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Cardiac hypertrophy is an adaptive cardiac response that accommodates the variable
hemodynamic demands of the human body during extended periods of preload or
afterload increase. In recent years, an increasing number of studies have pointed to a
potential connection between myocardial hypertrophy and abnormal expression of non-
coding RNAs. Circular RNA (circRNA), as one of the non-coding RNAs, plays an
essential role in cardiac hypertrophy. However, few studies have systematically
analyzed circRNA-related competing endogenous RNA (ceRNA) regulatory networks
associated with cardiac hypertrophy. Therefore, we used public databases from online
prediction websites to predict and screen differentially expressed mRNAs and miRNAs
and ultimately obtained circRNAs related to cardiac hypertrophy. Based on this result,
we went on to establish a circRNAs-related ceRNA regulatory network. This study is the
first to establish a circRNA-mediated ceRNA regulatory network associated with
myocardial hypertrophy. To verify the results of our analysis, we used PCR to verify
the differentially expressedmRNAs andmiRNAs in animal myocardial hypertrophymodel
samples. Our findings suggest that three mRNAs (Col12a1, Thbs1, and Tgfbr3), four
miRNAs (miR-20a-5p, miR-27b-3p, miR-342-3p, and miR-378a-3p), and four related
circRNAs (circ_0002702, circ_0110609, circ_0013751, and circ_0047959) may play a
key role in cardiac hypertrophy.
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INTRODUCTION

The main function of the heart is to regulate blood output in response to the changing
hemodynamics of the body, which enables the heart to meet the needs of the body under
normal and stress conditions. To successfully accomplish this task in the presence of a
prolonged increase in preload or afterload, cardiac muscle cells usually undergo a certain
volume increase, a condition known as hypertrophy (Nakamura and Sadoshima, 2018). It is well
known that although cardiac hypertrophy begins as an adaptive response, chronic cardiac
hypertrophy can eventually develop into heart failure and eventual death. Since cardiac
hypertrophy is a key risk factor for cardiac failure, there is a pressing need to study its
molecular biological mechanism in the progression of cardiac hypertrophy and discover its
potential therapeutic targets.
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In recent years, mounting evidence shows that the non-coding
RNAs play a crucial role in cardiovascular diseases, especially in
the process of cardiac hypertrophy (Poller et al., 2018). Non-
coding RNA is a type of RNA that lacks protein-coding functions,
which can modulate biological processes by regulating the
expression of coding RNAs in various ways (Matsui and
Corey, 2017). Non-coding RNAs are mainly divided into
micro RNA (miRNA), circular RNA (circRNA), long non-
coding RNA (lncRNA), and extracellular RNA (exRNA) (Ling
et al., 2013; Sato-Kuwabara et al., 2015; St. Laurent et al., 2015;
Ebbesen et al., 2016). The interactions between these RNAs
eventually form a competing endogenous RNA (ceRNA)
regulatory network, a concept proposed by Salmena (Salmena
et al., 2011). Different from other non-coding RNAs, circRNAs
are not vulnerable to the degradation of RNA enzymes and are
more stable than linear RNAs (Jeck et al., 2013). CircRNA has a
variety of molecular functions in sponge miRNA, regulatory
transcription, regulatory RNA binding proteins, and even
coding proteins (Chen et al., 2021). What gets the most
attention is that some circRNAs contain miRNA response
elements (MREs), making them miRNA sponges that reduce
miRNA binding to mRNA (Hansen et al., 2013). To date,
circRNAs have been involved in the occurrence and
progression of various diseases, including cancer, neurological
diseases, and cardiovascular diseases (Lei et al., 2020; Lim et al.,
2020; Mehta et al., 2020). In recent years, researchers have begun
to pay attention to the role of circRNA in regulating the
physiological and pathological processes of cardiac
hypertrophy (Li et al., 2020). CircRNA HRCR acts as an
endogenous miR-223 sponge, isolating and inhibiting miR-223
activity, resulting in increased ARC expression (Wang et al.,
2016). CircRNA Slc8a1 can act as an endogenous sponge for miR-
133a in cardiomyocytes (Lim et al., 2019). However, few studies
have delved into the mechanism underlying the regulation of
cardiac hypertrophy by the circRNA-related ceRNA network.

Therefore, in this study, we downloaded mRNA and miRNA
expression data related to cardiac hypertrophy from a public
database (Aggarwal et al., 2014). This database included three
controls and three samples of myocardial hypertrophy. The
researchers of this database performed microarray analysis of
mRNA and high-throughput sequencing of miRNA. We used
Limma p and DESeq2 packages to screen out differentially
expressed mRNAs and miRNAs. Then, we used TarBase and
miRTarBase to forecast the targeting miRNAs of the differentially
expressed genes (DEGs). Subsequently, the predicted miRNAs
and differentially expressed microRNAs (DEMs) were
intersected, and then circBank was used to predict the related
circRNAs of the miRNAs obtained from the intersection. Finally,
a circRNA-related ceRNA network was established. To further
obtain the key ceRNA network, we used the Degree module in
CytoHubba for analysis and obtained 4 mRNAs, 13 miRNAs, and
5 circRNAs. We then used PCR to detect the expression levels of
these mRNAs and miRNAs in animal models of cardiac
hypertrophy. Finally, a hub ceRNA network, including three
mRNAs, four miRNAs, and four circRNAs, was obtained. In
this study, a circRNA-mediated ceRNA regulatory network
related to cardiac hypertrophy was established for the first

time. This ceRNA regulatory network will provide new data
for further elucidation of the mechanism of myocardial
hypertrophy and open new avenues of research into
therapeutic targets and drug development of cardiac
hypertrophy.

MATERIALS AND METHODS

Microarray Data and miRNA Sequencing
Data
The microarray data of GSE60291 and the miRNA sequencing
data of GSE60292 were obtained from the Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/gds/) of the
National Center for Biotechnology Information (NCBI). The
GSE60291 dataset was based on the GPL570 (Affymetrix
Human Genome U133 Plus 2.0 Array) while the GSE60292
dataset was based on the GPL17301 (Ion Torrent PGM). Both
databases contain six samples, including three hypertrophy
samples and three control samples.

Data Preprocessing and Identification of
Differentially Expressed Genes
To explore the DEGs, we applied the limma package for
processing GSE60291 (Ritchie et al., 2015). False positives can
be corrected by adjusting the p value. The Benjamini–Hochberg
method was used to calculate the false discovery rate (FDR),
which further improves the reliability of identifying statistically
significant genes. We considered an adjusted p-value < 0.05 and |
log2FC| > 2 as the thresholds for statistical significance. Finally,
we used R 4.0.2 (ggplot2 package and pheatmap package) to
visualize the differential genes that had been screened out.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Enrichment Analysis
of Differentially Expressed Genes
To investigate the biological function of DEGs, the clusterProfiler
package was utilized to perform Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis
(Yu et al., 2012). We adopted the nominal level of FDR <0.05 to
identify statistically significant differences in biological process
(BP), cellular component (CC), molecular function (MF), and
KEGG analysis. R 4.0.2 was used to visualize the top eight results
of the GO term and KEGG pathway enrichment analysis.

Construction of a Protein–Protein
Interaction Network
The protein–protein interaction (PPI) network of DEGs was
constructed by the Search Tool for the Retrieval of Interacting
Genes (STRING, https://www.string-db.org/) online database
(Szklarczyk et al., 2021). We set the minimum required
interaction score to 0.4. Other indicators were set as default
parameters. The information of nodes and edges was exported as
a .txt file and then visualized in Cytoscape 3.8.1.
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Definition of Differentially Expressed
MicroRNAs and Interaction of
mRNA-miRNA
Subsequently, we applied the DESeq2 package for obtaining the
DEMs from GSE60292 as the high-throughput sequencing data
conformed to the Poisson distribution (Love et al., 2014). The
adjusted p < 0.05 and |log2FC| > 1 were used as cut-off values
for DEM screening. TarBase v8.0 (http://www.microrna.gr/
tarbase) and miRTarBase v8.0 (http://miRTarBase.cuhk.edu.
cn/) were used to predict the targeting miRNAs of DEGs
(Karagkouni et al., 2018; Huang et al., 20202020). We only
retained miRNAs that were present in both downregulated
DEMs and the targeting miRNAs of upregulated genes.
Similarly, we obtained the miRNAs in the interaction of
upregulated DEMs and the targeting miRNAs of
downregulated genes.

Targeting CircRNA of Differentially
Expressed MicroRNAs and Construction of
Competing Endogenous RNAs Network
To further build the circRNA-related ceRNA network of cardiac
hypertrophy, we used Circbank (http://www.circbank.cn/) to
predict targeting circRNAs (Liu et al., 2019). We selected
circRNAs with good conservation simultaneously.
Subsequently, we ranked the circRNAs according to the
predicted times. We selected the circRNAs with the top three
connectivity and established corresponding ceRNA.

Definition of Key Competing Endogenous
RNAs Network
CytoHubba was used to acquire the key ceRNA network (Chin
et al., 2014). According to the degree of nodes, we selected the
top 25% nodes in two ceRNA networks, respectively, and only
the complete circRNA-miRNA-mRNA axis was retained.
Finally, two key ceRNA networks were obtained.

Animals and Models
All the experimental procedures regarding animal care and
laboratory procedures were approved by relevant authorities.
Approval of the animal welfare policy was obtained from the
Committee on Animal Care of The Second Affiliated Hospital
of Jiaxing University (approval document No. JXEY-
2019JX097), and it was in line with NIH guidelines
(guidelines for the care and use of laboratory animals).
Male C57BL/6 wild-type mice (8 weeks old) were obtained
from Wenzhou Medical College. All of the mice were housed
with a 12 h:12 h light-dark cycle at a constant room
temperature and fed a standard rodent diet. The mice
adapted for a minimum of 2 weeks before the researchers
initiated the experiments.

To establish amouse model of cardiac hypertrophy induced by
angiotensin II (ANGII), we randomly divided the mice into two
groups: (I) Ang II group, n = 6 and (II) PBS group, n = 6. For the
AngII group, we injected AngII (1.4 mg/kg/day in phosphate

buffer, pH 7.2) into the micropump and placed the micropump
subcutaneously. The PBS group was prepared in the same way
except that PBS was used instead of AngII.

Overload-induced cardiac hypertrophy was achieved by TAC
as previously described (Rockman et al., 1991). Mice were
randomly divided into two weight-matched groups: (I) TAC
group, n = 6 and (II) sham group, n = 6. Briefly, all of the
male mice were anesthetized using gas anesthesia of isoflurane. In
the TAC group, the transverse aorta between the right
innominate artery and the left carotid artery was narrowed to
a 27-gauge needle with 7–0 nylon suture. For the sham group, the
same procedure was used on sex- and age-matched mice except
that the aorta was not ligated.

After 4 weeks, the mice were anesthetized with pentobarbital
sodium and killed. After the heart was perfused with normal
saline, the heart was removed, and these tissues were immediately
frozen in liquid nitrogen and then stored at −80°C for subsequent
studies.

Quantitative Real-Time PCR
Trizol (Thermo Fisher) was employed to extract total RNA from
the tissues. We used a two-step PrimeScript RT reagent Kit
(Perfect Real Time, TAKARA) to conduct the reverse
transcribing process of mRNA. Based on a miRNA First
Strand cDNA Synthesis Tailing Reaction kit (Sangon Biotech),
we got the first strand cDNA of miRNA. An Eppendorf
Mastercycler® Ep Realplex detection system (Eppendorf,
Hamburg, Germany) was used for PCR analysis. Primers were
purchased from Sangon Biotech (Shanghai, China)
(Supplementary Table S1). The expression levels of mRNAs
were normalized to β-actin housekeeping gene. The expression
levels of miRNAs were normalized to U6.

Histopathological Analysis
The heart tissue was fixed in formalin and embedded in 5-μm
tissue sections. Sections were subjected to hematoxylin and
eosin (H and E) staining for histopathological observation.
From the general section, we observe the changes of the
heart chamber wall as a whole. The thickness of myocardial
fibers was observed in longitudinal and transverse sections
under ×400 magnification.

Statistical Analysis
Data were reported as means ± SD. Student’s t-test was applied to
test for significant group differences using GraphPad Pro Prism 8
(GraphPad Software, San Diego, CA, United States). The nominal
level of p-value < 0.05 was chosen as the threshold for
determining statistical significance.

RESULTS

Identification of Differentially Expressed
Genes
The analysis procedure of the ceRNA network related to cardiac
hypertrophy is described in a flowchart (Figure 1). Using the cut-
off criteria of adjusted p < 0.05 and |log FC| >2, a total of 172
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DEGs, including 106 upregulated genes and 66 downregulated
genes, were identified from GSE60291. We deleted three non-
coding RNAs (LINC00648, LINC00702, and LOC101928135)
after searching the gene type of DEGs from GENE (https://
www.ncbi.nlm.nih.gov/gene/). Finally, we obtained 105
upregulated genes and 64 downregulated genes
(Supplementary Table S2). All 169 DEGs were displayed with
a heat map and a volcano plot (Figures 2A,B). As shown in the
figure, the expression level of DEGs well separated the cardiac
hypertrophy samples from the control samples.

Functional Enrichment Analysis of
Differentially Expressed Genes
To further explore the biological functions of DEGs, we divided
the results of the GO term into molecular function (MF),
cellular component (CC), and biological process (BP). The
top eight results in each section are considered the most

enriched elements (Figure 3A). The largest number of DEGs
enriched in MF was “DNA replication,” those in CC were “cell-
substrate junction” and “focal adhesion,” and that in MF was
“heparin binding.” Subsequently, KEGG analysis of all DEGs
was performed. These genes were mainly enriched in the MAPK
signaling pathway, cell cycle, and Estrogen signaling pathway
(Figure 3B). As shown, all of these results showed that DEGs
were significantly enriched in biological processes related to
cardiac hypertrophy.

Construction of PPI Network
We input all DEGs into the STRING for protein interaction
analysis. Connectionless nodes were deleted in the outcome, and
we obtained a network with 127 nodes and 444 edges
(Supplementary Figure S1). The color and size of the nodes
vary with the centrality degree, and the thickness of the edges
varies according to the combined score of the edges in Cytoscape
software.

FIGURE 1 | Flowchart of bioinformatics analysis: data collection, processing, analysis, and validation. We screened out differentially expressed mRNAs and
miRNAs from public databases. According to online prediction websites, we finally obtained relevant circRNAs and established circRNA-related ceRNA regulatory
networks. To verify our results, PCR was used to verify differentially expressed mRNAs and miRNAs in animal cardiac hypertrophy model samples.
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Determination of Differentially Expressed
MicroRNAs and Interaction of mRNA-
miRNA
According to our screening criteria, we obtained 66 upregulated
miRNAs and 43 downregulated miRNAs (Supplementary Table
S3). All 109 DEMs were displayed with a heat map and anMA plot
(Figures 4A,B). A Venn diagram was used to obtain the
intersection of the differentially expressed upregulated miRNAs
and the targeting predicted miRNAs of downregulated mRNAs. 41
upregulatedmiRNAs and 247miRNA–mRNApairs were obtained.
Through the same procedure, we obtained 25 downregulated
miRNAs and 198 miRNA–mRNA pairs (Figures 4C,D).

Establishment of Key Competing
Endogenous RNAs Network
We used CircBank to predict targeting circRNAs. By ranking the
circRNAs according to the predicted times, we ultimately obtained
22 circRNAs associated with cardiac hypertrophy (Supplementary
Table S4). Among them, 13 circRNAs were in the positively
regulated ceRNA network and 9 circRNAs were in the
negatively regulated ceRNA network. These circRNA–miRNA
pairs were linked to the previous miRNA–mRNA pairs, and the
unconnected parts were removed, resulting in two independent
circRNA-miRNA-mRNA ceRNA regulatory networks (Figures
5A,B). Using the aforementioned method, we ultimately
obtained a positive regulatory key network (4 mRNAs, 4
miRNAs, and 1 circRNA) and a negative regulatory key
network (2 mRNAs, 11 miRNAs, and 4 circRNAs) (Figure 5C).

Experimental Verification of HubCompeting
Endogenous RNAs Network
HE staining revealed that compared with the corresponding control
group, the heart of the AngII group and the transverse aortic

constriction (TAC) group was significantly larger than that of the
corresponding control group. The myocardial fibers were obviously
thickened (Figure 6A). Both AngII group and TAC group showed
that the expression levels of Myh7, Anp, and Bnp, which can reflect
the degree of myocardial hypertrophy, were significantly increased.
At the same time, the expression levels of three mRNAs (Col12a1,
Thbs1, and Tgfbr3) and four miRNAs (miR-20a-5p, miR-27b-3p,
miR-342-3p, andmiR-378a-3p) were significantly different (Figures
6B,C). These trends were consistent with our analysis.

Except for miR-342-3p, the expression trends of these mRNAs
and miRNAs in the TAC group were the same as those for the
AngII group (Figures 6D,E). These results were further
confirmed by GSE99459 and GSE136308 (Figures 6F,G). We
finally obtained a hub ceRNA network which was verified by
animal experiments (Figure 6H) and differentially expressed.

DISCUSSION

In our study, we screened out DEGs and DEMs based on data from
the public datasets GSE60291 and GSE60292, respectively. We set up
a PPI network for the obtained DEGs. It is worth noting that several
known proteins associated with myocardial hypertrophy, such as
Myc, Fos, and Egr1, were present at the center of the network (Brand
et al., 1993; Ahuja et al., 2010; Palomer et al., 2020). In addition, other
proteins in the network have also been shown to be implicated in
cardiovascular diseases. Scott D Shapiro et al. found that exogenous
injection of CCNA2 virus can induce myocardial regeneration after
infarction through cytoplasmic division of adult cardiomyocytes
(Shapiro et al., 2014). Jin et al. found that DUSP1 reduces cardiac
ischemia/reperfusion injury by inhibiting Mff-mediated
mitochondrial fission and BNIP3-related mitochondrial autophagy
through the JNK pathway (Jin et al., 2018). To a certain extent, these
research results indicated that the DEGs screened by us can well
reflect the differentially expressed proteins in cardiac hypertrophy.
This point was further confirmed in the results of GO analysis and

FIGURE 2 | Identification of differentially expressed mRNAs in cardiac hypertrophy. (A) Hierarchical clustering heat map of differentially expressed mRNAs. (B)
Volcano plot of differentially expressed mRNAs. Red represents upregulated mRNAs and green represents downregulated mRNAs.
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KEGG analysis. These results showed that DEGs were concentrated
in several classical pathways, including the MAPK pathway, the
estrogen receptor pathway, and the p53 signaling pathway. In
addition, the erbB signaling pathway also appeared in the results.
ErbB signaling has been associated with cancer in previous studies
(Yarden and Sliwkowski, 2001). In recent years, more and more
studies have shown that the erbB signaling pathway plays an
important role in cardiac hypertrophy and heart failure. Blockage
of erbB-1 signaling in the heart leads to blockage of erbB-2 signaling,
and blockage of both leads to cardiac dysfunction (Rajagopalan et al.,
2008). In neonatal, adolescent, and adult cardiomyocytes, cardiac
hypertrophy is caused by induction of constitutively active ERBB2
(D’Uva et al., 2015). Therefore, based on our results, we hypothesize
that the erbB-related signaling pathway will become a potential
research direction of cardiac hypertrophy in the future.

The ceRNA network has been described as a complex post-
transcriptional endogenous regulatory network in which

circRNAs, lncRNAs, and other RNAs act as sponges for miRNAs
to regulate mRNA expression. LncRNA ZFAS1 promotes the
transformation of lung fibroblasts into myofibroblasts and iron
function through the miR-150-5p/SLC38A1 axis (Yang et al.,
2020). LncRNA Hoxaas3 regulates Runx1 by targeting miR-450b-
5p and promotes lung fibroblast activation and fibrosis (Lin et al.,
2020). In the ceRNA network, circRNA, as the only circular non-
coding RNA, can compete with the targeting mRNA of related
miRNA through its own miRNAs elements, ultimately affecting
the mRNA expression level (Arnaiz et al., 2019). We used the
public website prediction tool to predict the targets of DEGs and
DEMs, and through the aforementioned screening method, we
ultimately obtained a positive regulatory ceRNA network and a
negative regulatory ceRNA network. Then, the Cytohubba plug-in
of Cytoscape was used to further screen the key ceRNA network. The
expression levels of mRNAs and miRNAs in the network were
verified by animal experiments. Finally, three differentially

FIGURE 3 | GO enrichment and KEGG pathway analyses. (A) GO analysis of the DEGs. (B) KEGG pathway analysis of the DEGs.
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expressed mRNAs (Col12a1, Thbs1, and Tgfbr3) and four
differentially expressed miRNAs (miR-20a-5p, miR-27b-3p, miR-
342-3p, and miR-378a-3p) were obtained.

In the heart, Col12a1 usually appears as a marker of myocardial
fibrosis (Ning et al., 2017). Our results suggested that Col12a1 may
play a key part in the process of cardiac hypertrophy through a
ceRNA regulatory network. In addition, Thbs1 is a physiological
regulator of TGFβ activation and is involved in the regulation of the
myocardial fibrosis–related ceRNA network. One study shows that
LncRNA RNF7 can promote cardiac fibrosis via the miR-543/Thbs1
axis and activation of TGFβ1 (Ouyang et al., 2020). In some AngII-
induced cardiovascular diseasemodels, the expression level of THBS1
was significantly increased (Bao et al., 2020; Jana et al., 2020). This
trend is consistent with our results and further supports that Thbs1
may be a key regulatory site in the cardiac hypertrophy–related

ceRNA network. In contrast to Thbs1, Tgfbr3 is a potential negative
regulator of the TGFβ signaling pathway. The expression level of
Tgfbr3 is negatively correlated with the degree of myocardial fibrosis
(Chu et al., 2011). Overexpression of Tgfbr3 reduces collagen
production in fibroblasts by inhibiting miR-21 expression (Liang
et al., 2012). In addition, Tgfbr3 is an important drug target. A drug
study has shown that Simvastatin could reduce cardiac fibrosis
induced by infarction via upregulating the expression of Tgfbr3
(Sun et al., 2015).

Relevant miRNAs were also acquired. A study also indicated that
miR-27b-3p was significantly increased in auricular tissue and angII-
stimulated atrial fibroblasts in patients with atrial fibrillation. In this
study, it is worth noting that miR-27b-3p promotes atrial fibrosis by
targeting Tgfbr3 to activate Smad3 signaling in atrial fibroblasts
(Yang et al., 2019). The targeting interaction relationship between

FIGURE 4 | Identification of differentially expressed miRNAs. (A) Hierarchical clustering heat map of differentially expressed miRNAs. (B) MA plot of differentially
expressed miRNAs. (C,D) Identification of overlapping miRNAs in DEMs of GSE60292 and predicted miRNAs of DEGs.
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miR-27b-3p and Tgfbr3 appeared in our prediction results, which
further indicated that the miR-27b-3p/Tgfbr3 axis may play a
significant role in myocardial hypertrophy. The expression level of
plasmamiR-20a-5p was proportional to the degree of left ventricular
remodeling and dilation after myocardial infarction (Gao et al.,
2019). The level of miR-342-3p in circulating miRNAs in heart
failure model mice was significantly reduced (Kaneko et al., 2017).
MiR-378a-3p could prevent myocardial apoptosis induced by
ischemia-reperfusion injury through TRIM55/DUSP1/JNK
signaling (Tan et al., 2020). These proven miRNAs might provide
therapeutic targets for myocardial hypertrophy.

In recent years, circRNA has attracted increased scholarly
attention in the study of myocardial hypertrophy. Garikipati

et al. showed that the circRNA circFNDC3b regulates cardiac
repair after myocardial infarction via the FUS/VEGF-A axis
(Garikipati et al., 2019). Gan et al. confirmed that the
circRNA_101,237 mediates anoxia/reoxygenation injury by
targeting let-7a-5p/IGF2BP3 in cardiomyocytes (Gan et al.,
2020). The samples in GSE60291 and GSE60292 belong to
Homo sapiens. The species specificity of circRNAs may account
for the lack of suitable experimental methods to prove the
expression level of circRNAs selected in animal experiments. But
the expression levels of these circRNA-relatedmRNAs andmiRNAs
in our ceRNA hub network have been proved by PCR. Therefore,
the circRNAs (circ_0002702, circ_0110,609, circ_0013751, and
circ_0047959) predicted on this basis may play a key role in the

FIGURE 5 |Construction of the ceRNA network and identification of the hub ceRNA network in cardiac hypertrophy. (A) Positive regulatory ceRNA network. Yellow
represents circRNAs, blue represents downregulated miRNAs, and red represents upregulated mRNAs. (B) Negative regulatory ceRNA network. Yellow represents
circRNAs, red represents upregulated miRNAs, and blue represents downregulated mRNAs. (C) Key ceRNA network in cardiac hypertrophy.
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FIGURE 6 | Confirmation of microarray results in animal models of myocardial hypertrophy. (A) Representative images of H&E staining (400×). (B–E) Expression of
Myh7, Anp, Bnp, Col12a1, Thbs1, Tgfbr3, miR-20a-5p, miR-27b-3p,miR-342-3p, andmiR-378a-3p in animal models of cardiac hypertrophy. (n = 6 per group, *p-value
<0.05, ** p-value <0.01, ***p-value <0.001 versus AngII group or TAC group.) (F,G) Expression of Col12a1, Thbs1, Tgfbr3, miR-20a-5p, miR-27b-3p, miR-342-3p, and
miR-378a-3p in GSE99459 and GSE136308. (H) Hub ceRNA network.
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process of myocardial hypertrophy, providing a new inspiration for
the clinical diagnosis and treatment of myocardial hypertrophy.

In conclusion, our study established and analyzed the circRNA-
related ceRNA network involved in cardiac hypertrophy disorders
for the first time and successively verified the differentially expressed
miRNAs and mRNAs in animal experiments. The analysis results
provided a new therapeutic target and a new idea for the regulatory
mechanism of the cardiac hypertrophy–related ceRNA network.
Nonetheless, to further clarify the expression levels of these RNAs in
cardiac hypertrophy, it is still necessary to verify the ceRNAs with
clinical samples and reveal the specific regulatory mechanism of the
ceRNA network related to cardiac hypertrophy.
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