

7
) = 3 and

floor (−
25

7
) = −4 .

By the way, this formula applies to reals as well. So it

may be used straightforwardly for calculating e.g.

mod(25.3;−7.5) = 25.3 − (−7.5) · (−4) = −4.7 .

These four functions are called IDIV, RMD, MOD, and

FLOOR 128 on your WP 43S for obvious reasons. They

are found in INTS (cf. p. 136), together with more

integer operations like CEIL, ×MOD, and ^MOD (see

p. 149 for an example); and are also on the

keyboard as shifted function of .

Furthermore, many exponential and logarithmic operations, x2 and √𝑥 ,

x3 and √𝑥
3

 , x!, COMB and PERM, as well as SIN, COS, and TAN

operate on integers, too. Note that some of these functions will stay in

integer domain while others may or will return real or even complex

numbers. See the summary on pp. 148f for further information.

128 Note FLOOR and CEIL are functions operating on a real number and returning a long
integer.

WP 43S U v0.16 --- Page 145 of 328

Integers: Overflow and Carry with Short Integers

There are conditions where OVERFL and/or CARRY will be touched in

arithmetic operations on short integers on your WP 43S. Note there is a

maximum and a minimum integer displayable for each word size and

ISM setting – let’s call them Imax and Imin.

Example:

For four-bit words (i.e. WSIZE 4), we get

• Imax = 15 and Imin = 0 for   4∶u, while

• Imax = 7 and Imin = −8 for   4∶2,

• Imax = 7 and Imin = −7 for   4∶1 and   4∶s.

Let’s start from 1 incrementing by 1 and see what will happen in these

various modes. And whenever OVERFLow and / or CARRY will be lit in the

status bar in this course, we will clear them (using

 CF  SYS.FL  OVERFL or CF and / or

 CF  SYS.FL  CARRY or CF  )
before next increment:

4∶u 4∶2 4∶1 4∶s

0001② 1 0001② 1 0001② 1 0001② 1

0010② 2 0010② 2 0010② 2 0010② 2
… … … … … … … …

0111② 7 0111② 7 0111② 7 0111② 7

1000② 8 1000② º -8 1000② º -7 1000② © -0

1001② 9 1001② -7 1001② -6 0001② 1
… … … … … …

1110② 14 1110② -2 1110② -1

1111② 15 1111② -1 1111② -0

0000② © 0 0000② ⒞ 0 0001② ⒞ 1

0001② 1 0001② 1

Page 146 of 328 -- WP 43S U v0.16

For comparison, we start another turn from 1 following the same rules but

decrementing by 1 instead:

4∶u 4∶2 4∶1 4∶s

0001② 1 0001② 1 0001② 1 0001② 1

0000② 0 0000② 0 0000② 0 0000② 0

1111② © 15 1111② ⒞ -1 1110② ⒞ -1 1001② ⒞ -1

1110② 14 1110② -2 1101② -2 1010② -2
… … … … … … … …

1001② 9 1001② -7 1000② -7 1111② -7

1000② 8 1000② -8 0111② º 7 1000② º -0

0111② 7 0111② º 7 0110② 6 1001② -1

0110② 6 0110② 6 … …
… … … … … …

0010② 2 0010② 2 0001② 1

0001② 1 0001② 1

The most significant bit is #3 in   4∶s  and #4 in all other modes here.

With these results, Imax, and Imin, the general rules for setting and clearing

CARRY and OVERFL in ISMs are as presented in the table overleaf:

Operation Effect on CARRY Effect on OVERFL

Shift and rotate As demonstrated on pp. 141f. None.

Boole’s, MIRROR None (cf. pp. 141f). None.

|x|, ABS None. Clears OVERFL

(but sets it for x = Imin

in 2COMPL).

WP 43S U v0.16 --- Page 147 of 328

Operation Effect on CARRY Effect on OVERFL

+, RCL+,

STO+, INC, etc.

Sets CARRY if there is a carry out

of the most significant bit, else

clears CARRY.

Sets OVERFL if the re-

sult exceeds

[Imin; Imax], else clears

OVERFL.

−, RCL−, STO−,

DEC, etc.

Sets CARRY in a subtraction m – s

• in 1COMPL or 2COMPL if the

binary subtraction causes a

borrow
129 into the most signi-

ficant bit,

• in UNSIGN if m < s ,

• in SIGNMT if m < s & m · s > 0

Else clears CARRY.

Sets OVERFL if the re-

sult exceeds

[Imin; Imax], else clears

OVERFL.

×, RCL×, STO×,

+/−, (−1)x, x2, x3,

LCM, x!, etc.

None.
Thus, in UNSIGN,

 always sets

OVERFL and (−1)x

does so for odd x.

2
x
 Clears CARRY.

Sets CARRY only if x = −1 , or

in UNSIGN if x = wsize or

in the other modes if x = wsize − 1

yx, 10
x
 Sets CARRY for x < 0 (as well as

for 00), else clears CARRY.
Sets OVERFL if the re-

sult exceeds [Imin; Imax],

else clears OVERFL.
e

x
 Sets CARRY for x ≠ 0, else clears.

DBL× None. Clears OVERFL.

129 See the examples on previous page.

Translator’s note: The so-called borrow in subtraction seems to be a specialty of the
USA. See the subtle methodic differences in manual subtracting explained in
http://de.wikipedia.org/wiki/Subtraktion#Schriftliche_Subtraktion . The corresponding
English article is less instructive. Both carry and borrow translate to Übertrag in
German.

http://de.wikipedia.org/wiki/Subtraktion#Schriftliche_Subtraktion

Page 148 of 328 -- WP 43S U v0.16

Operation Effect on CARRY Effect on OVERFL

/ , RCL / ,

STO /, DBL /,

LN, LOG10,

LOG 2, LOG x y,

√𝑥 , √𝑥
3

, √𝑦
𝑥

Sets CARRY if the remainder is ≠ 0,

else clears CARRY.

Clears OVERFL

but sets it in 2COMPL

for the division

Imin / (−1).

Integers: Summary of Functions

Many of the numeric functions operating on reals also work for integers.

In addition, there are some specialties as shown in the preceding

chapters, and beyond:

• General mathematics:

o Monadic functions:

, ∛Ϳ , lb x , and return long integers if possible (else real

or complex numbers) for long integer input 130 or just the

short integer part of the solution for short integer input,

, , x³ , 2ᵡ , and return integers as you expect, and

 works for short integers as demonstrated on p. 137.

o Dyadic functions:

, , , and return integers as you expect,

 returns an integer or a real in analogy to ,

 IDIV returns just the integer part of the division always,

 RMD returns the remainder of y/x (cf. pp. 143f for examples),

 IDIVR combines IDIV and RMD,

130 E.g. returns 8 for an input of 64, i.e. for a proper square, and 8.062… for an input
of 65, for instance. For an input of −64, it may return 0.+i×8 (see the chapters about

Complex Numbers below). In analogy, ∛Ϳ returns 2 for an input of 8, lb x returns 10

for an input of 1024, returns 3 for an input of 1000, etc.

WP 43S U v0.16 --- Page 149 of 328

 MOD returns y mod x (cf. p. 144 for examples),

 ∜Ȳ and logₓy return integers or reals in analogy to

(e.g. 625 5 logₓy returns 4),

 max (or min) return the maximum (or minimum) of x and y,

 GCD the Greatest Common Divisor of x and y and

 LCM the Least Common Multiple (remember school?).

o Triadic functions:

 ×MOD returns (z ∙ y) mod x for x > 1 , y > 0 , z > 0, and

 ^MOD returns (z y) mod x for x > 1 , y > 0 , z > 0

(e.g. 73 55 31 ^MOD returns 26).

• Boole’s algebra:

 AND , NAND , OR , NOR , XOR , XNOR , and NOT operate bitwise

on short integers as shown on p. 142. They operate on long

integers like in the HP-28S, i.e. x and y are interpreted before

executing the operation; zero is ‘false’ (= 0); any other number

is ‘true’ (= 1), cf. p. 120.

• Bitwise operations are exclusively for short integers:

 CB ,  FB ,  SB , ASR , SL ,  SR ,  RL ,  RLC ,  RR ,  RRC ,

and MIRROR work as demonstrated on pp. 140ff.

 LJ (or RJ) justifies the bit pattern to the left (or right) within its

word size,

   MASKL and    MASKR create mask words,

 BC?  and  BS?  test if the specified bit is clear or set,

 #B  counts the number of bits set in x .

See the IOI for more information about these commands.

• Probability (cf. pp. 96f):

 returns the factorial,

 C⒴⒳ calculates the number of combinations and

Page 150 of 328 -- WP 43S U v0.16

 P⒴⒳ the number of permutations, while

  RANI# returns a (pseudo) random integer number ∈ [𝒙, 𝒚].

• Advanced mathematics (see the ReM, App. H for more information):

 B⒩ and B⒩ return the Bernoulli numbers,

 FIB the Fibonacci number, and

 NEXTP the next prime number greater than x .

Many more functions accept integer input but will return different, mostly

real output. See the IOI and Section 3 of the ReM for details.

WP 43S U v0.16 --- Page 151 of 328

Rational Numbers (Fractions)

Fractions are handled like in previous RPN calculators. In particular,

DENMAX sets the maximum allowable denominator (up to 9999, see the

IOP). On your WP 43S, you can work with fractions like on the HP-32SII

and its successors but with higher precision.

A fraction is entered directly by keying in a 2nd radix mark in numeric

input (see the examples below). Here, the 1st radix mark is interpreted

as a blank space, the 2nd as a fraction mark. This way of input is

straightforward and logically coherent:

Examples:

Key in: … and get in startup default format

 12 ³/₄ =

 1.2 (decimal input)

 ¹/₂ =

 0.12 (decimal input)

 1 ⁰/₁ = (= 1 0/2)
131

Each closed real number on the stack will be displayed as a fraction

after is pressed, after a fraction is entered, or after

that number is combined with a fraction by an arithmetic

operation. If the fraction displayed is exactly equal,

slightly less, or slightly greater than the underlying real

number, =, <, or > will trail this fraction display,

respectively (see examples overleaf).

131 This display of a pure integer number tells you unambiguously your WP 43S is in

proper fraction display mode. In improper fraction display mode, i /₁ = will be displayed

instead. For comparison, note the HP-32SII reads as ½ – though this is

not coherent with its other input interpretations (and does not even save keystrokes but

adds confusion only).

Page 152 of 328 -- WP 43S U v0.16

Vice versa, each closed number x displayed as a fraction will be shown

as a decimal real number after or after   ALL,  FIX,  SCI, or  ENG.

And a closed fraction x will be decomposed to its integer numerator in Y

and its integer denominator in X by  DECOMP.

There are two fraction display modes: proper and improper fractions.132

 toggles them. They are illustrated below. On your WP 43S,

fraction display can handle numbers with absolute values greater than

10–4; maximum denominator is 9 999 (greater denominators may be

entered but will be reduced as soon as input is closed).

The following example comprises most aspects of fraction display:

Example (with startup default settings):

Enter: and you will see:

3 3.333 333 333 333 333×⒑⁻ⁱ
 ⁱ/₃ >

since 1/3 > 0.333 333 333 333 333 3.

 ³/₁ =
since this is exact.

78.40625 ⁻² ⁴ⁱ³/₃₂ =

   ⁵ ⁸²² ⁵⁶⁹/₁ ₀₂₄ =

2 ⁵ ⁸²² ⁵⁶⁹/₅₁₂ =

Now, press for converting this improper fraction to a proper one.133

You will get

 11 372 ¹⁰⁵/₅₁₂ =

11 1 033 ⁴ ⁷ⁱ³/₅ ₆₃₂ <

This fraction is less than the real value, deviating less than 0.5/5 632

from it.

132 Translator’s note for German readers: Proper fractions decken sowohl echte Brüche
(wie ¾) als auch gemischte Brüche (wie 2 ½) ab. Bei improper f. wird der ganzzahlige
Anteil nicht herausgezogen, so dass hier der Zähler größer als der Nenner sein kann.

133 This conversion was newly introduced on RPN calculators with the WP 34S.

WP 43S U v0.16 --- Page 153 of 328

Now, let’s reduce the maximum denominator by

64  DENMAX 64

 1 033 ⁴ⁱ/₄₉ <

 CF  SYS.FL  DENANY

CF  SYS.FL  DENFIX 1 033 ²⁷/₃₂ >

since DENANY and DENFIX both cleared allow

for denominators being factors of DENMAX

only (i.e. 2, 4, 8, 16, 32, and 64 here). This

last fraction is greater than the real value;

the fraction shown deviates from it by 0.5/32

maximum (and by 0.5/64 minimum – else the

display would read 1033 53/64 instead).

Before closing this chapter about numbers displayed as fractions, we will

not forget those isolated irrational islands in the vast sea of SI where you

may come across dimensions like in the following example:

A calculator stand is specified to measure 9 " × 3 1/2 " × 5/8 ". It goes

without saying that your WP 43S will support you also in such harsh

environments. Only absolute greenhorns, however, will expect that a

tight thin-walled box around this stand will displace

9 3 1 2    31 ¹/₂ =

 5 8    19 ¹¹/₁₆ =

 cubic inches of water.

Instead, a magic conversion factor from cubic inches to so called fluid

ounces is required now.134 And this factor even depends on the country

you are in! Though do not despair: in Section 5 you will learn how to do

this magic using your WP 43S – it takes just a little more time and effort

than calculating with rational units.

134 Honestly, unless you grew up in such a place we bet you have assumed fluid ounces
being a unit of mass, haven’t you? Since you have heard of ounces once before and
just thought … terribly wrong! Do not think there – you may run into deep troubles
easily (though thinking less you might achieve top positions in administration – see
recent experimental evidence).

Page 154 of 328 -- WP 43S U v0.16

Complex Numbers: Introduction

So far, we dealt with reals only (rational and integer numbers are mere

subsets of reals). Your WP 43S can do more for you. Mathematicians

know of more complex items than reals; these are called complex

numbers. If you do not know of them, leave them aside; you can profit

from your WP 43S perfectly without them.

If you know of complex numbers, however, note your WP 43S supports

many operations in complex domain as well as it does in real domain.

Complex numbers may be entered using

 (see p. 307). With startup default

settings, separates and concatenates

real and imaginary part in numeric input.

Examples (with startup default settings):

3 + i × 4 is keyed in while the display (set

e.g. to FIX 5) shows in lowest numeric row:

 3

 3 +i×

 3 +i×4

 3.000 00 +i×4.000 00

You enter the real part first – closes it – the imaginary part second

as you write the number.135

Input of negative complex numbers works in full analogy to real number

input (cf. p. 25). Following our example above,

135 Entering both parts vice versa would be more like RPN: first the imaginary part, then

 interpreted as i ×, finally the real part to be added. But it was decided differently
for the HP-42S already. So we follow tradition here.

For those of you working on the field of electronic engineering, an alternate format is
provided employing the letter  j  for the complex unit (the respective is called CPXj for
obvious reasons).

WP 43S U v0.16 --- Page 155 of 328

3 – i × 4 is keyed in ,

–3 + i × 4 is keyed in ,

–31 – i × 42 is keyed in .

Alternatively, use here.

Choosing scientific notation, e.g. SCI 5, this last number

will be displayed like

 -3.100 00×⒑ⁱ -i×4.200 00×⒑ⁱ

Depending on display format set, this may be shown more compact

(allowing for one decimal more):

  -3,100 000·⒑ⁱ -i·4,200 000·⒑ⁱ

Alternatively to rectangular notation, complex numbers may be written in

polar notation as well. With polar notation set

(by SF  SYS.FL  POLAR or SF

causing   ⊙ lit in the status bar), its magnitude

(or radius) r shall be entered first for a new

complex number and its phase (angle or

argument) ϑ second. This ϑ may be entered in

any angular notation; though often radians or

multiples of π make most sense here (e.g. set

   RAD  causing   ∡⒭ lit in the status bar).

Example:

With polar display mode, radians, and FIX 2 set, the complex number

(5 ; 1.2 r) is keyed in 51.2 with the display showing in

lowest numeric row successively:

 5

 5 ∡ 

 5 ∡ 1.2

 5.00 ∡ 1.20⒭

Special cases: If a negative magnitude is entered, it is made positive

and ϑ is increased by π and then normalized (i.e. ϑ will never exceed

the interval (− π, π] in radians or its equivalents – cf. p. 129). Larger

Page 156 of 328 -- WP 43S U v0.16

phase input is legal, but the output will be normalized always. If 0 is

entered for the magnitude, ϑ will be set to 0 as well.

Composing and decomposing a complex number: Alternatively to

entering a complex number directly, it may be generated from two closed

reals provided in X and Y. If   ∟ is lit, will take y as real part and x

as imaginary part composing the complex number. If   ⊙ is lit on the other

hand, it will take y as magnitude and x as phase of the new complex

number (compare numeric input above).

Example:

 CF These three entries return to startup default

CF settings   ℝ∟∡° .

 DEG

4 −3 4.
 -3.
 closes input without disturbing the stack.

 composes a complex number out of x and y now, lights  ℂ and

returns136 4. -i×3.

 SF turns   ∟ to  ⊙

 and displays  5.  ∡  -36.869 897 645 844 02°

Vice versa, may also cut a complex number x into two reals in X

and Y following the same rules.

Example (continued):

 returns r =         5.
θ =  -36.869 897 645 844 02°

136 Whenever a complex number is returned, your WP 43S will set CPXRES and  ℂ will
be lit in the status bar unless set before.

WP 43S U v0.16 --- Page 157 of 328

  ℂ ⊙ remains lit in the status bar.

  RAD returns 5.  ∡    -6.435 011 087 933×⒑⁻ⁱ⒭

  CF turns  ⊙ to   ∟
and displays 4. -i×3.

 returns   Re =        4.
  Im =           -3.

  ℂ  ∟ ∡⒭ remains lit in the status bar.

Generally, complex number outputs follow real number formats (see pp.

80ff). The number of displayable decimals, however, may be limited by

screen space. If you want to view both parts of a complex number in

higher precision, press , watch, and press again.137

Complex results in calculations: As long as you work exclusively with

real input, you will get only real results with CPXRES clear (startup

default); you can, however, also set CPXRES to allow for complex results.

Try and see the different results.

With at least one complex input parameter in arithmetic operations or

function calls, your WP 43S will set CPXRES automatically (indicated by

  ℂ in the status bar).

With input closed for a complex x and POLAR clear, for example,…

• will change the signs of both the real and the imaginary part (as

shown above),

137 Choosing rectangular notation and multiplication dots allows for displaying real and
imaginary components using large font within (10-999, 10999) in SCI 4 together. It will
work in SCI 5 for both components within (10-99, 1099). Staying with the startup default
(i.e. MULT×) instead will cost you one displayed decimal in complex domain.

In polar display mode, angles will be normalized to (–π, π] always, so there will be no
space for a power of ten needed for an angle; hence this will allow for SCI 6 within
(10−999, 10999) regardless of the multiplication symbol chosen, and for SCI 7 within
(10−99, 1099). See the ReM.

Page 158 of 328 -- WP 43S U v0.16

•   conjwill change the sign of the imaginary part only, and

•   Re⇄Imwill swap real and imaginary parts.

Press for separating complex input as you do in real domain.

Example (with startup default settings):

(1 + 2 i) × (3 + 4 i) is entered and solved like this:

1 2 1. +i×2.

3 4 3. +i×4  
 returning   -5. +i×10.

Many transcendental functions will operate on complex numbers as well

(e.g. sin, cos, tan, LN, ex , yx , √͞x, etc.). Please check pp. 161f.

Complex Numbers Used for 2D Vector Algebra

You can use complex domain for 2D vector algebra as demonstrated

below. The functions |x|, +, –, CROSS, DOT, and UNITV wait for you –

see the menu CPX and the IOI.

We can, for example, compute

Mr. Sweeney’s ground course (as

explained on p. 130) according to

the following alternative way:

  FIX

   DEG 

SF  SYS.FL  POLAR

125 225 125 ∡ 225
indicated air speed and heading.

 125.00 ∡ 225.00°

25 180 25 ∡ 180 for the north wind.

 143.77 ∡-142.06° for the resulting vector

WP 43S U v0.16 --- Page 159 of 328

   r = 143.77
  θ =  -142.06°

360   143.77
      217.94°

(according to navigational convention, the angle

must be positive. – Compare with pp. 130f.)

Two examples more (taken from the HP-42S OM):

Dot Product of Complex Num-

bers

The figure … represents three

two-dimensional force vectors.

Use complex numbers and add

the three vectors. Then use the

DOT (dot product) function to

find the component of the

resulting vector along the 175°

line.

Solution:

   DEG 

SF  SYS.FL  POLAR ensure proper ADM and coordinates.

170 143 125.00 ∡ 225.00°

185 62 185 ∡ 62  

 270.12 ∡ 100.43°

100 261 100 ∡ 261

 178.94 ∡ 111.15°

Now, take the unit vector at 175°:

1 175 1 ∡ 175

   dot 78.86

Thus, the resulting vector sum has a component of approximately 79

Newtons in the direction of 175°. See the drawing overleaf.

Page 160 of 328 -- WP 43S U v0.16

Computing Moments.

To compute the moment of two vectors,

use the CROSS (cross product) function. The cross product of two

vectors is a third orthogonal vector. However, when two complex

numbers are crossed, the WP 43S simply returns a real number that is

equal to the signed magnitude of the resulting moment vector.

Find the moment

generated by the

force acting through

the lever in the

illustration below,

where

�⃗⃗� = 𝑟 × 𝐹

Note this picture

shows a two-dimen-

sional situation.

Lever and force are both acting in the drawing plane.

Solution:

   DEG 

SF  SYS.FL  POLAR ensure proper ADM and coordinates.

Key in the radius vector and the force vector:

5 50 5.00 ∡ 50.00°

300 205 300.00 ∡ 205

   cross 633.93

WP 43S U v0.16 --- Page 161 of 328

The moment vector has a magnitude of 634 pounds times inches and,

since the result is positive, the vector points up, perpendicular to the plane

of this page.138

Complex Numbers: Summary of Functions

Many of the numeric functions operating on reals also work for complex

numbers:

• General mathematics:

o Monadic functions:

  and ,   ∛Ϳ   and   x³,   2ᵡ and   lb x, and , , and

,   sinh,   cosh, and   tanh as well as their inverses work as

usual; the same applies to   sin,   cos,   tan, and their inverses

(cf. also pp. 125ff for more information about angular I/O),

  eᵡ-1 and   ln(1+x) return more accurate results with x ≈ 0,

 returns x × (−1) (a.k.a. ‘unary minus’) for closed input and

POLAR clear while it turns x by 180° for POLAR set, and

  (-1)ᵡ returns 𝑐𝑜𝑠(𝜋𝑥) for non-integer x.

o Dyadic functions:

, , , , and   ∜Ȳ   work as usual,

  logₓy calculates the logarithm of y for base x,

  dot and   cross allow using complex numbers for 2D vector

computations, and

  |   | returns

1

11
−

+

yx
 for 𝒙 × 𝒚 ≠ 0 and 0 else.

138 If the problem you're working requires a true (three-dimensional) vector as a result,

use a 1 × 3 or 3 × 1 matrix to represent each vector in three dimensions. See next
chapters.

Page 162 of 328 -- WP 43S U v0.16

• Isolating and manipulating parts of complex numbers:

Use for composing and cutting,

  RE for isolating the real part of x and IM for its imaginary part,

  Re⇄Im for swapping its real and imaginary part,

 for the magnitude of x and    for its phase (a.k.a. argument),

  FP for the fractional part of x and   IP for its integer part;

 sign and   UNITV return the unit vector of x, and

  conj returns its complex conjugate.

• Rounding:

  RDP n rounds x to n decimal places in FIX format

(e.g. 1.23456789E−95 RDP 99 will return 1.2346×⒑⁻⁹⁵),

  ROUND rounds x using the current display format (like RND did on

HP-42S), and

  RSD n rounds x to n significant digits.

• Advanced mathematics (see the ReM, App. H for comprehensive

information about the functions following):

o Monadic functions:

  FIB returns the extended Fibonacci number,

  g⒟ and   g⒟ the Gudermann function and its inverse,

  sinc returns
𝑠𝑖𝑛(𝑥)

𝑥
 for x ≠ 0 and 1 for x = 0 (input shall be

supplied in radians – cf. pp. 125f),

  W⒫ returns the principal branch of Lambert’s W for x ≥ –1/e,

  W returns x for given Wp (≥ −1),

 ( = Γ(  x + 1) ) and   Γ(x) calculate the complex Gamma

function, and

  lnΓ returns its natural logarithm.

WP 43S U v0.16 --- Page 163 of 328

o Dyadic functions:

  AGM returns the arithmetic-geometric mean,

  COMB and   PERM calculate with complex Gamma,

  β(x,y) returns Euler’s Beta function, and

  lnβ its natural logarithm.

Vectors and Matrices: Introduction and Input

So far, we dealt with just one or two or (seldom) three numbers at once.

Your WP 43S can do more for you – e.g. manipulate a set of numbers in

a column or a row or even in an array of 4, 6, 8, 9, 10, 12, or more

numbers simultaneously. Such number columns or rows are called

vectors and the arrays are called matrices by mathematicians. If you do

not know of vectors and matrices yet, feel free to set them aside; your

WP 43S will serve you perfectly without them.

If you know of them, however, note the function set of your WP 43S

covers vector operations and also allows for adding, multiplying,

inverting, and transposing matrices, as well as for editing and

manipulating parts of such matrices. It also provides functions for

computing determinants, eigenvalues and eigenvectors, and for solving

systems of linear equations. Its function set is based

on the one of HP-42S and extends it.

Generally, we talk of an n×m matrix if it features n rows

and m columns. A vector may be regarded as a special

matrix featuring one column or one row only.

Example:

A vector [
4
−5
6.7
] and a matrix [

−1 12 7
25 0 3

] shall be entered subse-

quently. The stack shall be clear at beginning.

Page 164 of 328 -- WP 43S U v0.16

Enter   FIX
 3 1   NEW (the leftmost unshifted softkey)

to initialize the 3D column vector (i.e. a 3×1 matrix). See the new matrix

in X and the top view of MATX displayed in the menu section:

 0.0
[0.0 0.0 0.0]⒯

 RNORM ENORM STOEL RCLEL PUTM GETM
 dot cross UNITV DIM INDEX EDITN
 NEW [M] |M| [M]⊤ SIM EQ EDIT

For saving screen space, your WP 43S displays each column vector

transposed (thus the superscript T trailing it), i.e. in one row instead of

one column on the screen. The vector is initialized with all its components

being zero. To enter the vector components, press   EDIT (the rightmost

unshifted softkey) and the Matrix Editor will appear in the menu section:

 0.0
[0.0 0.0 0.0]⒯
1;1= 0.0

 INSR DELR WRAP GROW
 ← ↑ OLD GOTO ↓ →

Note the 1st element of the vector is displayed inverted now indicating the

position of the edit cursor. This particular element is shown below in the

format set (i.e. FIX 1 here), so we need two rows for X.

Now press

0.0
[4.0 0.0 0.0]⒯
1;1= 4

Move the cursor to the next element: →

WP 43S U v0.16 --- Page 165 of 328

0.0
[4.0 0.0 0.0]⒯
2;1= 0.0

Continue editing: 5 → 6.7

0.0
[4.0 -5.0 6.7]⒯
3;1= 6.7

 0.0

[4.0 -5.0 6.7]⒯

 RNORM ENORM STOEL RCLEL PUTM GETM
 dot cross UNITV DIM INDEX EDITN
 NEW [M] |M| [M]⊤ SIM  EQ EDIT

Note left the Matrix Editor, returning to the top view of MATX, closes

input for the object in X, and shifts x to the right.

Now, let’s initialize the 2×3 matrix via

2 3   NEW and begin editing once again by

  EDIT
 [ 3×1 Matrix]
⎡ 0.0 0.0 0.0⎤
⎣ 0.0 0.0 0.0⎦
1;1= 0.0

 INSR DELR WRAP GROW
 ← ↑ OLD GOTO ↓ →

Three numeric rows are required for editing x now. The 3×1 matrix in Y

above is the 3D vector we just entered before; note any matrix is

Page 166 of 328 -- WP 43S U v0.16

displayed in this short form (with a × even for MULT· chosen) in any stack

register but X.

Again, all elements of the new matrix start containing zero. Its 1st element

is displayed inverted as the 1st element of the vector was above. Matrix

editing will continue in analogy:

1 →

[ 3×1 Matrix]
⎡-1.0 0.0 0.0⎤
⎣ 0.0 0.0 0.0⎦
1;2= 0.0

12 → 7 →

[ 3×1 Matrix]
⎡-1.0 12.0 7.0⎤
⎣ 0.0 0.0 0.0⎦
2;1= 0.0

Entering the last → moved the cursor from the last element of row 1 to

the 1st element of row 2. So you can simply continue row-wise:

25 → → 3

[ 3×1 Matrix]
⎡ -1.0 12.0 7.0⎤
⎣ 25.0 0.0 3.0⎦
2;3= 3

 [ 3×1 Matrix]

⎡  -1.0 12.0 7.0⎤
⎣ 25.0 0.0 3.0⎦

 RNORM ENORM STOEL RCLEL PUTM GETM
 dot cross UNITV DIM INDEX EDITN
 NEW [M] |M| [M]⊤ SIM EQ EDIT

WP 43S U v0.16 --- Page 167 of 328

Now also this matrix is closed and ready for calculating. Assume you want

to multiply it by 2/3; and you want more than just one decimal displayed in

the result:

  FIX

23

0.000
[ 3×1 Matrix]
[ 2×3 Matrix]

0 ²/₃

Press and you will get immediately

0.000
[ 3×1 Matrix]

⎡  -0.667 8.000 2.667⎤
⎣ 16.333 0.000 1.000⎦

which are all matrix elements multiplied by 2/3 at once.

You may store such matrices in any register or variable. So let’s store

our resulting matrix in R00 – just press for this.

You can also create and fill a matrix directly in a variable (i.e. you do not

have to create the matrix on the stack and store it afterwards).

Example:

Create a quadratic matrix [𝑀𝐴] = [
 4 −3
−2 1

] and fill it directly.

2 DIM creates MA as a 2×2 matrix.

 EDITN VAR   MA

Page 168 of 328 -- WP 43S U v0.16

 [ 2×3 Matrix]
⎡ 0.000 0.000⎤
⎣ 0.000 0.000⎦
1;1= 0.000

 INSR DELR WRAP GROW
 ← ↑ OLD GOTO ↓ →

4 → 3 → 2 → 1

[ 2×3 Matrix]
⎡ 4.000 -3.000⎤
⎣-2.000 1.000⎦
2;2= 1

Now, press and you are done with MA – while the screen looks just

as before again:

 0.000
[ 3×1 Matrix]

⎡  -0.667 8.000 2.667⎤
⎣  16.333 0.000 1.000⎦

 RNORM ENORM STOEL RCLEL PUTM GETM
 dot cross UNITV DIM INDEX EDITN
 NEW [M] |M| [M]⊤ SIM EQ EDIT

Vectors and Matrices: Displaying and Editing Larger Objects

Whenever X contains a matrix, your WP 43S will try to show it completely

(i.e. display all its elements in the format you chose for reals). Objects

in higher stack registers will be indicated in a single row (abbreviated if

necessary) or will be shifted out of the display window – but x will stay

on the screen at least.

WP 43S U v0.16 --- Page 169 of 328

If space does not suffice for showing the complete matrix in the format

chosen, your WP 43S will switch to the small font automatically.

Example (continued):

  FIX

[ 3×1 Matrix]
⎡  -0.666  67   8.000  00   2.666  67 ⎤
⎣  16.333  33   0.000  00   1.000  00 ⎦

If font switching should not suffice, your WP 43S will furthermore

automatically turn to abbreviated SCI 3 for the elements of the respective

matrix. This allows for showing arbitrary 5×4 real matrices entirely. If a

real matrix exceeds five rows, its fifth row is displayed filled with ellipses

(…); if it exceeds four columns, its fourth column is shown filled with

ellipses.

Example:

Assume a 6×5 matrix

𝑥 =

[

1.1493 2.6 18.725 3 9.2
0.4 5.462 −6 95.1 51.6

−7.744 −8.8 9.95 54.5 0.17
74.66 0.229 −0.0934 2 −3.829
33.9 −79.4 3.436 9.08 4.256
0.0488 7 5.98 −0.68 −22.492]

was entered on the present stack and is in X now. Then the screen will

look like this to scale:

Editing such a large matrix will push also y from the screen until input is

closed again. You can browse the entire matrix regardless of its size

always.

Page 170 of 328 -- WP 43S U v0.16

For matrices larger than 5 rows and/or 4 columns, the display may vary

depending on the cursor position: ellipses may appear on top and

bottom, left and right side. A view of 3×3 matrix elements including the

one selected by the cursor can be seen always at least – this selected

element is also displayed below of the matrix in the format you have

chosen for reals. Since the indices of this element are shown there as

well you always know where you are.

Example (continued):

Press    EDIT and you will see:

⎡ 1.149        2.600       1.8731     …⎤
⎢ 4.000-1    5.462       -6.000       …⎥
⎢  -7.744      -8.800        9.950       …⎥
⎢   7.4661     2.290-1    -9.340-2    …⎥
⎣     …             …             …        …⎦

1;1= 1.149 30

The 1st matrix element is selected. And the lowest numeric row displays

this element in FIX 5 as we had chosen.

Go to the bottom row of this matrix by pressing (or   ↓) five times and

you will get:
⎡   ...          ...                ...        ...⎤
⎢  -7.744      -8.800        9.950       ...⎥
⎢   7.4661     2.290-1    -9.340-2    ...⎥
⎢          3.3901    -7.9401      3.436       ...⎥
⎣   4.880-2    7.000        5.980       ...⎦
6;1= 0.048 80

Now go to the very last element of this matrix by pressing   → four times:

⎡...      ...             ...              ...      ⎤
⎢...    9.950       5.4501     1.700-1  ⎥
⎢...   -9.340-2    2.000      -3.829     ⎥
⎢...    3.436       9.080       4.256     ⎥
⎣...    5.980      -6.800-1    -2.2491   ⎦
6;5= -22.492 00

WP 43S U v0.16 --- Page 171 of 328

Wherever you are within a matrix, you can replace or modify the currently

selected element in two ways:

1. Let an arbitrary monadic function operate on the selected element.

If you need any menus to reach a function, they will temporarily

replace the Matrix Editor menu; exiting those menus will bring you

back to the Matrix Editor menu.

2. Simply key in a new number replacing the old one.

Example (continued):

Replace the last matrix element by 17.435.

17.435
 ⎡...      ...             ...              ...      ⎤

⎢...    9.950       5.4501     1.700-1  ⎥
⎢...   -9.340-2    2.000      -3.829     ⎥
⎢...    3.436       9.080       4.256     ⎥
⎣...    5.980      -6.800-1     1.7441   ⎦
6;5= 17.435

 INSR DELR WRAP GROW
 ← ↑ OLD GOTO ↓ →

If you now decide you want to recover the old element again, however,

call    OLD. This old content is actually not overwritten until you press one

of ,   ↑ , ,   ↓ ,   ← , or   → after entering a new number, or you leave

the Matrix Editor via .

 Repeatedly pushing the cursor in one direction (e.g. by   →) will

jump from the 1st, 2nd, etc. to the last row and then return to the

1st row in default WRAP mode. If GROW is set instead, another

  → from the very last (i.e. bottom right) matrix element will add a new

row to the matrix.

Example (continued):

  →

Page 172 of 328 -- WP 43S U v0.16

⎡   ...          ...               ...        ...⎤
⎢   7.4661     2.290-1    -9.340-2    ...⎥
⎢          3.3901    -7.9401      3.436       ...⎥
⎢   4.880-2    7.000        5.980       ...⎥
⎣   0.000       0.000        0.000       ...⎦
7;1= 0.000

Here, we are done with that matrix for now. So press and you will

see again:

[ 2×3 Matrix]
⎡ 1.149        2.600       1.8731     …⎤
⎢ 4.000-1    5.462       -6.000       …⎥
⎢  -7.744      -8.800        9.950       …⎥
⎢   7.4661     2.290-1    -9.340-2    …⎥
⎣     …             …             …        …⎦

Note the 1st matrix element is not highlighted anymore since you left the

Matrix Editor. Thus, just entering will display (due to automatic stack

lift) now:

 [ 7×5 Matrix]
4

So matrix editing is easy and straightforward. The IOI contains additional

information, also about the further commands DELR, INSR, and RR

showing up in the Matrix Editor menu.

Vectors and Matrices: Complex Stuff

Your WP 43S supports also complex vectors and matrices, i.e. matrices

containing complex elements. They are created and initialized like real

objects via or as explained above. Or you can recall a real

matrix and edit it; if you enter one or more complex numbers for its

elements it becomes a complex matrix – you can store it at the same or

another place after editing.

WP 43S U v0.16 --- Page 173 of 328

Example (continuation of p. 168):

Create and store a complex matrix [
5 + 8𝑖 𝜋𝑖
−2 4 − 3𝑖

].

Solution:

Remember we have created a 2×2 matrix just a few pages ago. So it is

most easy to recall it for using it as a template:

 VAR   MA

  FIX since this will suffice for the process following.

   EDIT

[ 6×5 Matrix]
⎡ 4.00 -3.00⎤
⎣-2.00 1.00⎦
1;1= 4.00

We can now just enter the new elements there as we have done before:

5 8 → 0 → → 4 3

[ 6×5 Matrix]
⎡ 5.00+i×8.00 i×3.14⎤
⎣     -2.00  4.00-i×3.00⎦

Since we edited on the stack and stored the resulting new complex matrix

in a new location, the old real matrix MA is not affected at all.

Compare pp. 154f for the input and formatting of complex numbers.

Everything else works as it does for real matrices. You see complex

vectors and matrices are no complex topic at all for you with your

WP 43S.

Page 174 of 328 -- WP 43S U v0.16

Vectors and Matrices: Calculating

As we have seen on p. 167, your WP 43S can multiply a matrix by a plain

number (a.k.a. scalar); doing this, each element of said matrix is multi-

plied by said number. Additions, subtractions, and divisions work alike

for a matrix y combined with a scalar x. Vice versa, with a scalar y and

a matrix x, additions, subtractions and multiplications will work the same

way (remember you cannot divide a number by a matrix). Also monadic

functions operate on each matrix element in your WP 43S, if applicable.

Examples:

With an arbitrary matrix in X, pressing...

• will extract the square root of each matrix element individually (if

CPXRES is set, a real matrix x containing at least one negative element

will become complex this way).

• will square each matrix element individually (use for

squaring the matrix instead);

• will calculate the absolute value of each matrix element (instead,

use  ENORM for calculating the Euclidean norm of the matrix or

take    |M|  for getting its determinant);

• will change the sign of each matrix element.

You can also let the dyadic functions , , , or operate on two

matrices or vectors alone (i.e. data types 8 and 9), provided the rules of

linear algebra are obeyed:

 y x Op. Resulting x

[m ×n  Matrix] [m ×n  Matrix]
[y] + [x]

[m ×n  Matrix]
 [y] – [x]

 [m ×n Matrix] [n ×p  Matrix] [y] · [x] [m ×p  Matrix]

 [m ×n Matrix] [n ×n  Matrix] [y] · [x]−1 [m ×n  Matrix]

WP 43S U v0.16 --- Page 175 of 328

The 1st row of this table reads as follows: For adding or subtracting two

arbitrary matrices, both must be of identical size, and the result will be of

the same size as well. The subsequent rows read in analogy. 139 If either

matrix is complex, the result will be complex in most cases as well.

Example (continuation of p. 168):

Multiply the matrices in R00 and MA. Output format shall be FIX 3.

Solution (we omit the menu section in the following pictures):

  FIX

[ 2×2 ℂ matrix]
⎡ -0.667 8.000 2.667⎤
⎣ 16.333 0.000 1.000⎦

Note the ‘2×2 ℂ matrix’ in Y is the complex matrix we entered in previous

chapter – the stack handles matrices as it handles other objects. Now

let’s recall MA:

 VAR   MA (or , if you have defined

many variables already – cf. p. 57)

 [ 2×3 Matrix]
⎡ 4.000 -3.000⎤
⎣-2.000 1.000⎦

The 2x3 matrix in Y now is the one we have recalled from R00 into X

before recalling MA. We multiply y times x as usual by

139 Remember matrix multiplication behaves different than multiplication of numbers.

Generally, for two arbitrary matrices A and B of matching sizes, A · B ≠ B · A . Also

note that only square matrices can be squared.

And matrix division is special: it is defined as multiplication of the numerator times the

inverse of the denominator. Therefore, X must contain a nonsingular (i.e. invertible)

matrix here – else you cannot divide by that matrix. Only square matrices can be

inverted.

Page 176 of 328 -- WP 43S U v0.16

 resulting in

[ 2×2 ℂ matrix]
⎡-79.000 48.000 19.000⎤
⎣ 27.000 -24.000 -11.000⎦

You see that arithmetic operations on matrices are almost as easy as on

scalars using your WP 43S.

And your WP 43S features further matrix operations: |M| for computing

determinants, [M] −1 for inverting, [M]
T
 for transposing, M.LU for

computing the LU decomposition, and two norms (Euclid’s ENORM and

the row norm RNORM) – please look them up in the IOI.

Example:

We want to invert a 2×2 matrix [𝑀]= [1 2
3 4

] .

Solution:

Just enter the matrix as usual

2 DIM creates M as a 2×2 matrix.

 VAR   M

  EDIT etc.

 [ 3×2 Matrix]
⎡ 1.000 2.000⎤
⎣ 3.000 4.000⎦

  [M]

[ 3×2 Matrix]
⎡-2.000 1.000⎤
⎣ 1.500 -0.500⎦

Thus, the inverted matrix reads [𝑀]−1 = [
−2 1
1.5 −0,5

] .

WP 43S U v0.16 --- Page 177 of 328

For two vectors of identical size, there are two special multiplications

provided: DOT and CROSS. DOT will return the dot product, a scalar –

exactly what the table above says for m = p = 1. CROSS works for two

2D or 3D vectors and will return their cross product.

Example from the HP-27 OH:

The force 𝐹 on a particle with charge q which is moving with a velocity 𝑣

through a magnetic field �⃗� is given by 𝐹 = 𝑞 𝑣 × �⃗� . Suppose a proton

(𝑞 = −𝑒 = 1.6 ∙ 10−19 𝑐𝑜𝑢𝑙𝑜𝑚𝑏) is moving with velocity 𝑣 =
(0.4 2.8 −1.2) ∙ 107 𝑚 𝑠⁄ . A uniform magnetic field surrounding the

proton is of a strength �⃗� = (1.3 −0.3 0.7) 𝑡𝑒𝑠𝑙𝑎. Calculate the force
on the proton.

This can be written as

𝐹 = 𝑞 𝑣 × �⃗�

= 1.6 ∙ 10−19 ∙ 107 ∙ (0.4 2.8 −1.2) × (1.3 −0.3 0.7)

Solution:

Just remember that in cross products, vectors must be entered in proper

sequence as written from left to right:

  FIX since this will suffice for that process.

3 1 DIM creates v as a 3×1 matrix.

 VAR    V 

  EDIT etc.

 [ 2×2 Matrix]
[0.40 2.80 -1.20]

 creates B as a 3×1 matrix, too.

 VAR    B 

  EDIT etc.

 [ 3×1 Matrix]
[1.30 -0.30 0.70]

  cross

Page 178 of 328 -- WP 43S U v0.16

 [ 2×2 Matrix]
[1.60 -1.84 -3.76]

 7

1.6 19 resulting in

 [ 2×2 Matrix]
[2.56×⒑⁻ⁱ² -2.94×⒑⁻ⁱ² -6.02×⒑⁻ⁱ²] 

... newtons, of course.

The total ‘length’ or absolute value of this force is

  ENORM

 [ 2×2 Matrix]
5.14×⒑⁻ⁱⁱ

Compare with the weight of a proton:

 recall the proton mass m⒫.

 recall earth acceleration g⊕ and get weight.

 5.14×⒑⁻ⁱⁱ
1.64×⒑⁻²⁶

So this is a force ratio of

3.14×⒑ⁱ⁵

Thus, physicists deliberately neglect gravitational effects in such micro-

scopic calculations.

If you just want to perform elementary vector operations in 2D, however,

there are two simple alternatives (known for long from earlier

calculators):

1. Enter the Cartesian components of each vector in X and Y (if

necessary, converting its polar components into Cartesian ones by

WP 43S U v0.16 --- Page 179 of 328

 before) and use for additions or for subtractions.

Recall the result via ; it may look like this, for example:

Σy = 1 464.21
Σx =         123.58

2. Calculate with complex numbers (cf. pp. 154ff). In complex domain,

2D vector multiplication is possible since the commands DOT and

CROSS are contained in CPX as well. Cf. pp. 158ff for examples.

Vectors and Matrices: Solving Systems of Linear Equations

Your WP 43S can also solve simultaneous linear equations (of the kind

[𝐴] ∙ 𝑋 = �⃗�) for you.140 To deal with such a system of linear equa-

tions, proceed as follows:

1. Specify the number of unknowns (e.g. 4) by entering

  SIM EQ

Your WP 43S automatically creates (if necessary) and dimensions

three matrices: MatA, MatB, and MatX. You will see a new menu

showing up:

 Mat A Mat B Mat X

2. Press   Mat A. The Matrix Editor will open and you can enter the

elements of the 4×4 coefficient matrix (see on pp. 163ff how to do

this). Close the Matrix Editor by to return to the menu shown

above.

3. Press   Mat B and enter the elements of the 4×1 constant matrix the

same way (this is a vector actually).

140 This works the same way as it did on the HP-42S. The number of unknowns is only

limited by the free memory available in your WP 43S at execution time.

Page 180 of 328 -- WP 43S U v0.16

4. Press   Mat X to let your WP 43S compute the 4×1 solution matrix (a

vector again). You are done!

To work another problem with the same number of unknowns, return to

step 2 or 3. For a problem with a different number of unknowns, press

 and start over with step 1.

Vectors and Matrices: Eigenvalues and Eigenvectors

An eigenvalue is a real or complex number solving the matrix equation

[𝐴] ∙ 𝑋 = 𝜆 ∙ 𝑋 . Then, the vector 𝑋 is called an eigenvector of [A].

Usually, there will be more than one and a multitude of vectors 𝑋
solving this problem. Thus, the simplest set of linearly independent

vectors 𝑋 is chosen to build the base of the eigenspace belonging to a

particular eigenvalue found. And the simplest set of eigenvectors

building a base of a space of the same dimension as 𝑋 are called the

eigenvectors of [A].

Your WP 43S can solve such problems for you as well:

Example 1:

We need the eigenvalues of a matrix [𝑀] = [
2 1
6 1

] .

Solution:

We have got a 2×2 matrix named M already. We don’t need its old

contents anymore so we simply recall and edit it:

 VAR    M 

  FIX

  EDIT etc.

⎡ 2.0 1.0⎤
⎣ 6.0 1.0⎦

 VAR    M 

WP 43S U v0.16 --- Page 181 of 328

The eigenvalues are the solutions of the characteristic polynomial of this

problem:

(2 − 𝜆)(1 − 𝜆) − 6 = 0

   EIGVAL returns

M = [ 2×2 Matrix]
⎡  4.0 0.0⎤
⎣ 0.0 -1.0⎦

being the matrix with the eigenvalues as

its diagonal elements. Note this resulting

diagonal matrix is pushed on the stack.

Example (continued):

Now, what are the eigenvalues of [𝑁] = [
3 4
−4 3

] ?

Solution:

   EDIT etc.

M = [ 2×2 Matrix]
⎡  3.0 4.0⎤
⎣ -4.0 3.0⎦

   EIGVAL returns

M = [ 2×2 Matrix]
 N = [ 2×2 Matrix]

⎡   3.0 +i× 4.0     0.0        ⎤
⎣-4.0     3.0 +i× 4.0⎦

Note that although N contained only real elements, we get complex

eigenvalues here.

Example 2:

What are the eigenvalues of [𝑄] = [
0 0 −2
1 2 1
1 0 3

] ?

Page 182 of 328 -- WP 43S U v0.16

Solution:

3 DIM creates Q as a 3×3 matrix.

 VAR Q

  EDIT etc.

[ 2×2 ℂ Matrix ]
⎡ 0.0 0.0 -2.0⎤
⎢ 1.0 2.0 1.0⎥
⎣ 1.0 0.0 3.0⎦

  EIGVAL returns

Q = [ 3×3 Matrix]
⎡ 2.0 0.0 0.0⎤
⎢ 0.0 2.0 0.0⎥
⎣ 0.0 0.0 1.0⎦

Note one eigenvalue comes twice here. Let’s get the eigenvectors of Q

now – they will be put out as a matrix whose rows are these vectors:

 returns Q into X:

[ 3×3 Matrix]
⎡ 0.0 0.0 -2.0⎤
⎢ 1.0 2.0 1.0⎥
⎣ 1.0 0.0 3.0⎦

  EIGVEC pushes this matrix on the stack:

Q = [ 3×3 Matrix]
⎡ 1.0 0.0 -2.0⎤
⎢ 0.0 1.0 1.0⎥
⎣-1.0 0.0 1.0⎦

 returns

WP 43S U v0.16 --- Page 183 of 328

[ 3×3 Matrix]
⎡ 2.0 0.0 -2.0⎤
⎢ 0.0 2.0 1.0⎥
⎣-2.0 0.0 1.0⎦

 recalls V.

   [M]

 returns

[ 3×3 Matrix]
⎡ 2.0 0.0 0.0⎤
⎢ 0.0 2.0 0.0⎥
⎣ 0.0 0.0 1.0⎦

This looks very much like what was returned for the eigenvalues of Q

above. Let’s check:

  FIX

 returns

[ 2×2 ℂ Matrix]
⎡ 0.000 0 0.000 0 0.000 0⎤
⎢ 0.000 0 0.000 0 0.000 0⎥
⎣ 0.000 0 0.000 0 0.000 0⎦

So the result of [𝑉]−1 ∙ [𝑄] ∙ [𝑉] with V being the matrix of the eigen-

vectors of Q is exactly the diagonal matrix of the eigenvalues of Q.

Your WP 43S can compute eigenvalues and eigenvectors for matrices

featuring rational elements as well:

Example 3:

What are the eigenvalues of [

−38 43/7 63/2 1149/14
−14 19/7 7 181/7
−8/7 −122/49 24/7 177/49

−16 26/7 13 244/7

] ?

Page 184 of 328 -- WP 43S U v0.16

Solution:

4   NEW creates a 4×4 matrix.

  EDIT 38 → .43.7 → .63.2 → .1149.14 → etc.

Note each matrix element can be entered as integer or fraction but is

converted to a real number following the current display settings as soon

as said element is closed:

[ 3×3 Matrix]
⎡ -38.000 0    6.142 9   31.500 0   82.071 4⎤
⎢ -14.000 0    2.714 3    7.000 0   25.857 1⎥
⎢  -1.142 9   -2.489 8    3.428 6    3.612 2⎥
⎣ -16.000 0    3.714 3   13.000 0   34.857 1⎦

  FIX shall suffice here:

⎡ -38.0 6.1 31.5 82.1⎤
⎢ -14.0 2.7 7.0 25.9⎥
⎢ -1.1  -2.5 3.4 3.6⎥
⎣ -16.0 3.7 13.0 34.9⎦

   EIGVAL returns:

⎡-5.0 0.0 0.0 0.0⎤
⎢ 0.0 0.0 0.0 0.0⎥
⎢ 0.0 0.0 3.0 0.0⎥
⎣ 0.0 0.0 0.0 5.0⎦

Note the 2nd eigenvalue is zero here.

  EIGVEC displays:

⎡  4.0 5.0 4.0 5.0⎤
⎢ 3.0   -2.0 2.0 -4.0⎥
⎢ 1.0   -4.0 -3.0 5.0⎥
⎣  1.0 4.0 3.0 1.0⎦

WP 43S U v0.16 --- Page 185 of 328

Generally, your WP 43S solves characteristic polynomials numerically.

Vectors and Matrices: Dealing with Statistical Data

We mentioned above you can enter 2D statistical data using a matrix as

well as keying them in point after point. How is this done?

Let’s return to the application introduced on p. 113 with its step 4 –

remember there were 30 samples measured twice in a special way using

the instrument under investigation, resulting in 30 pairs of measured

values:

4. Create a 1×2 named matrix and open it for editing:

1 2   DIM creates MSA accordingly.

  EDITN   VAR     MSA
 [ 4×4 Matrix]
[ 0.00 0.00]
1;1= 0.00

 INSR DELR WRAP GROW
 ← ↑ OLD GOTO ↓ →

  GROW allows the matrix to grow with data entered.

Now key in all 30 pairs of measured values. The 1st value shall be x, the

2nd be y – thus, the keystroke sequence will be mv1 →  mv2 for each

sample. A subsequent  →  lets the matrix grow by one row for the next

data point.

With all points entered, eventually key in

  CLΣ 

 VAR    MSA

   Σ+  Calling    Σ+  with a 30×2 matrix in X will display the data

of the 30th data pair in X and Y (and save a copy of the

data point matrix in L).

Page 186 of 328 -- WP 43S U v0.16

5. It is recommended to plot these 30

data points141 (see a typical diagram

here but check p. 114 and its footnote

as well).

6. Let your WP 43S fit a straight line
through the points and compute

2

222

0
130 r

srs

ss

T
c

yx

yx −

+
= with T being

the width of the tolerance zone you
want to control:

   OrthoF  select the orthogonal linear fit model.

   r  get the correlation coefficient and store its square.

    s  get sx
2 and roll it out of the way.

 get r2 sy
2.

 return sx
2 from the top stack register and

 calculate the numerator

1 and the denominator.

 this is the 2nd factor now.

   s  30 divide by 30 sx sy .

.01 this returns c
0
 for our T now (cf. pp. 113ff).

If you get c
0

 ≥ 1 then this measuring device may be used for controlling the

given tolerance zone under these conditions – else look for a more precise

instrument, better measuring conditions, or a wider tolerance.

141 Steps 5 and 6 are actually the same as shown in the application above with input of
separate real numbers (instead of one matrix) already. They are just repeated here for
sake of completeness.

WP 43S U v0.16 --- Page 187 of 328

Vectors and Matrices: Summary of Functions

Assume X contains a matrix. Then there are functions operating on x

as a whole and others just operating on its elements individually. Let us

list the first set first:

• General mathematics:

o Monadic functions operating on the entire matrix x:

  ENORM computes the Euclidean norm of x (i.e. a real number),

  RNORM computes the row norm of x (i.e. a real number),

  RSUM computes the row sum of x (i.e. a vector),

  |M| computes the determinant of x (i.e. a real or complex

number),

  [M]⊤ returns the transpose matrix of x,

  [M] returns the inverse matrix of x,

  EIGVAL returns the eigenvalues of x, and   EIGVEC its eigenvectors

(cf. pp. 180ff), while

  UNITV returns the unit vector of x (see the ReM).

o Monadic functions operating on each element xij of x individually:

, , ,   ,    and ,   ∛Ϳ   and   x³,   2ᵡ and   lb x,

and , and ,   sin,   cos,   tan,   sinh,   cosh, and   tanh

as well as their inverses work as explained for real and

complex numbers above,

  eᵡ-1 and   ln 1+x return more accurate results with xij ≈ 0;

  sinc returns a matrix containing
𝑠𝑖𝑛(𝑥𝑖𝑗)

𝑥𝑖𝑗
 for xij ≠ 0 and 1 for

xij = 0 (input shall be supplied in radians – cf. pp. 125f),

  (-1)ᵡ returns 𝑐𝑜𝑠(𝜋 𝑥𝑖𝑗) for non-integer xij.

  RDP n rounds xij to n decimal places in FIX format,

Page 188 of 328 -- WP 43S U v0.16

  ROUND rounds xij using the current display format, and

  RSD n rounds xij to n significant digits.

For complex matrices,   conj returns a matrix with the complex

conjugates of xij.

For real matrices,

  ceil returns a matrix with the smallest integers ≥ xij and

  floor with the greatest integers ≤ xij ,

  FP returns a matrix with the fractional parts of xij and

  IP with their integer parts, while

  sign returns a matrix with each xij replaced by 𝑠𝑖𝑔𝑛𝑢𝑚(𝒙𝒊𝒋).

o Dyadic functions operating on x and y:

, , , and work as explained on pp. 174ff,

  cross operates on two real 2D or 3D vectors of identical size

as shown on pp. 177f, and

  dot operates on two matrices of identical size.

o Dyadic function operating on each element yij of y individually:

  logₓy calculates the logarithms of yij for base number x.

• Isolating and manipulating bulk parts of a complex matrix x: Use …

  CX→RE for cutting x in its two parts,

  RE→CX for composing x from its two parts,

  Re for isolating its real part and   Im for its imaginary part, and

  Re⇄Im for swapping its real and imaginary part.

The functionality of the Matrix Editor was demonstrated in the chapters

above. Turn to the ReM for additional information about all matrix

operations provided on your WP 43S. If you look for more general

information about vectors and matrices, and further applications, please

turn to a textbook covering linear algebra.

WP 43S U v0.16 --- Page 189 of 328

Times

There also is a special data type for time calculations on your WP 43S.

Sexagesimal times are entered most easily in the format

hhhhh.mmssfff terminated by – with hhhhh standing for

hours, mm for minutes, ss for seconds, and fff for

decimal fractions of seconds (these fractions may take

more or less than three digits).

Example (with startup default settings):

Enter 5 hours, 39 minutes, and 7.8642 seconds:

5 39078642

This is displayed with startup default settings:   5:39:07.864 2

Choosing   TDISP will return 5:39:07

instead, while   TDISP returns   5:39

The latter two formats allow for compact time displays like seen in digital

clocks or watches. Note there is no rounding of hours, minutes, or

seconds for times.

The colon is the unambiguous indicator for a time on your WP 43S. In

general, there may be leading zeroes in the minutes and seconds

sections and a settable number of digits after the 2nd colon. You can

choose 12- or 24-hour display for time of day.

Example (continued):

Call TIME in the evening and you might get 21:47
 CF  SYS.FL  TDM24     9:47p.m.

 When time of day is returned by a function, it will be displayed

according to your choice – internally, however, it is stored as

standard 24-hour time for further calculations.

You may add and subtract sexagesimal time intervals simply using

and ; and time intervals may be multiplied or divided by any integer,

Page 190 of 328 -- WP 43S U v0.16

rational, or real number – the result will stay a time. If you add an integer,

rational or real number to such a time, it will be automatically converted

to a time before adding. This applies to subtractions in analogy.

Compare the matrices on pp. 71f.

Example (with startup default settings):

To meet your date at 5:25 p.m. at Stanford, you need 15’ from your office

to get your car out of the parking garage, 1.5 hours for the ride, and 12’

for walking from the parking lot to lecture hall. Being careful, you count

in another quarter of an hour for a possible traffic jam on the expressway.

When do you have to leave your office?

Solution:

  TDISP

.15 1.5 returns 1:45

.12 1:57

.1.4 2:12

5.25 3:13. So you have to leave at
3:13 p.m. the latest.

Note your WP 43S returns something looking like a 12h-time here even

with startup default settings because it cannot know better based on the

input given.

You can convert such (closed) sexagesimal times to decimal numbers

using , and reconvert the decimal result to sexagesimal times by

pressing .

There is only one more dedicated time command – SETTIM, serving

obvious purposes.142 GAP, ALL, ENG, FIX, or SCI have no effect on

times.

142 Note the real time clock in your WP 43S may deviate from true time by up to one

minute per month (i.e. ± 25 ppm approximately, caused by parts tolerances; you live
with this wearing a quartz watch as well – mechanical watches are less accurate
generally). This deviation does neither affect real-world time calculations nor the
TIMER application described in Section 5. If you are accustomed to radio controlled
timepieces, however, you might find regular adjustments necessary.

WP 43S U v0.16 --- Page 191 of 328

Dates

For date calculations, choose one out of three date display modes

(DDM) on your WP 43S: Y.MD, D.MY, and M.DY (these

mode-setting commands are contained in CLK). ISO

Y.MD is startup default.

Date input is decimal according to the DDM chosen and

is terminated by (as shown on pp. 68f).

Example:

The 18th of December in 2017 is entered

2017.1218 in Y.MD,

18.122017 in D.MY, and

12.182017 in M.DY.

Alternatively, any real number may be converted into a date via

   x→DATE, and any triple of reals or integers via   →DATE (cf. p. 40).

Input containing more than the necessary digits for a date in the DDM

selected will be rounded.

Vice versa,   DATE→ splits a date in three integers and pushes them on

the stack as demonstrated on p. 40. Note that both   DATE→ and   →DATE

observe the DDM chosen. If you want to extract particular information

from a date independent of current DDM, we recommend using one of

the operations DAY, MONTH, or YEAR.

Like in the status bar, a closed date input or dates returned by a function

are displayed as in the following example:

 2017-12-18 in Y.MD,

 18.12.2017 in D.MY,

 12/18/2017 in M.DY.

So you immediately know the effective DDM from looking at the date

format in the status bar.

Page 192 of 328 -- WP 43S U v0.16

  WDAY takes a date from the stack – or a decimal input of e.g.

2013.0504 in Y.MD mode (equivalent to inputs of 4.052013 in D.MY or

5.042013 in M.DY) – and returns an integer indicating the position of this

day in the corresponding week, temporarily headed by the name of this

weekday:

  Saturday 6 .143

Expect similar returns after   DATE .144

There is only one more dedicated date command – SETDAT, serving

obvious purposes.

Note integers (or the integer parts of real numbers) may be added to or

subtracted from a date, always representing an integer number of days

regardless of the date format set. And dates may be subtracted from

dates, resulting in an integer number of days.

But that’s it – these are all the legal operations. Compare the matrices

on pp. 71f. GAP, ALL, ENG, FIX, or SCI have no effect on dates.

143 Translator’s note: Numeric output of WDAY corresponds to Chinese weekdays 1 to
6 directly. For Portuguese weekdays (‘segunda-feira’ etc.), add 1 to days 1 to 5.

144 Calculation of weekdays for the past depends on the calendars used at that time –
there may be different true results for different countries depending on the date the
particular country introduced the Gregorian calendar. Officially, that calendar became
effective in 1582-10-15 in the catholic world. Large parts of the world took their time
and switched later (see the chapter Localizing Calculator Output above and check
Wikipedia for the dates applicable). Note, however, there are still also other calendars
in use on this planet today, e.g. in the Muslim world.

Dates before the year 8 A.D. may be indicated differently than they were experienced
at the time due to the inconsistent application of the leap year rule before. We count
on your understanding and hope this shortcoming will not affect too many calculations.

Note that 8 A.D. should be written A.D. 8 or even better A.D. VIII instead – quite some
false Latin is found in the English language. Nobody, however, counted years this way
at that time – around the Mediterranean Sea, it was the year DCCLXI A.V.C. in best
case (actually, this notation was broadly introduced some XL – or even CD – years
later). Also note the Julian calendar was introduced and became valid not earlier than
DCCVIII A.V.C. – before, months were organized differently. Julius Caesar was
daggered in DCCIX A.V.C.; calendars may be a sensitive topic.

WP 43S U v0.16 --- Page 193 of 328

Alpha Input Mode : Introduction and Virtual Keyboard

This mode is designed for text entry, e.g. for keying in messages,

prompts, and answers. It is entered via typically. Within AIM, …

1. primary function of most keys will be appending the

letter printed bottom right of the respective key to x –

see the virtual keyboard overleaf;

2. the menu Myα will pop up immediately in the menu

section (unless another menu is open), containing your

favorite special characters or groups of them (up to 18 items);145

3. prefix leads to homophonic Greek letters.146

Upper and lower case are set by and , respectively, applying also

to the letters in Myα and CATALOG’CHARS’αINTL (see pp. 195f).

Wherever a default primary function is not primary anymore in AIM but

continues being meaningful, it is reached via prefix . Thus, is

required here for appending a digit to x, for example. And is also a

shortcut to some special characters, like calling ±.

145 For people writing German, for example, Myα might look like pictured overleaf. Feel

free to put other letters in - see Section 6 for learning how to populate Myα.

146 This will work wherever applicable, with “homophonic” following classical Greek pro-
nunciation. Kudos to Thales, Pythagoras, Heraclitus, Leucippus, Democritus, Aristotle,
Archimedes, Euclid (i.e. ὁ Θαλῆς ὁ Μιλήσιος, ὁ Πυθαγόρας ὁ Σάμιος, ὁ Ἡράκλειτος ὁ
Ἐφέσιος, ὁ Λεύκιππος, ὁ Δημόκριτος, ὁ Ἀριστοτέλης, ὁ Ἀρχιμήδης ὁ Συρακούσιος και
ὁ Εὐκλείδης), and their colleagues for laying the foundations of logics, mathematics,
and physics (i.e. τἡς λογικὴς και μαθηματικής τέχνης και τἡς φυσικής ἐπιστήμης) as we
know them today – starting some 2600 years ago (note that the first two were
called “practical arts” and the latter “theoretical science”). And kudos to the unnamed
Babylonian mathematicians who built the foundations for these Greeks, actually
recording e.g. what we now call “Pythagoras’ theorem” 1200 years before Pythagoras.

We assigned Gamma also to following the alphabet, and Chi to since this Latin
letter comes next in pronunciation. Three Greek letters require special handling since

they lack single-letter equivalents in English: Psi is accessed via (since looking

like w in a way), Theta via (following T corresponding to Tau), and Eta via .
These three letters are printed in blue on the keyboard as reminders. Omicron is not
featured since looking exactly like the Latin letter O in either case.

There is an ‘alpha helper’ printed on the calculator back supporting users challenged
by Greek.

Page 194 of 328 -- WP 43S U v0.16

Two extra prefixes operate exclusively in AIM: makes the next

directly keyboard-accessible input character a subscript if provided,

while makes it a superscript. See the yellow arrows printed to

the right of these two keys, above I and M.

And three alpha menus become accessible for more letters, punctuation

marks as well as mathematical and other symbols (abbreviations are

printed in blue and gold on the keyboard as reminders). Look up their

contents in Section 2 of the ReM, and use FBR to browse the entire

character set provided.

WP 43S U v0.16 --- Page 195 of 328

Alpha Input Mode: Entering Simple Text and More

Your WP 43S features a large font for mainly numeric output and a small

alphanumeric font for text strings. See here all characters directly

evocable through the virtual alpha keyboard shown above:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B Γ Δ E Z H Θ I K Λ M N Ξ O Π P Σ T Y Φ X Ψ Ω

α β γ δ ε ζ η θ ι κ λ μ ν ξ o π ρ σ τ υ φ χ ψ ω

0 1 2 3 4 5 6 7 8 9 + - × or · / . , ? ⇄ ± # ⎙

and subscripts Ⓐ Ⓑ Ⓒ Ⓓ Ⓔ Ⓕ Ⓖ Ⓗ Ⓘ Ⓙ Ⓚ Ⓛ Ⓜ Ⓝ Ⓞ Ⓟ Ⓠ Ⓡ Ⓢ Ⓣ Ⓤ Ⓥ Ⓦ Ⓧ Ⓨ Ⓩ

⒜ ⒝ ⒞ ⒟ ⒠ ⒤ ⒥ ⒦ ⒧ ⒨ ⒩ ⒪ ⒫ ⒬ ⒮ ⒰ ⒲ ⒱ ⒲ ⒳ ⒴ ⒵

and ₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋

as well as superscripts ª ⒡ ⒢ ⒣ º ⒭ ⒯ ᵡ and ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻

The 26 plain Latin letters can be also found in CATALOG’CHARS’αINTL

(together with 73 more supporting international communication), the 24

basic (plus eleven accented) Greek letters in CATALOG’CHARS’Α...Ω.

INTL can be called via in AIM; see the ReM for its content.

So you may, for example, easily store and display an actual modern

Greek message like

  Oι μελλοθάνατοι σε χάιρετουν. 

Actually, we could have written the major part of this manual
just using said small font. It covers at least 47 languages
from Afrikaans to Zhōngwén (see the ReM ), providing the means
that your display messages or prompts can be easily read and
understood by more than 50% of all mankind.

Page 196 of 328 -- WP 43S U v0.16

Example:

You can even store Dèng Xiăopíng’s famous and successful
slogan

 Bùguăn bái māo, hēi māo, dàizhù lăoshŭ  jiù
  shì hăo māo !

in Pinyin straight ahead.

Taking advantage of this character set, it is also absolutely
easy spelling e.g. French, Spanish, or German prompts correctly
«en français», “en Español”, or „auf Deutsch”, as well as text
strings in many more languages using letter sets based on Latin
alphabets.

Your WP 43S supports you in climbing the very first step of
politeness and respect by allowing you to adapt the software
you write to the language your customers speak - instead of
hacking in everything in English or using merely the very meager
plain Latin letter set.

Two more menus (MATH , called via   , and ● , called via
  ) contain further mathematical and non-mathematical sym-
bols and marks (see the ReM  ):

! ¡ ¿ " ' § $ £ ¥ € % & () * < = > @ [] \ ^ _ { } | ~

© « » ¬ ± · ÷ ← ↑ → ↓ ↕ ∅ ∞ ∟ ∡ ∥ ∧ ∨ ∫ ≈ ≔ ≘ ≙ ≠ ≤ ≥

⊙ ⊥ ⌚ ℝ ℂ ⊤ etc.

Pressing in AIM toggles USERα. Individual characters may be
assigned to particular locations on the keyboard or within
menus in AIM only (see pp. 290ff for how to do that). Such user
assignments will become accessible when USERα is set (indicated
by and   A or   α being both lit in the status bar).

Alpha input can be edited character by character (like numeric input can

be edited digit by digit) using as long as it is open still.

WP 43S U v0.16 --- Page 197 of 328

AIM is closed by (duplicating string x in y) or by unless

pressed in a menu. Empty strings will not be pushed on the stack.

Example (continued):

Pressing with Dèng Xiăopíng’s slogan keyed in will display it in X

as shown above.

Pressing instead will display the text twice – fully in X and

shortened to one line in Y, showing only its first seven words trailed by

an ellipsis.

Alpha strings exceeding two lines will show all their contents after SHOW

only.

Combining Alpha Strings and Numeric Data

Due to the data type concept of your WP 43S, adding numeric data to a

text string is as simple as pressing .

Example:

Assume the two lowest stack registers look like this:

The train will arrive at 

23:55

So here is an alpha string in Y and a time in X. Pressing now will

combine x and y, returning

The train will arrive at 23:55

So, x will be converted to a string, taking into account its present display

format, and will be appended to y (cf. the matrix on p. 71). Let’s enter a

2nd string now by pressing and the necessary characters, starting with

a blank:

Page 198 of 328 -- WP 43S U v0.16

The train will arrive at 23:55

 sharp at Victoria station.

Leave AIM and close x by pressing :

The train will arrive at 23:55

sharp at Victoria station.

Now we have got alpha strings in X as well as in Y, so pressing once

more will append x to y returning

The train will arrive at 23:55 sharp at
Victoria station.

Strings may contain up to 196 characters in total. Once numeric data

(like a time here) became part of an alpha string, they are fixed and will

not vary even if format is changed. Easy, isn’t it?

Working with Alphanumeric Strings

Your WP 43S provides some commands more for

dealing with such strings. You find them all in α.FN:

  αLENG? source pushes the length of the string in the

source on the stack.

    αPOS? source searches the string in the source for the character or

string given in X; if a match is found, αPOS? returns

the position number where the target was found

starting (counting the leftmost character as position 0)

– else it returns −1. Previous x is saved in L.

  αRL source rotates the source string by x characters to the left.

  αRR source rotates the source string by x characters to the right.

WP 43S U v0.16 --- Page 199 of 328

  α→x source converts the leftmost character in the source to the

corresponding code, removes this character from the

source string, and pushes its code on the stack; if the

source is empty, αx returns zero.

  x→α destination converts a character code in X to the corresponding

character and appends it to the destination; the charac-

ter code is saved in L.

If X contains an alphanumeric string, the entire string

is appended to the destination.

If X contains a matrix, xα uses each element in the

matrix as a character code or alphanumeric string.

xα begins with the 1st element (1; 1) and continues

row-wise (to the right) until reaching the end of the

matrix.

  αSL source shifts the source string by x characters to the left,

deleting the first x characters from the string.

  αSR source shifts the source string by x characters to the right,

deleting the last x characters from the string.

You can also compare strings using commands in TEST to create

something like a sorted list. A string (A) is called “smaller” than another

one (B) if it precedes (B) in sorting.

Nevertheless, do not forget that your WP 43S is mainly designed as a

programmable calculator. Please turn overleaf to see what can be

performed with such a device.

Page 200 of 328 -- WP 43S U v0.16

An advertisement of 1975 (above) and

another one of 198x (overleaf). Com-

pare the capabilities of the WP 43S in your hands. Imagine the opportunities.

WP 43S U v0.16 --- Page 201 of 328

Page 202 of 328 -- WP 43S U v0.16

SECTION 3: PROGRAMMING

Your WP 43S is a powerful keystroke-programmable calculator. If al-

ready this statement makes you smile with delight, this section is for you.

Else we will bring a smile on your face by mentioning the following facts:

Your WP 43S allows you to store a sequence of keystrokes like you

would use them to solve a problem manually; this is to save you time on

repetitive calculations (remember the example on pp. 21ff). Once you

have written the keystroke procedure (or routine) for solving a particular

problem and recorded it in your WP 43S, you need no longer devote

attention to the individual keystrokes that make up the procedure. You

can let your WP 43S solve each similar problem for you. And because

you can easily check the routine stored, you have more confidence in

your final answer since you do not have to worry each time about

whether or not you have pressed an incorrect key. Your WP 43S

performs the drudgery, leaving your mind free for more creative work.

And it becomes even better: You may use program memory for storing

more than one routine only. For telling your WP 43S where such a

routine begins and ends, each one is confined by two steps: it starts with

LBL (for LaBeL) and typically ends with RTN (for ReTurN) –

cf. p. 23. These two steps separate it from other routines you may add

for other tasks. And LBL puts a label on your routine so you can find and

call it easily when you want it to be executed.

You may structure program memory even more: Put two or more routines

together and separate them by END steps from other routines or sets of

routines. What we find between two END steps we call a program.

Programs are the basic building blocks within program memory. Think

of the beginning and end of the entire used program memory section

containing implicit END steps.147 So even with program memory cleared,

there will be at least one program within at any time.

Within routines, you may store any sequence of keystrokes (commands,

operations, objects). Choose any operation featured – the overwhelming

147 You cannot see that first END but the last one is visible – as pictured e.g. overleaf.

WP 43S U v0.16 --- Page 203 of 328

majority of them are programmable.

The commands in your routine may

also access each and every global

register, variable, or flag provided –

there are (almost) no limits. You are

the sole and undisputed master of

the memory. 148

Each such routine itself may contain

one or more subroutines. Also sub-

routines start with LBL and typically

end with RTN. Actually, subroutines

may look exactly like routines: the

only difference is that a subroutine

is called from another routine,

while a main routine is called from

the keyboard. Thus we do not need

differentiating these two kinds of

routines further on.

Enough of theory – press and switch to PEM via . The display

of your WP 43S will change to something like this:

 2018-07-15 14:31 ℝ∟∡° /5000 64∶2
0000: LBL ’A’
0001: x²
0002: π
0003: ×
0004: RTN
0005: END
0006:

 R-CLR R-COPY R-SORT R-SWAP LocR OFF
 PSTO PRCL αOFF αON CNST PUTK
 INPUT END ERR TICKS PAUSE P.FN2

148 This freedom has a price: Take care that the routines do not interfere with each other
in their quest for data storage space. It is good practice to record the global registers,
variables, and user flags a particular routine uses, and to document their purposes and
contents for later reference.

An alternative – using local registers and flags – will be explained further below.

Page 204 of 328 -- WP 43S U v0.16

showing the example you entered on pp. 23f (the status bar on top will

differ according to your time and settings).

In the section of the screen used for numeric output so far, the first seven

steps in program memory are shown.149 Labeled steps and END are

‘outdented’ for visual structuring. The current position of the program

pointer (the current step) is highlighted by inversion; the routine the

program pointer is currently in is called the current routine; the

corresponding program is the current program. The menu section

displays the top view of P.FN.

On the other hand, if you switch to PEM for the very first time after

unpacking your WP 43S (or after resetting it), the display will look like

this instead:

 2018-07-15 14:32 ℝ∟∡° /5000 64:2
0000: END
0001:
0002:
0003:
0004:
0005:
0006:

 R-CLR R-COPY R-SORT R-SWAP LocR OFF
 PSTO PRCL αOFF αON CNST PUTK
 INPUT END ERR TICKS PAUSE P.FN2

Recording a New Routine

Whenever you want to enter a new routine, switch to PEM using

(unless you are already in) and start with pressing . These

keystrokes will bring you to the very end of the used section of program

memory, so you can start keying in your new routine right there without

interfering with anything coded previously.

Start with LBL giving your routine a unique name (it may be up to seven

characters long). Then press the keys as you would do in manual

149 There is no routine-specific step counting like in the HP-42S or HP-35S.

WP 43S U v0.16 --- Page 205 of 328

problem solving (cf. pp. 21ff). Each new step will be inserted right after

the current step. You find

• for LaBeLing a routine or a program step following,

• for eXECUting or calling a specific routine,

• for ReTurNing to the caller of the current routine,

• for unconditionally Going TO a specified label (i.e.

positioning the program pointer to the respective LBL step),

• for Running or Stopping the current routine,

• and (or and if there is a multi-view menu

displayed) for browsing program steps,

• for toggling Program-entry and Run mode, and

• for EXITing PEM (returning to run mode)

all bottom right on your keyboard as shown on p. 203, continued to the

left by the menus for LOOPs, TESTs, FLAGS, and PARTS. Further pro-

gramming commands (like END mentioned above) are collected in P.FN.

Note that , , , , , and are not programmable but

useful in programming nevertheless (see also p. 211).

Example (from the HP-15C OH):

Mother's Kitchen, a canning company,

wants to package a ready-to-eat

spaghetti mix containing three different

cylindrical cans: one of spaghetti

sauce, one of grated cheese, and one

of meatballs. Mother's needs to

calculate the base areas, total surface

areas, and volumes of the three

different cans. It would also like to

know, per package, the total base

area, surface area, and volume.

Solution:

The program to calculate this information uses these formulas and data:

Page 206 of 328 -- WP 43S U v0.16

𝑏𝑎𝑠𝑒 𝑎𝑟𝑒𝑎 = 𝜋 𝑟2

𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑏𝑎𝑠𝑒 𝑎𝑟𝑒𝑎 × ℎ𝑒𝑖𝑔ℎ𝑡 = 𝜋 𝑟2 ℎ

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 = 2 𝑏𝑎𝑠𝑒 𝑎𝑟𝑒𝑎𝑠 + 𝑠𝑖𝑑𝑒 𝑎𝑟𝑒𝑎 = 2 𝜋 𝑟2 + 2 𝜋 𝑟 ℎ

r h Base Area Volume Surface Area

2.5 8.0 ? ? ?

4.0 10.5 ? ? ?

4.5 4.0 ? ? ?

 TOTALS ? ? ?

Method:

1. Enter an r value into the calculator and save it for other calculations.

Calculate the base area (𝜋 𝑟2), store it for later use, and add the base

area to a register which will hold the sum of all base areas.

2. Enter h and calculate the volume (𝜋 𝑟2 ℎ). Add it to a register to hold

the sum of all volumes.

3. Recall r. Divide the volume by r and multiply by 2 to yield the side area.

Recall the base area, multiply by 2, and add to the side area to yield

the surface area. Sum the surface areas in a register.

Do not enter the actual data while writing the program-just provide for

their entry. These values will vary and so will be entered before and/or

during each program run.

Key in the following program to solve the above problem (assuming

startup default – and we chose named variables instead of registers):

  VAR    BASE

    INPUT 

LBL ‘K’
 STO ‘r’
 x²
 π
 ×
 STO ‘BASE’
 STO+ ‘ΣB’
 VIEW ‘BASE’
 INPUT ‘h’

Switch to PEM

Store radius

Compute base

Sum of bases

Show base for 1 s

Enter height

WP 43S U v0.16 --- Page 207 of 328

 

  VAR    VOLUME
  VAR   r

  VAR    BASE

 ×
 STO ‘VOLUME’
 STO+ ‘ΣV’
 VIEW ‘VOLUME’
 RCL ‘r’
 /
 2
 ×
 RCL ‘BASE’
 2
 ×
 +
 STO+ ‘ΣS’
 RTN

Compute volume

Sum of volumes

Show vol. for 1 s

Compute side

Compute surface

Sum of surfaces

End of routine

Leave PEM

Now, let’s run the program:

2.5

  FIX 

8

2.5
2.50

BASE = 19.64
8
VOLUME = 157.08

164.93

1st can: radius

Height

Surface

4

10.5

4
BASE = 50.27
10.5
VOLUME = 527.79

364.43

2nd can: radius

Height

Surface

4.5

4

4.5
BASE = 63.62
4
VOLUME = 254.47

240.33

3rd can: radius

Height

Surface

Page 208 of 328 -- WP 43S U v0.16

  VAR   ΣB

  VAR   ΣV

  VAR   ΣS

133.52

939.34

769.69

Sum of bases

Sum of volumes

Sum of surfaces

The preceding program illustrates the basic techniques of programming.

It also shows how data can be manipulated in PEM and run mode by

entering, storing, and recalling data (input and output) using ,

, , store arithmetic, and programmed I/O. (If you want to run

this routine again for another set of cans, remember to clear the variables

ΣB, ΣV, and ΣS before.)

See the next paragraphs and the IOI for comprehensive information

about all the commands used in this example and more.

Labels

As mentioned above, each routine or subroutine begins with a LBL step.

Structuring program memory and jumping around within is eased by

those labels. You may tag labels not only to the first but to any step in

your routine – as known from preceding programmable pocket

calculators. Your WP 43S allows for specifying a wide variety of

alphanumeric labels as described overleaf.

Whenever a step like e.g. GTO labl is encountered in run mode (with

labl representing an arbitrary label), your WP 43S will search this label

using one of the two following methods:

1. If labl is plain numeric (00 ... 99) or A … J, it will be searched forward

from the current position of the program pointer. When an END step

is reached without finding labl so far, the quest will continue right after

previous END (so the search will stay in the current program). This is

the procedure for local labels. So, local labels are valid in the current

program only and may hence be reused in another program.

2. If, however, labl is an alphanumeric label of up to seven characters

of arbitrary case (automatically enclosed in ‘ like   ‘Ab1’), searching will

WP 43S U v0.16 --- Page 209 of 328

start at program step 0000 and cover the entire program memory (first

RAM, then flash memory) independent of the current position of the

program pointer. This is the procedure for global labels. 150

So, global labels can be accessed from anywhere in memory, while local

labels can only be accessed from within their own program.

Addressing labels, on the other hand, follows the rules given below:

1 User

input

, , ,   LBL?,
  SOLVE,    ∫ ,   f’(x),   f”(x),    Π⒩ , or    Σ⒩ 

 Echo
OP _ (with TAM set)

e.g. GTO _

2 User

input

 151

sets AIM.

 152

opens indirect

addressing.

local label

 … ,

 ... , or

1-letter global label

, , , ...,

Echo OP ‘_ OP → _ OP nn

e.g. LBL 07 or LBL C

3 User

input

Alphanumeric

(global) label

(up to 7 chars153)

Stack or lettered

register

, , ...,

Register number

 … ,

 …  154

Echo OP ‘label’

e.g.   SLV ’F1µ’
OP → x

e.g.   ∫fd→ST.T

OP → nn

e.g.   XEQ →44

150 These search procedures for local and global labels are as known from the HP-41C.

151 Note you can skip pressing here – see overleaf. See also an alternative there.

152 Works with all these operations except .

153 Said label must contain at least one letter. Labels are case sensitive. The 7th charac-
ter will terminate entry and close AIM – shorter labels need a closing .

154… if the respective local register is allocated. Some lettered registers may be dedicated
to special applications. Check Addressing and Manipulating Objects in RAM in Sect. 1.

Page 210 of 328 -- WP 43S U v0.16

SLV ‘F1µ’ solves the function given in the routine labeled F1µ (see pp.

244ff).

  ∫fd→ST.T integrates the function given by PGMINT over the variable

whose label is on stack register T (see pp. 252ff).

  XEQ →44 calls and executes the routine whose label is found in R44.

Furthermore, GTO provides two special cases: see GTO. and GTO.. in

next chapter.

And remember TAM is

set during addressing,

so the virtual keyboard of

your WP 43S will work

like this:

Note you can access

the local labels A – D,

I, and J directly as well

as the global labels K,

L, T, and X – Z. This

allows reaching up to

six programs with only

2 keystrokes.

And note the changed

assignment of the 2nd

softkey compared to p.

57. So, instead of key-

ing in a longer global

label in alpha input

mode, it may be easier

 → PROG X Y Z T

 A B C D

 I J f g

 ENTER K L

 7 8 9

 4 5 6

 1 2 3

 0 ● R/S EXIT

to press PROG and select it from the menu popping up containing all

global labels defined at the time of execution.

WP 43S U v0.16 --- Page 211 of 328

Editing a Routine

Whenever you want to edit (correct, expand, modify, etc.) an existing

routine, start with ensuring you are in run mode – then enter labl .

This will position the program pointer onto the corresponding LBL step

(as explained on p. 208). Then switch to PEM using and start

browsing from this LBL step.

Let’s browse the program steps in our example routine: press four

times:

 2015-07-15 14:52 ℝ∟∡° /5000 64:2
0001: x²
0002: π
0003: ×
0004: RTN
0005: END
0006:
0007:

 R-CLR R-COPY R-SORT R-SWAP LocR OFF
 PSTO PRCL αOFF αON CNST PUTK
 INPUT END ERR TICKS PAUSE P.FN2

Unless you are next to the very beginning of program memory, the

program pointer will always be placed in the middle of the LCD with three

steps displayed above and three steps below of it, if available.

Navigating in program memory, you may execute various actions. If, for

example, you want to...

• delete a program step, go to said step (i.e. make it the current step

by positioning the program pointer on it), then press ; it will

vanish and the program pointer will move on the step before (note

this deletion cannot be undone);

• insert something, go to the program step before, and then press

the key(s) to be inserted after it;

• continue browsing forward, press (or if a multi-view menu

is displayed); when reaching the END, browsing will start with the

first step again;

Page 212 of 328 -- WP 43S U v0.16

• browse backwards, press (or if a multi-view menu is

displayed); when reaching program top, browsing will stop;

• go to a particular global label (without inserting a GTO step in the

current routine), press label ; if you want to go

to a local label, press nn instead; 1-letter labels can be

accessed e.g. via .

• start writing a new routine, press , then ...

That’s almost all. When you are done, press or to leave PEM,

returning to run mode again.

Running a Routine from the Keyboard (also for Debugging)

Whenever you want to execute an existing routine, ensure you are in run

mode. Then there are three alternatives:

1. For normal execution of the current routine: Press to return

the program pointer to the first step of the current routine. Then press

. This will run the routine, i.e. start automatically executing the

following steps until a STOP, a final RTN, or an END will be

encountered155 where it will halt and display x.

2. For normal execution of a selected routine:156 Press and

specify the label of the program you want to execute (or press  PROG 

and pick the label from the menu). This will move the program pointer

to the corresponding LBL step (cf. p. 208) and start automatically ex-

ecuting the following steps until a STOP, a final RTN, or an END will

be found155 where it will halt and display x (cf. pp. 21f).

3. For stepwise execution of a selected routine: Press instead

and specify the label of the program you want to execute (or press

 PROG  and pick it from the menu). This will move the program pointer

155 ... or you interrupt it manually by pressing or – then it stops after the current

step is completely executed. For resuming its execution, press again.

156 This is the standard way to run routines. Furthermore, you can define shortcuts to
your favorite routines by customizing your WP 43S as described in Section 6.

WP 43S U v0.16 --- Page 213 of 328

to the corresponding LBL step (cf. p. 208) and wait. Each following

program step will then be executed one at a time as you press (or

) for it: pressing will display the step to be executed, releasing

it will execute it. When you reach the end of the current routine,

will return to its first step.157

Following this procedure, you will go through the routine as in normal

execution but significantly slower – and you may perform additional

checks after each program step. This procedure is especially useful

for debugging (i.e. looking for errors in a routine).158

If an error occurs while a routine is running, it stops immediately at the

step generating said error and throws the corresponding error message

(see App. C in the ReM for a list of all error messages provided). Press

any key to clear this temporary information; to view the corresponding

program step, press .

Subroutines: Running a Routine from another Routine

XEQ is programmable as well. Whenever a running routine encounters

an XEQ, it will search for the associated label as described on p. 208, go

to it, and continue program execution with the

step after this LBL until it encounters a RTN;

this will return the program pointer to the step

right after above XEQ where execution will

continue. Compare the picture where routine

A calls routine B.

You can also nest subroutines – your WP 43S

can remember up to eight pending return loca-

tions. But all of them will be lost for the current

program if you should alter the program pointer while execution of this

157 Pressing (or   if a multi-view menu is displayed), on the other hand, moves
the program pointer backwards in the current routine without executing anything.

158 Watch that your additional checks, if applicable, do not alter the status of your WP 43S
in a way deviating from its status in automatic execution; else you shall compensate.
Also take care when browsing backwards.

Page 214 of 328 -- WP 43S U v0.16

program is stop-

ped; pressing

 or or

, however,

will not cause a

loss of return lo-

cations.

If you need any

of your subroutines elsewhere, you can call it again at no expense of

memory. If you want to call a particular subroutine from another program

than the one it is defined in, the label at the beginning of this subroutine

must be global.

Automatic Testing and Conditional Branching

So far, we were talking about linear programs running straight from

beginning (LBL) to end (final RTN or END). Your WP 43S can do more

for you: like keystroke-programmable calculators before, it features a set

of binary tests checking various calculator states.

Most of the binary tests provided are collected in the

menu TEST. There are also two tests in BITS, and

eight tests on flags stored in FLAGS. Names of

binary test commands contain a ‘?’, most times as

their last character.

Generally, binary tests will return true or false as temporary

information at left of the Z numeric row if called from the keyboard;

if called automatically from a routine instead, they will execute the next

program step if the test is true at execution time, else skip that step. So

the general rule reads “do if true” (or “skip if false”).159 Think of the next

step after the test containing a GTO and you see how conditional

branching comes into play.

159 The one and only exception: KEY? skips if true.

WP 43S U v0.16 --- Page 215 of 328

Example:

...
0020: x≤y ?
0021: GTO ‘Join’
0022: x⇄y
...
...
0032: LBL ‘Join’
0033: ln x
...

If this test is true

then go to the label Join (at step 32);

else swap x and y

and continue working here.

Most binary tests operate on x. They can check its data type:

• REAL? tests if X contains a real object (data type 2, 8, or 11) and

executes the next program step if true, else skips it.

• CPX? tests if X contains a complex object (data type 3 or 9) ...

• MATR? tests if X contains a matrix (data type 8 or 9) ...

• STRI? tests if X contains an alpha string (data type 7) ...

• SPEC? tests if x is special (i.e. ±∞ or ‘Not a Number’) ...

• NaN? tests if x is ‘Not a Number’ ...

They can check its numeric content:

• INT? tests if x is an integer number (i.e. has no fractional part) ...

• EVEN? tests if x is an integer and even ...

• ODD? tests if x is an integer and odd...

• FP? tests if x has a nonzero fractional part ...

• PRIME? tests if the absolute value of the integer part of x is a prime

number and executes the next program step if true, else skips it.

They can compare its numeric content with 0, 1, or the content of

another source specified (let’s call it s, cf. also pp. 57 and 60):

• x< ? tests if x is less than s and executes the next program step if

true, else skips it.

Page 216 of 328 -- WP 43S U v0.16

• x≤ ?, x= ?, x≠ ?, x≥ ?, and x> ? work in analogy to x< ?.

• x≈ ? tests if the rounded values of x and s are equal and executes

the next program step if true, else skips it.

They can check its internal structure:

• BC? (or BS?) tests if X contains a short integer, then checks its bit

specified and executes the next program step if said bit is clear (or

set), else skips it.

• LEAP? tests if X contains a date, then extracts the year and tests for

a leap year ...

• M.SQR? tests if X contains a matrix, then checks if it is square ...

General flag tests operate on the flag specified:

• FC? tests this flag and executes the next program step if said flag is

clear, else skips it.

• FC?C works as FC? but clears the flag after testing.

• FC?S works as FC? but sets the flag after testing.

• FC?F works as FC? but flips the flag after testing (i.e. clears it if it

was set or sets it if it was clear).

• FS? tests that flag and executes the next program step if it is set, else

skips it.

• FS?C works as FS? but clears the flag after testing.

• FS?S works as FS? but sets the flag after testing.

• FS?F works as FS? but flips the flag after testing.

Finally, there are special tests:

• LBL? tests for the existence of the label specified, anywhere in pro-

gram memory.

• TOP? will return  true  if the program pointer is in the top level routine

(cf. the sketch on p. 213).

WP 43S U v0.16 --- Page 217 of 328

• KEY? tests if a key was

pressed while a routine

was running or paused. If

no key was pressed in that

interval, the next program

step after KEY? will be

executed; else it will be

skipped and the code of

said key will be stored in

the address specified. Key

codes reflect the rows and

columns on the keyboard

(see the picture here and

p. 224 for an application).

• ENTRY? checks the (inter-

nal) entry flag. It is set if:

o any character is entered

in AIM, or

o any command is accepted for entry (be it via , a function

key, or with a partial command line).

ENTRY? is useful e.g. after PAUSE.

See the IOI for more information about all the individual commands

contained in TEST, also beyond those mentioned above.

 There are further commands also featuring a trailing ‘?’ but

returning numbers (e.g. WSIZE?) or codes (e.g. KTYP?) instead of

  true or   false – you will find these commands in INFO. Turn to the

ReM for information about them.

As mentioned further above, routines end with RTN (typically) and

programs with END. Executing a program, both RTN and END work in

a very similar way and show only subtle differences: a RTN immediately

after a binary test returning   false will be skipped – an END will not.

Page 218 of 328 -- WP 43S U v0.16

Loops and Counters

The commands DSE, DSL, DSZ, ISE, ISG, and ISZ are for controlling

loops in routines. They are all contained in LOOP. Each of them

Decrements or Increments a counter in a register or

variable as specified and executes or skips the

following program step depending on the result. See

the picture illustrating ISG (Increment and Skip if

Greater), DSE (Decrement and Skip if Equal), ISE,

and DSL (Decrement and Skip if Less).160 ISZ and

DSZ simply skip if zero. With GTO placed in the skipped step pointing

to a label upstream in the same routine you can create loops running

until the speci-

fied condition

is met.

Without such

an exit condi-

tion you can

create an

infinite loop –

such a routine

will run until you interrupt it manually by or , or until battery

voltage falls below the limit. Note that such loops are allowed by the

operating system of your WP 43S.

Example (also for indirect addressing, cf. Section 1):161

Write a little routine to store random numbers in R25 through R39.

Solution:

Initialize the loop counter via 25.039 .

Reset the program pointer to the start of program memory by .

Switch to programming via and key in:

160 A similar picture is printed on the back of your WP 43S.

161 This example follows an idea of Gene Wright.

WP 43S U v0.16 --- Page 219 of 328

 LBL ‘X’

   RAN# RAN#

 STO →24
   ISG ISG 24

 GTO ‘X’ if r24 ≤ 39 return to label X

 RTN else return to run mode.

Start this program by pressing . It will stop with the last random

number in display. Check the target registers using .

Example (continued):

Now, write a routine to sort those fifteen stored numbers so the smallest

moves to the register with the smallest address.

Solution:

We will use the so-called ‘bubble sort’ algorithm. Re-initialize the loop

counter via 25.039 (r24 was modified by program X above).

Reset the program pointer to the start of program memory by .

Switch to programming via and key in:

   LBL ‘Y’

  LocR  LocR 002 Allocate 2 local registers.

   LBL A Local label A.

 RCL 24 Put the start pointer r24

 STO .00 into local register 00.

   INC INC ST.X Increment the pointer and

 STO .01 store it in local register 01.

 CF CF .00 Clear local flag 00.

   LBL C

 RCL →.00 Recall the contents of the

 RCL →.01 registers where r.00 and r.01
are pointing to.

  x< ? x< ? ST.Y Is x < y ?

 GTO B Then go to (local) label B

   LBL D else…

Page 220 of 328 -- WP 43S U v0.16

   ISG ISG .00 increment r.00 and…

  ISG ISG .01 if r.00 ≤ 39 increment r.01 and

 GTO C if (r.00 > 39 or r.01 ≤ 39)

return to label C;

  FS? FS? .00 else check local flag 00:

 GTO A if set, return to label A,

 RTN else stop this routine.

   LBL B

  SF SF .00 Set local flag 00.

 STO →.00 Store the smaller value

 x⇄y where r.00 and the greater

 STO →.01 where r.01 is pointing to.

 x⇄y Restore the stack and

 GTO D return to label D.

Start the program by pressing . Then check the target registers

using . You will find the smallest value in R25, a greater one in R26,

etc., up to the greatest in R39.

Note this program allocates two local registers for its exclusive use (R .00

and R .01). Furthermore, it uses 1 local flag and 4 local labels.

The following alternative sorting program is even shorter (kudos to Jean-

Marc Baillard for this routine):

  LBL ‘Z’
 SIGN
  LBL A
 RCL L
 RCL L
 RCL →L
  LBL B
 RCL →ST.Y
 x> ? ST.Y
 GTO C
 x⇄y
 RCL L
 +

WP 43S U v0.16 --- Page 221 of 328

  LBL C
 R↓
 ISG ST.Y
 GTO B
 x⇄ →L
 STO →ST.Z
 ISG L
 GTO A
  END

Just start it by keying in 25.039 .

Cf. HP-42S OM, pp. 152 – 154.

Programmed User Interaction and Dialogues

A number of commands are provided for controlling the interaction of

programs with you. A program shall output some results to you at least,

and it may also ask for your input. In the IOI, the behavior of those I/O

commands is described if they are entered from the keyboard. Executed

by a program, however, they will work differently.

When you start a program by or , the hour glass ⌛ will start

flashing in the status bar. While in manual run mode each command

executed may change the display immediately, in automatic run mode

only INPUT, PAUSE, STOP, or VIEW will update the display, and this

display will hold until the next such command is encountered or

automatic run mode is left. For programmed I/O, see the following

examples:

• Take VIEW for displaying intermediate results. Specify any register

or variable you want as source of information – also X is a valid

parameter of VIEW. The name of the source will label the output.

 Frequent display updates will slow down program execution,

since the anti-flicker logic waits for a complete display refresh

cycle before allowing the next update.

Page 222 of 328 -- WP 43S U v0.16

• Use

  VIEW xyz

  PAUSE nn

for displaying output for a defined minimum time

interval, specified by PAUSE.

• If you have a printer connected, you may send your program output

thereto as well. Turn to pp. 233ff for more about printing.

• Ask (‘prompt’) for numeric input employing

  VIEW xyz update display showing the register or variable xyz,
  STOP ... and wait for user reaction, finished by .
  STO xyz store what the user entered.

 A stop sign will be displayed in the status bar when the

program pointer runs on STOP. Whatever you will key in will

be put into xyz when you continue program execution by .

More elegant is using INPUT for this task:

  INPUT xyz does the same in just one step.

• Prompt for alphanumeric input using the following steps:

  SF ALPHA sets AIM for upcoming input.

  RCL xyz displays the register with the message string.

  STOP waits for your input. Whatever you key in now is

appended to x when you continue by pressing .

CF ALPHA returns to the numeric mode previously set.

  STO xyz stores x to wherever you like.

Again, more elegant is using INPUT for this task:

  SF ALPHA sets AIM for upcoming input.

  INPUT xyz

  CF ALPHA returns to the numeric mode previously set.

• If you need to enter values for several variables then the following

way is most efficient (although it may look lengthy here):

WP 43S U v0.16 --- Page 223 of 328

  LBL ‘Var.In’ we will need this label for VarMNU later.

    MVAR ‘xy1’

   MVAR ‘xy2’

   MVAR ‘xy3’

   ...

   VarMNU ‘Var.In’ creates a menu for the variables defined im-

mediately after ‘Var.In’ and shows it.
    STOP stops for user interaction.

   EXITall exits the menu when program continues.

   RCL ‘xy2’ recalls what you need first (it may have been

entered in any order).

The label called ‘Var.In’ here should be located close to the program

top. It shall be followed by up to 18 MVAR steps defining your

variables required. When the program encounters the step

VarMNU, it will setup a menu for these variables and display it.

Here, this would look like

 xy1 xy2 xy3

Now, if you want to

• write a new value into one of the variables displayed, key in the

value or calculate it, then press the corresponding softkey. The

content of X will be stored.

• recall the present value of one of the variables displayed, enter

,162 then press the corresponding softkey.

• view the present value of one of the variables displayed, enter

, then press the corresponding softkey.163

• exit this menu, press .

• continue program execution, press .

162 The standard menu as shown on p. 57 will not appear after here.

163 The standard menu as shown on p. 56 will not appear after here. Note that the

HP-42S allowed for just viewing the present value of one of the variables displayed by

pressing and the corresponding softkey; we cannot support this on your WP 43S

since it offers you three menu rows.

Page 224 of 328 -- WP 43S U v0.16

• Directly react on particular keys pressed: The key codes returned

by KEY? (cf. p. 217) allow for ‘real time’ response to user input from

the keyboard. KEY? takes a register argument (X is allowed but

does not lift the stack) and stores the key most recently pressed

during program execution or pause in the register specified. 164

Although the keyboard is active during program execution it is

desirable to display a message and suspend the routine by    PAUSE

while waiting for user input. Since PAUSE will be terminated early

by a key press, simply use PAUSE 99 in a loop to wait for input.

Since KEY? acts as a test as well, a typical user input loop may well

look like this:

  LBL ‘US.in’
    RCL xyz displays the register with the message string.

   PAUSE 99 waits 9.9 s for user input unless a key is pressed.

 KEY? 00 tests for user input and puts the key code in R00.

 GTO ‘US.in’ If there was no input then return to the beginning;

 LBL? →00 else: if a label corresponding to the key code exists…

 XEQ →00 … then call it, …

 GTO ‘US.in’ … else return to the beginning.

Instead of the dumb waiting loop, the routine can do some computations

and update the display before the next call to PAUSE and KEY?

To be even more versatile, you can use KTYP? to return the type of the

key pressed if its row / column code is given (see the IOP).

If you decide not to handle the key in your program you may feed it back

to the main processing loop of the WP 43S with the command PUTK nn .

It will cause the program to halt, and the key will be handled as if pressed

after the stop. This is especially useful if you want to allow numeric input

while waiting for some special keys like the arrows. After execution of

the PUTK command you are responsible for letting the routine continue

its work by pressing .

See the IOI for more information about the commands mentioned in this

chapter and their parameters.

164 Note and cannot be queried since they stop program execution
immediately.

WP 43S U v0.16 --- Page 225 of 328

Solving Differential Equations

The following method uses the programmability of your WP 43S for

solving ordinary 2nd order differential equations, a type frequently

occurring in physics. 165

In a first example, we will solve the equation of motion for the fall of a

parachutist
𝑑2𝑓

𝑑𝑡2
= 𝑔 − 𝑏 (

𝑑𝑓

𝑑𝑡
)
2

 with earth acceleration 𝑔 and 𝑏 taking

care of drag.

Proceeding in small constant time steps t, the following set of equations

controls the vertical motion of the parachutist (or skydiver):

(
𝑑𝑓

𝑑𝑡
)
1 2⁄

= (
𝑑𝑓

𝑑𝑡
)
0
+ [𝑔 − 𝑏 (

𝑑𝑓

𝑑𝑡
)
0

2

] ×
∆𝑡

2

𝑓1 = 𝑓0 + (
𝑑𝑓

𝑑𝑡
)
1 2⁄

 and (
𝑑𝑓

𝑑𝑡
)
3 2⁄

= (
𝑑𝑓

𝑑𝑡
)
1 2⁄

+ [𝑔 − 𝑏 (
𝑑𝑓

𝑑𝑡
)
1/2

2

] × ∆𝑡, 166

𝑓2 = 𝑓1 + (
𝑑𝑓

𝑑𝑡
)
3 2⁄

∆𝑡 etc.

Assume start height at time zero (t = 0) is 1000 m and vertical velocity is

zero (i.e. 𝑓(𝑡 = 0) = 𝑓(𝑡0) = 𝑓0 = 1000 and (
𝑑𝑓

𝑑𝑡
)
0
= 0). Using named

variables Δt, b, t, f, and df/dt, the following routine will compute height

and velocity of the parachutist as functions of time:

  LBL ’PFall’
 .5 initialize all variables used
 STO ’Δt’
 .003 assumed realistic drag value for a falling body

 STO ’b’
 1000 start height
 STO ’f’

165 Turn to the ReM, App. H, for background information about the method applied here.

166 Note the contents of the rectangular brackets must be ≥0 always. Thus, this routine

will work for velocities < √𝑔 𝑏 ⁄ only, not for abruptly decelerating fast initial

movements (e.g. by opening a parachute).

Page 226 of 328 -- WP 43S U v0.16

 0 start time and velocity
 STO ’t’
 STO ’df/dt’ end of initialization

  LBL 01 begin of time loop
 # g take g out of CONST
 RCL ’b’

 RCL ’df/dt’
 x²
 × b × (df/dt)2

 - g – b × (df/dt)2

 RCL ’t’

 x>0 ? check time – it will be zero in 1st run
 GTO 02 from 2nd run on go to local label 02

 DROP 1st run only: forget t
 2 1st run only:
 / 1st run only: [g – b × (df/dt)2] / 2
 GTO 03 1st run only: go to common part

  LBL 02 from 2nd run on:
 DROP from 2nd run on: forget t

  LBL 03 common part of time loop resumes here again
 RCL× ’Δt’ [g – b × (df/dt)2] × Δt (or half of it in 1st run)

 STO+ ’df/dt’ calculate the new df/dt

 RCL ’Δt’

 STO+ ’t’ calculate the new time
 RCL× ’df/dt’ df/dt × Δt

 STO- ’f’ calculate the new f

 VIEW ’t’ display new time

 STOP

 VIEW ’f’ display new height

 STOP

 VIEW ’df/dt’ display new velocity

 STOP

 GTO 01 end of time loop, return for next run through it

  END

Now, leave PEM and start program execution via  PROG   PFall –

plotting the points calculated will result in a diagram like the one overleaf.

Height decreases following a parabola over time in the beginning but

becomes linear later. Note the vertical velocity does not increase much

for plotting next
data points
(t ; f)
and
(t ; df/dt) .

WP 43S U v0.16 --- Page 227 of 328

anymore after some 12 s

here, approaching some

57 m/s while skydiving with

closed parachute.

For comparison: the veloc-

ity limit with an open para-

chute (𝑏 = 0.3) will be

<  6 m/s, so the vertical

velocity at touchdown will

be like falling from a wall

1.65 m high.

In a second example, we

will demonstrate solving a

2D problem like e.g.

finding the orbit of a

satellite in the gravitational

field of the earth. Here we

have a pair of coupled

differential equations. This problem is solved as follows:

(
𝑑𝑥

𝑑𝑡
)
1 2⁄

≈ (
𝑑𝑥

𝑑𝑡
)
0
+ 𝐾𝑥

∆𝑡

2

(
𝑑𝑥

𝑑𝑡
)
𝑖+
1
2

≈ (
𝑑𝑥

𝑑𝑡
)
𝑖−
1
2

+ 𝐾𝑥∆𝑡

𝑥𝑖+1 ≈ 𝑥𝑖 + (
𝑑𝑥

𝑑𝑡
)
𝑖+1/2

∆𝑡

(
𝑑𝑦

𝑑𝑡
)
1 2⁄

≈ (
𝑑𝑦

𝑑𝑡
)
0
+ 𝐾𝑦

∆𝑡

2

(
𝑑𝑦

𝑑𝑡
)
𝑖+
1
2

≈ (
𝑑𝑦

𝑑𝑡
)
𝑖−
1
2

+ 𝐾𝑦∆𝑡

𝑦𝑖+1 ≈ 𝑦𝑖 + (
𝑑𝑦

𝑑𝑡
)
𝑖+1/2

∆𝑡

with −
𝐺𝑀

(𝑥2+𝑦2)
3
2⁄
 𝑥 = 𝐾𝑥 and −

𝐺𝑀

(𝑥2+𝑦2)
3
2⁄
 𝑦 = 𝐾𝑦 .

So, here is some crosstalk (a.k.a. coupling) between x and y. Neverthe-
less, proceeding like we did in the first example above, the following
routine will compute the coordinates x and y of the satellite as functions

of time. For ease of handling in a first calculation, we set 𝐺𝑀 = 1 = 𝑎

Page 228 of 328 -- WP 43S U v0.16

and the start values 𝑥0 = 1, (
𝑑𝑥

𝑑𝑡
)
0
= 0 , 𝑦0 = 0, (

𝑑𝑦

𝑑𝑡
)
0
= 1 . These

‘variable’ start values shall be entered using INPUT here (cf. p. 222):

  LBL ’Satell’
 INPUT ‘x’ start of variable initialization

 INPUT ‘y’

 INPUT ‘dx/dt’

 INPUT ‘dy/dt’

 .1 initialize the remaining ‘fixed’ start values
 STO ’Δt’
 1 (for earth satellites, take GM out of CONST instead)
 STO ’a’
 0 start at time zero
 STO ’t’ end of initialization

  LBL 01 begin of time loop

 RCL ’y’

 RCL ’y’

 x² y2
 RCL ’x’

 x²
 + y2+x2
 -1.5
 yᵡ (y2+x2)−1.5
 RCL× ’a’ a (y2+x2)−1.5

 × y a (y2+x2)−1.5 = −Ky

 RCL L a (y2+x2)−1.5

 RCL× ’x’ x a (y2+x2)−1.5 = −Kx . Stack is [−Kx , −Ky , ...] now.

 RCL ’t’

 x>0 ? check time – it will be zero in 1st run
 GTO 02 from 2nd run on go to local label 02

 DROP 1st run only: forget t
 2 1st run only:
 / 1st run only: −Kx  / 2

 x⇄y 1st run only: stack is [−Ky , −Kx  / 2 , ...] after x⇄y
 2 1st run only:
 / 1st run only: −Ky  / 2
 x⇄y 1st run only: stack is [−Kx  / 2 , −Ky  / 2 , ...] after x⇄y
 GTO 03 1st run only: go to common part of time loop

  LBL 02 from 2nd run on:
 DROP from 2nd run on: forget t

WP 43S U v0.16 --- Page 229 of 328

  LBL 03 the common part of the time loop resumes here again
 RCL× ’Δt’ − Kx × Δt (or half of it in 1st run)

 STO- ’dx/dt’ calculate the new dx/dt
 DROP bring y to the front
 RCL× ’Δt’ − Ky × Δt (or half of it in 1st run)

 STO- ’dy/dt’ calculate the new dy/dt

 RCL ’Δt’

 STO+ ’t’ calculate the new time
 RCL× ’dx/dt’ dx/dt × Δt

 STO+ ’x’ calculate the new x
 VIEW ’x’ display the new x for plotting

 STOP

 RCL ’Δt’

 RCL× ’dy/dt’ dy/dt × Δt

 STO+ ’y’ calculate the new y

 VIEW ’y’ display also the new y for plotting the new point (x, y)

 STOP

 GTO 01 end of time loop, return for next run through it

  END

Plotting the points calculated

for these start values will

result in a perfect circle as

shown by the blue symbols

in the diagram – taking

64 time steps for one orbit.

We added some examples

with slightly different start ve-

locities for comparison. The

green elliptical orbit takes

46 Δt only, the dark red one

116. Green and blue marks

in the other curves highlight

the positions after 46 and

64 Δt for comparison.

The innermost red ellipse

starts with velocity 1

again but directed 45° in-

wards (‘NW’). Note this

curve does not close due

Page 230 of 328 -- WP 43S U v0.16

to the perigee speed being too high for the time step Δt chosen. We recom-

mend watching the limits of such numeric models always.

For a descent to a planet or a moon, you can introduce a decelerating

force which may even depend on height over ground. Your imagination

is the limit – and your ability in mathematical modeling.

The Programmable Menu (MENU)

Your WP 43S has a programmable menu which is used to cause

program branching. By this, you can create menu-driven programs. The

MENU function selects the programmable menu. The menu is displayed

when the program stops. You can define each softkey in this menu so

that when this key is pressed, a particular GTO or XEQ instruction will

be executed. You can even re-define , , and .167

To define a softkey in the programmable menu:

1. Store a string of up to seven characters in register K. This is the text

that will appear in the menu space for the softkey specified (If space

does not suffice, only the first characters will be displayed). K is not

used when defining , , or .

2. Call KEYG (i.e. on key, go to)

or KEYX (i.e. on key, execute). You find them in P.FN.

3. Specify which key you want to define (the menu view changes):

a. Press one of the 18 softkeys available, , , or .

b. Alternatively, enter the respective key number, 1 through 21

(unshifted leftmost softkey carries #1, -shifted leftmost #13).

167 See HP-42S Programming Examples and Techniques, pp. 29 - 39, 92 - 99, 158 - 160,
and 184 - 192, for some sample programs using the programmable menu.

WP 43S U v0.16 --- Page 231 of 328

4. Specify a program label using one of the following three methods (the

menu view changes to the one shown on p. 210):

a. Select an existing global label by pressing the corresponding

softkey in  PROG.

b. Key in a global label character by character using AIM.

c. Key in a two-digit local label.

Repeat this procedure for each softkey in the programmable menu you

want to define. The new definition replaces any previous definition that

may exist for that softkey.

To display the programmable menu:

Execute the MENU function, e.g. by entering  P.FN2   MENU.

To clear all softkey definitions in the programmable menu:

Call CLMENU (clear the programmable menu), e.g. by entering

 CLMENU.

Basic Kinds of Program Steps

You have seen various program steps so far. Each step takes a single

place in program memory, and each step is numbered automatically.

Basically, the contents of these steps fall into four categories – one

program step may contain...

• a global or local label (like   LBL ‘Join’ or   LBL 07 above) or

• a complete command (like   - or   yᵡ or   STO× →‘Prd2’) or

• an entire alpha string (a.k.a. an alphanumeric constant, like

  “This is a text.” ; such a text will be automatically stored in K) or

• an entire number (a.k.a. a numeric constant, like   -1.902×10⁻¹⁶ or

 1 23 45⑯ or   # λ⒞ ; such a constant will be automatically stored in X).

Page 232 of 328 -- WP 43S U v0.16

Since each constant takes one step, there is no need for separating them

by   ENTER↑ in a routine.

Example:

Think of calculating 12.3 + 45.67 in a routine.

Then pressing 12.3 45.67 will result in a program snippet

   12.3
   45.67
   +

which will do for returning 57.97. The missing

  ENTER↑ saves two bytes of program space and makes the routine a tiny

bit faster. You will achieve the same by 12.3 45.67 . It may not

be really important here but you should know.

Constant vectors and matrices cannot be entered directly in a program;

though you can store them in registers or variables and manipulate these

stored items (as described in Section 2) in routines as well.

Program steps may require two or more bytes of memory. We think you

will hardly ever run out of program space (but you may, of course: if you

do while trying to enter a new program step, you will read an error

message   RAM is full ; see App. B of the ReM for ways to escape from

such a situation).

Deleting Programs

To delete some steps of a program, proceed as explained on pp. 211f.

Repeat as often as necessary.

To delete an entire program, move the program pointer into this program

(e.g. by entering and picking the label of this program) and then

press   CLP . Note CLP will remove the entire program from

memory, not only the routine the program pointer is in. And CLP cannot

be undone! The space freed by CLP will be added to the pool of free

space your WP 43S features.

WP 43S U v0.16 --- Page 233 of 328

To delete all programs stored in RAM, press   CLPall and confirm.

Thereafter, program memory will be completely wiped out. Note that

also CLPALL cannot be undone.

Serial Input and Output of Data and Programs

Xxx

Local Data

After some time with your WP 43S you will have a number of routines

stored, so keeping track of their resource requirements may become a

challenge. Most modern programming languages take care of this by

declaring local variables, i.e. memory space allocated from general data

memory and accessible for the current routine only; when the routine is

finished, the respective memory is released. On your WP 43S, mainly

registers are used for data storage – so we offer local registers to you

allocated to your routines exclusively.

Example:

Let’s assume you write a routine labeled P1 and need five registers for

your computations therein. Then all you have to do is just enter PEM, go

into the routine P1, and enter

  LocR
specifying that

you want five local registers. Thereafter, you can access these registers

by using local addresses .00 … .04 throughout P1.

Now, if you call another routine P2 from P1, also P2 may contain a step

LOCR, requesting local registers again. These will also carry local

register addresses .00 etc., but the local register .00 of P2 will be

physically different from the local register .00 of P1, so no interference

will occur. As soon as the return step is executed, the local registers of

the corresponding routine are released and the space they took is

returned to the pool of free memory.

Page 234 of 328 -- WP 43S U v0.16

In addition, you get sixteen local user flags as soon as you request at

least one local register.

Local data holding allows for recursive programs, since every time such

a routine is called again it will allocate a new set of local registers and

user flags being different from the ones it got before. See the commands

LOCR, LOCR?, MEM?, and POPLR in the IOI; and look up App. B of the

ReM for more information, also about the limitations applying to local

data.

Flash Memory (FM)

In addition to the RAM provided, your WP 43S allows you to access FM

for voltage-fail-safe storage of user programs and data. The first section

of FM is a backup region, holding the image of the entire RAM (i.e. user

program memory, registers, and WP 43S states) as soon as you have

executed a SAVE. The remaining part of FM is for programs only.

Global labels in FM can be called using XEQ like in RAM. This allows

creating program libraries in FM. Use CATALOG’PROGS’FLASH to see

the global labels already defined in FM.

FM is ideal for backups or other relatively long-living data, but shall not

be used for repeated temporary storage like in programmed loops. 168

Conversely, registers and standard user program memory residing in

RAM are designed for data changing frequently but will not hold data with

the batteries removed for longer than a few minutes. So both RAM and

FM have their specific advantages and disadvantages you should take

into account for optimum benefit and longevity of your WP 43S.

168 FM may not survive more than some 100 000 flashes. Thus, we made commands
writing to FM (SAVE or PSTO) non-programmable.

WP 43S U v0.16 --- Page 235 of 328

SECTION 4: ADVANCED PROBLEM SOLVING

There are some powerful commands provided for computing

programmable sums and products, for solving equations, for computing

definite integrals as well as 1st and 2nd derivatives. All

are contained in ADV or EQN. Pressing in run

mode results in

 f”(x)
 SOLVE SLVQ f’(x) Π⒩ Σ⒩ ∫fdx

The commands Σ, Π, SLVQ, SOLVE, ∫, f’(x), and f”(x) are explained

below in this order. All these commands may also be programmed.

Integrating, deriving, and solving equations interactively may be reached

through . See below for details and examples.

Programmable Sums

The command Σ is called with a loop control number in X and a label

trailing the command. Said loop control number follows the format

ccccc.fffii (as it does in DSE etc. mentioned above).

In its heart, Σ then works like this:

1. It sets the sum to 0 initially.

2. It fills all stack registers with ccccc and calls the routine specified by

the label. That routine returns a summand in X.

3. It adds this summand to said sum.

4. It decrements ccccc by ii; if ccccc ≥ fff then Σ goes back to

step 2, else it returns the final sum in X.

If ii = 0 , ccccc will be decremented by 1 in each loop.

Page 236 of 328 -- WP 43S U v0.16

Example:

Compute ∑ √𝑘100
𝑘=0

Solution:

1. Write a little program for the internal calculation of the summands:

  LBL ‛ΣSQRT '  
 √Ϳ
 RTN .

2. Enter

100

 Σ⒩

(or pick ΣSQRT from PROG, cf. p. 210)

and get 671.462 9 returned if FIX 4 is set.

Σ deliberately sums from the last term to the first, on the assumption that

summations will often be of convergent series and this summing order

should generally increase accuracy.

Programmable Products

The command Π is called with a loop control number in X and a label

trailing the command (like for the command Σ).

In its heart, Π works almost as Σ :

1. It sets the product to 1 initially.

2. It fills all stack registers with ccccc and calls the routine specified by

the label. That routine returns a factor in X.

3. It multiplies this factor with said product.

4. It decrements ccccc by ii; if ccccc ≥ fff then Π goes back to

step 2, else it returns the final product in X.

If ii = 0 , ccccc will be decremented by 1 in each loop.

WP 43S U v0.16 --- Page 237 of 328

Example:

Compute ∏
1

√𝑘

50
𝑘=1

Solution:

1. Write a little program for the internal calculation of the factors:

  LBL ‛PROD '
 √Ϳ
 1/x
 RTN .

2. Enter

50.001

 Π⒩

(or pick PROD from PROG, cf. p. 210)

and get 5.734×⒑⁻³³ returned if SCI 3 is set.

Solving Quadratic Equations

The command SLVQ finds the real and complex roots of a quadratic

equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 with its real parameters on the input stack

[c, b, a, …] :

• If 𝑟 ∶= 𝑏2 − 4𝑎𝑐 ≥ 0 , SLVQ returns the 2 real roots
a

rb

2

− in Y

and X. If called in a routine, the step

after SLVQ will be executed then.

• Else, SLVQ returns the 1st complex

root in X and the 2nd in Y (the

complex conjugate of the 1st). If

called in a routine, the step after

SLVQ will be skipped then.

So actually, SLVQ tests for real roots at

its very end. In either case, SLVQ

returns r in Z. Higher stack registers are

kept unchanged. L will contain equation parameter c.

Page 238 of 328 -- WP 43S U v0.16

Example:

Find the roots of 4𝑥2 − 3𝑥 − 2 = 0 .

Solution:

4 3 2

   SLVQ returns (with FIX 4 chosen) x = 1.175 4, y = − 0.425 4,

z = 41.000 0. Since z is positive, x and y are the two real roots of this

equation here.

Check:

Store x in J and y in K. Then enter

 4 3 2 returning     2.000 0×⒑⁻³³ and

 4 3 2 returning 0.000 0.

Remember your WP 43S calculates with 34 digits precision, so any result

within ± 3 ∙ 10−33 is equal to zero in this matter.

General Equations

The menu EQN lets you store, select, and edit arbitrary equations;

you may use each such equation for

• solving it interactively for any variable it contains, for

• integrating and

• deriving.

The number of equations you can store and the number of variables used

in each equation are limited only by the amount of free memory available.

Example:

Press . If there are no equations in memory yet, your WP 43S will

return:

 NEW

WP 43S U v0.16 --- Page 239 of 328

Press to enter a new equation. You will get immediately:

 ← () ^ : = →

with alpha input mode turned on (cf. pp. 189ff). Enter your equation now,

e.g.

 height   v    time   g    time   ̂ 169

for the height of e.g. a ball thrown vertically upwards with velocity v
0
.

Press for closing the Equation Editor and see: 170

 height = v₀ · time - g / 2 · time²
 DELETE
 NEW EDIT f’’ f’ ∫f Solver

You will get such a display whenever one or more equations are stored.

The equation shown is called the current equation. (A dashed line will

show up when there are more equations; to select another one as the

current equation, press or until the requested equation appears.)

Pressing opens the Equation Editor for the current equation:

 height = v₀ · time - g / 2 · time ^2

 ← () ^ : = →

You may modify this equation at any position by moving the edit cursor to

the location behind the character(s) to be corrected and pressing

followed by the new character(s) to be inserted here.

For labeling this equation, move the cursor left to its very begin using ,

and key in:

169 The index of the earth acceleration constant is found in the punctuation menu ●,

reached via in AIM.

170 Note MULT· is set here for sake of better readability of equations. And some spaces
are inserted automatically for the same reason.

Page 240 of 328 -- WP 43S U v0.16

 FreeFal:height = v₀ · time - g / 2 · time ^2

 ← () ^ : = →

 FreeFal: height = v₀ · time - g / 2 · time²
 DELETE
 NEW EDIT f’’ f’ ∫f Solver

 closes the Equation Editor storing the modifications you made.

Note editing an equation clears all its variables.

If an equation become wider than the display ellipses will be displayed

at its end(s); then use and in the Equation Editor for scrolling.

The Interactive Solver for Arbitrary Equations

The built-in Solver application of your WP 43S is a special root finder that

enables you to solve an equation for any of its variables. It allows for

solving for an arbitrary unknown as well as for finding the root(s) of an

arbitrary equation. 171

Press , make the equation you want to

solve the current equation (see previous

chapter), and press . Your WP 43S

will check this equation for syntax errors

(missing operators, misspelled functions,

illegal variable names, etc.). It will then return

a menu of all applicable variables, like the

one in our example:

171 Translator’s note for German readers: Der eingebaute Gleichungslöser („Solver“)
Ihres WP 43S erlaubt Ihnen das Auflösen nach einer beliebigen Unbekannten bzw. das
Finden der Nullstellen einer beliebigen Gleichung.

WP 43S U v0.16 --- Page 241 of 328

 FreeFal: height = v₀ · time - g / 2 · time²

 height v₀ time Calc

Note your WP 43S knows    g  is a constant contained in CONST. Now

you can enter values for any variables you know by pressing the

respective softkeys, e.g. –50   height 20    v₀  (corresponding to 50 m

below start height and a velocity of 20 m/s upwards at time zero), until

only one variable remains unknown. Optionally, enter one or two initial

guesses for the unknown like 5   time 10   time. Set the display format and

precision unless done before:

   FIX .

Now, press the softkey for the unknown   time once more (but now without

any numeric input heading), and your WP 43S will solve the equation for

this variable and return its value in X:

time = 5.8

 FreeFal: height  =  v₀ · time - g / 2  · time²

 height v₀ time Calc

corresponding to 5.8 s until your ball passes said point. Note entering the

known values and guesses disabled automatic stack lifting.

Another example (from the HP-27S OM):

Carbon-14 Dating. Wood on the outer surface of a giant sequoia tree

exchanges carbon with its environment. The radioactivity of this wood is

15.3 counts per minute per gram of carbon. A sample of wood from the

center of the tree yields 10.9 counts per minute per gram of carbon. The

rate constant for the radioactive form of carbon, 14C, is 1.20 × 10 −4. How

old is the tree? What is the half-life of 14C?

Solution (assuming you continue directly after previous example):

Exit the current equation and enter a new one for radioactive decay:

Page 242 of 328 -- WP 43S U v0.16

 5.8

 FreeFal: height  =  v₀ · time - g / 2  · time²
 DELETE
 NEW EDIT f’’ f’ ∫f Solver

 ← () ^ : = →

 Decay: rate · time = ln( n0 / n )
 DELETE
 NEW EDIT f’’ f’ ∫f Solver

 Decay: rate · time = ln( n0 / n )

 rate time n0 n Calc

1.2 4 15.3 10.9

time = 2 825.8

This is the computed age of this tree in years.

Now, calculate the half-life of 14C, that is the time required for half the

material present to decay:

2 1

time = 5 776.2

Good guess! Meanwhile, half-life of 14C is known to be 5 730 ± 40 years.

One more example:

WP 43S U v0.16 --- Page 243 of 328

Find the roots of 7𝑥3 + 5𝑥2 − 3𝑥 − 2 = 0 .

Solution:

1. Enter the equation as demonstrated above.

2. Make this equation the current equation and press . You will

see:

 5 776.2
 g(x): 0 = 7 · x³ + 5 · x² - 3 · x - 2

 x Calc

3. Optionally enter one or two initial guesses for the unknown like

0 1 .

4. Set the display format and precision

   SCI

5. Press the softkey for the unknown once more (but now without

any numeric input heading), and your WP 43S will solve the equation

for this variable and return its value in X:

x = 6.431×⒑⁻¹

 g(x): 0 = 7 · x³ + 5 · x² - 3 · x - 2

 x Calc

6. If you want to crosscheck you can enter

 returning

 0.000

confirming the result of the Solver. Slightly greater x-values, e.g.

.65 , return positive values for g(x), while slightly

smaller values, e.g.

.64 , return negative values for g(x).

7. There may be one or two more roots:

Page 244 of 328 -- WP 43S U v0.16

a. Enter two new initial guesses for the unknown like –2 0 .

Press the softkey for the unknown once more, and you will get:

x = -8.064×⒑⁻¹

Slightly greater x-values, e.g. – 0.8, return positive values for g(x),

slightly smaller values, e.g. – 0.81, return negative values for g(x).

Thus, there must be one more root between the two roots found.

b. Enter two new initial guesses for the unknown like –.7 .5 .

Press the softkey for x once more and you will get:

x  = -5.510×⒑⁻¹

Note that even a polynomial of same grade deviating just a bit (e.g. 7𝑥3 +
4. 5𝑥2 − 3𝑥 − 2 = 0) may feature one real root only.

Look into Section 5 of the HP-27S OM for more about interactive solving

of equations.

The Interactive Solver for Expressions Stored in Programs

Instead of operating on an equation as described in previous chapters,

your WP 43S can also solve an expression f stored in a program. Then,

the procedure is as follows:

1. Write a program for f:

2. Press   SOLVE.

3. Enter values for all known variables of f.

4. Let your WP 43S compute the unknown variable.

5. Leave the Solver.

We will go through this step by step:

1. Write a program for f:

• It must begin with a global label.

WP 43S U v0.16 --- Page 245 of 328

• It must define all variables required for calculating f.

• It shall be as efficient as possible since it is going to be executed

many times.

For interactive solving, proceeding as follows is recommended for this

program: From its 2nd step on, menu variables shall be declared using

MVAR instructions (cf. p. 222) covering all variables of f. The

subsequent body of the routine shall evaluate f recalling these

variables. For a Solver routine, the original expression shall be

rewritten in a way that f = 0 is fulfilled.

Example:

Let’s return to the equation we dealt with in the last two chapters:

height = v₀ · time - g / 2 · time²
This is easily rewritten:

v₀ · time - g / 2 · time² - height = 0

So the required program might look like this:

  LBL ’FreeF’
 MVAR ‘height’
 MVAR ‘v₀’
 MVAR ‘time’
 # g take this out of CONST.
 -2
 /
 RCL× ‘time’
 RCL+ ‘v₀’
 RCL× ‘time’
 RCL- ‘height’ now we have got f.
 RTN

2. Press . You will see:

 f"(x)
 SOLVE SLVQ f’(x) Π⒩ Σ⒩ ∫fdx

Choose SOLVE. You will get (as expected from p. 210):

Page 246 of 328 -- WP 43S U v0.16

 → PROG ST.X ST.Y ST.Z ST.T

Press   PROG and pick the proper program for f (here  FreeF).

You will get the corresponding menu of variables, i.e. here:

 height v₀ time

3. Enter values for all known variables of f and (optionally) one or two

guesses for the unknown.

In our example, we may just take the values we know from above:

–50   height

20 v₀

5   time 10   time

4. Let your WP 43S compute the unknown variable.

Press once more but without a heading numeric entry. Your

WP 43S will return   time =  5.8 as you have expected (cf. p. 241).

5. Leave the Solver.

Pressing will return to the top view of ADV.

 f"(x)
 SOLVE SLVQ f’(x) Π⒩ Σ⒩ ∫fdx

Using the Solver in a Program

For using the Solver in a programs, it has to be told what you did tell it in

the examples of previous chapters. Thus, when you press in PEM,

you will see a slightly different menu than the one you have seen above:

WP 43S U v0.16 --- Page 247 of 328

 PGMSLV f"(x) PGMINT
 SOLVE SLVQ f’(x) Π⒩ Σ⒩ ∫fdx

PGMSLV is for specifying the program calculating f. It must be found in

your program before SOLVE is called.

Furthermore, define the necessary variables in advance and load them

with the known values using STO. Eventually, the unknown variable

must be specified calling SOLVE.

Example:

Let’s return to the equation we dealt with in the last chapters. So the

required program for f might look like this (like the previous program but

without the MVAR steps):

  LBL ’FreeFp’
 # g take this out of CONST.
 -2
 /
 RCL× ‘time’
 RCL+ ‘v₀’
 RCL× ‘time’
 RCL- ‘height’ now we have got f.
 RTN

The program one level above could contain a section looking like this:

 ...
 PGMSLV ‘FreeFp’ specify the function to be solved.
 SOLVE ‘time’ solve for time.
 VIEW ‘time’ display the solution.
 ...

Before starting this program (let’s call it C), fill the variables of the

equation to be solved, e.g. with the start values known from above:

−50   height

20 v₀

Option: Fill the unknown with a 1st guess, e.g. with 5 as we specified

above (a 2nd guess will be taken from X):

Page 248 of 328 -- WP 43S U v0.16

5   time

Call C via and you will see time  =  5.8 (as expected from

p. 241).

Eventually turn to Part 3, Section 12 of the HP-42S OM. Refer to the

HP-34C OHPG (Section 8 and App. A) or the HP-15C OH (Section 13

and App. D) for more information about automatic root finding and some

caveats.

Numeric Integration of Equations

The command ∫ lets your WP 43S compute definite integrals

numerically.

Example:

Let’s compute the Bessel function of 1st

kind and order 0. This function can be

written as

𝐽0(𝑥) =
1

𝜋
∫𝑐𝑜𝑠(𝑥 sin 𝑡)𝑑𝑡

𝜋

0

Solution:

This is calculated in radians, thus enter   RAD and press :

 5.8
 FreeFa: height =  v₀ · time - g / 2 ·time ̂  2
 DELETE
 NEW EDIT f’’ f’ ∫f Solver

This function is not in the equation list yet.172 So, press NEW and start

entering the integrand:

172 Actually, a function Jy(x) is implemented in your WP 43S directly returning values of
the Bessel function of 1st kind and order y. Feel free to compare the results.

WP 43S U v0.16 --- Page 249 of 328

 IBess:

 ← () ^ : = →

Continue with () ←   () ←

 IBess: cos( x · sin( t) )

 ← () ^ : = →

Close and store this function by pressing . The menu will return

to the previous one.

Then press   ∫f  . Your WP 43S will check the current equation (cf. pp.

238ff) for syntax errors (missing operators, misspelled functions, illegal

variable names, etc.). 173 It will then return a menu of all applicable

variables:

 IBess: cos( x · sin( t ) )

 x t

You can enter values for any variables (i.e. integration constants) you

already know by pressing the respective softkeys now, e.g.

2

(For recalling such an integration constant, just press

   VAR before the respective softkey.)

Then select the variable of integration by simply pressing here (there

must not be any numeric input heading). The menu will change:

 2.0

 IBess: cos( x · sin( t ) )

 ACC ↓Lim ↑Lim ∫

173 You will have noticed already that IBess is not an equation but just one side of it. To

keep the system lean, such functions are listed under nevertheless, but cannot
be evaluated by the Solver, of course.

Page 250 of 328 -- WP 43S U v0.16

Even your WP 43S cannot compute an integral exactly, it approxi-

mates its value numerically. The accuracy of this approximation de-

pends on the accuracy of the integrand's function itself as calculated

by your program. This is affected by round-off error in the calculator

and also by the accuracies of the integration constants specified.

ACC is a real number that defines the relative error of the integration.

With ACC = 0.001, for example, you can be sure that

|
𝑣𝑇 − 𝑣𝐶
𝑣𝐶

| ≤ 0.001

(with vT being the true value and vC the computed value of the

integrand) at any point between Lim and Lim.

We want to see the result accurate to three decimals. Thus we enter

.001   ACC for the accuracy of computation,

0   ↓Lim for the lower integration limit,

  ↑Lim for the upper integration limit,

and start integrating by pressing ∫ . Your WP 43S will return:

 ∫≈ 0.7

 IBess: cos( x · sin( t ) )

 ACC ↓Lim ↑Lim ∫

Do not forget to divide this result by π to get the correct value for 𝐽0(2):

  FIX 174

 0.224

 IBess: cos( x · sin( t ) )

 ACC ↓Lim ↑Lim ∫

Enter other values for x and integrate again to get 𝐽0(𝑥) at other locations.

174 Note that   ∫≈ vanishes with like every temporary information disappears with the
next keystroke.

We could have included that division by π in our function IBess. We did not, however,

since IBess is evaluated many times during the integration process; thus the fewer
steps the integrand contains the faster the result can be returned.

WP 43S U v0.16 --- Page 251 of 328

Interactively Integrating Expressions Stored in Programs

Instead of operating on an ‘equation’ as described in previous chapter,

your WP 43S can also integrate an expression f stored in a program.

Then, the procedure is as follows:

1. Write a program for f.

2. Press   ∫fdx.

3. Enter values for all known variables (integration constants) of f, for

ACC, and for the integration limits. Select the variable of integration.

4. Let your WP 43S compute the definite integral specified.175

We will go through this step by step:

1. Write a program for f :

• It shall begin with a global label.

• It shall define all variables required for calculating f.

• It shall be as efficient as possible since it is going to be executed

many times.

It is recommended proceeding as follows: From the 2nd step of this

program on, menu variables shall be declared with MVAR

instructions (cf. p. 222) covering all variables of f. The subsequent

body of the routine shall evaluate f recalling these variables.

Example:

Let’s return to the integrand we dealt with in the last chapter. Then the

required program for f might look like this:

  LBL ’IBessI’
 MVAR ‘x’
 MVAR ‘t’
 RCL ‘t’
 sin
 RCL× ‘x’
 cos now we have got f.
 RTN

175 Note this follows closely the procedure as described for the Solver above.

Page 252 of 328 -- WP 43S U v0.16

2. Press . You will see:

 f"(x)
 SOLVE SLVQ f’(x) Π⒩ Σ⒩ ∫fdx

Choose   ∫fdx. You will get (as expected from p. 210):

 → PROG ST.X ST.Y ST.Z ST.T

Press   PROG and pick the proper program for f (here   IBessI ). You

will get the corresponding menu of variables, i.e. here:

 x t

3. Enter values for all known variables (integration constants) of f and

select the variable of integration.

In our example, we may just take the values we know from above: 2

. So t will be the variable of integration. The menu will change

now:

 ACC ↓Lim ↑Lim ∫

We enter (like in previous chapter) .001  ACC  0  ↓Lim   ↑Lim  .

4. Let your WP 43S compute the definite integral specified.

Press ∫ to integrate with all the parameters as chosen, and your

WP 43S will return   ∫≈ 0.704 as you might have expected (cf. previous

chapter). Divide by π to get the value for 𝐽0(2) as above.

Using the Integrator in a Program

For using the Integrator in programs, it has to be told what you did tell it

in the examples of the two previous chapters. Thus, when you press

WP 43S U v0.16 --- Page 253 of 328

 in PEM, you will see a slightly different menu than the one you

have seen above:

 PGMSLV f"(x)
 SOLVE SLVQ f’(x) Π⒩ Σ⒩ ∫fdx

You shall define the necessary variables in advance and load them with

the known values using STO. Then call the menu  ∫fdx . PGMINT is

for specifying the program calculating f. It must be found in your program

before the integration itself is called. And the integration limits as well

as the requested accuracy shall be stored as well before integrating:

 PGMINT STO AC STO ↓L STO ↑L ∫

Eventually, the variable of integration must be specified calling ∫.

Example:

Let’s return to the integrand we dealt with in the last two chapters. So the

required program for f might look like this:

  LBL ’IBessP’
 RCL ‘t’
 sin
 RCL× ‘x’
 cos now we have got f.
 RTN

The program one level above could contain a section looking like this:

 ...
 PGMINT ‘IBessP’ specifying the function to be integrated.

 0
 STO ‘↓Lim’
 π
 STO ‘↑Lim’
 0.001
 STO ‘ACC’
 ∫fd ‘t’ integrate over time.
 VIEW ST.X display the solution.
 ...

Page 254 of 328 -- WP 43S U v0.16

Before starting this program (let’s call it InP), fill the variables staying

constant under integration, e.g. with the start values known from above:

 2 .

Call InP via and you will see   ∫≈ 0.704 as you may have expected

(cf. previous chapter). Divide by π to get 𝐽0(2) as above.

Eventually turn to Part 3, Section 13 of the HP-42S OM. Refer to the

HP-34C OHPG (Section 9 and App. B) or the HP-15C OH (Section 14

and App. E) for more information about automatic integration and some

caveats.

Differentiating Equations

There are two commands provided returning the values of the first two

derivatives of the function f(x) at position x. This function f(x) can be

specified in an equation.

f ’(x) returns the 1st derivative. For computing it, ...

1. f ’(x) will first look for a user routine labeled 'δx' (or ‘δX’, ‘Δx’, or ‘ΔX’,

in this order), returning a fixed step size dx in X. If that routine is

not defined, dx = 0.1 is set for default.

2. Then, f ’(x) fills all stack registers with x and calls f(x). It will

evaluate f(x) at ten points equally spaced in the interval x ± 5 dx

(if you expect any irregularities within this interval, change dx to

exclude them).

3. On return, the 1st derivative will be in stack register X, while Y, Z,

and T will be clear and the position x will be in L.

Example (with SCI 3 set):

Take the equation 𝑔(𝑥) = 7𝑥3 + 5𝑥2 − 3𝑥 − 2 again (used on pp.
241f for solving). Instead of checking two function values left and right of

the root you could check the slope 𝑔′(𝑥) at the root just once.

WP 43S U v0.16 --- Page 255 of 328

Solution:

You have got g(x) in EQN already. For each of the three roots found,

calculate the root first, then the 1st derivative of g(x) at that point:

1. Press , make g(x) the current equation, and press  Solver.

You will see then:
 2.241×⒑⁻¹

 g(x): 0 = 7 · x³ + 5 · x² - 3 · x - 2

 x Calc

2. Find the 1st (leftmost) root as shown above:

−2 −1

x =  -8.064×⒑⁻¹

 g(x): 0 = 7 · x³ + 5 · x² - 3 · x - 2

 x Calc

3. Pressing returns to the top view of EQN:

 -8.064×⒑⁻¹

 g(x): 0 = 7 · x³ + 5 · x² - 3 · x - 2
 DELETE
 NEW EDIT f’’ f’ ∫f Solver

4. Press   f’ :

f'  =  2.591

 g(x): 0 = 7 · x³ + 5 · x² - 3 · x - 2

 x f'here

Note that f ’ returned the value of the 1st derivative at this very location

immediately since g(x) features only one variable; else f ’ would have

needed your input via the softkeys displayed and pressing f'here

thereafter.

So the slope of g(x) at x = −0.8064 is 2.591. Get the slopes at the

two other root positions the same way:

Page 256 of 328 -- WP 43S U v0.16

5. returns to the top view of EQN as in step 3.

6.  Solver

Find the 2nd root of g(x): −1 0

x =  -5.510×⒑⁻¹

 returns to the top view of EQN as in step 3.

  f’

f' =  -2.134

 returns to the top view of EQN as in step 3.

7.  Solver

Find the third (rightmost) root of g(x): 0 1

x = 6.431×⒑⁻¹

 returns to the top view of EQN as in step 3.

  f’

f' = 1.211×⒑¹

So the slope of g(x) at x = −0.8064 is 2.591, at x = −0.5510 it is

−2.134, and at x = 0.6431 it is 12.11; the sequence of slopes is

positive, negative, and positive as expected.

f”(x) works in full analogy, computing the 2nd derivative of the function

specified.

Interactively Differentiating Expressions Stored in Programs

Instead of operating on an ‘equation’ as described in previous chapter,

your WP 43S can also derive an expression f(x) stored in a program.

Then, the procedure works as follows:

WP 43S U v0.16 --- Page 257 of 328

1. Write a program for f(x). It must begin with a global label. For

interactive derivation, proceeding as follows is recommended: From

the 2nd step of this program on, menu variables shall be declared

with MVAR instructions (cf. p. 222) covering all variables of f(x). The

subsequent body of the routine shall evaluate f(x) recalling these

variables.

2. Optionally, write another program labeled 'δx' (see p. 254).

3. Enter values for all known variables (derivation constants) of f(x).

Put the location where you want to know he derivative into X.

4. Press . You will get:

 f"(x)
 SOLVE SLVQ f’(x) Π⒩ Σ⒩ ∫fdx

5. Press   f’(x) or   f”(x). You will get as well:

 → PROG ST.X ST.Y ST.Z ST.T

6. Press   PROG to pick the label of the program containing the function

f (x) (or enter its label directly as described on p. 209).

7. Let your WP 43S compute the 1st or 2nd derivative at the location

specified in x.176

Computing Derivatives in a Program

For computing derivatives in programs, proceed as demonstrated in

previous chapter. Just remember you should omit the MVAR instructions

in your program calculating f(x); instead, define the necessary variables

in advance and load them with the known values using STO.

176 Note this follows loosely the procedures as described for the Solver and Integrator
above.

Page 258 of 328 -- WP 43S U v0.16

When you press in PEM, you will see a slightly different menu than

the one you have seen above:

 PGMSLV f"(x)
 SOLVE SLVQ f’(x) Π⒩ Σ⒩ ∫fdx

Press   f’(x) (or   f”(x)) and specify the label of your program calculating

f (x) – or pick it from the list as explained in steps 5 and 6 above. Your

WP 43S will compute the requested derivative for you in this program

step.

Nesting Advanced Operations

You can nest SLV, ∫, f ’(x), f ’’(x), Σ, and Π in routines to any depth as far

as memory allows and your patience and power last.

Example:

Light is observed to be diffracted when passing through small circular
holes, an effect most obvious when using laser light. Its intensity is

𝐼(𝑟) = 𝐼0 × (
𝐽1(2𝜋𝑟)

𝜋𝑟
)
2

 behind the hole; 𝐽1(𝑥) =
1

𝜋
∫ 𝑐𝑜𝑠[𝑡 −
𝜋

0

𝑥 𝑠𝑖𝑛(𝑡)] 𝑑𝑡 is the Bessel function of the 1st kind of order 1 (cf. p. 248).
Find the first three roots of the intensity (i.e. the radii where no light will
be observed).

Solution:

1. Write a little program for the internal calculation of the integrand

𝑓(𝑡) = 𝑐𝑜𝑠[𝑡 − 𝑥 𝑠𝑖𝑛(𝑡)] :

  LBL ’J1’
 sin 𝑠𝑖𝑛(𝑡)
 RCL× 00 The entire stack is loaded with the integration

variable t, so 𝒙 = 2𝜋𝑟 (see below) must be
recalled from a global register for calculating

𝑥 𝑠𝑖𝑛(𝑡)
 - 𝑡 − 𝑥 𝑠𝑖𝑛(𝑡)
 cos 𝑐𝑜𝑠[𝑡 − 𝑥 𝑠𝑖𝑛(𝑡)]
 RTN .

WP 43S U v0.16 --- Page 259 of 328

2. Write a 2nd little program for the internal calculation of the intensity

𝐼(𝑟). Note that just the parenthesis of the formula above must be

evaluated since I0 is a constant. And , when called in PEM,

displays:

 PGMSLV f"(x)
 SOLVE SLVQ f’(x) Π⒩ Σ⒩ ∫fdx

  LBL ’I’
 π
 ×
 2
 ×
 STO 00 stores 2𝜋𝑟 for later use, also in integration.

 PGMINT ’J1’ specifies the program of the integrand.177
 0
 STO ‘↓Lim’
 π
 STO ‘↑Lim’
 0.001
 STO ‘ACC’
 ∫fd ST.X computes 𝜋 × 𝐽1(2𝜋𝑟) .
 RCL 00 the stack just contained the integration results before.
 / 𝐽1(2𝜋𝑟) (2𝜋𝑟)⁄
 2
 × 𝐽1(2𝜋𝑟) (𝜋𝑟)⁄
 RTN .

3. Enter   SCI

  RAD

0.1 1  SOLVE

 → PROG ST.X ST.Y ST.Z ST.T

4. Enter . You will get 6.098×⒑⁻¹ after some time.178

177 You shall press the rightmost softkey to get the menu for accessing PGMINT etc.

178 I.e. after some 25s using the WP 43S emulator (cf. ReM, App. I) on a PC running

Windows 10. It will take xxx minutes on your calculator. Nesting advanced operations

may require very many of calculations to be performed! We recommend connecting

Page 260 of 328 -- WP 43S U v0.16

5. Enter 1 1.5   SOLVE and you will get 1.117 .

6. Enter 1.5 2   SOLVE and you will get 1.619 .

You will find further instructions and examples in HP-42S RPN Scientific

Programming Examples and Techniques. Despite the title of this

manual, it also contains significant material about the Solver, integration,

matrices, and statistics.

your WP 43S to an USB outlet for external power supply when dealing with such

applications. – Note the Solver was not started at 0 since that would cause an error

when dividing by 2𝜋𝑟.

WP 43S U v0.16 --- Page 261 of 328

SECTION 5: TWO BROWSERS,
TWO APPLICATIONS,
AND TWO SPECIAL MENUS

There are two browsers featured for quick and easy checking memory,

registers, and flags (RBR and STATUS, see below). And there are two

very useful applications: a TIMER (or stopwatch, see pp. 264f) and “time

value of money” (TVM, see pp. 266ff). Furthermore, two special menus

will ease your path in special areas of application and particular regions

of this planet (see pp. 270ff).

The Browsers RBR and STATUS

These two browsers may be called in all modes except alpha input.

Some special keys and special rules apply within these browsers as

explained on the two pages following. works as in menus, how-

ever, leaving the respective browser now; and browser (like menu) calls

cannot be programmed.

Keys to
press

 Contents and special remarks

 Browses all currently allocated registers showing their con-

tents. operates in TAM (cf. pp. 56ff). The first screen

you see covers registers X through I (their contents will

deviate on your screen – note numeric contents are shown

explicitly in the display format currently set as long as they are

individual numbers while strings may be abbreviated and

matrices will be. Fractions are displayed with their decimal

value. Within the range of lettered registers, every fourth

register is displayed overlined to guide the eye:

Page 262 of 328 -- WP 43S U v0.16

 2015-08-05 23:15  ℝ∟∡°   /max. 2∶64    

I: 0.000 0
L: 1.602 2×10⁻ⁱ⁹
D: ‘This calculator is made in...
C: 8A FE 49 7C₁₆
B: 123 456 789 012 345 678
A: 0.000 0
T: 0.000 0

 Z: [6×2 ℂ matrix]
 Y: 0.000 0
 X: 6.022 1×10²³

 goes up the stack, continuing with the remaining lettered

registers, then with R00, R01, etc. as shown below. For

R00 … R99, every fifth register is displayed overlined to

guide the eye. After R99, X will be shown again:

 2015-08-05 23:17  ℝ∟∡°   /max. 2∶64    

R07: 0.000 0
R06: ‘The train arrives at...
R05: 1010 1101 1000 0110 1011₂
R04: 0.000 0
R03: 0.000 0
R02: [3×3 ℂ matrix]
R01: [3×3 Matrix]

 R00: [4×1 ℂ matrix]
 K: 57.000 0
 J: 6.000 0

 browses the registers going down from R99 (if starting with

the screen on previous page) to R00; then continues with K,

J, down to X. After X, R99 will be shown again.

 turns to local registers if allocated, starting with R  .00. Then,

 and browse local registers up and down until another

 returns to the first screen of RBR as shown on p. 261.

Else (i.e. if no local registers are allocated) directly returns

to this screen.

WP 43S U v0.16 --- Page 263 of 328

 …

browses immediately to the corresponding (global or local)

register. If no such local register is allocated, it returns to the

first global register.

 toggles display to show the register contents or the space

allocated for them.

 in run mode, recalls the register displayed in the lowest row

and leaves RBR; in PEM, enters a corresponding step

RCL … and leaves RBR.

 leaves RBR.

or

  STATUS

Displays the amount of free memory available and the user

accessible flags set (inspired by STATUS on HP-16C and

WP 34S). Local user flags will only be displayed if local

registers are allocated at all. Some global settings and

system flags set are shown in the bottom rows (covering only

what is not shown in the status bar):

 2019-11-06 11:03  ℝ∟∡°   /max. 2∶64    

1 516 bytes free in RAM, 12 345 in flash.
Global user flags set:
 11 33 34 62 106
64 local registers are allocated.
Local user flags set:
 0 1

 RM=→0← SDIGS=34 ULP of reg X = 10⁻³⁵
 AUTOFF QUIET SPCRES SSIZE8 TRACE

 and toggle between views if more flags are set.

 leaves STATUS.

 No other keys will work within RBR and STATUS. And both

browsers are not programmable.

Page 264 of 328 -- WP 43S U v0.16

The Timer Application

Your WP 43S provides a timer following the one of the HP-55.179 Start it

by pressing . Then the top numeric row will be

replaced by

  0:00:00.0 [00]  

or (depending on the radix mark setting)

  0:00:00,0 [00]  

unless the timer was running before already (then the accumulated run

time will be indicated instead of zero here). In either case the menu

section will change to this:

 ADD 0.1s? RESET

Within TIMER, only the following keys will work:

Key Remarks

 starts or stops the timer without changing its value.

 resets the timer to zero without changing its status (running or

stopped). It deletes the total time if applicable. – Note this is not

the global RESET command.

 toggles displaying tenths of seconds (default is ‘display’).

 adds the present timer value to the statistics registers. This

allows for computing e.g. the arithmetic mean and standard

deviation of lap times after leaving TIMER.

179 This application works exactly as in the WP 34S but the display differs. With respect
to the HP-55, there are two deviations:

1. Your WP 43S will not take the content of X at the time calling TIMER as start time
of the timer; start times are supported by RCL within TIMER here instead.

2. Your WP 43S will display tenths instead of hundredth of seconds. Reaction times
of the hardware do not allow for more precision anyway.

WP 43S U v0.16 --- Page 265 of 328

Key Remarks

 sets the current register address (CRA, startup default is 0). The

CRA will be displayed between rectangular brackets as shown

here:
180

27:31:55.6 [01]

 stores the present timer value in the current register at execution

time without changing the timer status or value. Then increments

the CRA by one.

 nn recalls rnn without changing the status of the timer. The value

recalled may be used e.g. as start time for further incrementing.

 or increments or decrements the CRA by one, respectively.

 allows for overwriting the last value stored.

 combines + in one keystroke, but the total time since

the last explicit press of or is shown and updated like:

  21:04:15⒯   0:02:29   [06] or

  10:02:31.7⒯ 0:00:49.6 [11] .

 allows for recording lap times, for example. Note the total time

is volatile – it will disappear without a trace when or

is pressed alone.

 Combines all the functionality of , , and in one

keystroke. This allows for recording lap times and total time for

later offline analysis.

 leaves the application. The time indicated in the top numeric row

will vanish from the screen. Unless already stopped, however,

the timer continues incrementing in the background (indicated by

  ⌚   in the status bar) until …

180 Think about specifying the CRA so there will be sufficient unused registers following.
Attempts to specify a CRA <0 or >99 will be blocked.

On the HP-55, input of a single digit sufficed for storing, since only 10 registers were
featured for this purpose there. Furthermore, there was no automatic address
increment.

Page 266 of 328 -- WP 43S U v0.16

Key Remarks

a) stopped explicitly by within TIMER or ...

 b) your WP 43S is turned off by you. Note it will not turn off

automatically with the timer running. A reliable power

supply is recommended in such cases.

 For subtracting split times you have to leave this application.

 TIMER is not programmable.

The Time Value of Money (TVM)

TVM is a well proven financial application (thus found in FIN) computing

e.g. the future value (FV) of

1. a repeated investment or

2. a regular down-payment for a credit

based on its present value (PV), its interest rate per annum

(i%/a), the required payment per period (PMT), number of

periods per annum (per / a), and the total number of payment periods

(nPER). This kind of financial problems will often occur also to technical

people, so we included TVM on your WP 43S. 181

For your information, the general formula for such problems reads

𝐹𝑉 = 𝑃𝑉 × (1 + 𝑖)𝑛𝑃𝐸𝑅 + (1 + 𝑖 × 𝑝)
𝑃𝑀𝑇

𝑖
× [1 − (1 + 𝑖)𝑛𝑃𝐸𝑅]

with the deduced parameter 𝑖 =
𝐼%/𝑝𝑒𝑟𝑖𝑜𝑑

100
=

𝐼%/𝑦𝑒𝑎𝑟

100
/
𝑝𝑒𝑟𝑖𝑜𝑑𝑠

𝑦𝑒𝑎𝑟

181 TVM was launched with HP’s very first financial ‘problem solver’, the HP-80 of 1972,
and was implemented on each and every HP ‘business calculator’ thereafter. An early
advertising sheet promised ‘you can improve and simplify your time-and-money
management’ applying TVM quickly. ‘Random-entry financial keys let you key in
problems in any order. And you can change any number at any time.’ All this was true
for certain (remember it was a time before spreadsheet software became available)
and may even hold nowadays to some extent since hardly any modern financial tool
solving such problems is more compact than a pocket calculator featuring TVM.

WP 43S U v0.16 --- Page 267 of 328

and the binary switch value p : If payments occur at the

• end of each period then 𝑝 = 0 (choose End in TVM).

• beginning of each period then 𝑝 = 1 (choose Begin in TVM).

TVM uses the convention that cash outlays are input as negative,

and cash incomes are input as positive.

The present value PV always occurs at the beginning of the 1st period.

It can also be an initial cash flow or a discounted value of a series of

future cash flows.

The future value FV is always meant to occur at the end of the nPER
th

period. It can also be a final cash flow or a compounded value of a series

of cash flows.

Example for calculating the number of periods (from the HP-27 OH,

like all following examples in this chapter; enjoy the amounts and interest

rates of a time long ago):

A potential development site

currently appraised at

$380 000 appreciates at 30%

per year. If this rate continues,

how many years will it be

before this land is worth

$750 000?

Solution:

  FIX  This will suffice. Then all you have to do is keying in

the known parameters and boundary conditions:

  TVM  Begin

 Begin End
 nⓅⒺⓇ i%/a per/a PV PMT FV

380000  PV   380 000.00 present value,

30  i%/a   30.00 % interest rate per year,

0  PMT   0.00 no payments,

1  per/a   1.00 default.

Page 268 of 328 -- WP 43S U v0.16

750000  FV   750 000.00 Now, how long does it take to

reach this future value?

 nⓅⒺⓇ   2.59 years.

Example for finding the necessary interest rate for compounded

amounts:

What annual interest rate must be

obtained to amass $10 000 in 8

years on an investment of $6 000,

with quarterly compounding? (Con-

tinue keeping the settings of pre-

vious example.)

Solution:

6000  PV   6 000.00 present value,

4  per/a   4.00 quarters,

10000  FV   10 000.00 future value,

8 4  nⓅⒺⓇ   32.00 periods. Now, we need...

 i%/a   6.44 % interest rate per year to
achieve this.

Example for finding the present value of a compounded amount:

In 5 years when your son starts

college, you will need $20 000.

You deposit a lump sum in a

certificate account that earns 6%

compounded daily. How much do

you need to deposit today to reach

that goal? (Dream on with the set-

tings of previous example.)

Solution:

20000  FV   20 000.00 future value,

6  i%/a   6.00 % interest rate per year,

365  per/a   365.00 days per year,

5 365   nⓅⒺⓇ  1 825.00 periods. Now, we need...

 PV   14 816.73 to be deposited.

WP 43S U v0.16 --- Page 269 of 328

Example for finding the future value of a compounded amount:

The local trading post manager

opened up a savings operation 5

years ago, offering 6% com-

pounded daily. Gold miner

Yellowstone Sam deposited

$1000 at that time, and now wants

to know his present balance and

the total accrued interest after all

this time. (Continue dreaming ...)

Solution:

1000  PV   1 000.00 original deposit,

6  i%/a   6.00 % interest rate per year,

365  per/a   365.00 days per year,

5 365   nⓅⒺⓇ  1 825.00 periods. Now, Sam has...

 FV   1 349.83 present balance meaning...

   VAR  PV  349.83 accrued interest.

Nominal interest rate converted to effective rate:

Example for finding the effective annual interest rate:

What is the effective annual rate of interest if the annual nominal rate of

12% is compounded quarterly? (Continue keeping the settings of

previous example.)

Solution:

100  PV   100.00 base value,

12  i%/a   12.00 % nominal rate per year,

4  per/a   4.00 quarters per year,

4  nⓅⒺⓇ   4.00 compound periods;

 FV   112.55

   VAR  PV  12.55 % effective interest rate.

Turn to App. 3 for more applications of TVM (annuities, savings, etc.),

starting on p. 310.

Page 270 of 328 -- WP 43S U v0.16

Constants

Your WP 43S contains a catalog of 80 physical, astronomical, and

mathematical constants, sorted alphabetically in CONST. Press

and the menu section will change to:

 G G₀ GⒸ gₑ GM g
 c₂ e eⒺ F F F
 a a₀ aⓂ⒪⒪⒩ a c c₁

Besides by browsing with and , you can access the contents of

CONST most easily using the alphabetical access method demonstrated

in the ReM, Section 2.

Names of astronomical and mathematical constants are printed on

colored background in the table starting below. The unit of each physical

and astronomical constant is listed here as well. Find the numeric values

of the constants and their uncertainties in the ReM, Section 2.

Name Unit 182 Remarks

a d Gregorian year

a₀ m Bohr radius

aⓂ⒪⒪⒩ m Semi-major axis of the Moon’s orbit around the earth.

a m
Semi-major axis of the Earth’s orbit around the sun. Within

its uncertainty, a equals 1 AU (astronomic unit).

c m/s Speed of light in vacuum

c₁ m2 W First radiation constant

c₂ m K Second radiation constant

e C Elementary charge

eⒺ Euler’s e

182 Find all unit symbols used here explained in the chapter about unit conversions in the
ReM, Section 2.

WP 43S U v0.16 --- Page 271 of 328

Name Unit 182 Remarks

F C/mol
 Faraday constant

F
 Feigenbaum’s and

F

G m3
/kg s2

Newtonian constant of gravitation; also known as γ from

other authors. See also GM below.

G₀ 1/Ω Conductance quantum

GⒸ Catalan’s constant

gₑ Landé’s electron g-factor

GM m3
/s2

Newtonian constant of gravitation times the Earth’s mass

with its atmosphere included (according to the Earth model

WGS84 – see the ReM for more information)

g m/s2 Standard earth acceleration

h J s Planck constant

ħ J s So-called ‘Dirac constant’, actually only h over 2π

k J/K Boltzmann constant

KⒿ Hz/V Josephson constant

l⒫ m Planck length

mₑ kg Electron mass

MⓂ⒪⒪⒩ kg Mass of the Earth’s Moon

m⒩ kg Neutron mass

m⒫ kg Proton mass

M⒫ kg Planck mass

m⒫/m⒠ Proton to electron mass ratio

mᵤ kg Atomic mass constant

mᵤc² J Energy equivalent of atomic mass constant

Page 272 of 328 -- WP 43S U v0.16

Name Unit 182 Remarks

mkg Muon mass

M kg Mass of the Sun

M kg Mass of the Earth. See also GM above.

NⒶ 1/mol Avogadro’s number

NaN

“Not a Number”, i.e. e.g. 0 0⁄ or ±∞× 0 or ln(x) for x < 0

or tan(90°) unless in complex domain.

NaN covers poles as well as regions where a function result

is not defined at all. Note that infinities, on the other hand,

are considered numeric in your WP 43S (see the end of this

table). Non-numeric results will lead to an error message

thrown – unless SPCRES is set. NaN allows that functions

written by you can return it.

p₀ Pa Standard atmospheric pressure

R J/mol K Molar gas constant

rₑ m Classical electron radius

RⓀ Ω Von Klitzing constant

RⓂ⒪⒪⒩ m Mean radius of the Moon

R 1/m Rydberg constant

R m Mean radius of the sun

R m Mean radius of the Earth

Sa m Semi-major axis

… according to WGS84

(see the ReM)

Sb m Semi-minor axis

Se² First eccentricity squared

Se'² Second eccentricity squared

Sf Flattening parameter

T₀ K = 0°C, standard temperature

WP 43S U v0.16 --- Page 273 of 328

Name Unit 182 Remarks

t⒫ s Planck time

T⒫ K Planck temperature

V⒨ m3
/mol

Molar volume of an ideal gas at standard conditions

≈ 22.4 l/mol

Z₀ Ω Characteristic impedance of vacuum

α Fine-structure constant

γ m3
/kg s2

Newtonian constant of gravitation; also known as G from

other authors. See also GM above.

γⒺⓂ Euler-Mascheroni constant

γ⒫ Hz / T Proton gyromagnetic ratio

ΔνⒸ⒮ Hz Hyperfine transition frequency of 133Cs

ε₀ F/m Electric constant or vacuum permittivity

λⒸ

m Compton wavelengths of the electron, neutron, and proton λⒸ⒩

λⒸ⒫

µ₀ H /m Magnetic constant or vacuum permeability

µⒷ
J / T

Bohr magneton

µₑ Electron magnetic moment

µₑ/µⒷ Ratio of electron magnetic moment to Bohr’s magneton

µ⒩
Neutron and proton magnetic moment

µ⒫
J / T

µᵤ Nuclear magneton

µMuon magnetic moment

σⒷ W/m2K4 Stefan-Boltzmann constant

Page 274 of 328 -- WP 43S U v0.16

Name Unit 182 Remarks

Φ Golden ratio

Φ₀ Wb Magnetic flux quantum

ω rad /s
Angular velocity of the Earth according to WGS84 (see the

ReM)

-∞

May the Lord of Mathematics forgive us calling these two

constants! Both are counted as special numeric values in

your WP 43S, however. ∞

Employ the constants stored here for further useful equivalences, e.g.:

• express joules in electron-volts (1 J = 1 A s V = 1 eV 𝑒⁄ ≈ 6.24 ×

1018 eV = 6.24 × 109 GeV),

• calculate the wavelength from the frequency of electromagnetic

radiation via 𝜆 = 𝑐
𝜈⁄   (so 1000 THz correspond to ca. 300 nm),

• determine the energy of electromagnetic radiation from its frequency

via 𝐸 = ℎ𝜈   (so 1 THz × ℎ = 6.63 × 10−22 J = 4.14 × 10−3 eV).

Thus, 1 eV corresponds to 241.8 THz (or a wavelength of 1.24 µm).

Another example:

If you want to see the energy equivalent (in electron-volts) of one of the

small masses given in kg above, multiply its mass by

𝑐2
𝑒⁄ ≈ 5.610 × 1035 m

2

A s2
⁄

and you are done: me corresponds to 511.0 keV, mp to 938.3 MeV, etc.

One more final example:

Assume American advanced scientists will succeed in producing a tiny

bit of anti-matter in one of their high-tech laboratories one day – e.g.

0.1 µg of anti-hydrogen, carefully stored isolated in ultra-high vacuum.

Although in future, most probably American power transmission lines will

still look like they do today since this is a well-tried American (first)

standard.

WP 43S U v0.16 --- Page 275 of 328

Thus, under slightly extreme weather conditions, 183 an accidental

blackout may easily happen for some days – the electric vacuum pumps

will stop working, and a subsequent vacuum breakdown will let

atmospheric gas leak into the shiny vacuum vessel where it will interact

with the precious anti-matter and annihilate immediately. How much

energy is going to be released then?

Solution:

You only need the same tiny amount of (usual) matter, so 0.2 µg will

annihilate in total within the vessel. 1 µg = 10 −6 g = 10 −9 kg. Thus enter:

  ENG 0.000
.2 9 .2×⒑⁻⁹
   c 299.8×⒑⁶

 89.88×⒑ⁱ⁵
 17.98×⒑⁶

… resulting in 18 M J set free. The odds are frightening high this lab will

need no cleaning anymore. 184

On the other hand, 0.1 µg of anti-matter require e.g.
𝑁𝐴

107
⁄ atoms of

anti-hydrogen (with NA being Avogadro’s number); this means 6×10 16

atoms or 3×10 16 molecules of this gas (i.e. 30 000 million millions

molecules). Luckily, this amount is far from being produced in any lab

for the time being.185

183 Think of a thunderstorm, blizzard or alike, maybe even fostered by anthropogenic
climatic change. Though do not be afraid, this is all fake news created by insane minds
according to the greatest president of that blessed nation.

184 For comparison, 1 kg of TNT releases 4.6 M J. The official definition is some 10%

less than this value for historical reasons. Anyway, 18 M J are equivalent to some 4 kg
of TNT, enough for a great blast.

185 And proper UHV vessels show very low leak rates as well, so the annihilation energy
may be released in little bits over a longer time interval – power supply may be
reestablished in time and vacuum pumps operating again. For crucial applications,
however, uninterruptible power sources based on batteries and / or generators should
be installed locally wherever supplies are threatened by the actual state of public
infrastructure being significantly less than great.

And furthermore, ordering antipasti and pasta together in an Italian ristorante is strictly
at your own risk. You have been warned!

Page 276 of 328 -- WP 43S U v0.16

Unit Conversions

Your WP 43S features fourteen angular conversions stored in ∠ → (as

shown on p. 126) and 88 unit conversions in U →. The latter menu mainly

provides means to convert local to common units and vice versa.186

Also the constant To may be useful for converting

centigrade temperatures to kelvin. It is found in

CONST and is not repeated in U → because it is only

added or subtracted.

In an attempt to bring some order in that heap of units,

U → is structured like a tree. Press and the menu section will change

to:

 °C→°F °F→°C s⇀year V: A:
 E: P: year⇀s F&p: m: x:

containing the labels of submenus for conversions of energy, power,

force & pressure, mass, length, area, and volume units. The entire

structure of U → is shown overleaf (with the menu rows printed top down

instead of bottom up following common reading habits). Some softkeys

require more than six characters due to long unit names – then extra

high menu rows will be displayed:

186 The SI system of coherent units of measurement is agreed on internationally and
adopted by almost all countries on this planet for long, as was mentioned above
already. Thus, most of the material appearing in U → will look quirky or obsolete for the
overwhelming majority of mankind. Those units die hard, however, in some corners of
this world (English is spoken in all of those).

Thus, U → may also help you when you get caught in a time loop and happen to be
thrown back into such an obstinate environment. For symmetry reasons, we think
about including some traditional Indian and Chinese units in U →, too.

U → may also give you a slight idea of the mess we had in the world of measuring
before going metric following the French Revolution over 200 years ago. In the ReM,
you find comprehensive explanations of all conversions provided.

Without Imperial and US-American units, U → would contain eighteen entries only.

WP 43S U v0.16 --- Page 277 of 328

 Remarks

U→: E: P: year→s F&p: m: x: submenu headers,
units of tempera-
ture, time, torque,

and ratios – the lat-
ter two in an extra-
high menu row

°C→°F °F→°C s→year V: A:
 power

ratio
→ dB

dB →
power
ratio

Nm →
lbf×ft

lbf×ft
→ Nm

field
ratio
→ dB

dB →
field
ratio

E: cal → J J → cal Btu → J J → Btu Wh → J J → Wh units of energy

P: hpⒺ → W W → hpⒺ hp→W W→hp hpⓂ → W W → hpⓂ units of power

F&p: lbf → N N → lbf bar→Pa Pa→bar psi→Pa Pa→psi units of force and
pressure

 in.Hg
→ Pa

Pa →
in.Hg

torr
→ Pa

Pa →
torr atm→Pa Pa→atm

mmHg
→ Pa

Pa →
mmHg

m: lb.→kg kg→lb. cwt→kg kg→cwt oz → kg kg → oz units of mass

stone
→ kg

kg →
stone

short
cwt→kg

kg →
sh.cwt

tr.oz
→ kg

kg →
tr.oz

ton→kg kg→ton

short
ton
→ kg

kg →
short
ton

carat
→ kg

kg →
carat

x: au → m m → au ly → m m → ly pc → m m → pc units of length

mi.→ m m → mi. nmi.→m m→nmi. ft.→ m m → ft.

in.→ m m → in. yd.→ m m → yd.

fathom
→ m

m →
fathom

point
→ m

m →
point

survey

foot
→ m

m →

survey
foot

A: acre
→ m²

m² →
acre ha → m² m² → ha

acre
→ m²

m² →
acre

units of area

V: gl→m³ m³→gl qt.→m³ m³→qt. gl→m³ m³→gl units of volume

floz
→ m³

m³ →
floz

barrel
→ m³

m³ →

barrel

floz
→ m³

m³ →
floz

Find out more about the various units mentioned in these conversions in

Section 2 of the ReM.

Page 278 of 328 -- WP 43S U v0.16

You may combine conversions as you like (  ENG will do for all

examples in this chapter):

Example 1:

For filling your tires with a maximum pressure of 30 psi the following will

help you at gas stations in Europe and beyond:

30 F&p:   psi→Pa returns 207.×⒑³ Pa.

  Pa→bar 2.07 bar.

Now you can set the filler and will not blow your tires.

Example 2:

Your friend tells you she has got 10 cubic feet of debris on her veranda

after flooding (yes, the dams in the Mississippi delta turn out being of less

use than once thought). What does this mean in real units?

1  x:    ft.→ m returns 305.×⒑⁻³

3 28.3×⒑⁻³

10 283.×⒑⁻³ m3.

OK, some work – but manageable.

Example 3:

A network switch is specified for 3 320 Btu/h. What?!?

3320  E:    Btu → J returns 3.50×⒑⁶ J/ h.

Since 1𝐽 = 𝑐𝑐𝑊ℎ ⟺ 1
𝐽
ℎ⁄ = 𝑐𝑐𝑊 applies, you can use

  J → Wh for converting and get 973. W.

This is almost 1 kW. Now you know what will be going on there.

Example 4:

In Section 2, there was an example ending with a box featuring a volume

of 19 11/16 cubic inches. So, what does this volume mean in real units

WP 43S U v0.16 --- Page 279 of 328

instead? And how much water can such a box contain in areas where

people are condemned to deal with Imperial units nowadays still?

1  x:    in.→ m returns 25.4×⒑⁻³

3 16.4×⒑⁻⁶

19 11 16 323.×⒑⁻⁶ m3.

Since 1 m3 = 1000 liter, this volume is almost 1/ 3 liter.

And to help those enduring life on the British Imperial islands or ex-

territories, you must (!) ask them for their location first. Then choose

either   V:    m³ → floz or   m³ → floz and give them the respective

result, i.e. 11.4 or 10.9, for what it is worth.

Example 5:

A celestial object moves with a velocity of 0.1 parsec per year. What does

this mean in standard units? What is this in relation to the velocity of

light? And how does this translate for air pilots?

.1  x:    pc → m returns 3.09×⒑ⁱ⁵ m.

 returns to the top view of U →.

1  year→s returns 97.8×⒑⁶ m/s.

 pushes the result on the stack.

   c recalls c = 300.×⒑⁶ m/s.

 returns 326.×⒑⁻³ = 32.6% of c.

Since 1 h = 3600 s and 1 km = 1000 m, you can see directly that

3.6
km

h
=

3600 m

60 × 60 s
= 1

m

s

Thus, 3.6 returns 352.×⒑⁶ km/h.

This corresponds to

1000   x:    m→nmi. 190.×⒑⁶ nmi/h

or 190 megaknots.187

187 Sounds like a unit created for Alexander the Great visiting Gordion in 333 BC.

Page 280 of 328 -- WP 43S U v0.16

Supported by your WP 43S, you will find further easy ways to produce

whatever conversions you may need personally in addition.

In cases of emergencies of a particular kind, it may be helpful knowing

becquerel (Bq) equals hertz in your Geiger-Müller counter, gray (Gy) is

the unit for deposited or absorbed energy, and sievert (Sv) is gray times

a radiation dependent dose conversion factor ( ≥1) for the damage

caused in biological material including human bodies.188 Remember

also the example on pp. 91ff.

In this field, some outdated units may be found in older literature as well:

• Pour les fidèles amis de Madame Marie Skłodowska Curie (1903

Nobel laureate in physics and 1911 in chemistry), there was a unit

curie with 1 Ci = 3,7 ∙ 1010 Bq = 3,7 ∙ 1010 decays/ s . You can

deduct from this unit that larger pieces of radioactive material were

‘absolutely no problem’ for the pioneers in this field.189

• For those admiring the very first (1901) Nobel laureate in physics,

Wilhelm Conrad Röntgen, for discovering the X-rays (ruining his

hands in those experiments since he could not know better yet  ), the

charge generated by radiation in matter was measured by the unit

roentgen (1 𝑅 = 2,58 ∙ 10−4 A s kg⁄).190

• A few decades ago, rem (i.e. roentgen equivalent in men 191)

measured what sievert does today (1 rem = 10 mSv).

• And 1 Gy = 100 rad (i.e. radiation absorbed dose), which is pretty

much since there is almost nothing greater than millirad in literature.

188 Our warmest regards go to Algeria*, Australia*, Belarus*, Canada, China, France,
India, Japan, Kazakhstan*, Kiribati*, the Marshall Islands* (e.g. Bikini, Eniwetok), North
Korea, Pakistan, Russia, the Ukraine*, the United Kingdom, the USA, and Xinkiang-
Uigur* (in alphabetical order) so far. The countries marked with a star suffer from
actions of their respective ‘mother states’ at those times (the task to find out about
those colonialists is left for the reader). The states without marks controlled their
industry and / or military in a way that activated areas within their own territory could
happen, too. After all, mankind gathers experience with radioactivity.

189 Marie Curie died from aplastic anemia, aged 66.

190 Conrad Röntgen died from carcinoma of the intestine, aged 77.

191 This unit must be outdated – it is not regarded gender equitable nowadays anymore.

WP 43S U v0.16 --- Page 281 of 328

SECTION 6: CREATING YOUR VERY PERSONAL
WP 43S

Your WP 43S is the first calculator worldwide allowing for fully

customizing the user interface; i.e. you may assign an arbitrary function

to almost any location, unshifted or shifted, on the keyboard or in a menu.

User mode will then bring your personal assignments to the front, so you

can interact via a user interface you designed yourself.

Even before doing such soft assignments, there are two keyboard

variants supported taking care of the demands of people living in

different ‘mathematical regions’. The keys for multiplication, division,

and the radix mark may be labelled according to your preferences:

 Default Alternative

Division  : 192

Multiplication

Radix mark ,

Note this manual prints the default key labels throughout its text.

Beyond these variants, use ASSIGN (  ) for storing your personal

favorite assignments. It allows for reassigning the entire

keyboard except the top row of keys – these will stay

softkeys always. Keep basic functionalities accessible

(see p. 292 for some caveats).

In the explanations starting overleaf,

• stands for the softkey applicable (optionally headed by a prefix),

192 You also find on calculators frequently. Though ISO 80000-2 unambiguously
states: “The symbol ÷ should not be used.” Thus, this label is not supported on the
WP43S.

Page 282 of 328 -- WP 43S U v0.16

• [key] represents an arbitrary key of your WP 43S (optionally

headed by a prefix),

• menu is the name of an arbitrary menu defined, either

o picked from CATALOG by entering   MENUS,

browsing to the target menu, and pressing the respective ,

or

o called from the keyboard by pressing the respective key

headed by the associated prefix, if applicable; and

• name is the name of an arbitrary item. Remember an item may

be an operation, function, digit, character, routine (label), variable,

system flag, or a (sub) menu defined. The name of an item

consists of up to seven characters and must be unique within

its set. There are two sets:

o One contains all operations, functions, constants, global

labels, and (sub) menus defined at execution time of ASSIGN.

o The other set contains all the variables and system flags –

a variable undefined at execution time of ASSIGN will be

created (as explained on p. 61).

Note upper and lower case letters are checked, so the system will

regard Menu1 and MENU1 as being different names. Super-

scripts and subscripts are not discriminated from normal

characters, so e.g. data1T and data1
T are interpreted as the same

name by your WP 43S but the latter may ease reading for you.

Where a name is required, it may be either

o picked from CATALOG by entering , choosing the

respective branch, browsing to the target item, and pressing

the respective , or

o called from the keyboard by pressing the respective key

(optionally headed by a prefix).

Just pressing where the operating system expects a

name of an item is interpreted as input of an empty name and will

delete the user assignment of the respective location.

WP 43S U v0.16 --- Page 283 of 328

Assigning Your Favourite Functions

Now here is how you can tailor the surface of your WP 43S according to

your individual preferences:

name [key]

will assign that named item to [key] in user mode. It will throw an

error if said name does not exist.

Note that name will assign that named item to the

respective position in the bottom menu row displayed at the time

you press this , overwriting the label shown there. In full anal-

ogy, name and name assign said item

to the corresponding position in the respective shifted menu row.

Each user assignment will hold until it is overwritten or is

entered for name (see above).

Note all user assignments will be accessible in user mode only

(see pp. 292ff) – except the items assigned to top row of keys in

two user menus (see MyMenu and Myα below): they will be

displayed as long as no other menu is called.

Example 1:

Let’s assign the statistical sample standard error to + (this

location is assigned to ∡ in startup default). There are three different

ways to do this (specified here printing all keystrokes necessary):

1) FCNS   s⒨

This way will be demonstrated step by step starting overleaf.

2)   s⒨

On the other hand,

will reset -shifted to factory default ∡

as explained at the very end of last chapter.

Page 284 of 328 -- WP 43S U v0.16

We will walk you through solution 1 step by step here, starting with a clear

stack (press 0 if necessary). Only the menu section and the

command echo row will be shown in the following since all action will take

place there:

ASSIGN _ _ 0.

 ASSIGN _ 0.

 FCNS PROGS DIGITS CHARS VARS MENUS

 FCNS
 ASSIGN _ 0.

 AGM AGRAPH ALL AND arccos arcosh
 2COMPL ∛Ϳ ABS ACOS ac→m² ac⇀m²
 °C→°F °F→°C 10ᵡ 1COMPL 1/x 2ᵡ

This is the top view of the FCNS submenu in CATALOG. Now enter the

1st letter of the requested command:

 ASSIGN _ 0.

 SETEUR SETIND SETJPN SETSIG SETTIM SETUK
 SDL SDR SEED SEND SETCHN SETDAT
 SAVE SB SCI SCIOVR scw→kg SDIGS?

Quickly entering the 2nd letter helps significantly:

 (if you find you waited too long before pressing , just wait

another few seconds, then key in quickly here instead)

WP 43S U v0.16 --- Page 285 of 328

 ASSIGN _ 0.

 STOEL STOIJ STOS STO+ STO- STO×
 STATUS STO STOCFG STOEL STOIJ STOP
 s⒨ SMODE? s⒨⒲ SOLVE SPEC? SR

Now, press the leftmost for the function to be assigned:

   s⒨
 ASSIGN s⒨ 0.

 STOEL STOIJ STOS STO+ STO- STO×
 STATUS STO STOCFG STOEL STOIJ STOP
 s⒨ SMODE? s⒨⒲ SOLVE SPEC? SR

 ASSIGN s⒨ ⒢ 0.

 STOEL STOIJ STOS STO+ STO- STO×
 STATUS STO STOCFG STOEL STOIJ STOP
 s⒨ SMODE? s⒨⒲ SOLVE SPEC? SR

 0.

 STOEL STOIJ STOS STO+ STO- STO×
 STATUS STO STOCFG STOEL STOIJ STOP
 s⒨ SMODE? s⒨⒲ SOLVE SPEC? SR

… and the assignment is done. Note this last menu view will stay on

screen until another view or menu is called or this menu is EXITed

explicitly. And the function ∡ will stay accessible also in user mode via

   FCNS ... – or via default when leaving user mode.

Page 286 of 328 -- WP 43S U v0.16

Example 2:

Assign the weighted arithmetic mean to the 1st key in MyMenu (assume

startup default settings):

 ASSIGN _ _ 0.

 ASSIGN _ 0.

 CLΣ ₉ ε ε⒫ ε⒨ PLOT
 Σ- ⒲ s⒲ σ⒲ s⒨⒲
 Σ+ s σ s⒨ SUM

 ⒲
 ASSIGN ⒲ _ 0.

 CLΣ ₉ ε ε⒫ ε⒨ PLOT
 Σ- ⒲ s⒲ σ⒲ s⒨⒲
 Σ+ s σ s⒨ SUM

 ASSIGN ⒲ 0.

Note that pressing will exit all menus being open at that time so

MyMenu (which is empty still) can slip on the screen.

 (press the leftmost softkey)

 0.

 ⒲

Summarizing,

 ⒲
did this assignment.

WP 43S U v0.16 --- Page 287 of 328

Note that MyMenu will show up whenever all other menus are exited

completely. It will remain on screen as long as no other menu is called,

unless your WP 43S is in alpha input mode.193 This applies regardless

whether your WP 43S is in user mode or not (see below). Thus, filling

MyMenu may well be the first step of customizing your WP 43S. You

may, for instance, put the six trigonometric functions into the unshifted

row of MyMenu and will have them almost always at hand.

Creating Your Own Menus

 new_menu_name will define a new user menu.

In this sequence, turns on alpha input mode so you can

immediately enter the new menu name (up to seven characters, no

blanks, and the name must be unique).

Example:

To create a menu FavFun for your favourite functions, enter:

The new name will be inserted in CATALOG’MENUS (ASSIGN will throw

an error if the ‘new’ menu name specified will turn out being defined

already). The new menu itself will be created with 18 blank entries – its

size is fixed. You may fill it now.

Example:

Assign the y-forecasting function to the fourth key in that new user menu

(assuming you did not define any other menu starting with ‘Fa’ before).

Also the solution of this example will be shown step by step:

It starts with the last display of last paragraph since MyMenu stays on

screen as long as no other menu is called, and we assigned one function

to it just above.

193 In AIM, Myα will appear instead when no other menu is called and will stay on screen
until these conditions will change.

Page 288 of 328 -- WP 43S U v0.16

 ASSIGN _ _ 0.

 ⒲

 ASSIGN _ 0.

 CLΣ Ⓖ ε ε⒫ ε⒨ PLOT
 Σ- ⒲ s⒲ σ⒲ s⒨⒲
 Σ+ s σ s⒨ SUM

 ASSIGN _ 0.

 ⓇⓂⓈ x⒨⒜⒳ x⒨⒤⒩ Orthof

 Ⓗ
 L.R. r s⒳⒴ cov ŷ

 ŷ
 ASSIGN ŷ _ 0.

 ⓇⓂⓈ x⒨⒜⒳ x⒨⒤⒩ Orthof

 Ⓗ
 L.R. r s⒳⒴ cov ŷ

 ASSIGN ŷ 0.

 FCNS PROGS DIGITS CHARS VARS MENUS

 MENUS
 ASSIGN ŷ 0.

 DIGITS DISP EQN EXP Expon: E:
 CLK CLR CNST CPX CPXS DATES
 ANGLES A: Binom: BITS Cauch: CHARS

WP 43S U v0.16 --- Page 289 of 328

Here you see the first view on all the menus defined on your WP 43S.

Now, enter and the view jumps to the corresponding position in this

submenu:
 ASSIGN ŷ 0.

 LgNrm: Logis: LOOP L.INTS MATRS MATX
 F&p Geom: Hyper: INFO INTS I/O
 FavFun FCNS FIN FLAGS FLASH F:

Press the leftmost softkey

 FavFun
 ASSIGN ŷ 0.

Since FavFun was just created above there is nothing to be seen in the

menu section of the display yet. Pressing the fourth softkey, however,

you will get now
 0.

 ŷ

Summarizing,

 ŷ  MENUS FavFun

did the job here. Note that FavFun will remain on screen until another

menu is called or it is EXITed explicitly.

Page 290 of 328 -- WP 43S U v0.16

Browsing and Purging Menus, Variables, and Programs

As seen in last paragraph,

CATALOG’MENUS contains all the menus currently defined. Thus,

  MENUS… allows for deleting the menu

selected. Predefined menus cannot be deleted.

Variables and programs are handled in full analogy:

CATALOG’VARS contains all variables currently defined. Thus,

  VARS… allows for deleting the variable

selected. Predefined variables cannot be deleted.

New programs must start with a global label. Such labels may be up to

seven characters long and must be unique (cf. p. 282).

CATALOG’PROGS contains all programs currently defined. Thus,

  PROGS… allows for deleting the program

selected (cf. CLP and CLPALL).

Assigning Special Characters

You must be in alpha input mode (AIM) to do the following. Then,

 character [key] will assign the character specified to [key]. You

can pick the character to be assigned from the alpha keyboard or an

arbitrary alpha menu as introduced above (on p. 194).

[key] may be any legal label location, shifted or unshifted, except

, , or . The assignment will become valid when

AIM is called in user mode or when user mode is called in AIM.

Example 1:

Let’s assign the parentheses to + and + (these locations

are not assigned yet in AIM). Remember calls MATH in AIM –

see the ReM for its contents.

WP 43S U v0.16 --- Page 291 of 328

    (

   )

Example 2:

Assign the Yuan symbol ¥ (contained in ● at a -shifted position) to

the 1st key in My (assume startup default settings once again):

 ASSIGN _ _ 0.

 ASSIGN ⒢ _ 0.

 ASSIGN _ 0.

 $ € % # £ ¥
 ¡ ¿ ≘ _ ~ \
 ! : ; ' " @

    ¥ (press the rightmost softkey)

 ASSIGN ¥ _ 0.

 $ € % # £ ¥
 ¡ ¿ ≘ _ ~ \
 ! : ; ' " @

 ASSIGN ¥ 0.

Page 292 of 328 -- WP 43S U v0.16

Note that will exit all menus being open at that time so My can

slip on the screen (being empty still).

 (press the leftmost softkey)

 0.

 ¥

Summarizing,

   ¥
did this assignment.

User Mode

 toggles user mode. Therein, your (user) assign-

ments become valid wherever they apply. Everything is

wide open for your ideas except the top row of keys

(being controlled by MyMenu and Myα, cf. pp. 286ff).

User mode gives you unexcelled freedom for creating

your personal calculator layout and user interface. Enjoy – and play with

the opportunities you have. For obvious reasons, we recommend

leaving , , ,

, / , and

 untouched (note

and are connected). And

do not forget you will need

 for returning from user

mode.

WARNING: Do not remove

inevitably necessary function-

alities from the keyboard by

assigning. In case of emer-

gency, a hard reset will be

your only escape – erasing all

your precious programs and

WP 43S U v0.16 --- Page 293 of 328

data but those you saved in flash memory. Thus, checking all conse-

quences meticulously before assigning functions is highly recommen-

ded; please note all your assignments are strictly at your own risk.

Pressing any function key (or a prefix plus a key) displays a preview of

the operation currently assigned to it left in the T numeric row – if you

realize you have picked the wrong key, simply keep it pressed until the

display falls back to    NOP after 1 second.194 This preview is particularly

helpful in user mode, when the function executed by a key may not be

the one indicated on the keyboard.

Once you have reached a stable user layout, we recommend storing it

(using STOCFG) in a

register or variable, to-

gether with the other set-

tings mentioned on p. 80.

This applies especially if

you plan having further

alternative layouts – you

can load any of them

using RCLCFG. 195

Think e.g. of storing a

dedicated set of as-

signments for working

with short integers

featuring Boole’s opera-

tions as primary func-

tions.

Printing keyboard over-

lays for your favorite

layouts may pay well,

194 Preview and fallback apply for all key functionalities except … , , , ,

and (and in numeric entry). and are echoed but will not fall back.
(On the HP-42S, preview and fallback are absent also for PRGM, ASSIGN, STO, RCL,
XEQ, SHOW, and OFF.)

195 RCLCFG will throw an error if you try recalling something different than a
configuration.

Page 294 of 328 -- WP 43S U v0.16

especially if you reassign just functions printed on the key plate.

Overlays cover this plate entirely (see the ReM, App. F, for their

dimensions) and are fixed in the slots provided on either side of the key-

board.

Should you get lost in your various user assignments, however, look for

 top right in the status bar – and remember that pressing will

return immediately from user mode to the factory default keyboard of

your WP 43S as you know it from the very beginning. And if you want to

get rid of outdated user layouts and free the memory allocated for the

respective assignments, simply clear the respective registers or delete

the allocated variables as described on p. 290.

We sign off wishing you long lasting joy and benefit working with your

very own, personalized WP 43S !

WP 43S U v0.16 --- Page 295 of 328

APPENDIX 1: OPERATOR PRECEDENCE

Your WP 43S does not have to care for operator precedence since it

executes just one operation at a time (cf. p. 46). Hence it is your job to

control the sequence of operations you present to your WP 43S. There

are common rules and conventions in mathematics dealing with that –

you have learned them in school. Here is just one example for

affirmation and/or reminding:

1 − 2 ∙ 34: 5 + sin(6 − √72
3

) ∙ 8! + 𝑙𝑛 [(−92
3
∙ 45(

6
7⁄))

2

]

(or, written for another part of this world needing more space:

1 − 2 × 34 ÷ 5 + sin(6 − √72
3

) × 8! + 𝑙𝑛 [(−92
3
× 45(

6
7⁄))

2

])

This may be solved the following way, for instance, using your WP 43S with

startup default settings:

9 2 3 calculates −92
3

; note the argu-
ments automatically fill in
correctly.

6 7 45 calculates 45(
6
7⁄).

 solves the rightmost term.

7 3 6 solves the sine.

8 solves the 3rd term and adds it to

the fourth.

3 4 2 5 solves the 2nd term and subtracts

it from said sum.

1 returns the overall solution 1 657.008 948 091 604

The colors indicate the three stack registers employed for this solution (cf.

pp. 41ff). Note is used twice herein to swap arguments.

Page 296 of 328 -- WP 43S U v0.16

APPENDIX 2: KEY RESPONSE TABLE

Here you find all direct keystroke inputs explained, top left to bottom right

of the keyboard. For each key, its unshifted function is mentioned first,

then its -shifted and its -shifted function, if applicable.

Most keys will change functionality in alpha input mode (AIM), hence the

“alpha” meanings are listed thereafter. See the pages mentioned

explicitly or the ReM for details of all the functions mentioned below.

R Keystrokes Meaning

1 Calls the function displayed at the

corresponding position in the bottom

softkey row of the LCD. Does nothing if
there is no function
displayed at this
position. Cf. pp. 27f.

 Call the function displayed at the

corresponding position in the golden

or blue softkey row, respectively.

2 Inverts the number x or all elements of the matrix x.

 Enters fraction display mode (FDM), i.e. displays all reals as

proper fractions or mixed numbers. If FDM was active already,

toggles display between proper and improper fractions.

 Opens the menu of operations for alpha string manipulation.

Cf. pp. 198f.

 Enters the letter A or a

in AIM (cf. pp. 193ff).
 Opens the catalog of all Latin letters

provided (also accented ones)

 Enters the Greek letter or

WP 43S U v0.16 --- Page 297 of 328

R Keystrokes Meaning

2 Raises y to the power of x.

 If pressed trailing integer input, defines its base. Else converts

x into a short integer of the base specified, cf. pp. 136ff.

 Opens a menu containing x3, roots, 2
x
, logarithms, hyperbolic

and some exponential functions more (cf. p. 27).

 Enters the letter B or b

in AIM (cf. pp. 193ff). Enters the character #

 Enters the Greek letter or

2 Opens the menu containing SIN, COS, TAN, hyperbolic func-

tions, and their inverses (cf. p. 29)..

 If pressed trailing numeric input, enters an angle in degrees,

minutes, and seconds (i.e. sexagesimal notation). Else sets
angular display mode to sexagesimal angles. Cf. pp. 125ff.

 Recalls the number π into X.

 Enters the letter C or c
in AIM.

 Enters the Greek letter or

2 Returns the natural logarithm of x.196

 If pressed trailing numeric input, enters a date (cf. p. 191).

Else leaves fraction display mode (see above) and

converts

• an integer to a real number (cf. p. 135),

• a sexagesimal angle to a decimal number (cf. p. 128),

• a sexagesimal time to a decimal number (cf. p. 190).

 Returns the (common) decadic logarithm of x. 196

 Enters the letter D or d
in AIM.

 Enters the Greek letter or

196 I.e. either of the number x or of all elements of the matrix x.

Page 298 of 328 -- WP 43S U v0.16

R Keystrokes Meaning

2 Raises e to the power of x. 196

 If pressed trailing numeric input, enters a sexagesimal time.

Else converts x to such a time. Cf. pp. 189f.

 Raises 10 to the power of x. 196

 Enters the letter E or e
in AIM (cf. pp. 193ff).

 Enters the Greek letter or

2 Returns the square of x. 196

 Sets AIM for entering characters (cf. pp. 193ff).

 Extracts the square root of x. 196

 Enters the letter F or f

in AIM. Enters the character ✓

 Enters the Greek letter or

3 Stores (copies) x in the destination specified (cf. pp. 53ff).

 Assigns an item to a key, allowing you to create your very

personal user keyboard layout (cf. pp. 281ff).

 Saves all your data in the backup region (cf. p. 234) of FM from

where they may be recovered by LOAD entirely.

 Enters the letter G or g
in AIM.

 Enters the Greek letter or

WP 43S U v0.16 --- Page 299 of 328

R Keystrokes Meaning

3 Recalls (copies) a stored object into X (cf. pp. 53ff). – If
pressed in RBR, leaves RBR after recalling the object at the

bottom line or entering a corresponding step (cf. pp. 261ff).

 Calls the register browser (cf. pp. 261ff).

 Views the destination, i.e. displays its address and contents

directly below the status bar until next keystroke (cf. p. 59).

 Enters the letter H or h
in AIM (cf. pp. 193ff).

 Enters the Greek letter or

3 Rolls the stack contents one level down (cf. p. 39).

 Rolls the stack contents one level up.

 Opens the menu of commands operating on complex numbers

like CONJ, CROSS, DOT, and Re⇄Im. Cf. pp. 154ff.

 Enters the letter I or i

in AIM. Makes next character a subscript (if applicable)

 Enters the Greek letter or

3 Complex closing, composing, cutting, and converting, see pp.

154ff and 307.

 Returns the absolute (unsigned) value of x. 196

 Either returns the phase of x 196 or the angle between the

vectors x and y.

 Enters the letter J or j
in AIM.

 Enters the Greek letter or

3 Prefix to reach a secondary gold function label. Pressing

twice will clear this prefix.

 Dumps the current screen to a file on the calculator’s USB

flash drive.

Page 300 of 328 -- WP 43S U v0.16

R Keystrokes Meaning

3 Prefix to reach a secondary blue function label. Pressing

twice will clear this prefix.

 Toggles user mode (see pp. 292ff).

4 Context sensitive key, see p. 307.

 Returns free space available, memory currently used, user and

system flags set (cf. pp. 263f).

 Drops x from the stack (cf. p. 39).

4 Swaps the contents of X and Y (cf. p. 39).

 Fills all stack registers with x (cf. p. 39).

 Opens the menu of stack related operations (drop, swap, and

shuffle commands). Cf. pp. 38ff.

 Enters the letter K or k

in AIM (cf. pp. 193ff). Enters the character ⇄

 Enters the Greek letter or

4 If pressed during input of mantissa or exponent, changes its

sign (cf. p. 25). Else multiplies x times −1.

 Returns x – y % of y. Leaves y unchanged.

 Opens the menu of financial functions (i.e. % functions and the

application TVM – see pp. 266ff and 310ff).

 Enters the letter L or l

in AIM. Enters the character ±

 Enters the Greek letter or

WP 43S U v0.16 --- Page 301 of 328

R Keystrokes Meaning

4 Allows entering an exponent of ten for convenient entry of very

large or very small numbers (cf. p. 25).

 Shows the number x with its maximum precision until next key-

stroke.

 Opens a menu containing FIX, SCI, ENG, and more

commands for numeric display formatting. Cf. pp. 80ff.

 Enters the letter M or m

in AIM (cf.

pp. 193ff).
 Makes next character a superscript (if applicable)

 Enters the Greek letter or

4 Context sensitive key, see p. 309.

 ↶ Undoes the last command executed (cf. p. 51).

 Calls a menu containing commands for clearing; cf. p. 52.

5 Divides y by x. For matrices, multiplies y times x−1 .

 Returns the remainder of y divided by x.

 Returns y modulo x.

 Enters the letter N or n

in AIM. Enters the character /

 Enters the Greek letter or

5 If there is an open question like Are you sure?, enters N for

‘no’. Else enters the digit 7.

 Opens a catalog of fundamental physical, mathematical,

astronomical, and surveying constants. Cf. pp. 270ff.

 Enters the letter O or o

in AIM. Enters the character 7

 Enters the Greek letter or

Page 302 of 328 -- WP 43S U v0.16

R Keystrokes Meaning

5 Enters the digit 8.

 Enters the letter P or p

in AIM (cf. pp. 193ff). Enters the character 8

 Enters the Greek letter or

5 Enters the digit 9.

 Returns to the caller. Cf. pp. 202ff.

 Enters the letter Q or q
in AIM.

 Enters the character 9

5 If there is an open question like Are you sure?, confirms it;

else – if in PEM – inserts a call to the subroutine with the label

specified;

else (i.e. in run mode) calls the routine with the label

specified and starts executing it.

 Goes to the specified location in program memory.

 Enters a label for a particular location in program memory.

6 Multiplies y times x.

 Returns the factorial of x (or Γ(𝒙 + 1) for non-integer x).

 Opens a menu containing combinations, permutations, the

Gamma function, a random number generator, and all

probability distributions supported. Cf. pp. 96ff.

 Enters the letter R or r

in AIM. Enters the character × or ·

 Enters the Greek letter or

WP 43S U v0.16 --- Page 303 of 328

R Keystrokes Meaning

6 Enters the digit 4.

 Opens the menu of sample statistics operations: Σ+, Σ−, CLΣ,

various means and measures for scattering, as well as curve

fitting functions and settings. Cf. pp. 99ff.

 Opens the menu of accumulated statistical sums, cf. p. 118.

 Enters the letter S or s

in AIM (cf. pp. 193ff). Enters the character 4

 Enters the Greek letter or

6 Enters the digit 5.

 Calls →REC, converting polar coordinates r (in X) and ϑ (in Y)

to rectangular (Cartesian) coordinates x and y (cf. p. 128).

 Calls →POL, converting rectangular coordinates (x and y) to

polar coordinates r (in X) and ϑ (in Y, cf. pp. 20f).

 Enters the letter T or t

in AIM. Enters the character 5

 Enters the Greek letter or

6 Enters the digit 6.

 Opens the menu of unit conversions. Cf. pp. 276ff.

 Opens the menu of angular conversions. Cf. p. 126.

 Enters the letter U or u

in AIM. Enters the character 6

 Enters the Greek letter or

6 Context sensitive key, see p. 309.

 Moves the program pointer one step back. Cf. pp. 202ff.

 Opens the menu of flag commands. These are of most use in

PEM. Cf. pp. 202ff.

Page 304 of 328 -- WP 43S U v0.16

R Keystrokes Meaning

7 Subtracts x from y.

 Opens a menu of advanced operations for solving arbitrary

equations, finding roots, integrating, deriving, computing sums

and products (cf. pp. 235ff).

 Opens the menu of all equations currently defined (cf. pp.

238ff).

 Enters the letter V or v

in AIM (cf. pp. 193ff). Enters the character –

 Opens a menu of math symbols

7 Enters the digit 1.

 Opens a menu containing Boole’s

operations (AND, OR, NOT, etc.) as

well as bit manipulating commands.
Both menus are

most useful with

short integers, cf.

pp. 136 and 140ff. Opens a menu of operations for

integers as well as sign mode settings.

 Enters the letter W or w
in AIM.

 Enters the Greek letter or

7 Enters the digit 2.

 Opens the menu of matrix operations including e.g. [M]−1, |M|,

[M]T, CROSS, DOT, and the Matrix Editor (cf. pp. 163ff).

 Opens a menu of advanced mathematical (extra) functions.

See the ReM.

 Enters the letter X or x

in AIM. Enters the character 2

 Enters the Greek letter or

WP 43S U v0.16 --- Page 305 of 328

R Keystrokes Meaning

7 If there is an open question like Are you sure?, enters Y for

‘yes’. Else enters the digit 3.

 Calls the timer application (cf. pp. 264ff).

 Opens the menu of time and date commands. Cf. pp. 189ff.

 Enters the letter Y or y

in AIM (cf. pp. 193ff). Enters the character 3

 Enters the Greek letter or

7 Context sensitive key, see p. 309.

 Moves the program pointer one step forward (cf. pp. 202ff).

 Opens a menu of operations for setting modes like angular

display format, max. denominator, etc. (cf. pp. 125ff and 151ff).

8 Adds x to y.

 Opens the menu of I/O-related operations. Cf. pp. 233f.

 Opens the menu of print-related operations.

 Enters the letter Z or z

in AIM. Enters the character +

 Enters the Greek letter or

8 Enters the digit 0.

 Opens a menu containing INC and DEC and the related loop

control commands ISG, DSE, etc. Cf. pp. 218f.

 Opens the menu of comparisons, conditionals, and other

binary tests. Cf. pp. 214ff.

 Enters the character ?

in AIM. Enters the character 0

 Enters the printer character ⎙

Page 306 of 328 -- WP 43S U v0.16

R Keystrokes Meaning

8 Usually enters a decimal radix mark in numeric input.

If pressed twice in numeric input, allows for entering a fraction

(cf. pp. 68f and 151ff). In register or flag addressing, heads

a local address (cf. pp. 57ff).

 Opens a menu containing FP, IP, SIGN,

DECOMP, etc.
These opera-

tions are most

useful in PEM.

Cf. pp. 202ff.
 Opens a menu of commands to return

system information. Cf. p. 217.

 Enters a comma

in AIM (cf. pp.

193ff)
 Enters a point

 Opens a menu of punctuation marks etc.

8 Context sensitive key, see p. 308.

 Toggles program-entry and run mode.

 Opens a menu of dedicated programming functions. These

are of most use in PEM. Cf. pp. 202ff.

 Enters a blank space in AIM.

8  /  Context sensitive key, see p. 308.

 Opens the catalog of everything (functions, variables, menus,

programs, etc.). See the ReM for its structure and contents.

 Turns your WP 43S off unless in PEM, where it inserts OFF

behind the current step (cf. p. 204).

Seven context sensitive keys need longer explanations – find them in the

table below, sorted alphabetically. If any of these keys is pressed, your

WP 43S will run top down through a sequence of key-specific tests –

whichever test becomes true first, your WP 43S will execute the

corresponding operation and return, waiting for next input.

WP 43S U v0.16 --- Page 307 of 328

Key Condition(s) Meaning

X contains an
open (input)

number, cf. p. 25

If POLAR is clear, closes input, checks,

and saves it as real part of a forthcoming

complex number, then waiting for your input

of its imaginary part.

Else closes, checks, and saves the

input as magnitude and waits for your input

of the phase.

Cf. pp. 154ff for more.

X contains a
closed complex
number, vector,

or matrix

If POLAR is clear, splits (‘cuts’) x into its

real and imaginary part, returning the real

part in Y and the imaginary part in X.

Else splits x into its magnitude r and

phase ϑ, returning r in Y and ϑ in X.

X and Y contain
two closed reals

Interprets y and x either (for POLAR set) as

magnitude and phase, or (for POLAR clear)

as real and imaginary parts. combines

y and x to compose one complex number x,

then drops y.

X and Y contain two
closed real vectors (or

matrices) of identical
dimension

Returns one complex vector (or matrix)

x, working in analogy to previous row.

Else Throws an error.

Waiting for
parameter input

Closes pending command input and exe-
cutes said command (cf. p. 63 for more).

Asking for
confirmation

Confirms the question.

In TIMER Is honored as described on pp. 264f.

In RBR, STATUS Does nothing.

Else Closes alphanumeric input and enters data
in the stack (cf. pp. 33f and 39 for details).

Page 308 of 328 -- WP 43S U v0.16

Key Condition(s) Meaning

 /

WP 43S turned
off

Works as turning your WP 43S on.

Waiting for
parameter input

Cancels the pending command.

Waiting for alpha-
numeric input

Closes input (note alphanumeric includes
numeric input).

Temporary infor-
mation displayed

Clears this information (e.g. an error mes-
sage) returning to the calculator state as was
before it was thrown. Cf. p. 68.

Asking for
confirmation

Denies the question.

In RBR,
STATUS, TIMER

Leaves the application (cf. pp. 261ff).

In a (sub-) menu
or browser

Leaves the current (sub-) menu or browser
without executing anything, returning to the
status of your WP 43S as it was before.

⌛ flashing
Stops executing the running program imme-

diately. will be lit until next keystroke.

In PEM Leaves program-entry mode like .

A or α Closes x and leaves alpha input mode.

Else Does nothing.

In TIMER Starts or stops the timer without changing its
value (cf. pp. 264f).

⌛ flashing Stops executing the running program imme-

diately. will be lit until next keystroke.

In PEM Enters the command STOP.

Else Runs the current routine (cf. pp. 202ff) or
resumes its execution starting with the step
after the current step.

WP 43S U v0.16 --- Page 309 of 328

Key Condition(s) Meaning

or

After STO or RCL Honored as described on pp. 58ff.

In RBR,
STATUS, TIMER

Honored as described in Sect. 5 (pp. 261ff).

A & in (αINTL or A…Ω) sets lower case.

α & in (αINTL or A…Ω) sets upper case.

A else sets lower case. Else continue testing.

α else sets upper case. Else continue testing.

In EQN goes to next and…

 to previous equation, if applicable.

In a multi-view
menu

 goes to next and…

 to previous view in the current menu.

In PEM goes to previous and…

 to next program step. Will repeat with

2Hz when pressed longer than 0.5s.

In run mode Browses the current routine with…

 going to previous program step and…

 executing the current program step
and going to next step.

Open alphanu-
meric input

Deletes the last character entered. If none

is left, cancels pending command like .

Temporary infor-
mation displayed

Clears the information returning to the cal-
culator state as was before this (e.g. an error
message) was thrown. See p. 68.

Asking for
confirmation

Denies the question.

In TIMER Resets the timer (cf. pp. 264f).

In PEM Deletes the current program step.

Else Calls the command CLX.

Page 310 of 328 -- WP 43S U v0.16

APPENDIX 3: FURTHER APPLICATIONS OF TVM

Throughout TVM pictures, amounts received a represented by arrows

pointing up, money laid out (paid, invested) by arrows pointing down.

Various types of financial problems can be sketched like this then:197

The following examples as well as all the other text printed blue in this

appendix are quoted from the HP-27 OH. All calculations are executed

in FIX 2. Enjoy the boundary conditions of that time – those were the

days ...

197 Translator’s note: You can use this picture as a dictionary of some financial terms in
(American) English. The word “with” is abbreviated by “w/” although this does not save
any space here. Abbreviomania …

WP 43S U v0.16 --- Page 311 of 328

Ordinary Annuities (a.k.a. Payments in Arrears)

An annuity is a series of equal payments made at regular intervals. The

time between annuity payments is called the payment interval or

payment period. If your payment is due at the end of each payment

period, it's called an ordinary annuity or payment in arrears. Examples of

ordinary annuities are a car loan (where you drive away now and pay

later) or a mortgage (where the payments start one month after you get

your loan).

The time / money

relationship for an

ordinary annuity

with monthly pay-

ments for a year

would look like

this →

Example for finding the number of periods for an ordinary annuity:

Through an insurance fund,

you have accumulated

$50 000 for your retirement.

How long can you withdraw

$3 000 every 6 months (start-

ing 6 months from now) if the

fund earns 5% per annum

compounded semiannually?

Solution:

  TVM   End  withdrawals are due at the end of each period,

5 2  i%/a   2.50 % semiannual interest rate,

50000  PV   50 000.00 principal (capital),

3000  PMT   nⓅⒺⓇ   21.83 semiannual withdrawals, so

your savings will last for almost 11 years.

Example 1 for finding the interest rate for an ordinary annuity:

What is the annual interest rate (a.k.a. APR for annual percentage rate)

on a 2-year, $1 775 loan with $83.65 monthly payments?

Page 312 of 328 -- WP 43S U v0.16

Solution:

12  per/a   12.00 months per year,

12 2  nⓅⒺⓇ  24.00 periods in total,

1775  PV   1 775.00 principal (capital),

83.65  PMT  83.65 payment;

 i%/a   12.11 % APR.

Borrowers are sometimes charged fees related to the issuance of a

mortgage, which effectively raises the interest rate. Given the basis of

the fee charge, the true annual percentage rate may be calculated.

Example 2 for finding the interest rate for an ordinary annuity:

A borrower is charged 2 points for the issuance of his mortgage. If the

mortgage amount is $50 000 for 30 years, and the interest rate is 9% per

year, with monthly payments, what annual percentage rate is the

borrower paying? (1 point is equal to 1 % of the mortgage amount.)

Solution:

First, compute the payment amount which is based on $50 000

9  i%/a   9.00 annual interest rate,

12  per/a   12.00 months per year,

12 30  nⓅⒺⓇ  360.00 periods in total,

50000  PV   50 000.00 principal (capital);

  PMT  83.65 payment.

  PMT  83.65 reuse payment,

  nⓅⒺⓇ  nⓅⒺⓇ 360.00 recall and reuse periods,

  PV  2  PV  49 000.00 effective amount received,

 i%/a   12.11 % effective APR.

What's really happening? For a mortgage with fees, the borrower is

making payments on the original loan amount, which corresponds with

the initial calculation of the payment amount. If you borrow $10 000, but

are immediately charged $500 in fees, you really only receive $9 500.

WP 43S U v0.16 --- Page 313 of 328

But, your payments are based on $10 000. With fees, then, you're really

paying the same for less money, which generates the need to compute

the true APR.

Example for finding the payment amount for an ordinary annuity:

Find the monthly payment amount on a 30-year, $52 000 mortgage at

9.75% annual interest rate.

Solution:

12  per/a   12.00 months per year,

12 30  nⓅⒺⓇ  360.00 payment periods in total,

52000  PV   52 000.00 mortgage,

9.75  i%/a   9.75 % annual interest rate;

  PMT  446.76 monthly payment.

A common financial occurrence is an annuity that has a large payment

at the end. The last payment – usually considerably larger although it

could also be smaller than the others – is called a balloon payment or

balloon.

By subtracting the present value of the balloon payment from the loan

amount, the problem effectively becomes ''What is the monthly payment

on a direct reduction loan?"

Example (finding the payment for an ordinary annuity with balloon):

Yellowstone Sam is heading north, and will invest in an $8 000 dog sled

and team. His loan specifies 60 monthly payments at 10% with a balloon

payment in the 60th month of $3 000. What will his monthly payments

be?

Solution:

12  per/a   12.00 months per year,

60  nⓅⒺⓇ  60.00 payment periods in total,

10  i%/a   10.00 % annual interest rate;

3000  FV   3 000.00 future value of balloon,

 PV   1 823.37 present value of balloon;

Page 314 of 328 -- WP 43S U v0.16

 PV   1 823.37 input of PV of balloon;

  i%/a  i%/a 10.00 recall & reuse interest rate,

  nⓅⒺⓇ  nⓅⒺⓇ 360.00 recall and reuse periods,

8000 8 000.00 gross value of loan amount,

  PV    PV  6 176.63 net present value of loan
amount less balloon;

 PMT  131.24 monthly payment.

Example for finding the present value of an ordinary annuity:

Yellowstone Sam decides to purchase a snowmobile. He plans to pay

$80 per month for 3 years, and he's willing to pay 10% annual interest.

How much can he afford to pay for the snowmobile?

Solution:

12  per/a   12.00 months per year,

12 3  nⓅⒺⓇ  36.00 payment periods in total,

10  i%/a   10.00 % annual interest rate;

80  PMT   9.00 monthly payment,

 PV   2 479.30 price he can pay for the
snowmobile.

With loan calculations, you generally solve for n, i, PMT, or PV. There is

another type of ordinary annuity called a “sinking fund”, where you make

payments at regular intervals into a fund to discharge a debt (for

example, to pay off a bond issue at maturity). With sinking fund

calculations, you solve for n, i, PMT, or FV (how much you will have in

the fund at a future date).

Sinking fund pay-

ments start at the

end of the first

period, like so →

This is different

from opening a

savings account with a starting deposit today. Savings are annuity due

calculations and will be described later in this section.

WP 43S U v0.16 --- Page 315 of 328

Example for finding the future value of an ordinary annuity:

A $100 000 bond is to be discharged by the sinking fund method. If,

starting 6 months from now, you deposit $3 914.75 twice a year into a

sinking fund that pays 5% compounded semiannually, will you be able to

pay off the bond in 10 years?

Solution:

2  per/a   2.00 halves per year,

10 2  nⓅⒺⓇ  20.00 payment periods in total,

5  i%/a   5.00 % annual interest rate;

3914.75  PMT   3 914.75 semiannual deposit,

 FV   100 000.95 balance of the fund after 10
years – it will just make it!

Annuities Due (a.k.a. Payments in Advance)

With some annuities – like insurance premiums or a lease – the payment

is due at the beginning of the month. This is called an annuity due

because the payment falls at the beginning of the payment period. Other

terms are payments in advance or anticipated payments.

An annuity due with

monthly payments for

a year – say, a car

insurance policy198 –

looks like this →

Notice that with an

annuity due, you

have a payment right away at the beginning of the first interval (with an

ordinary annuity, your payment is not due until the end of the first period,

but you also have a payment at the end of the entire term).

The following calculations all deal with annuity due problems, e.g. sav-

ings, insurance, leases, and rents.

198 Translator’s note for German readers: “Policy“ entspricht hier einer Police.

Page 316 of 328 -- WP 43S U v0.16

Example 1 for finding the number of periods for an annuity due:

Given an investment

possibility of $325 000

that will immediately pro-

duce rental income of

$7 500 per month, how

long must the invest-

ment be held to yield

10% per annum?199

Solution:

  TVM   Begin  payments are due at the begin of each period,

12  per/a   12.00 months per year,

10  i%/a   10.00 % annual interest rate,

325000  PV   325 000.00 investment;

7500  PMT   nⓅⒺⓇ   53.43 months.

Example 2 for finding the number of periods for an annuity due:

If you deposit $50 a month in a savings account that pays 6% interest,

how long will it take to reach $1 000?

Solution:

12  per/a   12.00 months per year,

6  i%/a   6.00 % annual interest rate,

0  PV   0.00 start balance,

1000  FV   1 000.00 future value;

50  PMT   nⓅⒺⓇ   19.02 months.

Example for finding the interest rate for an annuity due:

Equipment worth $12 000 is leased for 8 years with monthly payments in

advance of $200. The equipment is assumed to have no salvage value

at the end of the lease. What yield rate does this represent?

199 I frankly admit I understand neither this problem nor its solution.

WP 43S U v0.16 --- Page 317 of 328

Solution:

12  per/a   12.00 months per year,

8 12  nⓅⒺⓇ  104.00 payment periods in total,

12000  PV   12 000.00 start value of equipment,

0  FV   0.00 final value of equipment,

200  PMT   200.00 payments;

 i%/a   13.07 % annual yield.

Example for finding the payment amount for an annuity due:

The owner of a building presently worth $70 000 intends to lease it for 20

years at the end of which time he assumes the building will be worthless

(i.e., has no residual value). How much must the quarterly payments (in

advance) be to achieve a 10% annual yield?

Solution:

4  per/a   4.00 quarters per year,

20 4  nⓅⒺⓇ  240.00 payment periods in total,

10  i%/a   10.00 % annual target yield,

70000  PV   70 000.00 PV of the building;

0  FV   0.00 FV of the building;

  PMT   1982.27 quarterly payments.

Example for finding the present value for an annuity due:

The owner of a down-

town parking lot has

achieved full occupancy

and a 7% annual yield by

renting parking spaces

for $40 per month pay-

able in advance. Several

regular customers want

to rent their spaces on an annual basis. What annual rent, also payable

in advance, will maintain a 7% annual yield rate?

Page 318 of 328 -- WP 43S U v0.16

Solution:

12  per/a   12.00 months per year,

12  nⓅⒺⓇ  12.00 payment periods in total,

7  i%/a   7.00 % annual target yield,

40  PMT   40.00 monthly payments;

 PV   464.98 equivalent annual payment.

Example for finding the future value for an annuity due:

If you can afford to

deposit $50 per

month in an account

with 6 ¼ % interest

compounded monthly,

how much will you

have 2 years from

now?

Solution:

12  per/a   12.00 months per year,

2 12  nⓅⒺⓇ  24.00 payment periods in total,

6.1.4  i%/a   6.25 % annual target yield,

50  PMT   40.00 monthly payments;

0  PV   0.00 start balance;

 FV   1 281.34 balance after two years.

WP 43S U v0.16 --- Page 319 of 328

APPENDIX 4: POWER SUPPLY

Your WP 43S is powered by a single CR2032 coin cell (3 V). Alterna-

tively, it may be powered through its USB port – running with even higher

speed then. Watch p. 16 and see the ReM, App. A for more.

WARNING: Removing the battery for longer than xxx seconds may erase

all data in RAM – only data in flash memory will remain.

See what sufficed for explaining the basic functionality of the HP-45 on its back
in 1973:

Though it
featured
only 59
functions, neither menus, catalogs, data types, browsers, applications, advanc-
ed operations (just four statistical sums, means, and standard deviations),
named variables, programming, nor customizing – but your WP 43S does.

Page 320 of 328 -- WP 43S U v0.16

APPENDIX 5: TIME LINE OF QUOTED MANUALS

HP-35 OM 1972

HP-55 OH, HP-21 OH, HP-25 OH 1975

HP-27 OH, HP-67 OHPG 1976

HP-97 OHPG, HP-32 OH, HP-33 OH 1978

HP-34C OHPG 1979

HP-41C/41CV OHPG 1980

HP-16C Computer Scientist OH 1982

HP-15C OH 1987

HP-27S OM, HP-42S OM 1988

WP 43S U v0.16 --- Page 321 of 328

In 1976, Continuous Memory was a breathtaking innovation; and a grand total
of 72 built-in functions, 8 GP storage registers, and 49 merged program steps
sufficed for professional engineers and scientists doing their work as well as for
students striving for their Ph.D. Note that 200 US$ of 1976 correspond to
911 US$ of today! Though linear regressions, correlations, and forecasting had
to be programmed by you if you needed them – the respective routine as
recommended by HP took 44 precious steps.

Page 322 of 328 -- WP 43S U v0.16

APPENDIX 6: RELEASE NOTES

 Date Release notes

0 29.11.12 Official project start with first publication of the 43S
concept and a layout on one of the forums of the
Museum of HP Calculators ( https://www.hpmuseum.org/cgi-
sys/cgiwrap/hpmuseum/archv021.cgi?read=234685#234685 ).
Though there are found far older traces of a ‘43S’ denoting a ‘Super
HP-42S’, though in various more or less fictional cases – pure
vapourware™.

0.1 2.2.14 Manual setup based on the one of WP 34S.

 23.5.15 Passed to Jake Schwartz, Eric Smith, and Richard Ottosen for first
information.

0.2

3.10.15

Update based on Jake’s feedback and further thoughts, distributed to

Eric, Jake, Marcus, and Pauli.

0.3

21.3.16

Split the manual in three; moved LBL onto the keyboard, renamed

STOM to STOCFG, RCLM to RCLCFG, SERR to sm, and SERRw to

smw; refined the Key Response Table. Passed to Michael Steinmann

for information.

0.4

28.3.16

Renamed LOGS to EXP and to . Added hardware informa-

tion from 2nd manufacturer.

0.5 29.10.16 Returned . Changed keyboard layout.

0.6

22.8.17

Merged the Applications and Owner’s Manual. Changed the input

order of complex number parts on Pauli’s request. Changed keyboard

layout introducing D.MS, SST, BST, and % while removing ŷ, RAN#,

‘FRC, and ‘CFIT. Put ‘CFIT into ‘STAT and ‘FRC into ‘MODE. Placed

OFF below EXIT for easier customizing. Renamed cc to C5, to

, STOPW to TIMER, SHOW to REGS, ‘SOLVE to ‘ADV, DLINES

to DSTACK, 12h to CLK12, and 24h to CLK24. Replaced IND by →.

Deleted %MG since covered by Δ%, added EIGVAL and EIGVEC.

Swapped CNST and CONST. Defined the echo rows for

alphanumeric and command input. Expanded and modified the

character sets for better use of display space. Added the QRG.

0.7

Changed keyboard layout. Replaced the labels BST by , SST by

, and UNDO by ; added some alpha input mode reminders on

the keyboard. Added AGRAPH, CLLCD, EQ.xxx, HYP, J/G,

M.GOTO, ORTHOF, PIXEL, POINT, TDISP, and ⎙USER. Moved the

background considerations out of ReM App. D. Introduced K as alpha

register for alphanumeric constants in programs. Removed fraction

data type. Extended items from 6 to 7 characters to match HP-42S.

https://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/archv021.cgi?read=234685#234685
https://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/archv021.cgi?read=234685#234685

WP 43S U v0.16 --- Page 323 of 328

 Date Release notes

2.4.18

Specified data types more precisely in ReM App. D. Reduced the

maximum number of local registers from 888 to 100. Deleted JG1582

and JG1752. Renamed two commands for TVM. Replaced the

heading apostrophe for menu names. Put SUMS in STAT. Renamed

the trigonometric and hyperbolic functions according to mathematical

standards, and ⎙CHR to ⎙CHAR. Redistributed the chapter about

constants. Modified STATUS display. Refined the unit conversions

to ensure SI on one side. Specified 0 SEED. Expanded ReM App. A.

Added formula output for L.R. Modified CPX?, DBL?, and REAL?.

Changed output of binary tests for compatibility with HP-42S.

0.8

7.5.18

Changed keyboard layout: introduced TRG containing trigonometric

functions, removed HYP into EXP and to g-shifted , swapped

some shifted labels. Refined the chapters about register arithmetic,

Command Parameter Input, Alphanumeric Input, Matrix Calculations,

and Orthogonal Polynomials. Introduced CLCVAR and more vintage

examples. Rearranged temporary information on the screen. Renam-

ed REGS to RBR and CLx to CLX. Deleted ANGLE.

20.9.18

Corrected errors and inconsistencies. Added one more example.

Moved the key response table into an appendix.

0.9

3.1.19

Removed angle data type. Added another industrial application and

many more examples. Exchanged keyboard pictures due to changed

bezel. Expanded App. B. Added SHOW for displaying full precision

of DP numbers and FBR for browsing our two fonts. Split a chapter.

Expanded some titles. Added the overlay drawing. Modified func-

tionalities of and to match HP-42S. Added a chapter about

curve fitting. Modified functionalities of and . Expanded

App. K. Renamed DOUBLE to DP. Added SP and conversions

of quarts. Rearranged X.FN. Replaced by . Changed

keyboard moving , , and . Moved ⎙ to . Added

XIN and XOUT. Added a chapter in App. E and information about

infinite integers Extended the domain of GCD and LCM. Refined and

corrected.

0.10

3.3.19

Returned angle data type and αSR. Added IDIVR and VANGLE.

Refined FP, IP, IMPFRC, PROFRC, SDIGS?, →DP, →HR, →INT,

→REAL, →SP, explanation of ALL, the summary of integer functions,

and handling of long alpha strings. Modified contents of CPX, MATX,

and α●. Added a summary of matrix functions. Removed the -

key combinations. Modified MEM?. Rewrote the angular conver-

sions. Renamed infinite and finite integers to long and short integers.

Added a chapter about ±∞ and NaN. Modified RBR and the menu for

STO and RCL. Removed ⎙ from the keyboard. Renamed Xu to Xe

for the distributions. .

Page 324 of 328 -- WP 43S U v0.16

 Date Release notes

0.11

8.5.19

Changed keyboard making primary and user mode shifted,

removing x2, x ⇄, and DSP, adding |x|, DROP, and SHOW, and moving

some shifted labels. Modified BITS, CLREGS, CNST, CPX, DISP,

EXP, INTS, MODE, PARTS, SHOW, STAT, U, αMATH, the division

matrix, data type conversions, and the Quick Reference Guide.

Added conversions of barrels, carats, and fathoms. Deleted DSP. –

Separated predefined variables. Refined Sect. 6. Added H, RMS,

nine statistical sums and five curve fit models. Split STAT in STAT

and SUMS; renamed RMDR to RMD, Ln to Lm, Lnα to Lmα, Π to Πn, Σ

to Σn, and some constants to avoid search ambiguities. Refined App.

J, Sect. 3 and 4, INT, CLR, and the functions of and . Put

SUMS instead of RMD on the keyboard, moved ADV, BITS,

CATALOG, EQN, FILL, INTS, MATX, MODE, PROB, RTN, SHOW,

STAT, and α.FN. Rearranged A…Ω and Sect. 2 of the OM.

0.12

16.10.19

Rearranged the appendices of the ReM from App. D on. Expanded

App. A of the OM and App. K. Deleted the standardized normal

distribution Φ and rearranged PROB. Updated CNST following

CODATA 2018. Renamed the angular conversions. Changed the

composing and cutting functionality of . Refined exiting short

integer input. Expanded App. D. Specified maximum size of long

integers. Changed keyboard adding ∡, moving CPX, FIN, RBR, R,

and SHOW, removing %. Renamed VANGLE to V∡. Modified CPX,

MATX, TRI, and X.FN. Rearranged Section 1 of the OM. Added some

internal data types to App. B; reduced the range of long integer results

and DP real inputs to 10±999. Defined the domains of ex-1, IDIVR,

LN(1+x), MOD, and RMD according to the HP-42S; modified PLOT

and Σ+. Refined the Addressing Tables. Added a data type matrix for

IDIVR. Refined the Special Results in App. B.

0.13

30.11.19

Expanded the alpha keyboard and App. I. Modified CPX, INTS,

MODE, PROB, STK, TEST, α●, SHOW, and STATUS. Refined the

sorting order of items, ALL, CX→RE, MEM?, RE→CX, RBR, RM,

SLVQ, and U→. Started filling App. F and G. Refined App. 2. Added

a long integer example, CPXR?, LZ?, ΔνCs, conversions of hectares,

and a proposal for system status information.

0.14

7.3.20

Introduced system flags for status information. Split I/O. Added

CATALOG’SYS.FL, PRINT, PROG, RANI #, VAR, auxiliary constants,

some predefined variables, and an index in App. I. Changed keyboard

swapping MODE and FLAGS, U→ and ∡→, moving CPX, FILL, RBR,

R, USER, α.FN, αINTL, √Ϳ, and ⎙, displaying PRINT, RMD,

STATUS, x2, and ‘:’, and removing , ⎙x, →SP, and →DP.

Renamed DISP to DSP and SUMS to Σ, changed to ↶. Refined

the addressing tables and catalog access, , ADV, BATT?,

BITS, CATALOG’CHARS and ’MENUS, CLALL, CLFALL, CPX, EXP,

WP 43S U v0.16 --- Page 325 of 328

 Date Release notes

GAP, INTS, I/O, MODE, NEIGHB, PARTS, PRIME?, P.FN, SHOW,

STAT, STK, X.FN, αINTL, and α●. Deleted all 16-digit (i.e. SP) data

types as well as A…Z and the commands CLK12, CLK24, CPXi,

CPXj, CPXRES, CPXR?, DBL?, DENANY, DENFAC, DENFIX,

ENGOVR, FAST, IMPFRC, LZOFF, LZON, LZ?, MULT×, MULT·,

POLAR, PROFRC, QUIET, RDX., RDX,, REALRE, RECT, SCIOVR,

SLOW, SSIZE4, SSIZE8, →DP, and →SP. Corrected.

0.15

14.6.20

Added BESTF?, RANGE, RANGE?, REGIST, SNAP, and s(a), as well

as errors 28 and 31 – 35. Changed DSZ and ISZ to comply with HP-

16C. Changed keyboard shifting N, O, P, and Q, swapping ? and Z,

moving CNST, CPX, FLAGS, RBR, RTN, R, VIEW, and ⎙, removing

:, and adding MOD, ✓, and SNAP. Renamed DSP to DISP, CNST to

CONST, CONST to CNST, ASL.BLK to ASLIFT, SSIZE to SSIZE8, TDM to

TDM24, and the left and right sided probabilities. Refined ASSIGN,

CATALOG, CNST, DISP, INFO, NEXTP, PRIME?, PROB, RBR,

RESET, SHOW, SINC, STAT, U→, VIEW, x = + 0?, x = − 0?, yx, α→x,

∡, pp. 54 – 57 and 205 – 207 (and consequences) as well as Section

6 of the OM, pp. 108 – 117, App. B, C, and E of the ReM, and some

looping and statistical explanations. Reduced the maximum number

of local registers from 100 to 99. Changed ALLSCI to ALLENG and RECTN

to POLAR. Added data type matrices for powers. Corrected.

0.16

4.7.20

Added torque and mmHg conversions, xmax and xmin, ISM, and

LOADV. Added UNDO to the IOI. Refined I/O and the

descriptions of LOAD, LOADSS, RESET, and UNDO. Marked

the not-undoable items in the IOI. Renamed the constants

according to the OM and kicked them out of the IOI. Corrected.

Page 326 of 328 -- WP 43S U v0.16

INDEX

This index lists special terms and keywords used in this manual.
Furthermore, it points to the most prominent of the 167 examples
included, marked ‘(ex.)’.

Items are listed below only if they are extensively treated in this manual
(remember you find each and every item provided explained in the IOI
printed in the ReM; and the IOI will also point you to further explanations
if applicable). Looking at the Table of Contents above is recommended
as well – titles are not repeated below.

42 (ex.) 134
about to die (ex.) 194
account balancing (ex.) 31
address space 53
addressing, indirect 64
ADM 124
advertising pictures (ex.) 95
AIM 192
air pressure and altitude (ex.) 86
aircraft navigation (ex.) 129
alpha input mode 76, 192
altimeter (ex.) 86
angular display mode 124
APR 310
archery statistics (ex.) 99
arithmetic shift 141
ASSIGN 280
automatic stack lift 35
balloon trip (ex.) 84
base conversions 138
bicycle gearing (ex.) 85
bit numbering 139
black or white cats (ex.) 195
Boolean operations 141
branching 213, 217
bubble sort (ex.) 218
caesium-137 91

calculator stand (ex.) 152
cannery (ex.) 204
carbon-14 dating (ex.) 240
carry 140
CDF 97
chain calculation (ex.) 34
chi-square statistic (ex.) 106
cleaning a veranda (ex.) 277
closing numeric input 24
complex aircraft navigation (ex.)

157
compound interest (ex.) 48
confidence limits (ex.) 108
connecting peaks (ex.) 94
continuous distribution 97
cross product (ex.) 159, 176
cubic inches (ex.) 277
current step 203
data type 68
data type conversions 74
dating (ex.) 189
debugging 212
decrement and skip 217
dice from Las Vegas (ex.) 107
diffraction pattern (ex.) 257
digit group separation 79
discrete distribution 97

WP 43S U v0.16 --- Page 327 of 328

dot product 158, 176
dyadic functions 31
earthquakes (ex.) 89
electron-volts (ex.) 273
engineer’s notation 80
enter exponent 24
ENTER 33
error probability 97
extrapolation (ex.) 105
falling around the earth (ex.) 226
falling in Pisa (ex.) 102
falling with drag (ex.) 224
fencing land (ex.) 19
FILL 38
filling tires (ex.) 277
fixed point notation 81
flags 54, 55
forecasting (ex.) 105
free fall (ex.) 102
Fukushima accident (ex.) 91
general purpose registers 44,

54, 55
Golden Bow (ex.) 99
great circle distance (ex.) 126
Greek letters 192
Horner scheme (ex.) 49
improper fraction 151
increment and skip 217
indicators, status bar 75
indirect addressing 61, 62
integer sign mode 136
interpolation (ex.) 104
ISM 136
item 26
keystroke programming 201
logical operations 141
long integers 134
Mach number (ex.) 44
markup and margin (ex.) 121
measuring capability (ex.) 114

measuring system analysis (ex.)
112

menu 26
menu section 27
menu view 26
modulo 143
monadic functions 30
Mother's Kitchen (ex.) 204
Mt. Everest (ex.) 87
MyMenu 285
Myα 290
navigating in space (ex.) 131
overflow 137
parachutist (ex.) 224
PDF 97
PEM 21, 202, 204, 245, 262
PMF 97
prefix 18
primary function 17
process capability 100
program editing 210
program pointer 203
proper fraction 151
proton in magnetic field (ex.) 176
quantile function 98
R, R 37
radioactivity (ex.) 91, 240
radioactivity (units) 279
radix mark setting 79
RCL 58, 61
remainder of division 142
Rigel Centaurus (ex.) 50
rotate bits 140
rotate text 197
RPN 14, 23, 31, 37, 40, 42, 45
satellite orbits (ex.) 226
scientific notation 80
scrap rate (ex.) 108
search text 197
secondary function 17
shift bits 140

Page 328 of 328 -- WP 43S U v0.16

shift text 198
short integers 135
significant change (ex.) 114, 116
significant improvement (ex.) 101
Sirius (ex.) 50
skiing (ex.) 83
skydiving (ex.) 224
softkey 27, 28
sorting numbers (ex.) 218
special registers 54
squaring circles (ex.) 82
stack 32
stack overflow 43
startup default 52
statistical registers 52, 54
status bar 75
submenu 27

surfaces of Jupiter’s moons (ex.)
21

TAM 56, 209, 260
tax deduction (ex.) 122
temporary alpha mode 56
temporary information 68
Tower of Pisa (ex.) 102
triadic functions 36
Upper Lagunia (ex.) 94
user flags 55
variables 56
vector operations in 2D 177
VIEW 59
virtual keyboard 57, 193, 209
Willie’s Widget Works (ex.) 95
XEQ 22

