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1. INTRODUCTION

It is an especial pleasure for me to have this opportunity
to pay my respects to my friend and colleague Ivor
Robinson. I have chosen to hold forth on the origins of
twistor theory for two reasons. The first is that Ivor's 60th
birthday very nearly coincides with what is (for me) the
20th birthday of the theory, so this seemed to be a
reasonable point at which to examine how it stands today,



in relation to its original aims and aspirations. But also
Ivor himself played a direct and important part in those
origins. In fact, I can think of several essentially
independent influences that Ivor had, one of which was
quite crucial. I hope the reader will bear with me and
forgive me for presenting an account which, to a large
extent, consists of personal or technical reminiscences.
But I hope, also, that there will actually be some
scientific value in these ramblings.

I should first make clear what I mean, here, by the
"origins" of twistor theory. I am referring to the origins of
my own rather specific approach to a physical theory. I
appreciate that many of the ideas go back very much
farther than twenty years. Most particularly, Felix Klein
put forth his correspondence between the lines in
complex projective 3-space and a general quadric in
projective 5-space as long ago as 1870 (Klein 1870,
1926), this correspondence being based on the
coordinates of Julius Plücker (1865, 1868/9) and Arthur
Cayley (1860, 1869), (or of Hermann Grassmann, even
earlier). Sophus Lie had noted essentially the key
"twistor" geometric fact that oriented spheres in complex
Euclidean 3-space (including various degenerate cases)
could be represented as lines in complex projective 3-
space (contact between spheres represented as meeting of
lines) already in 1869 (cf. Lie & Scheffers 1896) as was
pointed out to me by Helmuth Urbantke some years ago.
The spheres may be thought of as the t = 0 representation
of the light cones of events in Minkowski space, so the
Lie correspondence in effect represents the points of
(complexified compactified) Minkowski space by lines in
complex projective 3-space, where meeting lines
describe null-separated Minkowski points - the twistor
correspondence! The local isomorphism between the
"twistor group" SU(2,2) and the connected component of
the group 0(2,4) was explicitly part of the Cartan's (1914)
general study and classification of Lie groups. The
physical relevance of 0(2,4) in relation to the conformal
motions of (compactified) Minkowski space-time had
been exploited by Paul Dirac (1936 b) and the objects
which I call twistors (namely the spinors for 0(2,4)) had



been explicitly studied by Murai (1953, 1954, 1958) and
by Hepner (1962). (See also Gindikin 1983 for a
discussion of these matters.)

Moreover, as Ivor Robinson pointed out to me some ten
or so years ago, a certain line-integral expression for
representing the general (analytic solution of the wave
equation in terms of holomorphic functions of three
complex variables was known to Bateman in 1904 (see
Bateman 1904 and 1944, p. 96), this having arisen from a
similar expression due to Whittaker (1903) for solving
the three-dimensional Laplace equation, and Bateman
also gave a similar line-integral expression for solving
the free Maxwell equations (Bateman 1944, p. 100). By a
simple transformation of variables, these become the
helicities zero and one cases of the basic contour integral
formula (Penrose 1968, 1969a) giving the linear field
case of the so-called "Penrose transform" of twistor
theory. The Radon transform (Radon 1917, Gel'fand
Graev & Vilenkin 1966) and its generalizations may also,
from a different angle, be regarded as providing models
for (and generalizations of) this twistor expression. In
addition, the classic Weierstrass (1866) construction (cf.
Darboux 1914) (which was known to me!) had provided
a paradigm for the explicit solution, in terms of free
holomorphic data, of an important non-linear problem
(Plateau's problem). This may be regarded as a direct
antecedent of the later non-linear twistor constructions
for (anti-) self dual gravitational (Penrose 1976; cf. also
Hitchin 1979) and Yang-Mills fields (Ward 1977, Atiyah
& Ward 19771 Aityah, Hitchin, Drinfeld & Manin 1978).

Much of this previously existing material was not known
to me twenty years ago. But the Klein correspondence
was something I had been well acquainted with since my
undergraduate days. So some might argue that there was
not a great deal left to be original about in the basic
twistor scheme. Nevertheless I do feel that I have a good
claim to some sort of originality! This - if we discount a
fair number of (non-trivial) later mathematical
developments - lies primarily in the essential "physical
idea" that the actual space-time we inhabit might be



significantly regarded as a secondary structure arising
from a deeper twistor-holomorphic reality. The basic
idea, it could be argued, pro vides little more than a shift
in viewpoint, but it is this shift that provides crucial
motivation and it also gives, in a sense, whatever physic
al content the theory has had, so far. This viewpoint has
guided us in certain unexpected and often fruitful
directions, providing some surprising mathematical
insights and descriptions of basic physical fields and
concepts. It has enabled us to achieve results that had not
seemed possible to achieve by more conventional
procedures. (For accounts of some of these, see Hodges
et al. 1980). Nevertheless, twistors do not, as yet, provide
a new physical theory in the usual sense that predictions -
different from those given by conventional procedures
are yet forthcoming. However, in order that the above
"physical idea" should have genuine physical content, it
must at some stage lead to a successful physical theory in
this sense - or else be consigned to the dustbin (1) of
scientific history!

TOP

2. SOME BACKGROUND IDEAS

Let me try to set in perspective my own state of mind
some twenty years ago, and to explain some of the
reasons why I felt that a different viewpoint with regard
to space-time structure, of the kind provided by twistor
theory, was needed. I had, for a good many years earlier,
been of the opinion that the space-time continuum picture
of reality would prove inadequate on some small scale. I
do not propose to discuss all the reasons for this - and in
any case it is a view that is hardly original with me.
Indeed, that the quantum nature of reality should affect
the very structure of space-time at some scale is now a
more-or-less accepted viewpoint among those physicists
who have examined this question in some depth (cf.
Schrödinger 1952, Wheeler 1962). But I think that most
physicists would believe that such effects should be
relevant only at the absurdly small quantum gravity scale
of 10-33 cm. (or smaller). My own attitude was somewhat



different from this. While it might be that only at 10-33

cm is it necessary to invoke a description of space-time
radically removed from that of a manifold, my view was
(and still is) that even at the much larger levels of
elementary particles, or perhaps atoms, where quantum
behaviour holds sway, the standard space-time
descriptions have ceased to be the most physically
appropriate ones, and some other picture of reality,
though at that level equivalent to the space-time one,
should prove to be the more fruitful. The very fact that
quantum behaviour is so hard to picture in the normal
way had seemed to me to argue strongly that the normal
space-time picture of things, even at that level, is
inappropriate physically. Indeed, there was nothing really
new in this either, inadequacy of space-time pictures
being very much a part of the standard quantum-
mechanical philosophy. However, I felt that one ought to
try to be more positive than this, in actually providing a
picture of objective reality, albeit one perhaps radically
different from the usual one.

Space-time descriptions of the normal kind can, of
course, be used at the atomic or particle level provided
that the quantum rules are correctly applied, and they
have implications that are extraordinarily accurate. Thus,
this new geometrical picture must, at that level, be
mathematically equivalent to the normal space-time
picture - in the sense that some kind of mathematical
transformation must exist between the two pictures.
However, the new description ought to incorporate
quantum behaviour more readily and naturally than the
old. Moreover, at the quantum gravity level of 10-33 cm,
or at the level of space-time singularities, it ought to
provide an essentially different and more accurate picture
of things.

TOP

3. MOTIVATION FROM SPIN-NETWORK

THEORY

These considerations were among those that motivated



the twistor approach, but the extent to which these
particular aims have been actually fulfilled remains
somewhat problematical as of now. Another initial
motivation whose present status is unclear is that from
spin network theory (originating in about 1958 and
published later: Penrose 1969b, 1972b; cf.Moussouris
1983). I had had the idea, from the time I was a Research
Fellow at Cambridge in the late 1950's, that the discrete
combinatorial rules obeyed by quantum-mechanical
(total) angular momentum could be used as a starting
point for budding up space time structure. Though
grounded in accepted quantum-mechanical principles,
spin-network theory provided a picture of space which is
entirely combinatorial in nature, so long as only a finite
number of particles (or "units") are involved. Only in the
limit, when this number becomes infinite, did a
continuous picture of space arise. (These ideas were
stimulated to a large extent by long discussions in
Cambridge with Dennis Sciama about Mach's principle:
"What happens to the concepts of space and direction if
all the matter in the universe is removed save a small
finite number of particles?") The spin-network scheme
worked well enough (and in some respects surprisingly
well) for a non-relativistic scheme in which directional
concepts - though not spatial displacements - arise. The
scheme was based on the representation theory of SO(3)
(or, more correctly, of SU(2)), and for a more complete
relativistic scheme, which included also spatial
displacements, it had seemed that the (restricted)
Poincaré group should replace SO(3) in the discussion. I
had been unable to overcome certain obstacles to this
(my former student John Moussouris having only quite
recently been able to deal promisingly with them, cf.
Moussouris 1983) and I had largely set the question of a
direct generalization of spin-network theory aside.

However, in a slightly indirect way, spin-network theory
did have a conceptual influence on the development of
twistors. Moreover, there is perhaps a little irony in a
certain "false start" which occurred in the winter of
1959/60, while I was at Princeton. I had felt that, in the
context of the development of a suitable relativistic spin-



network theory, it might prove fruitful to examine the
total momentum-angular momen tum structure of a
relativistic physical system in the cases where the 4-
momentum was a null vector, the view being that this
was more primitive than the standard timelike case. It
seems that I had effectively worked out what was needed,
and though the resulting objects are actually essentially
twistors, the proper realizations had not then come to me
and I did not develop the ideas further at the time. Only
towards about 1970, long after twistors had been
subsequently developed by quite another route, did I
realize that they had also this null momentum angular
momentum interpretation (cf. Penrose & MacCallum
1972).

As things have worked out so far, twistor theory has not
moved much in the "combinatorial" direction of spin-
networks. Instead, the (seemingly) very different
complex-analytic aspects of twistors have been the ones
that have proved to have greatest importance. The one
place where the possibility of a connection with spin-
network theory remains fairly strong is in twistor
diagram theory (Penrose & MacCallum 1972, Penrose
1975a, Sparling 1975, Hodges & Huggett 1980, Hodges
1983, 1984) and in a certain sense it has been SU(2,2)
rather than the Poincaré group which has so far replaced
SO(3) in the discussion. Much more work will be needed
to discern whether these relationships are more than
superficial.

TOP

4. HOLOMORPHICITY IN CLASSICAL

SPACE-TIME STRUCTURE

Other motivations than these played much more direct
roles in the development of twistor theory. Spin-networks
notwithstanding, the role of complex numbers in
quantum theory had long struck me as a quite crucial
one. If the "correct" geometry for the world is to be a
closely quantum one, then these same complex numbers
must be an essential part of this geometry. My training as
a (largely pure) mathematician had taught me something



of the power, subtlety and elegance of com plex
(holomorphic) geometry. It had seemed fitting that this
might be the geometry most basic to the structure of the
physical world. Yet in its most obvious manifestations,
physical geometry seems to be geometry over R, not C.

Nevertheless certain hints of a complex underlying
structure had been apparent to me for some time. The
fact that the null directions at a point have the
holomorphic structure of a Riemann sphere (cf. Penrose
1959) had long impressed me, this fact being closely
related to the complex nature of Lorentzian spinors. It
had, for a long time, seemed to me that spinors, and
particularly Lorentzian 2-spinors, are more fundamental
than Minkowskian world-vectors, and that the latter
should be regarded as derived from the former (2).
(Compare Rzewuski 1958). In addition to this, complex
numbers often have significant roles to play in solutions
of Einstein's vacuum equations. I had been particular ly
impressed by the nature of the plane-fronted waves that
Ivor had introduced me to (these being due originally to
Brinkmann 1923, but later rediscovered by Ivor
Robinson, cf Robinson 1956) and also of their later
generalizations to spherically fronted waves - due to
Robinson and Trautman (1962). For these waves the
behaviour along the null geodesics of propagation is
fixed and there is completely arbitrary varia tion from
wave-front to wave-front. But within each wave-front the
strength and polarization of the wave is governed by a
single arbitrary holomorphic function. What had struck
me was the direct appearance of a free holomorphic
function in the solution, the modulus and argument of
this function both playing a direct role (as strength and
polarization, respectively). This kind of feature had led
me to believe in some role for holomorphic structure
lying "behind the scenes" in solutions of Einstein's
(vacuum) equations.

TOP

5. THE POSITIVE-FREQUENCY

CONDITION



All this had concerned a possible role for "holomorphic
structure" governing space-time even at the classical
level. But I was searching for something in which
quantum mechanical ideas arose in a unified way in
relation to space-time geometry. It had been Ivor's- (and
my) good friend Engelbert Schücking who had impressed
upon me, at Syracuse N.Y. in the spring of 1961, the
fundamental importance of the positive frequency
condition in complex solutions of field equations, as the
hallmark of quantum field theory. He had also persuaded
me of the significance of conformal invariance, in
relation, most particularly, to the massless fields of each
spin (cf. Cunningham 1910, Bateman 1910, McLennan
1956; fields defined by Dirac 1936a). In my attempt to
come to terms with the positive-frequency concept,
especially in the context of general relativity where
Fourier analysis does not find a comfortable home, I had
been led to appreciate the value of formulations where
this concept is expressed in terms of analytic
continuation into complex regions of space-time. An
added bonus was that this type of formulation can readily
be manifestly conformally invariant, whereas the
momentum-space approach afforded by Fourier analysis
is particularly obscure in this respect.

TOP

6. MASSLESS FIELDS

I had been struck by what had tantalizingly seemed to be
possibly a similarity (or relationship) between the
analytic continuation properties needed for the positive-
frequency condition and a certain generalization, to
massless fields of arbitrary spin, of the Kirchhoff-
D'Adhemar integral expression for solving the wave
equation. I had found this generalization a short time
earlier, probably while at Princeton in 1960 (cf. Penrose
1980, Newman & Penrose 1968, Penrose & Rindler
1984) and its conformal invariance properties had, I
think, become apparent to me before the autumn of 1963.

I think that I had very much come around to the view that



massless particles and fields were to be regarded as more
fundamental than massive ones. My own reasons for
believing this were probably very much bound up with
the idea that 2-spinors should be regarded as more
fundamental than Minkowski world-vectors, since it is a
null vector (the 4-momentum of a massless particle),
rather than a timelike one, which arises naturally from a
single spin-vector of the 2-spinor formalism (cf. Penrose
& Rindler 1984). Moreover, I had been particularly
struck by the elegant properties of the massless free fields
of arbitrary spin (in Minkowski space M), the conformal.
invariance properties that Engelbert had drawn my
attention to, having contributed considerably to my
appreciation of this elegance.

It had also seemed to me that massive particles and fields
should probably be, in some sense, built up from
massless ones. The van der Waerden form of the Dirac
equation is rather suggestive of the mass playing a role as
a coupling between two Dirac-Weyl neutrino-type fields
(cf. Penrose 1968 - but this idea is undoubtedly not
original with me). In the summer of 1961 I had
generalized my Kirchhoff-D'Adhernar type expression to
handle the Dirac equation looked at in this way, and in
1962, the Maxwell-Dirac equations. The formulae were
all sums of integrals over spaces of zig-zag and forked
collections of null straight segments (Penrose & Rindler
1984). Thus, in this approach, all fields, whether massless
or massive, are viewed as propagating along fight cones,
and I liked to take the view that, in some sense, only the
null directions were really "there"!

In accordance with this, it had seemed to me that it was
important to search for some kind of background
formalism, in which massless fields subject-to the
positive-frequency condition of quantum field theory
would play some sort of primitive role.

Moreover, the geometric framework of such formalism
ought to be understood.

TOP



7. COMPACTIFIED MINKOWSKI SPACE

(COMPLEXIFIED)

I had already thoroughly explored the structure of
conformally compactified Minkowski space in the spring
of 1962 (cf. Penrose 1965, the much earlier work of
Bôcher 1914, Coxeter 1936, Kuiper 1949, Rudberg 1958
and, no doubt, Lie, Möbius, Cartan and others, having
been, in detail, unknown to me at the time, though certain
crucial ideas of "inversive geometry" had filtered through
to me) and I had become convinced that some form of
unified (but convoluted?) complex view point should
exist, whereby the analytic extensions needed for the
positive-frequency condition, the generalized Kirchhoff-
D'Adhemar formula, null lines, spinors and the
holomorphic structure of the space of null directions, the
appearance of holomorphic functions in solutions for
(linearized) gravity, the conformal invariance properties
and the compactification, would all be among its
manifestations. Apparently Engelbert Schücking had
himself been thinking along somewhat related lines since
he had repeatedly hinted to me, in the autumn of 1963 in
Austin Texas (where he, I, Roy Kerr, Ray Sachs, Jerry
Kristian and others had joined Alfred Schild's Relativity
Center) that some kind of alternative "complex view" of
space-time might prove fruitful.

Of course the possibility of simply describing things in
terms of complexified (compactified) Minkowski space
CM had occurred to me but - for reasons which are still
not entirely clear to me - I had (correctly) *rejected this
as insufficiently subtle for Nature. I think that one reason
for being unhappy with CM as playing a primary role in
physics was that the complexification is far too gross. As
many additional "unseen" dimension (namely four)
would need to be adjoined as are already directly
physically interpretable (3).

It had seemed to me that one needed to find some higher
dimensional analogue of the way that the real axis
divides the complex plane into two halves, functions
holomorphic in one half providing the positive frequency



functions on R and those holomorphic on the other half,
the negative frequency functions. Minkowski space M
forms a tiny 4-real-dimensional subspace of the 8-real-
dimensional manifold CM and therefore is, by itself,
incapable of dividing CM into two halves. I had been
aware of the two "tube" domains CM+ (the forward tube
- given by position vectors whose imaginary parts are
past-timelike) and CM- (the backward tube - imaginary
parts future-timelike) into which the positive frequency
and negative frequency fields, respectively, extend
holomorphically. But M is not a boundary of these
domains (in the ordinary sense) and there is also a large
open region in CM (imaginary part spacelike) lying
"between" CM+ and CM-. Fortunately I was not aware,
at the time, of the concept of Shilov boundary - the sense
in which M can be regarded as a kind of boundary of
each of CM+ and CM- - for if I had been, I might
perhaps have been tempted, after all, in that kind of
direction!

So I had this feeling that some sort of complex space was
needed, which somehow fell naturally into two halves,
the common boundary between these two halves being,
like the real axis of the complex plane, the more readily
physically identifiable "real" part of the space. In this
way, a good part of the holomorphic structure that
seemed already to be "visible" in relativistic physics
might be interpretable directly in terms of the induced
partial complex structure (or CR-structure, as I learned
later) on this common boundary. I had no idea what this
complex space was, nor, indeed, whether or not its very
existence might be merely a product of wild fantasy.

TOP

8. ROBINSON CONGRUENCES AND

TWISTORS

It was in such frame of mind that I recall being driven (4)
from San Antonio to Austin Texas (by Pista Oszváth)
following a weekend family outing with Rindlers and
Oszváths, the others following in a later car. I began



thinking about an ingenious construction that Ivor had,
some while earlier, described to me. He had been
endeavouring to find null (real) solutions of Maxwell's
free-space equations which were everywhere non-
singular and of finite total energy (5). His procedure was
to base such a solution on a certain twisting shear-free
congruence of rays (null straight lines) in M - now
referred to as a Robinson congruence. To construct Ivor's
congruence consider first the family (congruence) of rays
x meeting a given ray q. This is a special Robinson
congruence. The tangent directions to the various rays x
at the various points of each x provide a shear-free
geodetic field of null directions which is, however,
singular along q. Next perform an arbitrary complex
translation, or indeed any complex Poincaré
transformation, to this configuration (complexified). At
each point of M we now have a complex null direction.
But a complex null direction determines two real null
directions. In spinor terms (cf. Penrose & Rindler 1984),
if the complex null direction is that of aAbA', these two
real null directions are those of aAaA' and bAbA'. Select
(say) the former, consistently. We thus have another real
field of null directions on M which again turns out to be
geodetic and shear-free. But now this field is (in general)
everywhere non-singular (and twisting). The family of
rays whose tangent directions constitute this field is a
Robinson congruence.

It is reasonably clear from the construction that Robinson
congruences constitute a holomorphic family (i.e. the
manifold whose points are the different Robinson
congruences is naturally a complex manifold) essentially
because they arise from general holomorphic motions of
CM. Among these congruences are the special Robinson
congruences, each of which may be viewed as a way of
describing a particular ray q. The general Robinson
congruences describe, in a sense, "complexified" rays.

I had, somewhat earlier, worked out the geometry of a
general Robinson congruence: in each time-slice t=const.
of M the projections of the null directions into the slice
are the tangents to a twisting family of linked circles



(stereographically projected Clifford parallels on S4 - a
picture with which I was well familiar), and the
configuration moves with the speed of light in the
(negative) direction of the one straight line among the
circles. (See fig. 1).

FIGURE 1: A time-slice (t=0) of a Robinson congruence.

I decided that the time had come to count the number of
dimensions of the space R of Robinson congruences. I
was surprised to find, by examining the freedom involved
in fig. 1, that the number of real dimensions was only six
(so of only three complex dimensions) whereas the
special Robinson congruences, being determined by
single rays, had five real dimensions. The general
Robinson congruences must twist either right-handedly
or left-handedly, so R had two disconnected components
R

+ and R-, these having a common five-dimensional
boundary S representing the special Robinson
congruences. The complex 3-space of Robinson
congruences was indeed divided into two halves R+ and
R

- by S.

I had found my space! The points of S indeed had a very



direct and satisfyingly relevant physical interpretation as
"rays", i.e. as the classical paths of massless particles.
And the "complexification" of these rays led, as I had
decided that I required, to the adding merely of one extra
real dimension to S, yielding the complex 3-manifold PT

= S U R- U R+.

After returning home (in Austin) I was able to employ
the spinor techniques that had long been familiar to me
and it did not take me long to realize that PT was indeed
a complex projective 3-space (CP3) the lines within
which having CM as their Klein representation. This was
perhaps a somewhat roundabout route to the picture of
CM as a Klein quadric. I had been well aware for some
time that CM was indeed a non-singular complex 4-
quadric, and for considerably longer that non singular
complex 4-quadrics are always Klein representations of
lines in some CP3 . But without such a roundabout route,
would the "absurd" thought of combining these two ideas
ever have occurred to me before? (Curiously, the answer
to this question is "yes". Apparently I had done this about
nine months earlier, but the odd-looking reality
conditions on the Cayley-Plücker coordinates and lack of
physical motivation at that time had put me off. So I
completely forgot about it until going though my
notebooks again not many days ago!)

The various physical motivations that I had collected
together were, indeed, crucial for me, in order that the
necessary ingredients of this strange idea should come to
me and, more importantly, take hold.

TOP

9. THE KERR THEOREM

It is one of those odd coincidences, which seem to
happen more frequently than they should, that a day or so
later I overheard Roy Kerr (who had an office on one
side of mine, Engelbert Schücking having had the office



on the other side) explaining his method of obtaining all
(analytic) shear-free geodetic null congruences in M to
Ray Sachs. I had him explain it to me and was amazed to
find that the coordinates that came up naturally in his
construction were precisely those "twistor coordinates"
which I had just found as the projective coordinates for
PT (projective twistor space). So almost at once a new
role for my complex space was at hand: the general (real-
analytic) shear-free ray congruence in M is provided by
the intersection of PN (= S, the space of rays in M) with
a general complex-analytic (holomorphic) 2-surface X in
PT (see Penrose 1967).

Indeed, this had further ramifications. It was not long
before I realized that another of Ivor's results had an
immediate interpretation in terms of PT. He had shown
that the general (real-analytic) null solution of Maxwell's
equations could be described in terms of a general (analy
tic) shear-free geodetic congruence, with just the
additional information of one free holomorphic function
F, of two complex variables. In effect, the variables
labelled the rays of the congruence, and in PT the
function F turned out to be holomorphic on X. So one
was presented with a very neat "holomorphic"
description of null Maxwell fields in PT.

TOP

10. GENERAL MASSLESS FIELDS IN M

This elegant picture generalized in an obvious way to
null massless fields of higher (integral or half-integral)
spin and, in particular, as Ivor noted, to linearized
Einstein fields. So at least in the linear limit, my
motivation from the "holomorphic" structure of plane-
fronted and spherically fronted waves (both of which are
indeed null) was satisfied. But I needed more than this.
My motivations required than general solutions of the
massless free field equations be simply representable in
terms of twistors.

I tried many formulations, but these, being effectively
only straight forward transcriptions of the space-time



fields and equations, lacked sufficient elegance and
naturality. Functions of Cayley-Plücker coordinates
presented some awkwardness because of the identical
relations they satisfy - though I found a reasonable
enough formulation in these terms. The alternative
seemed to be two-point functions in PT and this, also,
seemed not quite what was needed. It had occurred to me
that the generalized Kirchhoff-D'Adhemar expression
somewhat resembled a Cauchy integral formula, and I
had it in mind that, in some sense, the massless free field
equations ought to be the Cauchy-Riemann equations in
disguise. "Would it not be most fitting" I had thought to
myself "if a massless field could be described by a single
free holomorphic function f on PT?" The freedom in the
solutions that would occur should be just right. PT (for
holomorpbic information) counts as three dimensional,
which is the same dimensionality as an initial data
surface in M, from which fields would uniquely
propagate. The hope, then, was that the field equations
should simply evaporate!

Perhaps this was just a pipe-dream - but in due course the
thought occurred to me (not until 1966, in London,
though!) that, in the null case, Roy Kerr's surface X in
PT should be treated as a pole of the putative "f", where
Ivor's holomorphic function F would be its residue, the
field being obtained by contour integration of f. (It was
the presence of certain singularities in the field, and the
fact that these would duly result from pinching of such
contours - owing to a tangency with X - which suggested
this.) The formula (Penrose 1968, 1969a) then dropped
out. It was many years later that Ivor (and Lane
Hughston) pointed out to me that Bateman had, in effect,
found essentially the same formula over sixty years
earlier! My own formulation did, however, have the
advantage that geometric and conformal transformation
properties of the field were made manifest, and also
connections with the (above) Robinson-Kerr theorem,
etc., were exhibited.

TOP

11. COHOMOLOGY



But what about the positive-frequency condition? I had
been motivated by the hope that positive frequency fields
were to be associa ted with holomorphic extension into
PT+ (=R+, the space of right handed Robinson
congruences), and negative frequency fields, extension
into PT- (=R-, the space of the left-handed Robinson
congruences). The condition turned out, instead, to be
that f had separated singularity sets in PT+, or PT-,
according as the resulting massless field was to be of
positive or negative frequency. What had happened to my
"crucial" motivation that PT needed to be naturally
divided into two halves by PN (=S)?

The answer had to wait ten years (until the spring of
1976), after 1 had acquired some appropriate re-
education from Michael Atiyah! It turned out that f was
to be interpreted as a representative cocycle for an
element of a holornorphic (first) sheaf cohornology
group. I call such an element a holomorphic l-function.
Then, the 1-function does indeed extend globally to PT+

or PT- according as the resulting massless field is of
positive or negative frequency.

I have never been able to decide whether I was actually
"insightful" here or just "lucky"! I had come to feel that
there perhaps was something a little phoney about my
"crucial" motivation, and had real ized that neither PT+

nor PT- could globally admit non-trivial ordinary
holomorphic functions (0-functions). I was unaware (or
had forgotten what little I knew) of holomorphic sheaf
cohomology and had learned to live with the concept of
"separated singularities". But then, after thirteen years
this motivation was finally satisfied after all, in a quite
unexpected way!

TOP

12. SPACE-TIME CURVATURE

I suppose that it was the many attractive properties of



twistor geometry which mainly held me to that picture
for so long. Even so, I recall having had, back in 1964,
some considerable difficulty in persuading my
colleagues, (Engelberg Schücking apart) of the
significance or possible fruitfulness of this odd
viewpoint, regarding space-time, that I was attempting to
put forward. I expect that part of the reason for this was
that my colleagues were basically all general-relativists
(though, no doubt, I should have perceived even less
enthusiasm had they been particle physicists or quantum
field theorists!), my ideas seeming to be completely tied
to the budding up of flat (or at least conformally flat)
space-time. Indeed, looking back on all this I find it
difficult to see why I was not myself more disturbed by
this lack of curvature than I seem to have been. For a
good many years earlier I had been (and remain to this
day) firmly convinced of the (conformal) curvature of
physical space-time. I think that I had been able to keep
my worries at bay, at first, by the thought that such
twistor ideas referred only to the quantum level of things,
and that at this level space-time could be treated as flat,
for the most part, the curvature perhaps arising only in
discrete "quantized" lumps. I had been somewhat
influenced by some of Tullio Regge's ideas for budding
effectively, curved spaces in polyhedral fashion out of
flat pieces (Regge 1961, Penrose 1972a) and had
imagined that twistor ideas might be carried over to such
situations in a piecewise manner. Somewhat later, while
at Cornell in 1967, I was actually able to follow up this
kind of idea in a concrete way. By examining plane-
fronted, and later spherically fronted, gravitational waves
with delta-function curvature - so the space-time was flat
on either side of the wave - it proved to be possible to
provide a twistor description involving a "shift" in the
structure of the twistor space (Penrose 1968, Penrose &
MacCallum 1972; cf. Bondi, Pirani & Robinson 1959).
The very holomorphic functions (referred to above)
which describe the structure of the curvature along the
wave-front, proved to have significance here and had
valuable implications in later developments in twistor
theory.



In more recent years I have become less happy about the
above point of view whereby space-time curvature arises
in some sort of "quantized" discrete bits. Fortunately
some newer developments, not unrelated to those
described above, have arisen. Rather than "piecing
together" the space-time from separate flat pieces, it is
the twistor space which must, in an appropriate sense, be
so pieced together. The local holomorphic structure of
twistor space allows just the right sort of flexibility to
enable such piecings to encode, in the global structure of
the resulting twistor space, the appropriate (local)
curvature information for the resulting space-time
(Penrose 1976, Penrose & Ward 1980; an important input
had been the H-space ideas of Newman 1976). This
curious encoding of local space-time information in
global twistor structure has emerged as a characteristic
feature of the representation of physical fields in twistor
terms. Indeed, this is already a feature of the
holomorphic 1-function description of massless linear
fields in CM. And the transition functions for the above
piecing together of twistor space portions provide, in
effect, a kind of non-linear 1-function.

TOP

13. SELF-DUAL AND ANTI-SELF-DUAL

FIELDS

In fact the above type of construction has been successful
in producing the general anti-self-dual solution of
Einstein's vacuum equations (Penrose 1976). A
corresponding subsequent construction due to Richard
Ward (1977) provided the general anti-self-dual solution
of the Yang-Mills equations. More accurately, these are
non-linear version not of my original 1-functions, but of
a slight modification suggested (in effect in 1973) by
Lane Hughston. This produced anti-self-dual linear fields
(with standard twistor conventions) whereas my original
formula tion produced self-dual fields. With the positive
frequency condition these are the negative- and positive-
helicity fields, respectively (cf. Pen rose & MacCallum
1972).



For many years now I have been struggling to find a non-
linear version of my original 1-function description in the
gravitational case (the "googly graviton" - which, as
cricketers know, spins right handedly though the bowling
action suggests the reverse). I believe that it is likely a
full solution is close - though there remains the
possibility that all will collapse. The hope is that
combining these "googly" ideas with the earlier ("leg-
break") ones will eventually result in a complete
formulation of the Einstein equations. Indeed, I feel that
such grandiose objectives must necessarily be achieved if
twistor theory is ultimately to realise its aims whereby
space-time concepts can all be supplanted by twistor-
holomorphic ones. We live, as before, in hope.

The idea that massless fields can usefully be split into
their self-dual and anti-self-dual parts is clearly a crucial
one in all this. Where first did I hear of this concept? I
think that it was on the steps of some budding in
Amsterdam, at the International Congress of
Mathematicians in 1954. Someone was explaining to me,
with characteristic enthusiasm and flair, what had seemed
to me at the time to be a very odd idea indeed: that one
should add the Maxwell field tensor to i times its dual!
That someone was Ivor Robinson(6).

TOP

14. OTHER DEVELOPMENTS

It is hard for me to assess the success, or lack of it, that
twistor theory has had to date. Much has happened in
twenty years, though it has seemed for most of the time
that progress has been grindingly slow. The mathematics
has turned out to be much more difficult than I had
guessed, and many of the necessary ideas, more
sophisticated. That is my excuse for the slowness. But
the programme has not as a whole been turned back, and
that is encouraging. Some parts of the programme,
though initially promising, have not moved a great deal
in recent years, perhaps because of a lack of some
essential new insight. (The particle programme, cf
Penrose 1975b, Hughston 1979, Perjés 1975, 1979,



Perjés & Sparling 1979 seems to be one of these.) Others
have begun to move again only very recently - and here I
refer particularly to the theory of twistor diagrams, into
which some very promising looking new ideas have been
injected by Andrew Hodges (1985) within the last year or
so. It will be exciting to see where these lead.

There have also been some unexpectedly encouraging
developments which I might refer to as "spin-off" rather
than part of what I had thought of as the main objectives.
I would include the solution of the Euclidean Yang-Mills
"instanton" problem (Atiyah, Hitchin, Drinfeld & Manin
1978) and the construction of positive definite Ricci-flat
self-dual 4-manifolds (cf. Hitchin 1979) among these;
also "Killing spinors" (cf Walker & Penrose 1970), non-
realizable CR-structures (cf. Penrose 1982a) and my own
construction of a "quasi-local mass and angular
momentum" complex, which provides a twistor-
motivated definition of these quantities as surrounded by
general spacelike topological 2-spheres in arbitrary
space-times (Penrose 1982b cf. also Tod 1983, Shaw
1983, Penrose & Rindler 1985). The status of this
definition is not yet completely clear, but at worst it
seems to be a considerable improvement on all earlier
suggestions, and some results provide good cause to be
optimistic.

Whatever the future provides for twistor theory, it should
be interesting.

TOP

15. NOTES AND REFERENCES

(1) Perhaps this seems unduly harsh. An idea -
Hamiltonian theory, for example - may have immense
utility and lead to new insights without, in this sense,
having any new physical content. Thus in this sense it
was, I suppose, the advent of quantum theory which
saved the Hamiltonian viewpoint from the dustbin!

(2) It is not appropriate for me to dwell here at length on
all the numerous other motivations, some vague and



some fairly clear-cut, which influenced the direction of
the development of twistors. Among these was a desire
for a formalism tailored to the four-dimensional (+---)
structure of our space-time, rather than for something not
so specific. The holomorphic nature of the space of null
directions, in our particular dimension and signature,
seemed to he a highly suggestive clue. Other motivations
were provided by the experimental facts of left-right
asymmetry and non-locality (cf. Lee & Yang 1956;
Bohm 1951, Aharonov & Bohm 1959). Twistors have
emerged as very compatible with these objectives.

(3) Perhaps in the present climate of eleven-dimensional
generalized Kaluza-Kiein theories this objection would
carry little weight with most people. However, to me it
was, and still is, a fundamental drawback.

(4) Apparently on 1, December 1963 - for which date I
thank Zsuzsi Ozsvath.

(5) He had not quite succeeded in satisfying this final
requirement, but a slight modification of his solution
(found a few months later by twistor-type methods, cf.
Penrose 1965, provided what he had been seeking. We
now refer to such solutions as elementary states (see
Penrose 1975a) and they have importance in twistor
theory.

(6) He was probably also explaining to me about self-
dual null bivectors, but their relationship to spinors
seems to have been something I learnt later!
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