
TYPE Original Research

PUBLISHED 01 August 2022

DOI 10.3389/fnins.2022.867664

OPEN ACCESS

EDITED BY

Beatriz Lopez,

University of Girona, Spain

REVIEWED BY

Bakhtiar Amen,

University of Huddersfield, United

Kingdom

Zhenpeng Li,

University of Oxford, United Kingdom

*CORRESPONDENCE

Tianhua Chen

t.chen@hud.ac.uk

SPECIALTY SECTION

This article was submitted to

Neuroprosthetics,

a section of the journal

Frontiers in Neuroscience

RECEIVED 01 February 2022

ACCEPTED 05 July 2022

PUBLISHED 01 August 2022

CITATION

Chen T, Su P, Shen Y, Chen L,

Mahmud M, Zhao Y and Antoniou G

(2022) A dominant set-informed

interpretable fuzzy system for

automated diagnosis of dementia.

Front. Neurosci. 16:867664.

doi: 10.3389/fnins.2022.867664

COPYRIGHT

© 2022 Chen, Su, Shen, Chen,

Mahmud, Zhao and Antoniou. This is

an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

A dominant set-informed
interpretable fuzzy system for
automated diagnosis of
dementia

Tianhua Chen1*, Pan Su2, Yinghua Shen3, Lu Chen4,

Mufti Mahmud5, Yitian Zhao6 and Grigoris Antoniou1

1Department of Computer Science, School of Computing and Engineering, University of

Huddersfield, Huddersfield, United Kingdom, 2School of Control and Computer Engineering, North

China Electric Power University, Beijing, China, 3School of Economics and Business Administration,

Chongqing University, Chongqing, China, 4Institute of Big Data Science and Industry, Shanxi

University, Taiyuan, China, 5Department of Computer Science, Nottingham Trent University,

Nottingham, United Kingdom, 6Cixi Institute of Biomedical Engineering, Ningbo Institute of

Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China

Dementia is an incurable neurodegenerative disease primarily a�ecting the

older population, for which the World Health Organisation has set to

promoting early diagnosis and timely management as one of the primary goals

for dementia care. While a range of popular machine learning algorithms and

their variants have been applied for dementia diagnosis, fuzzy systems, which

have been known e�ective in dealing with uncertainty and o�er to explicitly

reason how a diagnosis can be inferred, sporadically appear in recent literature.

Given the advantages of a fuzzy rule-based model, which could potentially

result in a clinical decision support system that o�ers understandable rules

and a transparent inference process to support dementia diagnosis, this paper

proposes a novel fuzzy inference system by adapting the concept of dominant

sets that arise from the study of graph theory. A peeling-o� strategy is used to

iteratively extract from the constructed edge-weighted graph a collection of

dominant sets. Each dominant set is further converted into a parameterized

fuzzy rule, which is finally optimized in a supervised adaptive network-

based fuzzy inference framework. An illustrative example is provided that

demonstrates the interpretable rules and the transparent reasoning process of

reaching a decision. Further systematic experiments conducted on data from

the Open Access Series of Imaging Studies (OASIS) repository, also validate its

superior performance over alternative methods.

KEYWORDS

clinical decision support, medical diagnostic systems, dementia, Alzheimer’s disease,

fuzzy systems, explainable AI

1. Introduction

Dementia is a syndrome in which there is deterioration in memory, thinking,

behavior, and the ability to perform day-to-day activities (World Health Organisation,

2019). Among other types of dementia, Alzheimer’s disease is the most common form

of dementia and may contribute to 60–70% of cases. Despite the fact that young people
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could develop the condition, dementia mainly affects older

people, which is not a normal part of aging. Dementia is

one of the major causes of disability and dependency among

older people worldwide. It can be overwhelming, not only

for the people who have it but also for their carers and

families. With around 50 million people having dementia

worldwide, the total number of people with dementia is

projected to reach 82 million in 2030 and 152 million in 2050

(Alzheimer’s Research UK, 2018).

Although numerous new treatments are being investigated

in various stages of clinical trials, there is no treatment currently

available to cure dementia or alter its progressive course. Despite

all of this, much can be offered to support and improve the

lives of people with dementia and their carers and families.

In practice, the diagnosis of dementia tends to take place late,

possibly as a result of the lengthy manual diagnosis, being lack

of training for frontline practitioners tomake correct judgments,

and/or the limited amount of primary care interactions (Cahill

et al., 2008; Bradford et al., 2009) (with waiting lists up to 1 year

weeks in the UKNational Health Service NHS, 2019). Therefore,

these strongly call for the early diagnosis in order to promote

early and optimal management to preserve a high quality of life

for as long as possible, which is also set by the World Health

Organisation as one of the principle goals for dementia care

(World Health Organisation, 2019).

Recent advances in machine learning have witnessed many

successes in various domains including the healthcare industry

(Chen et al., 2019a, 2022; Tachmazidis et al., 2020). The

increasing availability of medical data in various forms such

as imaging and electronic health records has facilitated the

use of machine learning and data analytics to extract useful

knowledge and patterns that support clinical decision making

and enhance the effectiveness of healthcare delivery (Chen et al.,

2020). While recent literature on machine learning for dementia

research covers a wide range of novel ideas and points of

view, classical ML approaches such as Support Vector Machine,

Principle Component Analysis, and Random Forest remain

highly popular while modern deep learning methodologies are

also slowly being proposed with promising but mixed results

(Tsang et al., 2019).

Among alternative techniques in machine learning, fuzzy

systems represent knowledge explicitly via if-then production

rules, supported by an inference framework that permits

tracking back how an overall decision is finally made, thus

enhancing the transparency and communication between end-

users and the model. In addition, fuzzy models, which are

constructed on the basis of fuzzy sets that allow gradual

assessment of set elements, are able to deal with vague concepts

that commonly exist in natural languages and clinical decision

making. The reasoning of inference and the tolerance of

imprecision have prompted its wide application in numerous

medical applications (Mansoori et al., 2008; Kaiser et al., 2016;

Chen et al., 2019b; Su et al., 2020a). However, the application of

interpretable fuzzy systems in supporting diagnosing dementia

barely appears in recent literature.

Inspired by the above observations, in working toward

providing assistance for clinicians in practice, which typically

requires support systems equipped with understandable rules

and transparent reasoning processes, this article proposes a

novel interpretable fuzzy inference system for the effective

diagnosis of Alzheimer’s Disease. It adapts the concept of

dominant sets (Pavan and Pelillo, 2006) that arises from the

study of graph theory and first identifies major patterns of

patient data through dominant sets that may be regarded as

a pairwise clustering problem. A peeling-off strategy is then

used, which iteratively extracts from the constructed edge-

weighted graph a dominant set, leading to the automatic

generation of a fixed set of clusters, which are typically manually

specified in conventional clustering approaches. Each dominant

set is then converted into a parameterized fuzzy rule, which

is further optimized in a supervised adaptive network-based

fuzzy inference framework. The subjects researched in this study

come from the renowned Open Access Series of Imaging Studies

(OASIS) repository.

The remainder of this article is organized as follows. Section

2 first reviews related studies and then conducts an initial

investigation of the data used. Section 3 proposes the dominant

set-inspired fuzzy system. Section 4 analyzes the experimental

outcomes. Section 5 closes the article with the conclusion and

future study.

2. Background

2.1. Related literature

The increasing popularity of machine learning and its

successes has gradually transformed medical research, clinical

practice, and healthcare delivery. Particularly, research in

dementia diagnosis typically involves a single or mixed use of

a diverse set of features ranging from patient data modality such

as demographic information and family history, neurocognitive

measures designed to assess cognitive functions such asmemory,

learning, and language, to neuroimaging and biomarkers

such as magnetic resonance imaging (MRI)/positron emission

tomography (PET) scans and the cerebrospinal fluid (CSF) to

measure protein levels. Binary predictions are often considered

between being demented or not while many works also study the

levels of severity (Fouladvand et al., 2019; Ieracitano et al., 2019;

Jain et al., 2019; Ruiz et al., 2020).

On a broad level, the data used for classification are split

between direct neuroimaging includingMRI and PET scans, and

tabular data. Direct interpretation of brain scan images has been

shown to be effective in making classifications (Huang et al.,

2019; Jain et al., 2019; Khan et al., 2019; Knox et al., 2021),

particularly with the availability of imaging data from various

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.867664
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2022.867664

(semi)-public sources including the OASIS and Alzheimer’s

Disease Neuroimaging Initiative (ADNI). Convolutional Neural

Networks (CNN) are commonly used for feature extraction

of images in multiple domains, including medical (Li et al.,

2014) making them of interest in this domain. Recent CNN

use has also shown potential for using Electroencephalography

(EEG) recordings, converted into epoch sampled power spectral

density images for diagnosis and produces promising results

on per-epoch classification, but falls short when classifying

individual patients on all epochs (Ieracitano et al., 2019). The

addition of transfer learning to the toolkit increases options,

particularly in areas where data is not available in large quantities

for domains of interest, but are in related ones, where the

convolution layers are transferred, replacing the fully-connected

layers and training them using MRI/PET of AD related images

(Jain et al., 2019; Khan et al., 2019).

The direct use of images can yet be computationally

expensive and complex (Schlemper, 2019), which also makes the

use of tabular data appealing and immediately usable against

various techniques. Instead of working directly with raw images,

this prompted some recent studies in the use of derived scan

values, such as the volumetric data of hippocampus, ventricles,

entorhinal, and fusiform gyrus from MRI measures, which may

also be directly interpreted by physicians to explain the diagnosis

in a clinical decision support system as an additional advantage.

This is supported by popular imaging-oriented repositories such

as OASIS and ADNI, which also provide readily available tabular

data from various data modalities including imaging. In recent

literature, Bucholc et al. (2019) considered the mixed use of

66 features from ADNI as potential predictors of cognitive

decline associated with AD including clinical measures, risk

factors as well as derived neuroimaging measurements from

MRI and PET scans, with the performances varying depending

on the combination of features used, resulting in the best

accuracy of 83% using SVM. A similar best performance is

also achieved in Stirling et al. (2020) while applying a self-

organizing fuzzy classifier. The promising results achieved have

also led to a prototype design of a clinical decision support

system that incorporates the computational approach for tabular

data, which is ready to be implemented in clinical practice

(Bucholc et al., 2019). The OASIS MRI data that has typically

been studied by directly working with raw imaging data has also

been investigated on its associated tabular data out of derived

imaging features in Bansal et al. (2018), with the J48 decision tree

achieving the best result compared with Naive Bayes, Random

Forest, and Multilayer Perceptron.

From techniques perspective, while recent literature covers

a wide range of novel methods and points of view, a recent

survey by Pellegrini et al. (2018) reviews over hundred relevant

studies, with most assessing Alzheimer’s disease vs. healthy

controls using support vector machines (SVM), among other

popular techniques such as random forest and neural networks.

A comparative study is also conducted by Miah et al. (2020),

which compares several popular machine learning techniques

in identifying dementia from clinical datasets, with SVM and

random forest typically achieving the best results. These are in

line with the findings summarized in one of the latest surveys

(Tanveer et al., 2020), which has concluded that the SVM-based

models have been widely used for Alzheimer’s disease showing

its robustness, as techniques like artificial neural networks suffer

from the drawbacks of local minima. The abundant usage of

SVM also stems from the fact that it is easier to interpret in

comparison to deep neural networks, which may give promising

results by modeling highly complex data, but act as black box

models (Mahmud et al., 2018), thus also calling for research in

the clinical interpretability of machine learning models.

Through natural language for expressing terms to conjugate

mathematical formalism and logical inference with human-

centered interpretability, fuzzy rule-based systems have been

universally acknowledged as valuable tools to model complex

phenomena while preserving a readable form of knowledge

representation (Alonso et al., 2015), making them specifically

suitable in real-world applications where human beings are

in charge of crucial decisions (Tahmasebi and Hezarkhani,

2012; Chen et al., 2016; Su et al., 2020b; Consiglio et al.,

2021). On the basis of fuzzy sets and fuzzy logic that

support the working with vague concepts typically existing

in linguistic communications as well as the imprecision

and uncertainty embedded in the collection of medical

data (e.g., inaccurate test results), fuzzy systems have been

developed and applied in numerous healthcare sub-areas that

support clinical decision making through learned fuzzy medical

knowledge.

For instance, a Takagi-Sugeno-Kang (TSK) fuzzy system

(Jiang et al., 2020) that combines multiple-source transfer

learning and manifold regularization learning mechanisms

is effective in identifying EEG signals while achieving good

interpretability that can be comprehended by medical experts.

A Naive Bayes approximation based fuzzy system by Pota

et al. (2017) was proposed for diagnosing breast cancer patients

with optimal interpretability while achieving competitive

performance as compared to the state-of-the-art. Alternatively,

there are fuzzy systems that have been proposed and applied

for multiple medical problems such as SLAVE2 (García et al.,

2014), which iteratively learn fuzzy rules of a disjunctive

normal searched by a novel genetic algorithm. Although

several specialized fuzzy systems have been proposed for

various diseases such as Nilashi et al. (2016) and Nilashi

et al. (2017), the development of an interpretable fuzzy

rule-based system dedicated to dementia diagnosis barely

exists in recent literature. As such in response to the

desire for an interpretable system for clinical support and

the potential of working with tabular data for dementia

research, these observations above motivate the underlying

research to design an interpretable fuzzy system for dementia

diagnosis.
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2.2. Materials

2.2.1. Participants

The data set under investigation is the popular ’OASIS-2:

Longitudinal MRI Data in Nondemented and Demented Older

Adults’, consisting of a longitudinal collection of 150 subjects

aged 60 to 96. These subjects were selected from a larger

database of individuals who had participated in MRI studies at

Washington University. For each subject, which was scanned on

two or more visits, 3 or 4 individual T1-weighted MRI scans

obtained in single scan sessions are included, resulting in a total

of 373 imaging sessions. The very details of the data set can be

found in Marcus et al. (2010).

2.3. Pre-processing

A total number of 15 attributes were recorded at every MRI

scanning session. In this article, the following 6 attributes are

not included to construct the machine learning model with the

justifications as follows.

• Subject-ID and MRI-ID are removed for privacy

consideration.

• Among the 150 subjects, 72 subjects were identified as

“Nondemented” throughout the study; 64 of the subjects

were initially marked as “Demented” and remained so

for subsequent visits. Another 14 subjects were initially

identified as “Nondemented” but were subsequently

characterized as “Demented” at a later visit, thus falling

under the “Converted” category. With the aim to construct

a predictive model for the decision attribute of Clinical

Dementia Rating (CDR), the Group attribute, which is

directly generated based on the values of CDR (hence

highly correlated), is removed to avoid the generation of

overly optimistically generated models.

• As each subject was scanned on two or more visits, the

“Visit” attribute suggests at which visit the underlying data

entry was obtained. Similarly, the “MR Delay,” suggests the

number of days between each MRI scan. As both attributes

work as a local index and are unlikely to carry any useful

information that can be linked to dementia diagnosis, they

are also removed.

• The “Hand” attribute is removed, as all subjects are right-

handed.

This results in a data set including measures with

associated illustrations as shown in Table 1 (Marcus et al.,

2010). Figure 1 demonstrates the distribution of CDR, which

suggests the diagnostic outcome. Considering the highly

imbalanced diagnostic distribution, subjects with positive

diagnostic outcomes are categorized with dementia, as per

(Marcus et al., 2010), regardless of their severity. These results

TABLE 1 Summary of attributes.

Age Age at time of image acquisition (years).

Gender Gender (Male or Female).

EDUC Years of education.

SES Socio-economic status labeled into categories from 1

(highest status) to 5 (lowest status).

MMSE Mini-Mental State Examination score, ranging from 0

(worst) to 30 (best).

eTIV Atlas scaling factor (unitless). Computed scaling factor that

transforms native-space brain and skull to the atlas target

(i.e., the determinant of the transform matrix).

nWBV Estimated total intracranial volume (cm3).

ASF Normalized whole brain volume, expressed as a percent of all

voxels in the atlas-masked image that are labeled as gray or

white matter by the automated tissue segmentation process.

CDR Clinical Dementia Rating. (0 = no dementia, 0.5 = very mild

AD, 1 = mild AD, 2 = moderate AD, 3 = Severe AD).

FIGURE 1

Clinical dementia rating (CDR) distribution.

in the diagnosis decision variable with 206 subjects without

dementia (CDR = 0) and 167 subjects with dementia (CDR ≥

0). The baseline performance based on a random guess of the

outcome is, therefore, 55.2%. As the range of different attributes

varies significantly, a pre-processing step is to normalize each

attribute so that their normalized values fall within the range of

[0, 1], by updating each original attribute value x as x−xmin
xmax−xmin

,

where xmax and xmin are the maximum and minimal values of

the attribute that x belongs to.

For the attribute “Gender,” as shown in Figure 2, it is

generally equally distributed among the demented group (with

CDR > 0) but with more women in the non-demented group

(with CDR = 0). The basic statistics are presented in Table 2.

The “Count” measures the number of available records per

attribute in the original data, which suggests missing values

exist for SES and MMSE. Instead of resorting to more advanced

interpolation techniques such as Chen et al. (2019c), this study
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FIGURE 2

Gender vs. demented.

adopts the traditional data imputation method by filling “SES”

and “MMSE” with the corresponding mean value (Belger et al.,

2016).

In addition, Figure 3 demonstrates the Pearson correlation

of the attributes in a pair-wise manner, with the value ranging

between +1 and −1. A value of +1 is a total positive linear

correlation; 0 is no linear correlation; and −1 is a total negative

linear correlation. It is not a surprise to see a relatively high

correlation between the years of education (EDUC) and socio-

economic status (SES). MMSE is a 30-point questionnaire test

used extensively in clinical and research settings to measure

cognitive impairment, thus not a surprise to see it is relatively

highly correlated with CDR. It is also worth noting that the

eTIV is very highly correlated on ASF. The eTIV is, therefore,

also dropped, since it is automatically derived from and linearly

dependent with ASF (Buckner et al., 2004). This leads to a

reduced data set with 7 predictors (including Age, Gender,

EDUC, SES,MMSE, nWBV, and ASF) for the prediction of CDR.

3. Proposed methodology

The key to obtaining an interpretable fuzzy system for

dementia diagnosis is to learn a collection of fuzzy if-then

production rules that are able to diagnose a subject given the

shown symptoms. With no loss of generality, the fuzzy system

to learn requires conducting the mapping ϕ :Xn → Y , where

Xn is the multidimensional domains for n input attributes taken

from a subject, and Y is the decision variable having L possible

diagnostic outcomes. As analyzed from the preceding section,

this article considers n = 7 input attributes (including Age,

Gender, EDUC, SES,MMSE, nWBV, and ASF) for the prediction

of whether the underlying subject is demented (thus L = 2 for

the output variable CDR). The behavior of the diagnostic system

will be trained following the supervised learning approach,

through the collection of M = 373 input-output example

pairs, where for each observation of the input variables xi =

(x11, . . . , x
k
i , . . . , x

n
i )

T , xki ∈ Xi, k = 1, 2, . . . , n, i = 1, 2, . . .M,

an associated class yi ∈ Y is indicated.

To outline the framework of the proposed approach,

Figure 4 illustrates the workflow of the model for diagnosing

dementia. In particular, The framework starts by constructing

an undirected graph, where the verse distance between each

pair of subjects represents the edge weight. This is followed

by using a peeling-off strategy, iteratively extracting from

the graph a dominant set, each representing a cluster of

subjects with high mutual similarities and maximality. This

sequential search enables the automatic detection of cluster

numbers, which are usually manually specified by conventional

clustering approaches. Each dominant set is then converted

into a parameterized fuzzy rule, and further optimized using

the supervised ANFIS neuro-fuzzy framework (Jang, 1993). The

following subsections introduce the proposed approach in detail.

3.1. Graph generation

The idea of dominant sets originates from the graph theory,

by which a continuous formulation of the maximum clique

problem is defined in Pavan and Pelillo (2006). Specifically,

an undirected graph G with weighted edges is represented as

G = (V ,E,ω), where V represents the set of graph nodes; the

edge set E ⊆ V × V includes all possible connections of nodes

in the pairwise relationships;ω :E → R is a real-valued function

which assigns a weight to each edge, reflecting similarity among

linked objects.

In the context of dementia diagnosis, an edge-weighted

undirected graph can be extracted, where vertices V correspond

to individual subjects xi and the edges ωij among the subjects

represent the strengths of links between pairs of vertices xi and

xj. As such, a |V|×|V| symmetric adjacencymatrixA = {aij}can

be generated to represent such graph. Specifically, the pairwise

similarity between subject xi and xj is measured by accounting

for input attributes values taken using a Gaussian kernel:

aij = 1i 6=jexp(−

n
∑

k=1

||xki − xkj ||
2
2/σ

2) (1)

where
∑n

k=1 ||x
k
i − xkj ||

2
2 measures the Euclidean distance

between subject xi and xj over the n predictors; σ is defined

as the variance of the pairwise distances; 1P = 1 if P is true, 0

otherwise, which indicates there are no self-loops in the graph

with all entries on the main diagonal A being zero.

3.2. Dominant set clustering

A dominant set (DS) can then be defined on the basis of

similarity values among nodes in V . Let S ⊆ V be a nonempty
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TABLE 2 Statistics of the data set.

Attribute Count Mean Std Min 25% 50% 75% Max

Age 373 77.013 7.641 60 71 77 82 98

EDUC 373 14.598 2.876 6 12 15 16 23

SES 354 2.460 1.134 1 2 2 3 5

MMSE 371 27.342 3.683 4 27 29 30 30

eTIV 373 1488.129 176.139 1106 1357 1470 1597 2004

nWBV 373 0.730 0.037 0.644 0.7 0.729 0.756 0.837

ASF 373 1.195 0.138 0.876 1.099 1.194 1.293 1.587

CDR 373 0.291 0.375 0 0 0 0.5 2

FIGURE 3

Correlation among attributes.

subset of patient subjects representing the nodes in the graph,

xi ∈ V and xj ∈ S. A measure of similarity between xi and

the average similarity of xj with respect to xj’s neighbors in S is

defined as:

φS(xi, xj) = aij −
1

|S|

∑

xk∈S

ajk. (2)

It can be observed that φS(xi, xj) can be either positive or

negative. The weight of xi with regard to S can be assigned

recursively as:

WS(xi) =







1 if |S| = 1
∑

xj∈S\{xi}
φS\{xi}(xj, xi)WS\{xi}(xj) otherwise. (3)

Intuitively, WS(xi) measures the overall similarity between

subject xi and the subjects of S \ {xi} with respect to the overall

similarity among the subjects in S \ {xi}. A positive WS(xi),

therefore, suggests that adding xi into its neighbors in S will

increase the internal coherence of the set, whereas a negative

value indicates a decreased overall coherence. The total weight
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FIGURE 4

Proposed framework.

of S can be computed as:

W(S) =
∑

xi∈S

WS(xi) (4)

Finally, a non-empty subset of subjects S ⊂ V such thatW(T) >

0 for any non-empty T ⊂ S, is said to be a dominant set if:

WS(xi) > 0, for all xi ∈ S, (5)

WS∪{xi}(xi) < 0, for all xi /∈ S. (6)

Dominant sets can then be identified by the solutions to the

linearly-constrained quadratic problem:

maximize f (z) = z⊤Az

subject to z ∈ 1
(7)

where

1 =
{

z ∈ RM :

M
∑

i=1

zi = 1 and zi ≥ 0 for all i = 1, · · · ,M
}

.

A strict local solution z∗ of Equation (7) is the named weighted

characteristic vector, where zi > 0 suggests that the node xi in

question is in a dominant set of G, and z⊤ is the transpose of z.

An effective optimization approach for solving Equation (7) is

given by the so-called replicator dynamics:

z
(t+1)
i = z

(t)
i

(Az(t))i

z(t)
⊤
Az(t)

, (8)

where i = 1, 2, · · · ,M. It has been proven that for any

initialization of z ∈ 1, its trajectory will remain in 1 with

the increase of iteration t. With the increasing of t in Equation

(8), the objective function f (z) in Equation (7) is either strictly

increasing or remains a constant. In practice, the stopping

criteria of the dynamic system can be set as a maximal number

of iteration t or a minimal increment of f (z).

3.3. Initializing fuzzy rules with dominant
sets

For the solution of replicator dynamics, A peeling-off

strategy is adopted by Pavan and Pelillo (2006), which iteratively

extracts a subset of subjects belonging to the same branch, i.e.,

a dominant set S, each time by using Equation (8) and repeats

the process in the new set of nodes V = V \ S. Within
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the framework of the dominant set, a dominant set enables to

represent a cluster, for it identifies a subset of objects satisfying

two basic properties of a cluster, i.e., the internal homogeneity

requesting that elements belonging to the cluster should have

high mutual similarities, and maximality indicating a cluster

cannot be further extended by introducing external elements.

The dominant sets-inspired clusters thus empower the

identification of major patterns arising from the input data,

which can then be converted into parameterized fuzzy rules

for further optimization. Note that different from traditional

clustering approaches that insist on partitioning all subjects, and

hence subjects that are not similar enough may be forced to

be put into coherent groups, the dominant set-based approach

considers the clustering as a sequential search of structures,

which enables to keep unstructured and diverse clutter. In

addition, the sequential search by following the peel-off strategy

empowers the automatic identification of cluster numbers

over that typically pre-determined by conventional clustering

approaches such as k-means.

Assume a cohort of dominant sets S1, . . . , Sd . . ., and SD is

extracted by the peel-off approach. Each dominant set can be

deemed as a special group that reflects characteristics bounded

by subjects from the underlying cohort. Thus, it is natural to

convert such dominant set/cluster Sd into a corresponding fuzzy

rule Rd in the form of:

If x1 is Ad
1 and ... and xn is Ad

n, Then zd (9)

where d = 1, 2, . . . ,D, with D representing the total number of

rules in the fuzzy system; xk, k = 1, . . . , n is the k-th domain

variable and takes values from Xk with Ad
k
denoting a fuzzy set

it may take; and zd is the rule consequent that describes the

diagnosis.

Given a collection of subjects x
(d)
1 , . . . , x

(d)
i , . . . , x

(d)
|Sd|

,

assigned to the exclusive cluster Sd, where |Sd| represents the

size or the total number of subjects included in this cluster,

the specification of fuzzy set Ad
k
for input attribute xk can

be implemented as follows. Although the specific membership

function used for a fuzzy set may be better considered as a result

of the consultation with clinical experts, this paper empirically

considers the use of popular Gaussian membership functions as:

µ
Ad
k
(xk) = exp(−(

xk − ck
d

σ k
d

)2) (10)

where ck
d
denotes the mean value and σ k

d
represents standard

deviation. Specifically, the mean value is initialized using the

average of subjects values projected into the corresponding

dimension as x
(d)
i , such that

ckd =

∑

xi∈Sd
xki

|{xi ∈ Sd}|
(11)

Similarly, the σ k
d
is computed by

σ k
d =

√

√

√

√

∑

xi∈Sd
(xki − ck

d
)2

|{xi ∈ Sd}|
(12)

The connection between individual logical predicates (e.g.,

x1 is Ad1) is then implemented using the product T-norm as

Tprod(a, b) = a · b, where a and b represent the truth values of

two logical statements. The consequence of the fuzzy rule can

then be specified by counting the majority of the class labels

of the responding subjects delimited by the underlying cluster.

As a result, the fuzzy rule mapped from an original dominant

set-inspired cluster Sd can be represented as

If x1 is e
−(

x−c1
d

σ1
d

)2

and ... and xn is e
−(

x−cn
d

σn
d

)2

, then zd = yd
(13)

where e
−(

x−ci
d

σ i
d

)2

is the Gaussian membership function for

attribute xi with ci
d

and σ i
d

computed as above, and yd
represents the decision label determined as the majority class

of the corresponding cluster. It is worth noting that apart from

being derivable in its whole domain, the Gaussian membership

function may be interpreted as, e.g., ’MMSE is Around 26’ when

its mean is 26 for MMSE, which eases its communication to

non-expert users in clinical practice.

3.4. Optimizing converted fuzzy rules
using ANFIS

The use of fuzzy rules comprised of fuzzy sets and fuzzy

logical operators offers an effective approach to dealing with

uncertainty and impression that commonly exist in medical

data. Moreover, a fuzzy rule-based system supports approximate

reasoning, which is closer to human reasoning and aims to

generate an inexact conclusion from inexact premises. However,

a direct transformation of dominant sets into fuzzy rules is

unlikely to generate accurate diagnoses for dementia, as the

rules directly resulting from clusters of unsupervised nature

may only identify rough input patterns without explicitly

utilizing the labeled outputs. As such, a supervised learning

procedure is required to fine-tune the parameters embedded

in the preliminary fuzzy system to best approximate the link

between input and output patterns in the data.

Particularly, the adaptive network-based fuzzy inference

system (ANFIS) (Jang, 1993) is utilized for subsequent

optimization, which is a popular Takagi-Sugeno-Kang (TSK)

fuzzy inference system that combines the parallel computation

and learning abilities of neural networks supported with the

knowledge representation and reasoning abilities of fuzzy

systems. The ANFIS structure can now be initialized with

previously generated fuzzy rules to be optimized further
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FIGURE 5

Adaptive network-based fuzzy inference system (ANFIS) framework.

by adapting associated fuzzy rule parameters for improved

performance.

The section under the framework of ANFIS discusses the

parameters to optimize and how the inference of approximate

reasoning is performed to reach an overall diagnosis through

matching individual fuzzy rules. To ease the illustration, only the

two most significant features are used, i.e., MMSE and nWBV,

which have the greatest correlation with the diagnosis as shown

in Figure 3. Suppose only two fuzzy rules learnt by the dominant

set-based clustering for a simplified illustration, which are into

the following TSK fuzzy rules:

Rule 1: If MMSE is A1
1 and nWBV is A1

2, Then z1 = y1

Rule 2: If MMSE is A2
1 and nWBV is A2

2, Then z2 = y2
(14)

where A1
1 and A1

2 are fuzzy sets for variable MMSE and nWBV

in Rule 1, and A2
1 and A2

2 for Rule 2. The flat fuzzy rule base

consisting of the two above rules can be converted under the

neuro-fuzzy ANFIS framework as shown in Figure 5, where

parameters embedded in the square nodes are allowed to adapt,

whereas the circle nodes remained fixed throughout the learning

process. The workings of individual ANFIS layers are detailed

below.

Layer 1 contains several square nodes—each defines a

membership function µ
Ad
k
(xk) of variable xk for the d-th rule.

For instance, A2
1 is the membership function of the first variable

(MMSE in this case) for second rule. The specification of each

membership function involves the computation of mean and

SD, which follows as per Equations 11 and 12. These premise

parameters are subject to be adjusted in subsequent learning

processes.

Layer 2 contains several circle nodes—each accumulates the

incoming firing degrees through the product logical operator.

The firing strength wd for Rule d, d = 1, 2 can thus be

represented as:

O2
d = wd = µ

Ad
1
(x1)× µ

Ad
2
(x2) (15)

Layer 3 contains several circle nodes—each computes the

normalized contribution of the ith rule’s firing strength over the

total contributions made by all rules:

O3
d = wd =

wd
∑D

d=1 wi

(16)

where D represents the total number of rules available (D = 2

for the present example).

Layer 4 contains square nodes, each computed with the

following function:

O4
d = wdzd = wd(yd) (17)

where yd is a polynomial of input values and contains

parameters to be optimized further (termed the consequent

parameters). Note the choice of a zero-order rule consequent in

this article makes it possible to interpret the classification for

clinical decision support, whereas commonly used first order

TSK rules such as zd = pdx
1 + qdx

2 + yd where pd and qd
are additional parameters, suit better for regression problems.

Layer 5 contains a single circle node in this output layer that

calculates the overall output given the underlying instance as

O5
1 =

∑

d

wdzd = z (18)

The above details the computation of how an instance is mapped

against the ANFIS layers. Parameters embedded in the structure,

including the premise and consequent parameters, are then

tuned through a hybrid optimization method. In each training

epoch, consequent parameters are optimized using the least
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FIGURE 6

Clustering by dominant sets.

squares estimation method in a forward pass; while premise

parameters are determined using gradient descent in a backward

pass. The details of such computation are beyond the article’s

scope but can be identified in Jang (1993).

4. Experimentation and discussions

The experimentation and discussions of the proposed

approach are provided in this section, including the

demonstration of an illustrative example, as well as further

studies compared with alternative popular machine learning

techniques.

4.1. Illustrative example

This subsection demonstrates how the proposed approach

may be employed to effectively supporting in clinical decision

making. For the sake of visualization, only the two most

significant features as calculated in Figure 3 are used, i.e., the

MMSE and the nWBV. It is worth noting that all seven attributes

introduced in Section 2.2 have been used to construct themodels

for systematic evaluations to present in Section 4.2.

In order for the DS-based clustering algorithm to work,

the similarity between pairs of instances is calculated as

per Equation 1. The peeling-off approach is then used to

iteratively extract a cluster of instances that possess the internal

homogeneity and maximality as per described in Section III-B.

As a result, nine clusters are generated as shown in Figure 6.

Different from traditional clustering approaches that are based

on the idea of partitioning the input data into a predetermined

number of classes, one of the biggest advantages of using the

DS-based approach is that it enables to automatically detect

unstructured and diverse clutter such as the 9-th cluster in

Figure 6, while also empowering the automatic determination of

clustering number. Whereas, traditional clustering approaches

based on the idea of partitioning the input data into a

predetermined number of classes could potentially force to

merge the two noisy points in cluster 9 with the main

cluster, especially when the predetermined cluster number is

inappropriately specified, which is practically difficult when

working with high dimensional data.

Each extracted cluster is then converted into a fuzzy rule.

This is executed by first projecting instances within the cluster

into each dimension axis and computing the mean and SDs to

initialize the Gaussian membership functions as per Equation

(11) and (12). The rule consequent is then determined by voting

the majority of class labels. A rule base consisting of nine fuzzy

rules can be represented in Figure 7, which demonstrates each

rule in fuzzy (in the form of Gaussian membership functions)

and linguistic (in the form of fuzzy numbers) terms. For

instance, Rule 1, which should have been as follows in fuzzy

terms,

• If MMSE is e
−

(x−0.96)2

2∗0.042 and nWVB is e
−

(x−0.48)2

2∗0.102 , Then test

Negative.

can be simplified by converting the associated Gaussian

membership function into a center-based fuzzy number (in this

case, “MMSE is e
−

(x−0.96)2

2∗0.042 ” can be communicated as “when

MMSE is around 0.96” to facilitate its communication in clinical

practice). Note the domain of each feature space has been

normalized in the unit interval to enhance model generalization

capability that might be affected by features with large domains.

The neuro-fuzzy ANFIS framework is then utilised to

optimize previously converted fuzzy rule base by fine-tuning

both antecedent and consequent parameters in Figure 8. To

demonstrate how reasoning is conducted through the obtained

fuzzy rule base for aiding clinicians to reach a diagnosis,

consider a patient of the following test results, i.e., (MMSE =

24, nWBV = 0.771), which are then normalized as (MMSE ≈

0.761, nWBV ≈ 0.664) as shown with the red lines in

Figure 7. The proposed approach starts by computing the

matching degree of each available crisp test result against the

membership functions of the associated fuzzy sets for the

underlying variable. This can be visualized to demonstrate the

level of fulfillment through the yellow patches in the Gaussian

membership functions, which are annotated using linguistic

fuzzy numbers in the example, to support the communication

and understanding of derived knowledge to non-fuzzy experts

such as clinicians and patients.

Once the firing degrees of the membership functions

are calculated with respect to the corresponding antecedent

variables for a given rule, the overall matching degree with

respect to all rule condition variables is computed by applying
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FIGURE 7

Fuzzy rule base and inference process.

FIGURE 8

Adaptive network-based fuzzy inference system structure.

the associated fuzzy operator (i.e., the product operation in this

example). The resultant activation strength of a given rule is then

normalized to calculate its contribution relative to those from

alternative rules in the rule base. The consequents of individual
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FIGURE 9

Resultant rule base after ANFIS optimization.

rules weighted by the associated normalized activation degrees

are finally averaged to produce the overall output of the entire

reasoning process. In this example, the overall outcome for the

given instance is 0.776, which can be rounded to 1, suggesting a

positive diagnosis, along with a confidence of 77.6%.

To demonstrate the effect of ANFIS optimization, Figure 9

shows the resultant rule base. From a holistic perspective,

the number of rules with the selection of associated variables

remains identical, which is expected as ANFIS only optimizes

parameters embedded in rule antecedents and consequents

without touching the rule base structure. For rule antecedents

parameters, numerous adjustments of the parameterized centers

and standard deviations of the Gaussian membership functions

can be observed, but with most being non-dramatic except

the two for MMSE in Rule 1 and 2 that have clearly been

shrunk and moved after optimization. The ANFIS has also

optimized rule consequents that can be interpreted as rule

confidence levels through the position of the cyan bars, which

can be clearly observed in Rule 1,2,7, and 8. These changes have

collectively resulted in a more powerful diagnostic model that

better characterizes patterns exhibited in the underlying patient

group, as to be systematically examined in the next subsection.

It is also worth noting that instead of calculating the exact

confidence, the weighted average of firing degrees across all rule

consequents can also be visualized through the blue bars that

represent the firing degrees of associated rules in Figure 9. In this

example with regard to the same patient used above, only Rule 5

and 7 are fired to the level as shown by corresponding blue bars.

These resulted in an overall weighted average encoded as the red

bar that represents the final decision. The decision confidence

can be visualized through the relative position of the red bar

to the two outmost points, representing a clear negative and

positive diagnosis, respectively. As such, this example suggests

a positive diagnosis, which the red bar is much closer to.

In summary, the given example demonstrates not only an

interpretable system, which delivers human-readable rules but

also supports explaining the overall decision by decomposing

it into component decisions made by individual rules through

a robust inference framework. Furthermore, the fuzzy rule-

based system supports approximate reasoning that allows to

partially match the given symptoms with multiple rules to

varying degrees. This enhances the toleration level of any

crisp rule-based system, which either matches inputs to full or

none and may, thus, be sensitive to noisy outliers commonly

arising from clinical data. This is further supported by an

illustrative demonstration such as Figure 9 that could clearly

demonstrate the level of fulfillment and decision preference

through highlighted patches and bars while omitting as much
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TABLE 3 E�ect of parameter tuning with classification accuracy (%).

Run DS-ANFIS DS #Rules

1 82.01 ± 6.92 68.83± 9.72 13.6

2 81.77 ± 6.71 67.01± 7.19 13.8

3 81.77 ± 6.50 69.41± 8.20 13.9

4 80.46 ± 6.72 68.64± 7.15 14.1

5 81.23 ± 5.68 65.38± 10.40 14.1

6 81.49 ± 7.66 66.49± 9.92 14

7 80.43 ± 7.27 67.06± 6.34 13.7

8 81.79 ± 3.66 64.27± 9.32 13.9

9 81.79 ± 6.85 65.92± 8.02 14.4

10 84.21 ± 4.99 69.72± 4.62 14.2

Average 81.694 ± 1.05 67.274± 1.83 13.97

mathematics as possible, hence further enhancing the delivery

of the extracted knowledge to lay users.

4.2. Systematic evaluation

In order to systematically assess the performance of

the proposed system, the stratified 10-fold cross-validation

(10-CV) is employed, where the full OASIS-2 data set is

partitioned into ten subsets, with each subset used in turn

to assess the performance of the fuzzy system trained on

the remaining nine subsets. This 10-CV is then repeated 10

random times with results averaged to generate the experimental

results below.

Table 3 explores the effect of fine-tuning using the

supervised ANFIS framework, where the DS column specifies

the performance of fuzzy rules directly extracted from dominant

set-based clustering and DS-ANFIS presents the fuzzy rules

optimized by ANFIS. Note the results shown in each run are

on the basis of the same random seed, suggesting both DS-

initialized fuzzy rules are exactly identical. As shown in Table 3,

the SDs within each run are generally much higher than those

averaged over the 10 whole runs. This is expected as the

performance variations among each fold of the 10-CV tend to

be large with the selection of different training and testing data,

whereas the variations of the averaged accuracies across different

runs tend to be small.

It is not surprising that DS-ANFIS exhibits better

performance across all random runs, owing to the learning of

rule parameters in a supervised manner. Overall, DS-ANFIS

clearly outperforms DS with a margin of over 14%, which

demonstrates the necessity to fine-tune the initialized converted

fuzzy rules in a supervised manner. The last column of Table 3

demonstrates the number of dominant sets extracted, thus

the cardinality of the resultant fuzzy system. With fewer than

14 rules on average, this implies the size of the fuzzy rule

base resulting from the automatic determination of DS-based

clustering is compact, which makes it possible to interpret by

human experts (Chen et al., 2018).

Figure 10 presents the full results after performing 10

random times of a 10-CV, resulting in a total number of 3,730

instances in the contingency table/confusion matrix. Both the

number of observations and the percentage of the total number

of observations are shown in each cell. The rows correspond to

the actual diagnosis (ground truth) and the columns correspond

to the predicted diagnosis by the proposed approach. The

first two diagonal cells show the number and percentage of

correct classifications by DS-ANFIS. As such, 1,798 instances are

correctly classified as non-demented, corresponding to 48.2% of

all 3,730 instances; while 1,249 cases are correctly classified as

demented, corresponding to 33.5% of all instances. Conversely,

11.3% of demented instances on the off-diagnosis are incorrectly

categorized as non-demented; while 7.0% of normal cases are

incorrectly classified as demented. Overall, these result in the

precision = TP
TP+FP = 82.7%; recall = TP

TP+FN = 74.7%;

specificity = TN
TN+FP = 87.3%.

To evaluate further the performance of the proposed

approach, this article compares several popular (non-fuzzy)

machine learning and fuzzy rule-based classifiers, which are

summarized as follows.

J48 is a JAVA implementation of the popular C4.5 decision

tree algorithm. It has been described as “a landmark decision tree

program that is probably the machine learning workhorse most

widely used in practice to date" (Witten et al., 2016) and ranked

as #1 in the Top 10 Algorithms in Data Mining eminent article

by Wu et al. (2008).

SVM (Shawe-Taylor and Sun, 2011) has a sound theoretical

foundation based on the statistical learning framework, requires

only a dozen examples for training, and is insensitive to the

number of dimensions (Wu et al., 2008). It has been noted as

the most commonly applied method for dementia diagnosis in

several recent surveys (Pellegrini et al., 2018; Tanveer et al.,

2020).

RandomForest (Verikas et al., 2011) is a powerful ensemble

learning method for predictive modeling that operates by

constructing a multitude of decision trees, whose predictions

are then combined through a majority vote to reach an overall

decision. Random Forest has also been commonly used for a

large variety of tasks including dementia diagnosis (Pellegrini

et al., 2018; Tanveer et al., 2020).

SGERD (Mansoori et al., 2008) extract a compact set of fuzzy

rules based on a novel steady-state genetic algorithm, in which

a non-random selection mechanism supports that only the best

individuals can survive, with an enhancing function to further

assess the candidate rules more effectively before selection.

SLAVE2 (García et al., 2014) learns fuzzy rules of a

disjunctive normal form in an iterative manner. As an

improved version of SLAVE (Gonzblez and Pérez, 1999),

SLAVE2 proposed novel calculus of the positive and negative
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FIGURE 10

Contingency table/confusion matrix.

TABLE 4 Comparison of classification accuracy (%) against alternative approaches, with v, -, and * suggesting statistically better, same, and worse

performance than the proposed work at p < 0.01.

Run DS-ANFIS J48 SVM RandomForest SGERD SLAVE2 QuickRules

1 82.01 ± 6.92 79.12± 6.87 78.58± 7.85 80.17± 4.88 71.63± 5.38 79.61± 4.10 76.12± 8.45

2 81.77 ± 6.71 78.05± 5.29 77.48± 4.08 80.45± 3.91 75.85± 6.22 78.80± 6.40 77.20± 4.79

3 81.77 ± 6.50 78.26± 6.82 78.27± 6.65 80.95± 4.16 75.59± 5.06 78.26± 4.74 79.37± 8.46

4 80.46± 6.72 77.99± 4.47 77.20± 4.86 82.53 ± 7.20 77.21± 4.39 78.56± 5.63 78.77± 7.73

5 81.23 ± 5.68 78.02± 4.97 77.43± 6.11 80.94± 7.94 76.38± 8.32 79.65± 6.00 78.55± 7.54

6 81.49 ± 7.66 77.97± 6.31 76.93± 4.28 81.47± 6.87 76.44± 7.62 76.64± 7.43 77.16± 7.58

7 80.43± 7.27 77.25± 7.64 78.28± 4.85 79.64± 4.35 74.77± 10.91 80.72 ± 3.82 78.85± 5.80

8 81.79± 3.66 76.63± 5.56 79.04± 7.04 82.28 ± 6.69 72.99± 8.22 79.90± 4.68 80.93± 6.98

9 81.79± 6.85 78.02± 7.79 77.77± 6.75 82.02 ± 6.78 72.61± 9.05 79.62± 6.75 79.04± 7.51

10 84.21 ± 4.99 77.45± 7.97 78.02± 4.68 83.09± 6.27 73.98± 8.57 80.11± 5.53 80.17± 7.17

Average 81.694 ± 1.05 77.876± 0.66 77.900± 0.66 81.354± 1.12 74.744± 1.87 79.186± 1.16 78.616± 1.45

Ttest p-value 4.82E-06 (*) 1.77E-06 (*) 0.3594 (-) 1.00E-05 (*) 3.89E-04 (*) 1.66E-04 (*)

TABLE 5 Friedman test result.

Comparison Pool Hypothesis (α = 0.01) p-value Statistic

DS-ANFIS, J48, SVM, RandomForest, SGERD, SLAVE2, QuickRules Reject 0.00000 40.02724

examples, fitness functions, and genetic operators to support the

identification of individuals’ fuzzy rules.

QuickRules (Riza et al., 2014) is a novel hybrid approach for

fuzzy-rough set rule induction. By performing feature selection

and rule induction simultaneously, the generated rule sets are

guaranteed to be compact and transparent.

As reviewed in Sections I and II, J48, SVM, and

RandomForest have been extensively used in numerous works

for dementia diagnosis, while SGERD, SLAVE2, and QuickRules

commonly serve as benchmark fuzzy systems in various

domains including healthcare. Note the implementations of

J48, SVM, RandomForest, and QuickRules can be found in

WEKA software (Witten et al., 2016), while those of SGERD and

SLAVE2 can be found in the KEEL software (Alcalá et al., 2010),

all with default parameter settings.

Table 4 shows the performances of 10 random runs in

terms of accuracy. Overall, the proposed DS-ANFIS and

RandomForest are the only algorithmswith over 80% accuracies.

Supported with the two-tale paired t-test at the significance level

of 0.01, the proposed method statistically beats SVM, the most

popular classifier in dementia diagnosis, as well as J48 and the

three recent fuzzy rule-based methods. In spite of slightly better

overall accuracy, it is statistically equivalent to the powerful

random forest method.
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FIGURE 11

Ranks of algorithms.

TABLE 6 Results of Finner’s procedure with DS-ANFIS as the control

method.

Comparison Statistic Adjusted Hypothesis

p-value (α = 0.05)

DS-ANFIS vs. SGERD 5.69304 0.00000 Rejected

DS-ANFIS vs. SVM 4.03688 0.00016 Rejected

DS-ANFIS vs. J48 3.72635 0.00039 Rejected

DS-ANFIS vs. QuickRules 2.69126 0.01066 Rejected

DS-ANFIS vs. SLAVE2 2.27722 0.02727 Rejected

DS-ANFIS vs. RandomForest 0.41404 0.67885 Accepted

However, the pairwise t-test procedure is not able to

derive an overall conclusion involving more than one pairwise

comparison, as the error will be accumulated from its

combinations, which is the family-wise error rate, defined

as the probability of making one or more false discoveries

among all the hypotheses when performing multiple pairwise

tests (Demšar, 2006). To further validate the overall superior

performance that DS-ANFIS possesses over its alternatives, non-

parametric statistical tests are also employed here. In particular,

the Friedman test (Demšar, 2006) (Friedman two-way analysis

of variances by ranks) is applied to detect whether there is

indeed any statistically significant difference among the seven

algorithms as a group. The Friedman test applies when the

number of datasets n or the number of classifiers for comparison

k is large, i.e., n > 15 or k > 4 - in our case, although

we only have 10 sampled sets through cross-validation, the 6

alternative classifiers used for comparison make the Friedman

test appropriate.

Based on the results from Table 4, the Friedman test is

employed resulting in the rankings as calculated in Figure 11,

where the average ranking obtained for each algorithm are

proportional to the bars. The lowest bar, which corresponds

to the most powerful algorithm statistically, is consistent

with the best averaged accuracies achieved by DS-ANFIS

in Table 4. Experimentation continues to examine whether a

statistically significant difference exists among the collection

of errors through the Friedman test. The p-value, as shown

in Table 5, is the probability that rejects the null hypothesis,

i.e., no statistically significant difference occurs among the

performances of the seven models. The null hypothesis can

therefore be clearly rejected in Table 5, in the case of the

significance level being α = 0.01, confirming the existence of

such significant statistical differences in results obtained by these

classifiers as a whole.

Despite the Friedman test enabling to detection of significant

differences with respect to a collection of models as a whole,

it does not support the explicit identification of comparisons

when having a particular model as a control method against

the remaining alternatives. As the proposed approach and

the best performing classifier, it is of natural appeal to

use DS-ANFIS as the control method in comparison to

six competitors. The standard Finner’s procedure (Demšar,

2006) is applied to run the test, calculating the adjusted p-

values, with further results presented in Table 6. According

to the p-values, the null hypothesis that there exists no

significant performance difference between the proposed DS-

ANFIS and SGERD, SVM, J48, QuickRules, or SLAVE2 is

rejected at the level of significance specified by α = 0.05. In

comparison with the powerful random forest, the conclusion

of no statistical difference remains consistent with that of the
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TABLE 7 Run time (in seconds) comparison.

Run DS-ANFIS J48 SVM RandomForest SGERD SLAVE2 QuickRules

1 3.34 0.12 0.17 0.25 1.72 32.12 1.00

2 2.79 0.08 0.09 0.17 1.94 55.20 0.88

3 2.67 0.06 0.07 0.12 2.08 43.60 0.94

4 2.67 0.02 0.08 0.14 1.90 44.99 0.78

5 2.69 0.04 0.07 0.18 1.88 45.94 0.87

6 2.78 0.04 0.12 0.13 2.25 41.98 0.76

7 2.59 0.00 0.06 0.12 2.24 34.50 0.72

8 2.84 0.04 0.06 0.18 2.78 36.01 0.86

9 2.68 0.02 0.06 0.14 2.29 33.20 0.80

10 2.85 0.04 0.09 0.14 2.18 34.91 0.84

Average 2.79± 0.21 0.05± 0.03 0.09± 0.03 0.16± 0.04 2.12± 0.30 40.25± 7.36 0.85± 0.08

previous t-test result. Despite the competitive performance

of the random forest classifier, which is generally considered

a black-boxed approach without interpretability (Song et al.,

2013), the proposed method as demonstrated above is superior

in providing explainability, which allows to track back how

the dementia diagnosis may be achieved, markedly facilitating

clinical decision support.

To give an overview of the run time overheads executing

the proposed method in practice, Table 7 summarizes the

run time (in seconds) in comparison with the alternatives.

The implementation of the proposed method was undertaken

through Matlab run in a laptop configured with Intel i7-

7500 CPU and 8192M RAM. It is worth noting that the

proposed implementation was not purposefully optimized to

achieve the best run time efficacy, therefore, the run time

efficiency could potentially be further improved where a more

carefully calibrated implementation is employed. In comparison

with the fuzzy alternative SGERD with a cost of 2.12 s,

DS-ANFIS executes the program with slightly more time of

2.79 s but with a significant performance gain of 81.69%

over SGERD of 74.744% as previously summarized. The

proposed algorithm is significantly faster compared to the

popular SLAVE2 that is also implemented in KEEL software

(Alcalá et al., 2010) like SGERD, which is possibly due to

the SLAVE2 learns fuzzy rules employing the evolutionary

algorithm that is population-based and takes longer to converge.

The running of J48, SVM, RandomForest, and QuickRules

generally takes less than 1 s, which is likely attributed

to the use of the highly optimized WEKA (Witten et al.,

2016) platform. Despite the differences in run time costs

may partly result from the use of different implementation

platforms and/or various level of code optimizations by

different researchers, it’s reasonable to conclude the run

time overhead of the proposed method is efficient in

practice that only costs less 0.3 s on average for a single

execution.

5. Conclusion

This article has proposed a novel approach that learns

an interpretable fuzzy rule-based system for clinical decision

support of dementia diagnosis. It adapts the concept of

dominant sets that arises from the study of graph theory and

formulates the dementia diagnosis as a pairwise clustering

problem. A peeling-off strategy is then used, which iteratively

extracts from the constructed edge-weighted graph a dominant

set, enabling it to automatically detect a fixed set of clusters. Each

dominant set is then converted into a parameterized fuzzy rule,

which is further optimized in a supervised adaptive network-

based fuzzy inference framework.

The experimental results demonstrate an interpretable

system comprised of human-readable rules, and how it may

be employed to explain an overall decision by decomposing

the contributions made by individual rules through a robust

inference framework, thus facilitating clinical decision support.

The interpretation is also supported by the generation of a

reasonable rule base size consisting of fewer than 14 rules

on average per fuzzy system. This is further supported by an

illustrative representation of the learned knowledge and the

reasoning process through the example in Section 4.1, which

enhances the communication and delivery of these results

to non-expert users. Further comparative studies have shown

that the proposed work achieves statistically better or at least,

comparable performance to state-of-the-art fuzzy and non-fuzzy

alternatives.

Interesting future study remains for further development,

despite promising results. This includes evaluating it on

dementia data sets on a larger scale, especially where subjects are

available across different severity levels for multi-class diagnosis

and fine-tuning the ANFIS framework for further optimization.

Finally, future studies will also include developing an integrated

approach that enables the fuzzy system to directly work with

missing values that commonly exist in dementia research.
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