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organizations, industries, and society.

Collectively for commercial, social, and

national interests, as well as all

corresponding stakeholders, it is vital to

know, apply, adapt, and even critique an

inclusive, evidence-based approach to

conceptualize, assess risks, design,

develop, and deploy an AI solution. This

article presents the CDAC AI life cycle,

from conception to production of AI.
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THE BIGGER PICTURE Artificial intelligence is enabling new opportunities for value creation in organiza-
tions, industries, communities, and overall society. However, exponential commercial investments in the
private sector should not overlook the public interest and social value of this emerging technology power-
house. The world’s superpowers are also competing for leadership in AI and the contentious pursuit of arti-
ficial general intelligence. Collectively for commercial, social, and national interests, as well as internal and
external stakeholders, it is vital to know, observe, understand, apply, adapt, and even critique an inclusive,
evidence-based approach to conceptualize, assess risks, design, develop, and deploy an AI solution. This
article presents the CDACAI life cycle, a comprehensive approach that addresses and accounts for all chal-
lenges from conception to production of AI.

Mainstream: Data science output is well understood
and (nearly) universally adopted
SUMMARY
This paper presents the ‘‘CDAC AI life cycle,’’ a comprehensive life cycle for the design, development, and
deployment of artificial intelligence (AI) systems and solutions. It addresses the void of a practical and inclu-
sive approach that spans beyond the technical constructs to also focus on the challenges of risk analysis of
AI adoption, transferability of prebuilt models, increasing importance of ethics and governance, and the
composition, skills, and knowledge of an AI team required for successful completion. The life cycle is pre-
sented as the progression of an AI solution through its distinct phases—design, develop, and deploy—
and 19 constituent stages from conception to production as applicable to any AI initiative. This life cycle
addresses several critical gaps in the literature where related work on approaches and methodologies are
adapted and not designed specifically for AI. A technical and organizational taxonomy that synthesizes
the functional value of AI is a further contribution of this article.
INTRODUCTION

Despite the advances, existing work on methodologies and life

cycles for artificial intelligence (AI) initiatives do not provide com-

plete coverage from conception to production and are limited in

the level of technical detail, workforce requirement, and admin-

istrative responsibilities of individual phases. Partridge was one

of the first researchers to propose an AI methodology that inter-

twines the capabilities of software engineering solutions and the

expectations of AI models.1 Drawing on the distinction between

AI problems and conventional software engineering, he posited

that AI constructs an ‘‘adequate approximation,’’ in contrast to

a complete solution in standard software engineering, through
This is an open access article und
the discovery and elimination of observed behavioral inade-

quacies. Depicting the resurgence of AI and machine learning

as the more practice-oriented disciplines of data mining and

computational intelligence, the Cross-Industry Standard Pro-

cess for Data Mining (CRISP-DM)2 gained wide recognition in

academia and industry as a de facto standard for the use of AI

in decision-making and practical problem solving. CRISP-DM

consists of six phases: business understanding, data under-

standing, data preparation, modeling, evaluation, and deploy-

ment. Drawing on the success of CRISP-DM, several variations,

such as automation focused,3 geo-located teams,4 contextual

diversity,5 and knowledge repositories,6 as well as adaptations

of CRISP-DM for emerging disciplines, such as big data,7
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cybersecurity,8 and fintech,9 have been proposed. More

recently, when the terminology transitioned from data mining

to ‘‘data science’’ and ‘‘data analytics,’’ the Team Data Science

Process (TDSP)10 and the Microsoft best practices approach11

have been popularized in place of CRISP-DM. TDSP is pre-

sented as a life cycle that can be used to structure a data science

project that utilizes machine learning algorithms or predictive

analytics techniques for solution development. TDSP is also in-

terpreted as a cross between the SCRUM framework and

CRISP-DM. The Microsoft best practices approach summarizes

three key findings as best practices for AI projects. They are the

importance of an accurate data discovery andmanagement pro-

cess, constraints on customization and re-use for different use

cases, and the lack of modularity of AI components, which ne-

cessitates the entire team to work closely on all modules.

RESULTS

Drawing on this context of life cycles and methodologies, we

have identified that CRISP-DM,2 TDSP,10 and the Microsoft

best practices model11 are the industry and academic base-

lines that are being ‘‘adapted’’ for contemporary AI projects.

This in itself demonstrates the need for a life cycle approach

that has been conceived exclusively to address the challenges

of designing, developing, deploying, and managing an AI solu-

tion. The initial distinction followed by the consolidation of data,

algorithms, and systems when building an AI solution, as well

as a sufficiently technical level of detail of each step of an

approach, have not been deliberated in related work. Although

AI solutions are a team effort, the responsibilities and the

expertise required of these team members have not been arti-

culated. The currency of pre-trained models, third-party code

repositories, AI ethics, and governance frameworks have not

been outlined as part of a development life cycle or methodol-

ogy. Extending from ethics and governance, an overarching

systems view of AI adoption that identifies and assesses pre-

liminary risks across the design, development, and deployment

stages, as well as each individual phase, is a further short-

coming. Despite these deficiencies and the absence of a unify-

ing life cycle, the impact, influence, and thereby importance of

AI across national, social, economical, and personal interests

continues to grow exponentially.

In this paper, we address these drawbacks by presenting and

articulating (1) the preliminary risk assessment for identifying and

evaluating organizational and system level risks in the adoption

of AI and (2) the CDAC AI life cycle that characterizes the design,

development, and deployment of AI systems and solutions. The

CDAC AI life cycle further enables continuous, multi-granular

expansion of the overarching preliminary risk assessment

through its constituent stages and phases. CDAC is the acronym

of our research center, Center for Data Analytics and Cognition,

as this life cycle is informed by our experience and expertise at

CDAC of more than a decade of AI, across academic research,

technology development, industry engagement, postgraduate

teaching, doctoral supervision, and organizational consultancy.

Some highlights from our recent work are Bunji, an empathic

chatbot for mental health support;12 solar nowcasting for optimal

renewable energy generation;13 robust multi-step predictor for

energy markets;14 unsupervised learning with vector symbolic
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architectures;15 emotions of COVID-19 from self-reported infor-

mation;16 machine learning for online cancer support;17,18 self-

building AI for smart cities;19 intelligent driver behavior change

detection;20 an incremental learning platform for smart traffic

management;21 and a reference architecture for industrial appli-

cations of AI.22 We anticipate that our contribution will create

awareness, instill knowledge, and stimulate discussion and

debate that will inform research, applications, and policy devel-

opments of AI for humanity.

Preliminary risk assessment
The increasing sophistication and embedding of AI in all forms of

digitalized systems and services, including organizational, social,

economical, and governmental, necessitates an overarching risk

assessment before its adoption. Even in settings where the

selected AI capability has matured and established in other sec-

tors, it still needs to be socialized and assessed for the local

setting and its environment, focusing on people, processes, plat-

forms, and relevant external factors. This risk assessment is

distinguished from the risk review and analysis conducted within

the life cycle, specifically ‘‘stage 2—review data and AI ethics’’

and ‘‘stage 15—AI model deployment and risk assessment,’’

because here, the scope is at the systems level, focusing on the

risks associatedwith the key aspects of privacy, cybersecurity (in-

formation and technology security), trust, explainability, robust-

ness, usability, and social implications of these aspects.

The evaluation and defense against vulnerabilities of AI applica-

tions have been deliberated in recent work,23–25 in the same

context of addressing high-level risk factors from conception to

production and across the entire life cycle. A general synopsis

of each aspect is presented below. However, this list is not

exhaustive, as there can be other risk factors at the systems level

that are specific to the domain of application, for instance, risk fac-

tors associated with formal methods software engineering of

mission critical systems in the energy sector or national security,

and regulatory requirements of software-based medical devices

in the healthcare domain.

Privacy. The risk assessment of privacy should consider (1) the

impact of AI adoption on the privacy of all systems and data

accumulated in these systems; (2) the levels of privacy to be

administered on each system, data point, and data linkage dur-

ing AI adoption and development; (3) the impact of AI capabilities

and diverse types of machine learning, such as unsupervised,

transfer, and federated learning on privacy preservation; (4) pri-

vacy of the storage and staging of data during AI model design

and development; and (5) privacy when AI models are being

used in organizational processes and decision making.

Cybersecurity. The risk of cybersecurity should be assessed in

equal importance to the impact it can have on the foundational

and source systems that AI leverages for input and output. Cyber

threats and attacks can impact all 19 stages of the AI life cycle;

thus, the same rigorous risk assessment that applies to organi-

zational assets of information and technology must be extended

to the AI project and its outcomes, across the three phases of

design, development, and deployment. A summary comparison

of information security risk analysis methods26 and more recent

resource-based approaches for cybersecurity risk manage-

ment27 (in contrast to the conventional compliance-based

methods) are enabling this expansion from ICT systems view
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toward the stages of the AI life cycle and the outcomes of

each stage.

Trust, interpretability, explainability, and robustness. These as-

pects are rigorously assessed within AI ethics frameworks.

Ethics frameworks are discussed in ‘‘stage 2—review data and

AI ethics,’’ specifically the Ethics Guidelines published by the

European Union’s High-Level Expert Group, which is entitled

‘‘Trustworthy AI,’’ but also deliberates traceability, interpret-

ability, explainability, and robustness factors. In contrast to

‘‘stage 2—review data and AI ethics,’’ the scope of this risk

assessment should be at systems level and not at the level of

AI models. For instance, with interpretability the main consider-

ations include integrating interpretability into the design phase

for applications that require intrinsically interpretable models

(contrast this with explainable AI techniques that can only be

applied after the AI model is fully developed), the levels of inter-

pretable detail required, and the computational performance of

interpretation from real-time to batch mode. Similarly, robust-

ness entails the need for consistent and rigorous practice across

data collection (independent and identically distributed vari-

ables), augmentation of anomalies and data perturbations, the

learning process, use of pre-trained models, evaluation metrics,

and the uptake of AI solutions. Robustness in model develop-

ment, evaluation, and deployment phases is more widely prac-

ticed, and we discuss these in the corresponding stages of the

life cycle. Trust also spans across data collection (trustworthy

source systems and external data feeds), data augmentation

(trustworthy techniques for addressing data imbalance issues),

and the training, skills, and organizational change factors to

ensure that the uptake of AI is sustainable.

Usability. The risk assessment of usability should focus on the

skills and capabilities of the employees in the organization, as

well as how receptive they will be toward the introduction of AI

models into organizational systems and processes. If the uptake

is low, then the risk of loss is greater and should be evaluated in

terms of other benefits of AI adoption. Upgrades and updates to

existing systems for handling the scale and scope of data and

computation required by AI models is another consideration

that needs to be assessed before the initiation of an AI project.

The integrity of AI is assured through the re-implementation of al-

gorithms and models; however, this must be offset against risks

to usability due to revised model parameters and unfamiliar

interfaces.

Social implications. All risk factors must be assessed in terms

of the end-users (or consumers) of the AI models, as well as the

actions and decisions prescribed by the AI. Both positive and

negative impact of the AI solution on all sociodemographic seg-

ments of society, from the affluent to themarginalized and disad-

vantaged, should be evaluated and documented as part of this

preliminary risk assessment.

Although termed ‘‘preliminary,’’ the same risks can be as-

sessed during the application of the life cycle where each risk

factor is reviewed and reassessed within the context of the

stages of the life cycle. This review can be conducted in the

form of a risk matrix28 that articulates each risk factor in terms

of the harm severity and probability for each of the 19 stages.

The completeness of identifying, analyzing, and reviewing risk

factors at the preliminary (or abstract) level of AI adoption and

the intricate level of each stage of the AI life cycle, ensures that
the AI initiative is fit for purpose, sustainable, and also forms a

blueprint for future AI endeavors.

The CDAC AI life cycle
Figure 1 illustrates the complete AI life cycle, where the shaded

parallelograms represent the three phases: (1) design, (2)

develop, and (3) deploy. Each phase requires specific human

expertise, which are also depicted in the same figure, as design

(AI/data scientist), develop (AI/ML scientist), and deploy (AI/ML

engineer). The AI/data scientist tasked with the design phase is

typically a senior role with several years of experience. They

should be able to formulate the problem and then conceptualize

a solution drawing on existing literature and their past experi-

ences of working across diverse AI projects. They should also

be able to identify the representative data, required data, and

available data, by working through the first five stages of the

life cycle, when they hand over a prescriptive problem formula-

tion, solution description, and representative data to the AI/ML

scientist responsible for the develop phase. This AI/ML scientist

is typically a junior role that is more technical and less concep-

tual, with in-depth technical expertise in AI algorithms, model

development, and evaluation. They will work through the next

seven stages to transform the problem formulation into a proto-

typical AI model. Finally, in the deploy phase, an AI/ML engineer

further transforms this prototypical AI model into a deployed ser-

vice or solution that is standardized for access by all stake-

holders and end-users. The AI/ML engineer is typically from

the DevOps domain. DevOps being a mature practice in soft-

ware development and IT operations, the skills required for this

phase are common, but they need to be consolidated with

knowledge and experience in the nuances of deploying AI

models. The AI/ML engineer will work through the final seven

stages to deliver an AI solution that is part of a larger process

and can be automatically monitored across several metrics for

quality and accuracy. Depending on the size, scale, and scope

of the project, multiples of these rolesmay need to be contracted

or recruited. In conjunction with these primary technical roles, an

ethicist (or ethics committee), a project manager, a pool of

domain experts, a participatory design group, a pilot study

cohort, legal counsel on IP law, and a steering/advisory commit-

tee with full oversight are secondary enabling roles that add

value, inclusivity, and quality to the AI endeavor. In the following

subsections, the 19 stages of the life cycle are described. The

execution of all 19 stages depends on the type of project, project

timelines, organizational data maturity, and AI expertise. Even

where a subset of the stages are undertaken, it is imperative

that all stages are given due consideration and formally docu-

mented for successful completion of an AI project.

Identify and formulate the problem

The life cycle begins with the identification, elucidation, and

formulation of the problem, in terms of its typology, the environ-

ment (or setting), the expected objective, people (or stake-

holders), systems, processes, and data. Typology can be

broadly classified into strategic, tactical, operational, and

research. The strategic typology takes a high-level transforma-

tive approach of leveraging AI to address a number of challenges

in a specific topic, domain, or area of interest, such as ‘‘How can

AI be used to address the challenges impacting healthcare ser-

vices during a global pandemic?’’ or ‘‘How can AI be leveraged in
Patterns 3, 100489, June 10, 2022 3



Figure 1. The CDAC AI life cycle: Three phases of (1) design, (2) develop, and (3) deploy and 19 stages
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the energy sector to achieve net zero carbon emissions?’’ The

tactical typology is more goal oriented and presents itself as

an advancement over the current manual, mechanical, technical,

or computational approach to solving the problem or addressing

challenges associated with the problem, such that AI augments

productivity or quality of outputs. For instance, ‘‘using AI to in-

crease market share or become market competitive’’ or

‘‘reducing the turnaround time of an assembly line by a factor

of n.’’ Thirdly, an operational typology signifies the direct appli-

cation, implementation, or replication of an AI capability that

has already been validated in a same/similar problem, setting,

or domain. Examples of an operational typology are, ‘‘using AI

to forecast weekly hospitalizations during a disease outbreak’’

and ‘‘using AI to profile energy consumers and develop a mi-

cro-segmentation strategy for usage optimization.’’ Finally, the

research typology focuses on algorithmic novelty that surpasses

the current state-of-the-art in AI for solving a collection of similar

or related problems, such as ‘‘using transformers for increased
4 Patterns 3, 100489, June 10, 2022
accuracy of predictions’’ or ‘‘using swarm intelligence to build

digital twins.’’ To accommodate and explore this diversity of ty-

pology, organizations and team leaders must consult or collab-

orate with external parties with AI expertise. These discussions

must be driven by a shared focus and common vocabulary

that enables unbiased evaluation of feasibility, value, and

impact. Alongside the next phase, these discussions should

also include, alternate solutions that are model-based or non-

intelligent but highly computational, budgets, planning, risk as-

sessments, and downstream implications, such as ethics and

societal considerations. The setting of the problem formulation

influences the objective, such as commercial settings where

the focus is monetary, increased revenue, reduced cost, or

increased customer value. In an industrial setting, the focus

would be on productivity, process efficiencies, or process trans-

formation, and, in a research setting, the objective should be

closely aligned to solving or enabling solutions to the research

question through one or more primary AI capabilities: prediction,
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classification, association, or optimization. The current manual

or systems-driven solution to the problem provides the context

for its formulation, considering sequential and parallel tasks, pri-

mary and alternate flows of information, and rules and policies

within the organization. Finally, the ‘‘digital representations’’ of

the problem formulation must be identified in terms of data

models, data repositories, data owners/stewards, source sys-

tems, data governance, ethics frameworks, and metadata.

Review data and AI ethics

In this stage, the problem formulation, selected approach, po-

tential solution, and required datasets must be cross-examined

and validated for potential security risks (linking back to the pre-

liminary risk assessment), and ethical and legal conformity.

Given that the AI team possesses a highly technical skill set,

this review of ethics must be conducted by professional ethicists

with the required background in both theory and application. It is

recommended to start with a broad-based ethics framework that

narrows down to the granular level of the problem setting, algo-

rithmic justice (across gender, ethnicity, sexuality, and other mi-

norities),29,30 data representations, and stakeholder interests. In

scrutinizing the societal implications of an AI project, it is further

recommended that a participatory design approach is adopted

to engage representative individuals and communities that are

likely to be impacted by the AI model and its decision out-

comes.31,32 As of 2019, 84 AI ethics frameworks have been pro-

posed,33 with increasing usage and prominence toward the IEEE

Global Initiative on Ethics AlignedDesign34 and the EthicsGuide-

lines published by the European Union’s High-Level Expert

Group on AI.35 The latter has been further expanded into a regu-

lation for selected applications of AI.36 This diversity of frame-

works and abundance of vague principles and best practices

is a further complexity that needs to be addressed by the ethi-

cists and the AI experts together in finding the optimal balance

of AI effectiveness and ethical practice. Projects classified in

the operational typology where the AI capability has already

been implemented elsewhere may not require an ethicist input

as this information is already formally documented and widely

accepted, such as credit scoring and its derivatives, which is

one of the first applications of AI that has now reached peak

maturity.

Review technical literature on AI algorithms,

applications, and pre-trained models

The problem formulation provides necessary context to explore

and review published research, deployed systems, solutions,

and libraries that have been applied in similar settings. Some

of the more frequently used information sources, such as search

engines for research articles (e.g., Google Scholar), publishing

platforms (e.g., Medium), Q&A sites (e.g., Stack Exchange),

code repositories (e.g., GitHub), cloud platform providers (e.g.,

Azure, AWS, GCP), and social media (e.g., Twitter). The types

of resources are expansive and include literature reviews, com-

mentaries, letters, articles, op-ed, case studies, best practices,

product/tool documentation, tutorials, demonstrations, and

API documentation, as well as responses, upvotes, and likes

on Q&A forums. Furthermore, recent developments in open ac-

cess pre-trained AI models, such as AlexNet,37 ResNet,38

BERT,39 and GPT,40 should be studied to understand and

explore how they can be re-purposed, retrained, or fine-tuned,

instead of building a new AI model from scratch.
When deciding to use pre-trained models, several other fac-

tors need to be considered. They are, licensing, model fit for pur-

pose, disparity between pre-trained setting and application

setting, and recent developments or data excluded by the

model. On matters of licensing, most pre-trained models are

open source or public domain to encourage further research

and application that validate or advance the model; however,

the underlying training data may carry a different license alto-

gether or be limited in use for research endeavors, prohibiting

commercial applications.41,42 In such instances, legal counsel

must be sought to ensure that consent, permission, or con-

straints are implemented and adhered to during the course of

the project.

Data preparation

Most often, the data sources identified during problem formula-

tion have been accumulated organically, do not conform to a uni-

fied structure, and exist in silos. For example, patient data (or

even customer data) are generally distributed across numerous

dimensions, such as demographic, behavioral, psychometric,

transactions, consultations, or feedback, and these dimensions

are accumulated in distinct source systems, at varied times, by

different individuals.

It is typically not recommended to use siloed data for building

AI models, as this creates an inherent data bias that will propa-

gate through to the AI model, its outcomes, and its generaliz-

ability to new data. The recommended approach is to design

and develop a unified data repository, such as a data ware-

house,43,44 data lake,45 or data lakehouse,46,47 that centralizes

data access, ownership, stewardship, metadata, data ethics,

governance, and regulations, before the development of AI

models.

However, there can be well-defined problems where siloed

data with a narrow focus are necessary to ensure model effec-

tiveness or to satisfy data privacy and confidentiality constraints.

Also, not every AI project has the timeline or budget for a unified

data structure, which makes this an acceptable risk that must be

clearly specified and documented. A more recent solution to the

siloed data challenges is to use AI itself to develop a meta-layer

or representation of all the data sources, structured and unstruc-

tured, using techniques such as federated learning,48,49 repre-

sentation learning,50,51 and latent learning.52,53

Data privacy, confidentiality, and integrity are related to data

preparation, but not directly applicable to the AI life cycle. Also

discussed as the cybersecurity triad, in terms of data, these

topics are typically regulated by law. The General Data Protec-

tion Regulation is the gold standard across the world for data

protection and regulation.54 Furthermore, datasets and sources

must be assessed for security risks, such as poisoning attacks

and backdoor attacks.

Data exploration

This stage focuses on the actual data, in contrast to the previous

stage where the focus is the structure of data. The stage typically

begins with a comparison with industry benchmarks and algo-

rithmic baselines reported in the literature, where similar prob-

lems have been addressed. The data structure generated in

the preparation phase is populated with actual data, using tech-

niques such as data visualization, correlation analysis, aligning

data granularity, checking relationships between data points

and attributes, handling outliers, and enforcing data quality
Patterns 3, 100489, June 10, 2022 5
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checks. Data visualization entails pairwise plots, projections of

the entire dataset, and building interactive dashboards, all of

which enable the AI team to scrutinize the dataset for accuracy,

relevance, quality, and volume. Multicollinearity and high-corre-

lated attributes are usually removed at this stage, but occasion-

ally they are labeled and preserved for further exploration

in subsequent stages. The alignment of granularity ensures

that all records in the dataset are represented at the same level

of utility or metric. An example of utility is when the transaction

date and time are both captured instead of only the date, if the

date and time can be sourced for all inputs. Having more infor-

mation (date and time) instead of less (date only) means the AI

models can be accurate and effective at the specified tasks.

An example for a metric is recording time in seconds instead

of minutes, here again the higher granularity leads to better

models. Attributes and data points should be checked ontolog-

ically, visually, and computationally for linear, cyclic, probabi-

listic, and differential relationships. If present, then domain

expertise must be used to select the most effective representa-

tion of those data points or attributes. For instance, graph data

must be handled using AI algorithms designed for cyclic relation-

ships instead of linear models. The methods used for outlier

detection will depend on the types of relationships, linear, cyclic,

or probabilistic. Typically, outliers are removed from the dataset;

however, depending on the problem description, outliers might

be labeled and retained in the dataset to be used in model devel-

opment or evaluation. Data quality primarily refers to the data be-

ing ‘‘fit for purpose.’’ In its generic form, numerous frameworks,

standards, and systems have been proposed for ensuring data

quality.55–58

A further consideration of this stage is splitting the data for

model development and evaluation. In principle, model evalua-

tion is where the developed AI model is tested on a previously

unseen scenario/data, and the result of this test is an indication

of ‘‘intelligence’’ where the AI model has been able to generalize

based on past experiences (training data). Data splitting typically

takes two forms: the holdout method (or train-test split), where

the dataset is split into two subsets, training and testing, typically

as 80% training and 20% testing; secondly, the calibration

method (or train-validate-test split), where the dataset is split

three ways (the majority followed by two equal minorities, 60%

training, 20% validation, and 20% testing, or 80% training,

10% validation, and 10% testing). Here, the validation phase is

a calibration of the trained model where model parameters are

fine-tuned using the validation split. N-fold cross-validation is

an improvisation of the holdout method for smaller datasets

where the number of records are limited. The original dataset

is crafted into n instances by changing the 10% or 20% split of

the testing subset; for instance, if n = 7 then the original dataset

is split into k = 7 equal segments and for each nth instance of the

dataset, the testing split will be a k = 1; 2.7 segment. Using this

approach, the entire dataset is utilized in an unbiased manner to

evaluate the model n times.

External data acquisition

Data preparation and exploration stages together can expose

limitations in the available data that makes it infeasible to build

AI models. In such an instance, it is pertinent to investigate op-

portunities for external data acquisition. The acquisition of

required data, in aggregate or detailed format from data bro-
6 Patterns 3, 100489, June 10, 2022
kers and data vendors, is a widely used short-term strategy.

These brokers and vendors leverage public records, credit-

scoring services, social media content, and third-party data

sharing agreements to accumulate large volumes of data,

which are then commercialized into aggregate products, such

as sociodemographic or healthcare profiles. A formal risk

assessment must be conducted before the acquisition of

external data, focusing on the supply chain, pre-processing,

practice of governance, and any other domain-specific policies

of the data provider.

The ethical alignment as well as the sustainability of this

approach are poorly formed. Therefore, it is recommended to

develop a long-term data acquisition strategy based on trust-

worthy relationships with all stakeholders by being transparent

on what data are collected and how they are used.

Data pre-processing

The data pre-processing stage ensures that all the data that have

been acquired to build the AI model/application can be accurately

input into the AI algorithm, with minimal compromise of accuracy,

informational value, and data quality. This includes imputation,

formatting, and transformation. Imputation is the identification of

missing values and replacementwith suitable substitutes. Imputa-

tion is generally attempted using statistical methods and some

machine learning methods. In statistics, the simplest method is

to use the mean, median, or mode of the available values; slightly

more advanced methods include regression imputation where

line-fitted values (without a residual) are used, or hot-deck impu-

tationwhere replacements are randomly chosen from the sameor

a similar set of variables. Machine learning methods have also

been adopted, such as the k-NNalgorithmwhere the non-missing

values of the neighbors are used for imputation, ormore advanced

libraries, such as DataWig,59 which utilizes deep learning feature

extractors. Data formatting is more straightforward where units

of measurement, date format, or non-overlapping groups must

be standardized across all variables in the dataset and the ex-

pected output of the AI model. Transformation is the conversion

of non-numerical data types into numerical representations using

methods such as label encoding or one-hot encoding. Each

method has limitations that must also be checked and validated;

for instance, one-hot encoding should not lead to multicollinearity

in the dataset. It should be noted that data wrangling is a common

term used to refer to the three stages up to pre-processing. This

term was introduced by Terrizzano et al. in 2015,60 and is equiva-

lent to the three stages: data exploration, acquisition, and pre-

processing.

Build initial AI model

This stage begins the development of an AI model by deter-

mining a suitable AI algorithm that represents the AI capabilities

corresponding to the AI application. Figure 2 depicts a taxonomy

for this mapping between application, capability, and algorithm.

All current practical applications can be grouped into one or a

combination of the four capabilities: prediction, classification,

association, and optimization. When determining which algo-

rithm should be used to build the model, the recommended

approach is to start with ‘‘applications’’ and then follow through

into ‘‘algorithms’’ via ‘‘capabilities.’’ It is recommended practice

to begin the model development process with a simple algo-

rithm, default parameters, and default architecture. This enables

a rigorous and validated approach that can also be interpreted,



Figure 2. A taxonomy of AI algorithms, capabilities, and applications
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presented, and documented. If this is a pre-trained model, then

transfer learning or fine-tuning will be conducted at this stage,

which follows the train-test phases or train-validate-test

methods mentioned earlier. The model should be evaluated us-

ing the metrics designed for the type of AI capability and the al-

gorithm itself. These are typically found in corresponding API

documentation and worked examples. This initial model serves

several purposes. Firstly, if the intended AI approach is feasible,

based on the level of accuracy achieved using the default param-

eters. As noted in ‘‘developing a benchmark,’’ the benchmark is

typically a common-sense heuristic, such as human expertise in

solving the same problem. Secondly, if it serves the purpose of

validating the design and selection of AI capability as well as

the datasets and attributes. Thirdly, the next steps and direc-

tions, typically in increasing complexity of algorithm and

datasets.

Data augmentation

Informed by the output and evaluation of the initial model, data

augmentation addresses limitations in the dataset that affect

the model output. In contrast to data transformation, which is

specific to variables, augmentation includes, class imbalance,

feature engineering, and feature representation, the initial model

will be re-run several times as the effectiveness of the augmenta-

tion measures are evaluated. Class imbalance is typically ad-

dressed using undersampling and oversampling techniques,61,62

while feature engineering and feature representation are broad

topics that span across distinct areas of study, such as signal

processing techniques,63,64 vector symbolic architectures,65–67

and dynamic time warping.68,69

Develop a benchmark

As the first AI model is being developed, a suitable evaluation

benchmark must be considered. This benchmark is typically

drawn from a common-sense heuristic, such as human expertise

in solving the same problem (for instance, in the anomaly

detection) or the success rate of the human expert in detecting
anomalies using the same input data. Alternatively, the bench-

mark can be drawn from the literature associated with the

same algorithm or the industry sector. In addition to evaluating

the model, the benchmark also serves the purpose of identifying

what input vectors or attributes do not fit to the model, leading to

the next stage of building multiple models or return to the data

pre-processing stage if the data are an incomplete representa-

tion of the problem domain.

Build multiple AI models

The maturity of the AI discipline, mainly in terms of build technol-

ogies, such as Jupyter notebooks and the availability of feature-

oriented algorithms as code libraries on repositories such as

GitHub, have contributed toward the capability and time effi-

ciency of building several AI models. Licensing for distribution

and re-use specified in code repositories and any third-party

content must be adhered to and documented to ensure that

the developed application is legal and valid. Alternatively, the

agility of modern programming languages (such as Python pro-

gramming language) allows these algorithms to be re-imple-

mented quickly without the constraints imposed by the

code repository license. Reimplementation also ensures the

integrity of the model, unlike prebuilt and pre-trained models,

which link back to the preliminary risk assessment of the trust-

worthiness of the model and the source data.

As noted in the previous stage, the performancebenchmark de-

termines what is missing in the first model and, accordingly, the

subsequent models would gradually increase model complexity.

For instance, a classification problem can be first attempted using

the fairly straightforward logistic regression, followed by the

increasing complexity of decision tree, random forest, XGBoost,

LightGBM, and deep neural network. The inverse of this approach

has also been adopted and reported,where amore complex algo-

rithm is used first and then regularization techniques are used to

generalize the overfitted model. In both approaches, the dataset

may not be representative, in which case the data pre-processing
Patterns 3, 100489, June 10, 2022 7
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stagemust be revisited for exploration and evaluation of attributes

and data points. When the required capability is not present in ex-

isting algorithms thennewalgorithmshave tobedevelopedbased

on novel research. This approach is only occasionally practiced

when the state-of-the-art algorithms for a identified AI capability

are inadequate at addressing the technical or computational chal-

lenges. Any new algorithm must be evaluated separately against

state-of-the-art algorithms using benchmark datasets to establish

utility and the differential value addition toward the AI capability. It

is also recommended that new research yielding innovative out-

comes are published and shared for the advancement of the AI

discipline. Auditable autonomy is a recent innovation that can be

leveraged when building multiple models, such as the use of

brain-inspired neural computation principles and scalable deep

learning architectures to design compact neural controllers.70

Evaluate primary metrics

The primary metrics build on the performance benchmark deter-

mined earlier. It is important to understand what the metric is

representing and how it is being calculated, and numerous types

of literature, from API documentation to case studies, contain

this information. An effective evaluation metric should be accu-

rate, robust, agnostic, scalable, and interpretable. Frequently

used metrics are: accuracy, precision, recall, F1 score, root

mean-squared error, purity, and entropy. The generalized formu-

lation of a performancemetric,Outcome = model + error, is use-

ful to address the commonmisconception that ‘‘accuracy’’ is the

only performance metric worth considering and selecting an

appropriate metric when there are many options available. The

evaluation metrics are also useful to compare all models across

default and fine-tuned parameter settings, as well as to deter-

mine the bias variance trade-off.

AI model explainability

Model explainability (also known as model interpretability or

explainable AI [XAI]) is a recent development driven by the ethical

and regulatory need to make AI transparent. However, model

development has also benefited from explainability as AI scien-

tists are more informed on how the technicalities of attributes,

the learning process, and model parameters contribute toward

the expected AI outcome. AI transparency is required for com-

plex models (such as gradient boosting or neural networks),

where the flow of information from input vectors to decision

output is obscured bymany layers of distributed (or partial) com-

putations. It is not possible to ‘‘unpack’’ or deconstruct this infor-

mation flow, numerically or visually, in contrast to simpler models

such as logistic regression or decision trees. Several survey ar-

ticles have classified XAI methods using diverse dimensions,

such as data-driven and knowledge-aware,71 pixel-wise expla-

nations,72 intrinsic interpretability and post-hoc interpretability,73

and model explanation, outcome explanation, model inspection,

and transparent design.74 In summary, XAI can be broadly cate-

gorized into intrinsic and extrinsic methods, where intrinsic

methods are methods endemic to the algorithm that work along-

side the AI capability, and extrinsic methods are typically post-

processing techniques applied to the model output. Most

AI algorithms have not been designed (or evolved) with intrinsic

methods, therefore XAI is primarily a collection of extrinsic

methods, such as partial dependence plots, individual condi-

tional expectation, local interpretable model explanation, and

Shapley addictive explanations (SHAP).
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Evaluate secondary metrics

At this stage, the AI scientist hands over a prototypical and func-

tional AI model to the AI/ML engineer. In addition to an effective

demonstration of ‘‘intelligence’’ (at least one of the four AI capa-

bilities) in performing the given task, the AI model must be

computationally effective so that it can be deployed or opera-

tionalized for a broader audience. Therefore, a set of secondary

metrics, computational (CPU) performance, memory perfor-

mance, time-complexity, ethical implications, and convergence

metrics are calculated in this stage. A further set of metrics

focusing on the risk assesssment factors of privacy, cybersecur-

ity, trust, robustness, explainability, interpretability, usability,

and related social implications should also be formulated and

evaluated. Emerging research on topics, such as adversarial

robustness, will gradually become mainstay to address the risk

of cyber threats and attacks on AI models. A standardized

benchmark of adversarial robustness has been reported,75

where it has been applied across 120+ models in image classifi-

cation and made available for other application domains. The

secondary metrics are not critical if the AI model is to be used

by a smaller audience. Following the secondary metrics, a deci-

sion should bemade onmodel compression, data hydration, and

locality of deployment.

A set of metrics and tools that have manifested to address AI

algorithmic bias, and ethical and legal challenges of AI, are

known as the AI fairness metrics. As reported by Narayanan,76

fairness does not pertain a consistent universally accepted defi-

nition, they demonstrate how at least 21 mathematical defini-

tions of fairness lead to entirely different outcomes. Building

fair AI models and removing AI bias is an active field of research

with specialized terminology,77 auditing predictive models,78

bias detection and mitigation,79 and counterfactual fairness.80

AI technology providers have also worked toward transforming

research into practice through the development of fairness li-

braries, such as AI Fairness 360 (AIF360) introduced by IBM,81

the What-If Tool by Google Research,82 and the OpenAI Gym

by Open AI.83 A robustness benchmark for adversarial attacks

has also been proposed.75

AI model deployment and risk assessment

Also known as model serving, model scoring, and model pro-

duction, in this stage, the evaluated model is deployed for oper-

ational use. It is smaller in scale to ‘‘operationalization,’’ which is

described next. Deployment would typically involve a smaller

group of experts and users instead of organization-wide access.

The primary considerations of deployment are real-time versus

batch use of the AI model, the number of end-users and types

of applications, the expected formats of output, the expected

turnaround time, and the frequency of use.

Aligning with the preliminary risk assessment, a technical risk

classification and analysis must be conducted in this stage as

the AI model now integrates with external systems and

processes when deployed. This stage also extends the initial

deliberation of AI ethics, governance, and regulation into the

deployment phase. The risks posed by the AI deployment should

cover all stakeholders, oraganizational functions, government

regulation, social norms, and any other societal implications

following deployment. A risk register and risk assessment matrix

can be used to further evaluate the criticality of each risk and

document potential actions and mitigation strategies.
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Post-deployment review

Depending on the industry sector and scope of project, an

expert panel, steering committee, or regulatory body, will

conduct a technical and ethics review of the entire project,

from a datasets approach, AI model, to evaluate metrics and

effectiveness. Compliance, standardization, post-implementa-

tion documentation, contracts, and service level agreements

will also be administered in this stage. Specifically in health-

care, further investigations in the form of observational studies,

small-scale clinical trials, training, and user-acceptance exer-

cises will be conducted. In this stage, the team would also

consider the legal protection of intellectual property in the

form of patenting or the alternatives of trade secrecy that pro-

vides continuing protection (as patents expire) or defensive

publications in academic journals that contribute toward the

advancement of the discipline.

Operationalize using AI pipelines

Also known as AIOps or MLOps, this stage is an adaptation of

the highly effective DevOps software automation capabilities

into AI model deployment. An output of the Agile movement,

Dyck et al.84 formally defined DevOps as ‘‘a collaborative and

multidisciplinary effort within an organization to automate contin-

uous delivery of new software versions, while guaranteeing their

correctness and reliability.’’ Several survey articles have re-

viewed the advantages, disadvantages, and challenges of

DevOps85,86 and its adaptation into AI.87,88 In contrast to

DevOps, AIOps is loosely defined given the dynamic nature of

data received by an AI model and the output generated. Con-

tainers and microservices are utilized to develop the AI and

data pipelines for operationalization. Data availability, collection,

storage, pre-processing, versioning, and ethics are some of the

main considerations for the data pipeline, while the AI pipeline

should account for model compression, device compatibility,

service definitions, versioning, auditing, re-training, mainte-

nance, and monitoring. A microservice is an application with

an atomic function. It has been more formally defined as an

‘‘independently deployable component of bounded scope that

supports interoperability through message-based communica-

tion.’’89 In AI, this will be the evaluated AI model that functions

as a classifier or predictor. Although a microservice is stand-

alone, it is more effectively executed inside a container or the

containerization of that function. Containers are a cloud-based,

platform as a service virtualization technology that bundles an

application, its code, and dependencies with a computing plat-

form for reusability, reliability, and time efficiency.90 Containers

enable technology-agnostic hyperautomation by abstracting

diverse technologies to work together.

Hyperautomation of processes and systems

Hyperautomation is an emerging topic in industrial and knowl-

edge work settings that aims to integrate and advance the

efficiencies of automation with the productivity gains of AI.

While the explicit goal of AI is to support/enable/augment hu-

man actions and decision making, hyperautomation attempts

to takes this a step further by automating the actions and de-

cision making within the boundaries of ethics and regulatory

requirements. Most AI projects conclude when the human

effort has been enriched by the AI model/s, but an increasing

trend in innovative AI solutions is to push toward

hyperautomation.
In knowledge work, automation takes the form of robotic pro-

cess automation (RPA),91,92 and, in industrial settings, it mani-

fests as cyber-physical systems and intelligent robotics.93,94

As part of the AI life cycle, an operationalized AI service will

be interconnected with a process automation pipeline to deliver

hyperautomated processes and systems. The capabilities of

the AI solution must be demonstrated to downstream and up-

stream process owners and stakeholders to generate interest

toward a pilot phase of hyperautomation. Following this pilot

phase, the performance gains in efficiency, effectiveness, and

productivity must be measured and evaluated against previous

configurations to develop a business case for deployment

at scale.

A further consideration in this stage is the ‘‘system of systems

engineering view of the deployed and hyperautomated AI

model.’’ As deliberated in the systems and software engineering

practice ISO/IEC/IEEE 15288:2015, the challenges in this

respect are resources, technical specification, verification and

validation process, software system execution environment,

configuration and changemanagement processes, re-use, stan-

dardization, education, and training.95

Monitor and evaluate performance

The AI model that has either been deployed independently or in-

tegrated as a hyperautomation process will be monitored and

evaluated in this final stage of the life cycle. The main evaluation

criteria are representative of the technology itself, diverse individ-

uals in diverse settings utilizing the technology and value gener-

ated by the technology. The technology is evaluated using model

drift and model staleness; end-user activity measures the people

criterion, and return on investment (ROI) measures value genera-

tion.Model drift denotes decreasing accuracy of themodel due to

the changing nature of the data, which can be addressed by re-

training the model with more recently accumulated data points

that capture these changes or drifts. On the other hand, model

staleness is caused by changes in the problem or environment

description underlying the model design and development. Ad-

dressing staleness requires a fundamental rethink of themodel ar-

chitecture, inputs, algorithm, and parameters. A stale model will

trigger a new iteration of the full life cycle. Continuous monitoring

of end-user activity is critical to find out if and how the model is

contributing toward organizational functions. The level of end-

user activity depends on each use case andmetrics canbe drawn

from adoption, questions, frequency of use, use/revision of docu-

mentation, feedback, and requests for features. Finally, although

ROI is not directly visible like most other knowledge work, it can

be determined using several types of metrics, such as reduced

costs (due to reductions in turnaround time, human effort, human

skill), increased revenue (due to new revenue streams, customer

satisfaction, increased market share), and productivity gains

(such as reduced errors, low employee turnover, increased agility

of teams, and workflows).

These 19 stages provide comprehensive coverage of the

design, development, and deployment of an AI solution. In

Tables S1 and S2, we provide further insight into the life cycle

through its exemplification in two distinct application areas:

conception to production of a micro-profiling service for a large

energy retailer (Table S1), and conception to production of an AI

conversational agent (chatbot) for patient-centered healthcare

(Table S2).
Patterns 3, 100489, June 10, 2022 9



Figure 3. The organizational context of AI

ll
OPEN ACCESS Descriptor
An AI taxonomy
In both research and industry engagement, we have observed

how the depth and breadth of the AI discipline can inhibit the

functional or practical adoption of its primary capabilities. Draw-

ing on these observations, we have formulated a technical and

organizational AI taxonomy that can aid in improved awareness,

positioning, adoption, and value creation from AI. Figure 2 de-

picts the technical AI taxonomy, composed of three layers: AI

applications, AI capabilities, and AI algorithms. The top layer,

AI applications, is typically determined from the problem/envi-

ronment description. Although numerous, these applications

can be condensed into one of four capabilities, prediction, clas-

sification, association, and optimization, or a combination of

these. The bottom layer represents AI algorithms, which again

are numerous and overlapping. As the intermediate layer, AI ca-

pabilities provide clarity and enable navigation from AI applica-

tions to AI algorithms. The four AI capabilities can be further

deliberated as follows: prediction represents the numerical pre-

diction of continuous, discrete, time series, and sequential data;

classification represents categorical predictions, such as cate-

gorization, object detection, anomaly detection, concept detec-

tion, and sentiment analysis; association represents intelligence

from unlabeled data, such as clustering, association rule mining,

feature selection, encoding, and dimensionality reduction; and

finally, optimization represents the generation of improved solu-

tions for scheduling, planning, control, generation, and simula-

tion type problems. Figure 3 presents an organization taxonomy

that positions the AI life cycle and AI capabilities within the flowof

activities and information between organizational strategy to de-

cision making. The 19 stages have been condensed into five

technical functions (in blue) to align with the organizational func-

tions, depicted in gray.

DISCUSSION

Conclusion
In this article, we have presented the CDAC AI life cycle for the

design, development, and deployment of AI systems and solu-

tions, preceded by a preliminary risk assessment for the adoption
10 Patterns 3, 100489, June 10, 2022
of AI. The life cycle consists of three phases (design, develop, and

deploy) and 19 constituent stages across the three phases from

conception to production. The life cycle addresses several key

limitations in related methods and approaches, exclusive focus

on AI, depth of technical detail of each phase, responsibilities of

an AI team, and the contribution of pre-trained models, code re-

positories, and ethics and governance frameworks toward expe-

diting AI project outcomes and enhancing inclusivity.

As limitations of this study, we note that the generic nature

of the life cycle may not be applicable to certain domains of

application with specific inclusion criteria or regulatory re-

quirements. This also applies to the preliminary risk assess-

ment, which will include other risk factors influenced by

new research and technological advancements. A further lim-

itation is the expansive disposition of AI to include data ana-

lytics and data science projects that would utilize a combina-

tion of techniques in statistics, data modeling, and natural

language processing, and also leverage prebuilt tools and

functions of convenience on cloud platforms, data lakes,

and analytics dashboards. We reiterate that a subset of the

19 stages would still be applicable for such diverse initiatives

but also appreciate that refined approaches can be proposed

as future work.

We anticipate that the CDAC AI life cycle and the prelim-

inary risk assessment will contribute toward an informed prac-

tice of AI, as well as the increased awareness, knowledge,

and transparency of AI and its capabilities. The technical and

organizational AI taxonomies will contribute toward nuanced

engagement between AI scientists, AI engineers, and other

stakeholders during the three phases of the life cycle. The orga-

nizational context will further integrate the AI team and their so-

lutions with other stakeholders, such as senior management

and the executive, in working toward an inclusive organizational

strategy. In conclusion, the CDAC AI life cycle advances effec-

tive, ethical, and inclusive research applications, practice of AI,

and policy development, that advance AI for the good of

humanity.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for further information can be directed to the lead contact Daswin De

Silva at d.desilva@latrobe.edu.au.

Materials availability

This study did not generate new unique reagents.

Data and code availability

This study did not generate new data or code.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100489.

ACKNOWLEDGMENTS

The authors acknowledge the support and commitment of the CDAC team to-

ward the advancement AI innovations that initiated and enabled this body of

work. We also acknowledge and appreciate all feedback and comments pro-

vided by the editor and the panel of anonymous reviewers. Your feedback has

significantly improved the quality and contributions of this article.

mailto:d.desilva@latrobe.edu.au
https://doi.org/10.1016/j.patter.2022.100489
https://doi.org/10.1016/j.patter.2022.100489


ll
OPEN ACCESSDescriptor
AUTHOR CONTRIBUTIONS

Conceptualization, D.D.S. and D.A.; methodology, D.D.S. and D.A.; investiga-

tion, D.D.S.; writing – original draft, D.D.S.; writing – review & editing, D.D.S.

and D.A.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: November 15, 2021

Revised: March 5, 2022

Accepted: March 16, 2022

Published: April 13, 2022

REFERENCES

1. Partridge, D. (1986). Engineering artificial intelligence software. Artif. Intell.

Rev. 1, 27–41.

2. Shearer, C. (2000). The crisp-dmmodel: the new blueprint for data mining.

J. Data Warehous. 5, 13–22.

3. Rollins, J. (2015). Foundational Methodology for Data Science

(Whitepaper: Domino Data Lab, Inc.).

4. Moyle, S., and Jorge, A. (2001). Ramsys-a methodology for supporting

rapid remote collaborative data mining projects. ECML/PKDD01

Workshop: Integrating Aspects of Data Mining, Decision Support and

Meta-Learning (IDDM-2001), 64.

5. Martinez-Plumed, F., Contreras-Ochando, L., Ferri, C., Orallo, J.H., Kull,

M., Lachiche, N., Quintana, M.J.R., and Flach, P.A. (2019). Crisp-dm

Twenty Years Later: From Data Mining Processes to Data Science

Trajectories (IEEE Transactions on Knowledge and Data Engineering).

6. Cios, K.J., and Kurgan, L.A. (2005). Trends in data mining and knowledge

discovery. In Advanced techniques in knowledge discovery and data min-

ing (Springer), pp. 1–26.

7. Wu, X., Zhu, X., Wu, G.-Q., and Ding, W. (2013). Data mining with big data.

IEEE Trans. Knowl. Data Eng. 26, 97–107.

8. Foroughi, F., and Luksch, P. (2018). Data science methodology for cyber-

security projects. Preprint at arXiv. 1803.04219.

9. Haakman, M., Cruz, L., Huijgens, H., and van Deursen, A. (2021). Ai life-

cycle models need to be revised. Empir. Software Eng. 26, 1–29.

10. Ericson, G., Rohm, W.A., Martens, J., Sharkey, K., Casey, C., Harvey, B.,

and Schonning, N. (2017). Team Data Science Process Documentation,

11, p. 2019.

11. Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan,

N., Nushi, B., and Zimmermann, T. (2019). Software engineering for ma-

chine learning: a case study. In 2019 IEEE/ACM 41st International

Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP) (IEEE), pp. 291–300.

12. ‘‘Bunji - a good friend to chat.’’ https://play.google.com/store/apps/

details?id=au.edu.latrobe.cdac.bunji. Accessed: 01-08-2021.

13. Haputhanthri, D., De Silva, D., Sierla, S., Alahakoon, D., Nawaratne, R.,

Jennings, A., and Vyatkin, V. (2021). Solar irradiance nowcasting for virtual

power plants using multimodal long short-term memory networks. Front.

Energy Res. 9, 469.

14. Kahawala, S., De Silva, D., Sierla, S., Alahakoon, D., Nawaratne, R.,

Osipov, E., Jennings, A., and Vyatkin, V. (2021). Robust multi-step predic-

tor for electricity markets with real-time pricing. Energies 14, 4378.

15. Osipov, E., Kahawala, S., Haputhanthri, D., Kempitiya, T., De Silva, D.,

Alahakoon, D., and Kleyko, D. (2021). Hyperseed: unsupervised learning

with vector symbolic architectures. Preprint at arXiv. 2110.08343.

16. Adikari, A., Nawaratne, R., De Silva, D., Ranasinghe, S., Alahakoon, O.,

Alahakoon, D., et al. (2021). Emotions of covid-19: content analysis of

self-reported information using artificial intelligence. J. Med. Internet

Res. 23, e27341.
17. Adikari, A., de Silva, D., Ranasinghe, W.K., Bandaragoda, T., Alahakoon,

O., Persad, R., Lawrentschuk, N., Alahakoon, D., and Bolton, D. (2020).

Can online support groups address psychological morbidity of cancer pa-

tients? an artificial intelligence based investigation of prostate cancer tra-

jectories. PLoS ONE 15, e0229361.

18. De Silva, D., Ranasinghe, W., Bandaragoda, T., Adikari, A., Mills, N.,

Iddamalgoda, L., Alahakoon, D., Lawrentschuk, N., Persad, R., Osipov,

E., et al. (2018). Machine learning to support social media empowered pa-

tients in cancer care and cancer treatment decisions. PLoS ONE 13,

e0205855.

19. Alahakoon, D., Nawaratne, R., Xu, Y., De Silva, D., Sivarajah, U., and

Gupta, B. (2020). Self-building artificial intelligence and machine learning

to empower big data analytics in smart cities. Inf. Syst. Front. 1–20.

20. Nallaperuma, D., De Silva, D., Alahakoon, D., and Yu, X. (2018). Intelligent

detection of driver behavior changes for effective coordination between

autonomous and human driven vehicles. In IECON 2018-44th Annual

Conference of the IEEE Industrial Electronics Society (IEEE),

pp. 3120–3125.

21. Nallaperuma, D., Nawaratne, R., Bandaragoda, T., Adikari, A., Nguyen, S.,

Kempitiya, T., De Silva, D., Alahakoon, D., and Pothuhera, D. (2019).

Online incremental machine learning platform for big data-driven smart

traffic management. IEEE Trans. Intell. Transport. Syst. 20, 4679–4690.

22. De Silva, D., Sierla, S., Alahakoon, D., Osipov, E., Yu, X., and Vyatkin, V.

(2020). Toward intelligent industrial informatics: a review of current devel-

opments and future directions of artificial intelligence in industrial applica-

tions. IEEE Ind. Elect. Mag. 14, 57–72.

23. Berghoff, C., Neu, M., and von Twickel, A. (2020). Vulnerabilities of con-

nectionist ai applications: evaluation and defense. Front. Big Data 3, 23.

24. Berghoff, C., Bielik, P., Neu, M., Tsankov, P., and Twickel, A.v. (2021).

Robustness testing of ai systems: a case study for traffic sign recognition.

In IFIP International Conference on Artificial Intelligence Applications and

Innovations (Springer), pp. 256–267.

25. Taeihagh, A. (2021). Governance of artificial intelligence. Pol. Soc. 40,

137–157.

26. Agrawal, V. (2017). A comparative study on information security risk anal-

ysis methods. J. Comput. 12, 57–67.

27. Goel, R., Kumar, A., and Haddow, J. (2020). Prism: A Strategic Decision

Framework for Cybersecurity Risk Assessment (Information & Computer

Security).

28. Garvey, P.R., and Lansdowne, Z.F. (1998). Risk matrix: an approach for

identifying, assessing, and ranking program risks. Air Force J. Logist.

22, 18–21.

29. Zavr�snik, A. (2021). Algorithmic justice: algorithms and big data in criminal

justice settings. Eur. J. Criminol. 18, 623–642.

30. Marjanovic, O., Cecez-Kecmanovic, D., and Vidgen, R. (2021). Theorising

algorithmic justice. Eur. J. Inf. Syst. 1–19.

31. Muller, M., and Liao, Q.V. (2017). Exploring Ai Ethics and Values through

Participatory Design Fictions (Human Computer Interaction Consortium).

32. Bratteteig, T., and Verne, G. (2018). Does ai make pd obsolete? exploring

challenges from artificial intelligence to participatory design. In

Proceedings of the 15th Participatory Design Conference: Short Papers,

Situated Actions, Workshops and Tutorial, 2, pp. 1–5.

33. Mittelstadt, B. (2019). Principles alone cannot guarantee ethical ai. Nat.

Mach. Intell. 1, 501–507.

34. IEEE (2018). The IEEE Global Initiative on Ethics of Autonomous and

Intelligent Systems. Ethically Aligned Design, 2 ed. (IEEE).

35. European-Commission (2019). AI Ethics Guidelines by the High-Level

Expert Group on Artificial Intelligence, 1 ed. (EU Commission).

36. European-Commission (2021). Proposal for a Regulation of the European

Parliament and of the Council Laying Down Harmonised Rules on Artificial

Intelligence (Artificial Intelligence Act) and Amending Certain Union

Legislative Acts.
Patterns 3, 100489, June 10, 2022 11

http://refhub.elsevier.com/S2666-3899(22)00074-5/sref1
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref1
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref2
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref2
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref3
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref3
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref4
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref4
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref4
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref4
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref5
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref5
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref5
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref5
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref6
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref6
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref6
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref7
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref7
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref8
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref8
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref9
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref9
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref10
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref10
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref10
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref11
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref11
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref11
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref11
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref11
https://play.google.com/store/apps/details?id=au.edu.latrobe.cdac.bunji
https://play.google.com/store/apps/details?id=au.edu.latrobe.cdac.bunji
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref13
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref13
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref13
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref13
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref14
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref14
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref14
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref15
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref15
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref15
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref16
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref16
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref16
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref16
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref17
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref17
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref17
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref17
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref17
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref18
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref18
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref18
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref18
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref18
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref19
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref19
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref19
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref20
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref20
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref20
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref20
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref20
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref21
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref21
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref21
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref21
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref22
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref22
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref22
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref22
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref23
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref23
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref24
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref24
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref24
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref24
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref25
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref25
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref26
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref26
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref27
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref27
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref27
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref28
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref28
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref28
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref29
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref29
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref29
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref30
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref30
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref31
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref31
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref32
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref32
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref32
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref32
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref33
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref33
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref34
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref34
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref35
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref35
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref36
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref36
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref36
http://refhub.elsevier.com/S2666-3899(22)00074-5/sref36


ll
OPEN ACCESS Descriptor
37. Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). Imagenet classifica-

tion with deep convolutional neural networks. Adv. Neural Inf. Process.

Syst. 25, 1097–1105.

38. He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 770–778.

39. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: pre-

training of deep bidirectional transformers for language understanding.

Preprint at arXiv. 1810.04805.

40. Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018).

Improving language understanding by generative pre-training. Preprint

at arXiv. cs.ubc.ca.

41. Eckart de Castilho, R., Dore, G., Margoni, T., Labropoulou, P., and

Gurevych, I. (2018). A Legal Perspective on Training Models for Natural

Language Processing (Enlighten: Publications).

42. Eshraghian, J.K. (2020). Human ownership of artificial creativity. Nat.

Mach. Intell. 2, 157–160.

43. Kimball, R., and Ross, M. (2011). The Data Warehouse Toolkit: The

Complete Guide to Dimensional Modeling (John Wiley & Sons).

44. Inmon, W.H. (1996). The data warehouse and data mining. Commun. ACM

39, 49–51.

45. O’Leary, D.E. (2014). Embedding ai and crowdsourcing in the big data

lake. IEEE Intell. Syst. 29, 70–73.

46. Halevy, A.Y., Korn, F., Noy, N.F., Olston, C., Polyzotis, N., Roy, S., and

Whang, S.E. (2016). Managing google’s data lake: an overview of the

goods system. IEEE Data Eng. Bull. 39, 5–14.

47. Gorelik, A. (2019). The Enterprise Big Data Lake: Delivering the Promise of

Big Data and Data Science (O’Reilly Media).

48. Li, T., Sahu, A.K., Talwalkar, A., and Smith, V. (2020). Federated learning:

challenges, methods, and future directions. IEEE Signal. Process. Mag.

37, 50–60.

49. Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov,

V., Kiddon, C., Kone�cnỳ, J., Mazzocchi, S., McMahan, H.B., et al. (2019).

Towards federated learning at scale: system design. Preprint at arXiv.

1902.01046.

50. Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: a

review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35,

1798–1828.

51. Hamilton, W.L., Ying, R., and Leskovec, J. (2017). Representation learning

on graphs: methods and applications. Preprint at arXiv. 1709.05584.

52. Wang, M.Z., and Hayden, B.Y. (2021). Latent learning, cognitive maps,

and curiosity. Curr. Opin. Behav. Sci. 38, 1–7.

53. Yoo, S.B.M., Hayden, B.Y., and Pearson, J.M. (2021). Continuous deci-

sions. Philos. Trans. R. Soc. B 376, 20190664.

54. ‘‘2018 Reform of Eu Data Protection Rules.’’

55. Sidi, F., Panahy, P.H.S., Affendey, L.S., Jabar, M.A., Ibrahim, H., and

Mustapha, A. (2012). Data quality: a survey of data quality dimensions.

In 2012 International Conference on Information Retrieval & Knowledge

Management (IEEE), pp. 300–304.

[56]. Cai, L., and Zhu, Y. (2015). The challenges of data quality and data quality

assessment in the big data era. Data Sci. J. 14, 1–10.

57. Gupta, N., Patel, H., Afzal, S., Panwar, N., Mittal, R.S., Guttula, S., Jain, A.,

Nagalapatti, L., Mehta, S., Hans, S., et al. (2021). Data quality toolkit: auto-

matic assessment of data quality and remediation for machine learning

datasets. Preprint at arXiv. 2108.05935.

58. Gupta, N., Mujumdar, S., Patel, H., Masuda, S., Panwar, N.,

Bandyopadhyay, S., Mehta, S., Guttula, S., Afzal, S., Sharma Mittal, R.,

et al. (2021). Data quality for machine learning tasks. In Proceedings of

the 27th ACM SIGKDD Conference on Knowledge Discovery & Data

Mining, pp. 4040–4041.

59. Biessmann, F., Rukat, T., Schmidt, P., Naidu, P., Schelter, S., Taptunov,

A., Lange, D., and Salinas, D. (2019). Datawig: missing value imputation

for tables. J. Mach. Learn. Res. 20, 175–181.
12 Patterns 3, 100489, June 10, 2022
60. Terrizzano, I.G., Schwarz, P.M., Roth, M., and Colino, J.E. (2015). Data

Wrangling: The Challenging Yourney from the Wild to the Lake (CIDR).

61. Yap, B.W., Abd Rani, K., Abd Rahman, H.A., Fong, S., Khairudin, Z., and

Abdullah, N.N. (2014). An application of oversampling, undersampling,

bagging and boosting in handling imbalanced datasets. In Proceedings

of the first international conference on advanced data and information en-

gineering (DaEng-2013) (Springer), pp. 13–22.

62. Mohammed, R., Rawashdeh, J., and Abdullah, M. (2020). Machine

learning with oversampling and undersampling techniques: overview

study and experimental results. In 2020 11th International Conference

on Information and Communication Systems (ICICS) (IEEE), pp. 243–248.

63. Kassam, S.A., and Poor, H.V. (1985). Robust techniques for signal pro-

cessing: a survey. Proc. IEEE 73, 433–481.

64. Yu, N., Li, Z., and Yu, Z. (2018). Survey on encoding schemes for genomic

data representation and feature learning—from signal processing to ma-

chine learning. Big Data Mining and Analytics 1, 191–210.

65. Kanerva, P. (2009). Hyperdimensional computing: an introduction to

computing in distributed representation with high-dimensional random

vectors. Cogn. Comput. 1, 139–159.

66. Gayler, R.W. (2004). Vector symbolic architectures answer jackendoff’s

challenges for cognitive neuroscience. Preprint at arXiv. cs/0412059.

67. Kleyko, D. (2016). Pattern Recognition with Vector Symbolic architectures,
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