

[Public]

White Paper | TECHNICAL GUIDANCE FOR
MITIGATING BRANCH TYPE
CONFUSION

REVISION 1.0 2 0 2 2 - 0 7 - 1 2

This white paper is a technical explanation of what the discussed technology
has been designed to accomplish. The actual technology or feature(s) in the
resultant products may differ or may not meet these aspirations. Each
description of the technology must be interpreted as a goal that AMD strived to
achieve and not interpreted to mean that any such performance is guaranteed
to be fully achieved. Any computer system has risks of security vulnerabilities
that cannot be completely prevented or mitigated.

WHITE PAPER: TECHNICAL GUIDANCE FOR MITIGATING BRANCH TYPE CONFUSION 2 REVISION 1.0 2022/07/12

[Public]

WHITE PAPER: TECHNICAL GUIDANCE FOR MITIGATING BRANCH TYPE CONFUSION 3 REVISION 1.0 2022/07/12

[Public]

1. INTRODUCTION
Branch Type Confusion (BTC) is a speculative side channel attack in which the type of branch predicted by the
CPU branch predictor does not match the actual instruction bytes. In some cases, this can lead to speculative
execution at a target chosen by an attacker, potentially leading to information disclosure. Existing mitigations
for indirect branch speculation, such as for Spectre v2, are not sufficient to mitigate all BTC cases and additional
mitigations may be required.

This paper explains how AMD has analyzed the BTC vulnerability and the conditions that can cause BTC. It also
details various techniques that AMD has developed to help mitigate the different forms of BTC. AMD encourages
developers to review this guidance and determine the appropriate mitigations for their environments.

Not all AMD processors are affected by BTC. For a detailed list of affected processors and available mitigations,
please see Appendix: Table of Affected Processors at the end of this document.

2. BTC EXPLANATION
The Branch Target Buffer (BTB) is a microarchitectural structure in AMD CPUs that assists with branch
prediction. The BTB is indexed by a combination of bits from the instruction pointer (RIP) and holds
information about the location, type, and in some cases target of branches. The BTB is accessed by hardware at
the beginning of the CPU pipeline while instruction bytes are being read. The information from the BTB, along
with the instruction bytes, are then passed to the decode stage of the pipeline.

As noted, the BTB information includes prediction information about branches that may or may not be
located in the instruction bytes read. During the decode stage, this information is compared against the actual
instruction bytes. For various reasons it is possible that the prediction information provided to the decode
stage may be incorrect. For instance, the BTB may predict that a branch exists at a certain byte offset in the
cacheline, but in fact that offset is in the middle of another instruction. This scenario primarily occurs due to
aliasing in the BTB, where multiple cachelines map to the same BTB entry, but can also arise due to
conditions like self-modifying code.

BTC arises from the specific case where the BTB correctly predicts the location of an instruction within
the cacheline but incorrectly predicts the presence or type of branch. For example, the BTB may predict that
an indirect jump exists at a certain location, but in reality, that location contains a conditional branch.

On affected AMD processors, speculation at the target predicted by the BTB may occur even if the branch
type or presence was predicted incorrectly. When an attacker is able to control the target of speculation,
along with sufficient registers, they may be able to create a side channel which leaks sensitive data similar
to Spectre v2 (CVE-2017-5715).

WHITE PAPER: TECHNICAL GUIDANCE FOR MITIGATING BRANCH TYPE CONFUSION 4 REVISION 1.0 2022/07/12

[Public]

3. BTC ANALYSIS
To help classify the different types of BTC, we divide the
actual and predicted branch types into four groups as
shown in Table 1.

BTC occurs when there is a mismatch between the
predicted and actual branch groups, as shown in Table
2. Note that in the case of a direct branch, the BTB may
correctly predict the type of branch but incorrectly
predict the target (e.g., predict a Jcc is taken but to an
address that is not the actual branch target). For
simplicity, this case is also tracked as a type of BTC.

TABLE 1: BRANCH TYPE GROUPS

 TABLE 1: BRANCH TYPE GROUPS

ACTUAL INSTRUCTION PREDICTION RESULT (ON FAMILY 17h1)

No Branch

Direct Early Redirect

Indirect Early Redirect

RET Early Redirect

Direct

No Branch Early Redirect

Direct (wrong target) Early Redirect

Indirect Early Redirect

RET Early Redirect

Indirect

No Branch Late Redirect

Direct Late Redirect

RET Late Redirect

RET

No Branch Late Redirect

Direct Late Redirect

Indirect Late Redirect

TABLE 2: BTC CASES

As shown in the table, on affected processors the pipeline behavior depends exclusively on the actual
instruction bytes. If the actual instruction is not a branch or is a direct branch, an “early redirect” occurs
where the decode unit signals a pipeline flush and execution is redirected at the correct target. If the actual
instruction was an indirect branch or return, a “late redirect” occurs where the branch must execute in the
ALU before the pipeline is flushed.

The amount of speculation that may occur at the incorrectly predicted target is dependent on the type of
redirect that occurs. In the late redirect case, the processor will not flush the pipeline until the branch
executes. This means that anything which delays the execution of the branch, such as a cache miss to
determine the branch target, can extend the speculation window allowing a larger number of instructions to
execute speculatively.

In the early redirect case, the speculation is more limited as the pipeline is quickly flushed when the branch
type mismatch is detected. On affected CPUs, some speculation at the predicted target may however, still be
observed even after an early redirect.

Based on AMD analysis to date, the speculation that may occur at the predicted target in the early redirect
cases is limited and two dependent loads (e.g., a load-load gadget) will not be able to execute before the
pipeline is flushed. A single load however, may be observed. As a result, a possible disclosure gadget is limited
to values already present in the CPU registers at the time of the prediction.

1 For further details about different processor generations, see Table of Affected Processors p.11

GROUP DESCRIPTION

No Branch

Instructions never predicted as
taken branches. Includes non-
branch instructions (e.g., ADD) as
well as far branches (e.g., CALL far)
which are never predicted as
taken

Direct
RIP-relative branches (Jcc, JMP
near, CALL near)

Indirect
Indirect branches (JMP indirect,
CALL indirect)

RET RET instructions (RET, RET imm)

WHITE PAPER: TECHNICAL GUIDANCE FOR MITIGATING BRANCH TYPE CONFUSION 5 REVISION 1.0 2022/07/12

[Public]

In the rest of this paper, we refer to the different BTC scenarios based on the actual instruction bytes. BTC-
NOBR refers to branch type confusion on an instruction that is in the “no branch” group. BTC-DIR, BTC-IND,
and BTC-RET refer to the branch type confusion cases when the instruction is a direct, indirect, or return
instruction respectively.

CVE-2022-29900 has been assigned for BTC-RET, and CVE-2022-23825 for the other three cases.

4. SCOPE OF BTC
The speculation that occurs due to BTC is constrained to the active address space and is subject to standard
page table and permissions checks as described in [1]. Existing speculation mitigations that involve
restricting the address space and/or isolating workloads in unique process contexts remain effective for BTC.

Due to these restrictions, AMD believes that BTC is primarily a concern for operating systems and
hypervisors, as well as software which implements “sandboxing”. For example, AMD believes that if
exploited, BTC may be able to be used to leak kernel data to user-space, or hypervisor data to a guest virtual
machine (VM). AMD does not believe that BTC is exploitable for inter-process or inter-VM scenarios in most
up-to-date operating systems or hypervisors. As discussed later in this paper, flushing the BTB structure
with the Indirect Branch Prediction Barrier (IBPB) operation mitigates all forms of BTC and this operation is

typically performed when switching between user processes or VMs.

5. EXISTING MITIGATIONS
Although BTC may occur in all the cases described in Table 2, operating systems and hypervisors typically
implement a variety of existing protections for other speculation related vulnerabilities. Many of those
existing mitigations eliminate BTC cases too.

AMD’s recommended mitigations for CVE-2017-5715 (Spectre v2) include the use of the Indirect Branch
Restricted Speculation (IBRS) mode or the use of ‘retpoline’ (mitigations V2-1 and V2-4 in [2]). On
processors affected by BTC, IBRS prevents speculation at the predicted target of any instruction that is
decoded as an indirect branch, regardless of the predicted branch type. In contrast, retpoline works by
eliminating all uses of indirect branches. Either of these effectively mitigate all cases of BTC-IND.

AMD has also previously recommended mitigations for transient speculation that may occur following an
indirect branch, return, or following a direct branch (CVE-2021-26341) as described in mitigation G-5 in [2].
These mitigations eliminate so-called “straight-line speculation” (SLS) that occurs when these branches are
not predicted by the BTB, meaning the predicted branch type is “No Branch”. We refer to these mitigations as
“SLS Protection”.

Finally, branches that are predicted as ‘ret’ instructions get their predicted targets from the Return Address
Predictor (RAP). AMD recommends software use a RAP stuffing sequence (mitigation V2-3 in [2]) and/or
Supervisor Mode Execution Protection (SMEP) to ensure that the addresses in the RAP are safe for
speculation. Collectively, we refer to these mitigations as “RAP Protection”.

Applying these existing mitigations reduces the number of BTC cases as shown in Table 3.

WHITE PAPER: TECHNICAL GUIDANCE FOR MITIGATING BRANCH TYPE CONFUSION 6 REVISION 1.0 2022/07/12

[Public]

ACTUAL INSTRUCTION PREDICTION RESULT (ON FAMILY 17h)

No Branch

Direct Early Redirect

Indirect Early Redirect

RET Safe (RAP Protection)

Direct

No Branch Safe (SLS Protection)

Direct (wrong target) Early Redirect

Indirect Early Redirect

RET Safe (RAP Protection)

Indirect

No Branch Safe (IBRS/Retpoline)

Direct Safe (IBRS/Retpoline)

RET Safe (IBRS/Retpoline)

RET

No Branch Safe (SLS Protection)

Direct Late Redirect

Indirect Late Redirect

TABLE 3: BTC CASES AFTER EXISTING MITIGATIONS

6. NEW MITIGATIONS
This section describes new mitigations that AMD has developed for various BTC cases. Not all mitigations
may be available on every affected processor. Please refer to Appendix: Table of Affected Processors for
details.

Some of the mitigations included in this document may have effects on system performance when enabled.
AMD recommends that customers evaluate the risk profile of their workloads to determine which
mitigations are most appropriate for their environments.

6.1 Mitigations for BTC-RET

6.1.1 JMP2RET
Jmp2Ret is a software-based mitigation that mitigates BTC-RET by ensuring that an attacker-controlled BTB
entry is never used for predicting privileged ‘ret’ instructions. It consists of two primary elements. First, all
‘ret’ instructions are consolidated into a single piece of code. Instead of functions ending with a ‘ret’
instruction, they instead end with “jmp __ x86_return_thunk”. Second, upon entry into privileged code,
software safely trains the BTB entry for __x86_return_thunk so attacker-controlled prediction information is
not used.

Consolidating function returns into a single thunk location may be
assisted through the use of the GCC/Clang “-mfunction-return=thunk-
extern” option. It is important to note that all ‘ret’ instructions that
may be reachable at runtime should be consolidated to the thunk.
This includes the ‘ret’ instruction in the retpoline sequence (if used),
as well as any ‘ret’ instructions emitted dynamically by privileged
code, such as eBPF.

The second element of jmp2ret is the safe training of the thunk code
upon kernel/hypervisor entry. AMD recommends the training
sequence as shown in Figure 1 that works for 32/64-bit mode on
affected processors. Upon kernel/ hypervisor entry, software should
execute ‘call __ x86_return_ thunk_train’ to safely train the thunk code.

FIGURE 1: JMP2RET TRAINING CODE

.align 64

.fill 63, 1, 0xcc

 x86_return_thunk_train:

.byte 0x3d

 x86_return_thunk:

ret

lfence

lfence

jmp x86_return_thunk

int3

WHITE PAPER: TECHNICAL GUIDANCE FOR MITIGATING BRANCH TYPE CONFUSION 7 REVISION 1.0 2022/07/12

[Public]

ret lfence

3d c3 0f ae e8 0f ae e8 eb f7 cc

cmp $0xe8ae0fc3,
%eax

lfence jmp
x86_return_thunk

Training the thunk involves executing code in such a way that first deletes any prediction information associated with the ‘ret’ at
__x86_return_thunk and then retraining it as the correct branch type. This execution flow of training is shown in blue in Figure 2 while
the execution of the normal thunk is shown in red. During training the 0xc3 byte (‘ret’) is not used as a branch but is part of a compare
instruction whose result is ignored. Because of how the 0xc3 byte is positioned in the middle of this instruction, any BTB information
associated with that byte is discarded without being used. After an ‘lfence’ the code then jumps back to __x86_return_thunk where the
0xc3 byte is located. The execution of this 0xc3 results in the BTB being correctly trained that a ‘ret’ instruction is present at this
location. Additionally, the alignment of the thunk as prescribed ensures that subsequent execution of the thunk always uses the same
BTB entry so clearing the information associated with that single BTB entry is sufficient for BTC-RET protection.

Note that the training code shown here is an example and developers may, at their discretion, implement a similar and functionally
equivalent sequence that maintains the same properties. In particular, software should ensure that during training the 0xc3 byte is
interpreted in the middle of a larger instruction.

FIGURE 2: TRAINING FLOW

SMT Safety
When the Single Thread Indirect Branch Predictor (STIBP) bit in MSR 0x48 (SPEC_CTRL) is 0, BTB entries are shared between both
SMT threads. If the code on the sibling thread cannot be trusted, software should set STIBP to 1 or disable SMT to ensure SMT safety
when using Jmp2Ret. If software chooses to toggle STIBP (e.g., set STIBP on kernel entry, and clear it on kernel exit), software should

set STIBP to 1 before executing the return thunk training sequence.

6.1.2 IBPB On Privileged Mode Entry

As noted earlier, on AMD processors affected by BTC, the IBPB operation (WRMSR PRED_CMD[0]) flushes all BTB branch prediction
information. Software may choose to perform an IBPB command on entry into privileged code in order to avoid any previous branch
prediction information from subsequently being used. This effectively mitigates all forms of BTC for scenarios like user-to-supervisor
or VM-to-hypervisor attacks.

Developers should note that the IBPB flush operation is rather time consuming (~10k cycles on AMD CPUs codenamed “Zen” and
~2.5k cycles on AMD CPUs codenamed “Zen 2”) and is liable to remove both correct as well as potentially malicious branch
information. As such, developers may first wish to consider the Jmp2Ret mitigation if possible.

SMT Safety
Similar to the Jmp2Ret mitigation, if the code on the sibling thread cannot be trusted, software should set STIBP to 1 or disable SMT
to ensure SMT safety when using this mitigation. If software chooses to toggle STIBP on entry/exit to privileged mode, it should set
STIBP on entry prior to issuing the IBPB command.

WHITE PAPER: TECHNICAL GUIDANCE FOR MITIGATING BRANCH TYPE CONFUSION 8 REVISION 1.0 2022/07/12

[Public]

6.2 Mitigations for BTC-NOBR & BTC-DIR

6.2.1 MSR BIT
AMD “Zen 2” CPUs support a configuration bit in MSR C001_10E3 (DE_CFG2) which changes the behavior of the decode block
when the processor attempts to predict a branch on a non-branch instruction (BTC-NOBR case). When bit 1
(SuppressBPOnNonBr) is set the branch prediction information on non-branch instructions is ignored and no speculation at
the predicted target will be observed. Setting this bit mitigates the risk of potential information disclosure as a result of
speculation in the BTC-NOBR case.

Some systems with recent microcode updates installed may already have this MSR bit set to 1. For details, see the Appendix.
In general, AMD recommends keeping systems up-to-date and installing the latest available microcode. In cases where this
is not possible, software may directly set DE_CFG2[1] to mitigate BTC-NOBR.

AMD believes the performance impact of this behavior to be negligible and recommends that software set this bit on all
supported CPUs to help mitigate the BTC-NOBR case. On CPUs that do not support this bit, software may mitigate BTC-NOBR
using the other techniques described in this paper.

6.2.2 IBPB ON PRIVILEGED MODE ENTRY
The technique described earlier of performing an IBPB on entry into privileged mode entry also effectively mitigates BTC-NOBR and
BTC-DIR. Please refer to that section for further details.

7. DEFENSE-IN-DEPTH MEASURES
If software is not able to, or chooses not to apply the mitigations described in the previous section, the techniques described in
this section may still help mitigate and/or reduce the risk of some cases of BTC, making these type of attacks more difficult to
exploit. Many of these measures have benefits beyond the scope of speculation vulnerabilities as well.

7.1 Register Clearing Before RET
In July 2020, the GCC compiler added support for -fzero-call-used-regs which is a compiler option that generates code to clear
certain General Purpose Registers (GPRs) before the return from a function. Versions 5.15 and later of the Linux kernel may
be configured to be built with the ‘used-gpr’ option. This option clears the value of all call-used used registers at the end each
function. Code compiled with this option is more difficult to exploit with BTC-RET. BTC-RET requires that an attacker control
sufficient GPR values at the time of the ‘ret’ instruction so that the attacker can control the memory values accessed during
speculation. For extra protection, the ‘all-gpr’ option clears additional registers before ‘ret’ instructions, even if they are not
used in that subroutine.

This mitigation is considered a defense-in-depth measure since it does not mitigate all possible BTC-RET exploitation points,
however it may make a BTC-RET attack more difficult.

7.2 FGKASLR
Function Granular Kernel Address Space Layout Randomization (FGKASLR) is a security counter-measure that has been under
discussion with the Linux kernel community since early 2020. As of this paper, the most recent version of FGKASLR is v10 from
February 2022, but the feature has not yet been accepted into upstream Linux.

FGKASLR implements additional layout randomization in the kernel which may make it harder for attackers to find disclosure
gadgets. Exploiting any form of BTC requires that an attacker find the address of a gadget in privileged address space using the
desired registers and which performs the memory accesses necessary to read and/or leak the contents of memory. Making it
harder to find the address of such a gadget, as FGKASLR does, makes many attacks including all forms of BTC more difficult to
exploit.

WHITE PAPER: TECHNICAL GUIDANCE FOR MITIGATING BRANCH TYPE CONFUSION 9 REVISION 1.0 2022/07/12

[Public]

; Assume RCX is

; attacker- controlled

cmp $limit, %rcx

jae bad_value

movq (%rdx, %rcx) , %rax

jmp cont

7.3 Half-v1 Protection
As the speculation window associated with BTC-NOBR and BTC-
DIR is limited, AMD believes these vulnerabilities are of greatest
concern when combined with other speculation related behavior.
For instance, BTC may be able to be combined with a single out-of-
bounds memory load to potentially create a universal read gadget.
An example of this is shown in Figure 3. In this example, an
attacker-controlled value is subject to a bounds check. If the ‘jae’ in
this example is mispredicted, the processor may perform an
arbitrary memory read into RAX during speculation. An attacker
could then potentially use BTC-DIR to generate speculation to
another gadget (not shown) which accesses

FIGURE 3: UNMITIGATED HALF-V1 GADGET

an attacker-visible array based on the value in RAX. The code shown is referred to as a ‘half v1’ gadget because it requires
speculation due to a conditional branch (like in Spectre v1) but only a single memory load exists in the code path.

AMD has previously [2] recommended various techniques for mitigating Spectre v1 including the use of ‘lfence’ to prevent
unwanted conditional branch speculation, the use of ‘cmov’ to limit bad-path speculation, or array masking to prevent out-of-
bounds memory accesses. When code sequences like the one shown are mitigated with any of the recommended Spectre v1
mitigations, they can no longer be combined with BTC to create a universal read gadget. Many existing operating systems and
hypervisors have applied these techniques already, and AMD recommends that developers inspect their code for any
unmitigated cases of ‘half v1’ gadgets in order to limit the risk when combined with BTC-NOBR or BTC-DIR.

8. DETECTING BTC
AMD has defined a new CPUID bit Fn8000_0008 EBX[29] (BTC_NO) which when set, indicates the processor is not affected by
branch type confusion. Specifically, a processor that is not affected by branch type confusion will not speculatively execute
operations at a predicted branch target unless one of the following conditions is met:

• The instruction is an indirect branch (JMP reg/mem, CALL reg/mem), excluding far branches

• The instruction is a direct unconditional branch (JMP rel, CALL rel) and the predicted target matches the target encoded
in the branch instruction

• The instruction is a direct conditional branch (Jcc), and the predicted target matches either the target encoded in the
branch instruction or the straight-line (not-taken) path of the branch

• The instruction is a return (RET), and the predicted target was supplied by the return address predictor

AMD recommends that software, especially virtualized software, use this CPUID bit to detect whether BTC mitigations are
required.

Note that AMD Family 19h CPUs are not vulnerable to BTC but do not set this CPUID bit. Bare-metal software that detects a
Family 19h CPU should assume the CPU is not vulnerable to BTC and BTC mitigations are not needed. Hypervisor software
should synthesize the value of the BTC_NO CPUID bit on such platforms as desired so guest software can rely on using CPUID to
detect if BTC mitigations are required.

WHITE PAPER: TECHNICAL GUIDANCE FOR MITIGATING BRANCH TYPE CONFUSION 10 REVISION 1.0 2022/07/12

[Public]

9. CONCLUSION
This whitepaper has presented several potential mitigations for various BTC cases on affected AMD processors, as well as defense-
in-depth measures that may help reduce the risk of BTC in cases where full mitigations may be impractical to deploy. Table 4
summarizes the mitigation and defense-in-depth measures applicable to each variant of BTC. BTC-IND is not included since AMD
believes that existing mitigations for CVE-2017-5715 effectively mitigate BTC-IND. Please consult the Table of Affected Processors
in the Appendix for details on the availability of various mitigations on specific processors.

AMD recommends that software developers review the provided mitigation options and evaluate the best mitigations that align
with the requirements of their deployments and risk profile.

 BTC-NOBR BTC-DIR BTC-RET

MITIGATIONS

Jmp2Ret — — X

Indirect Branch Predictor Barrier (IBPB) X X X

DE_CFG2[1] [SuppressBPOnNonBr] X — —

DEFENSE-IN-DEPTH MEASURES

GPR Clearing before RET — — X

FGKASLR X X X

Half-v1 Protection X X —

TABLE 4: SUMMARY OF BTC MITIGATIONS

10. REFERENCES:
[1] AMD, "Speculation Behavior in AMD Micro-Architectures," 14 5 2019. [Online]. Available: https://www.amd.com/system/files/documents/security-

whitepaper.pdf.

[2] AMD, "Software Techniques for Managing Speculation on AMD Processors," 8 3 2022. [Online]. Available: https://www.amd.com/system/files/

documents/software-techniques-for-managing-speculation.pdf.

[Public]

APPENDIX: TABLE OF AFFECTED PROCESSORS

At this time, AMD is not providing statements about the susceptibility of, or mitigations for BTC on processors older than the
ones listed in this table.

REVISION 1.0 22/07/12

AMD.com/productsecurity

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the
preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of
this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with
respect to the operation or use of AMD hardware, software or other products described herein. Any computer system has risks of security vulnerabilities that

2 As of the date of initial publication of this whitepaper, please note that Family 15h architectures are not supported by AMD PSIRT (product security incident response team)
3 The AMD “Zen 3” microarchitecture is not vulnerable to any form of BTC and no BTC mitigations are required for these processors
4 AMD “Bulldozer” processors may use late redirects in BTC-DIR cases, resulting in a larger speculation window
5 AMD “Bulldozer” processors do not support STIBP
6 AMD “Zen” and “Zen+” processors do not support STIBP
7 This bit is set automatically if the following microcode (or newer) is installed:

Family/Model/Stepping Code Name Microcode Version
Fam 17h, Model 31h, Stepping 0h “Rome” / “Castle Peak” 08301055h
Fam 17h, Model 60h, Stepping 1h “Renoir” 08600109h
Fam 17h, Model 68h, Stepping 1h “Lucienne” 08608104h
Fam 17h, Model 71h, Stepping 0h “Matisse” 08701030h

 Fam 15h2

Models 00-7Fh

Fam 17h

Models 00h-2Fh

Models 50h-5Fh

Fam 17h

Models 30h-4Fh

Models 60h-7Fh

Fam 19h

All Models

CPU MICRO-ARCHITECTURE “Bulldozer” “Zen”/”Zen+” “Zen 2” “Zen 3”

 Affected by

BTC-NOBR X X X _3

BTC-DIR X4 X X _3

BTC-IND X X X _3

BTC-RET X X X _3

 Available Mitigations

Jmp2Ret X5 X6 X -

Indirect Branch Predictor Barrier
(IBPB)

X X X -

DE_CFG2[1] X7 -

 Applicable Defense-in-Depth Measures

GPR Clearing before RET X X X -

FGKASLR X X X -

Half-v1 Protection X X X -

[Public]

cannot be completely prevented or mitigated. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document.
Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard
Terms and Conditions of Sale.

© 2022 Advanced Micro Devices, Inc. AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names
used in this publication are for identification purposes only and may be trademarks of their respective companies. May 2022. PID# 221404394-A

