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Background: Accurate delineation of the midbrain nuclei, the red nucleus (RN),
substantia nigra (SN) and subthalamic nucleus (STN), is important in neuroimaging
studies of neurodegenerative and other diseases. This study aims to segment
midbrain structures in high-resolution susceptibility maps using a method based on a
convolutional neural network (CNN).

Methods: The susceptibility maps of 75 subjects were acquired with a voxel size
of 0.83 × 0.83 × 0.80 mm3 on a 3T MRI system to distinguish the RN, SN, and
STN. A deeply supervised attention U-net was pre-trained with a dataset of 100
subjects containing susceptibility maps with a voxel size of 0.63 × 0.63 × 2.00 mm3

to provide initial weights for the target network. Five-fold cross-validation over the
training cohort was used for all the models’ training and selection. The same test
cohort was used for the final evaluation of all the models. Dice coefficients were
used to assess spatial overlap agreement between manual delineations (ground
truth) and automated segmentation. Volume and magnetic susceptibility values in the
nuclei extracted with automated CNN delineation were compared to those extracted
by manual tracing. Consistencies of volume and magnetic susceptibility values by
different extraction strategies were assessed by Pearson correlation coefficients and
Bland-Altman analyses.

Results: The automated CNN segmentation method achieved mean Dice scores of
0.903, 0.864, and 0.777 for the RN, SN, and STN, respectively. There were no significant
differences between the achieved Dice scores and the inter-rater Dice scores (p > 0.05
for each nucleus). The overall volume and magnetic susceptibility values of the nuclei
extracted by the automatic CNN method were significantly correlated with those by
manual delineation (p < 0.01).

Conclusion: Midbrain structures can be precisely segmented in high-resolution
susceptibility maps using a CNN-based method.

Keywords: midbrain structure, automated segmentation, high-resolution quantitative susceptibility mapping,
convolutional neural network, transfer learning
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INTRODUCTION

The red nucleus (RN), substantia nigra (SN), and subthalamic
nucleus (STN) are small ganglia located in the midbrain and
of great importance in regulating motor control, cognition,
and emotion (Boecker et al., 2008). Accurate segmentation in
these structures is important for analyzing structural variations
and iron concentration changes. Evaluation of morphological
degeneration and iron deposition can aid clinicians in early
detection and diagnosis of neurodegenerative diseases, including
Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple
sclerosis (MS) (Wang et al., 2017). In addition, precise delineation
of the STN can provide effective clinical treatment assistance
for PD patients requiring deep brain stimulation (DBS) surgery
(Dimov et al., 2019).

Midbrain nuclei are typically manually segmented, which
is extremely time-consuming and dependent on evaluator
experience. Automated segmentation methods are advantageous
for faster and more reproducible results. Current automated
brain segmentation methods were developed using automated
brain mapping from brain atlases, where the most commonly
used atlases were based on T1 contrast (Lancaster et al.,
2000). However, automatic segmentation using these atlases is
challenging in deep gray matter nuclei of the midbrain due to
its low T1 contrast (Xiao et al., 2014). Although the RN, SN
and STN appear to be moderately hypointense on T2-weighted
(T2w) images due to iron deposition, clinical T2w images on 3T
or 1.5T systems do not differentiate the STN from the adjacent
SN (Xiao et al., 2014). Direct visualization of the STN may
require ultrahigh-field-strength scanners, such as 7T (Schafer
et al., 2012; Kim et al., 2019), which are not widely used in
clinical practice.

Quantitative susceptibility mapping (QSM) can obtain in vivo
tissue magnetic susceptibility distribution by using gradient
echo phase images (de Rochefort et al., 2010). QSM provides
an excellent contrast in deep gray matter regions because
these structures are characterized by their high paramagnetic
iron content, and are therefore clearly visible and easily
distinguishable in susceptibility maps (Liu et al., 2010, 2013a;
Haacke et al., 2015; Wang and Liu, 2015). The susceptibility
maps yield a superior contrast-to-noise ratio in the depiction
of the STN when compared with T2w images, and the true
ellipsoidal shape of the STN is reliably reflected, which permits its
distinction from the SN (Liu et al., 2013a). Combining magnetic
susceptibility and T1 contrast in a multi-atlas approach yielded
improved accuracy and reliability for automated segmentation
because it can potentially model a greater amount of anatomical
variability (Garzon et al., 2018; Li et al., 2019). However, existing
multi-atlas approaches based on QSM cannot discriminate the
STN from the SN, due to the low spatial resolution of the acquired
images, or challenges in multiple registrations when aligning
atlases to the target images.

In recent years, convolutional neural network (CNN) has been
successfully applied to the segmentation of brain tissue, tumor
and MS lesions (Brosch et al., 2016; Havaei et al., 2017). CNN
has also been used in segmenting sub-cortical brain structures in
traditional T1-weighted MRI (Dolz et al., 2018). Deep learning

approaches achieved better overall performance in automated
segmentation of subcortical brain structures, compared with
atlas-based approaches and algorithmic approaches (Pagnozzi
et al., 2019; Beliveau et al., 2021). To overcome the issue that
CNN-based methods require large training datasets, the transfer
learning can be applied, where a network pre-trained with a much
larger dataset is used to initialize the target network weights,
significantly reducing the demand of training data and training
time for the target network (Pan and Yang, 2009; Xu et al., 2017).
Transfer learning has been used in medical image segmentation
and achieved good results in segmenting brain tissue (Ataloglou
et al., 2019). To our knowledge, no study explored the potential
of the CNN model for segmenting midbrain structures in
susceptibility maps.

The purpose of this study was to segment three midbrain
nuclei, the RN, SN, and STN, by taking advantage of the high-
resolution susceptibility maps and CNN. The high-resolution
susceptibility maps were acquired with a nearly isotropic voxel
size of 0.83 × 0.83 × 0.80 mm3 for precise characterization
of the midbrain nuclei. A deeply supervised attention U-net
with the transfer learning algorithm was applied to obtain the
segmentation results. The Dice coefficients between the results
with the automated segmentation method and the manual
ground truth were calculated to evaluate the performance of
automatic segmentation. Furthermore, the volume and magnetic
susceptibility values in the nuclei extracted with automated
CNN delineation were also compared with those obtained
by manual tracing.

MATERIALS AND METHODS

Datasets
Quantitative susceptibility mapping from 100 subjects (53 males
and 47 females; mean age = 43.7± 15.6 years) with a voxel size of
0.63× 0.63× 2.0 mm3 from a previous study (Li et al., 2018) were
used as the source dataset to pre-train the network, and QSM data
with a voxel size of 0.83× 0.83× 0.80 mm3 from a new cohort of
75 subjects (40 male and 35 female; mean age = 33.7± 13.4 years)
were used as the target dataset. This study was approved by the
local institutional review board and written informed consents
were obtained from all participants.

All participants in the source dataset were scanned on a
clinical 3T MR imaging system (Trio Tim, Siemens Healthcare,
Erlangen, Germany) equipped with a 12-channel head matrix
coil. Susceptibility maps were generated from the 3D spoiled
unipolar-readout multi-echo GRE sequence acquired in the
axial plane with the following imaging parameters: repetition
time (TR) = 60 ms, first echo time (TE1) = 6.8 ms,
echo spacing (1TE) = 6.8 ms, number of echoes = 8, flip
angle = 15◦, field of view (FOV) = 240 × 180 mm2, matrix
size = 384 × 288, slice thickness = 2 mm, number of slices = 96,
voxel size = 0.63 × 0.63 × 2.00 mm3, scan time = 7 min
52 s. A generalized auto-calibrating partially parallel acquisition
(GRAPPA) with an acceleration factor of 2 in the right-
left direction and elliptical sampling were used to reduce
acquisition time.

Frontiers in Neuroscience | www.frontiersin.org 2 February 2022 | Volume 16 | Article 801618

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-801618 February 4, 2022 Time: 15:28 # 3

Zhao et al. CNN-Based Midbrain Segmentation in QSM

All subjects in the target dataset were scanned on another
3T MRI scanner (Prisma Fit, Siemens Healthcare, Erlangen,
Germany) equipped with a 20-channel head coil. Susceptibility
maps were generated from a 3D spoiled bipolar-readout multi-
echo GRE sequence with the following parameters: TR = 31 ms,
TE1 = 4.07 ms, 1TE = 4.35 ms, number of echoes = 6, flip
angle = 12◦, FOV = 240 × 200 mm2, matrix size = 288 × 240,
slice thickness = 0.8 mm, number of slices = 192, parallel imaging
acceleration factor = 2, voxel size = 0.83 × 0.83 × 0.80 mm3,
scan time = 7 min 22 s. Images were acquired in the oblique-axial
plane parallel to the anterior commissure–posterior commissure
line (AC–PC line).

During scanning, foam pads were placed around each subject’s
head to minimize head motion.

Quantitative Susceptibility Mapping
Reconstruction
Susceptibility maps were reconstructed using the Morphology
Enabled Dipole Inversion (MEDI) toolbox1. A brain extraction
tool (BET) was first used to segment the brain tissue from
the magnitude images. Then, the phase shift of even echoes
induced by the gradient delay and eddy current was estimated
and corrected for the data in the target domain (Li et al.,
2015). The field map was estimated by performing a one-
dimensional temporal unwrapping of the phase on each voxel
followed by a nonlinear least-squares fit of the temporally
unwrapped phases in each voxel over TE (Liu et al., 2013b).
To address frequency aliasing on the field map, a Laplacian-
based unwrapping algorithm was applied (Schofield and Zhu,
2003). The tissue field was separated from the background
field by applying a projection onto dipole fields procedure
(PDF) (Liu et al., 2011). Susceptibility maps were calculated by
MEDI with automatic uniform cerebrospinal fluid zero reference
(MEDI+ 0) (Liu et al., 2018).

Manual Tracing
For the source dataset, the SN and STN were delineated as a
whole in the axial view (Figure 1A), because there was no clear
boundary between the SN and STN, even in the coronal view
(Figure 1B). But for the target dataset with an approximate
isotropic voxel size of 0.83× 0.83× 0.80 mm3, the true ellipsoidal
shape of the STN was reliably distinguished from the SN in
the coronal view (Figure 2B). Therefore, the RN, SN, and STN
were delineated in the coronal view (Figure 2). A rater (6
years of neuroimaging experience), who was blinded to subject
demographics, manually drew regions of interest (ROIs) on the
susceptibility maps. Another rater (4 years of neuroimaging
experience) manually drew the ROIs in the test cohort of the
target domain. ROIs covered each bilateral structure on all
sections where the deep nuclei were visible. Manual tracing was
performed using ITK-SNAP software2.

Data Preprocessing
All slices including the ROIs and adjacent slices without ROIs
were selected along the slice direction as the input data of the

1http://pre.weill.cornell.edu/mri/pages/qsm.html
2http://www.itksnap.org

network. We used a CNN model to segment the midbrain nuclei
regions and the 5-fold cross-validation over the training cohort
was used for model training and selection. Three consecutive
2D images were used as input and the ground truth was
corresponding to the middle slice image. Transverse slices in the
source dataset were center-cropped to 128 × 128 before being
used as input. For the target domain images, coronal slices center-
cropped to 96× 96 were used. Statistics on midbrain deep nuclei
size in both the source and target datasets were used to ensure
that no nuclei region was lost due to cropping.

To increase the robustness of the model, an on-line data
augmentation strategy (Shan, 2019) was used all through the
training process, which applied random shifting within ±15
pixels, random rotating within ±10◦, and random shearing
from 0.8 to 1.2 to each sample used in each epoch. In the
source dataset, 64 subjects were used for model training and the
number of slices for each subject was 96, so the total number
of augmented training images was about 5.5 million. In the
target dataset, 60 subjects were used for model training and the
number of slices for each subject was 192, so the number of
training images after the data augmentation was about 5.2 million
(Detailed description on the estimation method is provided in the
Supplementary Material).

Convolutional Neural Network
Architecture
The multi-input Attention U-net model was used to segment
the midbrain nucleus, which is shown in Figure 3A. The
standard U-net contains an encoder and a decoder part, and
each part consists of four downsampling and upsampling stages.
The attention gates (AGs) were incorporated into the U-net
to highlight salient features that were passed through the
skip connections (Oktay et al., 2018). The architecture of the
proposed AG is shown in Figure 3B. The coarse level and fine
level features were fed into the AGs to get the attention map
so the scaled features could be specific to local information.
Input features (x) were fed into a convolutional layer with
a kernel size of 1 × 1 and stride of 2 to obtain features
with the same size as the gate signal (g) in the decoder
part and then added with g. The attention coefficient (α) was
obtained after features went through two 1 × 1 convolutional
layers, ReLU, sigmoid and up-sampling layer. Finally, the input
features were multiplied by α to get the attention map. The
contribution of the attention gates was demonstrated using
ablation experiments.

Cropped images were downsampled 2, 4, and 8 times,
and these downsampled images were input into the network
together with the original image to prevent image information
loss in the encoder path. A deeply-supervised strategy was
applied to force the feature maps in the decoder path to be
semantically discriminative and improve model performance
(Bin and Karl, 2018).

Network Description
The source dataset was randomly split into training cohort (80
subjects) and test cohort (20 subjects). Five-fold cross-validation
over the training cohort was used for model training and
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FIGURE 1 | Representative images and labels of midbrain structures in axial (A) and coronal (B) susceptibility maps of a female subject (46 y/o) from the source
dataset with a voxel size of 0.63 × 0.63 × 2.00 mm3. Yellow arrows in panel (B) mark the regions covering the SN and STN. RN, red nucleus; SN, substantia nigra;
STN, subthalamic nucleus.

FIGURE 2 | Representative images and labels of midbrain structures in coronal susceptibility maps of a subject (male, 24 y/o) from the target dataset with a voxel
size of 0.83 × 0.83 × 0.80 mm3. (A) The borders of the RN and SN. (B) The borders of the SN and STN. RN, red nucleus; SN, substantia nigra; STN, subthalamic
nucleus.

selection. The test cohort was used for the final evaluation of the
model. This dataset was used to train the network to segment
two regions containing RN and SN–STN, which provided initial
weights for the target network. Pre-processed images with a
matrix size of 128 × 128 × 3 and corresponding ground truth

with a batch size of 32 were fed into the source network to obtain
the weights of the model. The training process was stopped when
the loss function was no longer reduced for 20 epochs.

The target dataset was randomly split into training cohort (60
subjects) and test cohort (15 subjects). The pre-trained weights
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FIGURE 3 | (A) Multi-input Attention U-net network structure. AG indicates that the attention mechanism was applied. (B) Schematic diagram of the AG. The input
feature (x) was scaled by the attention coefficient (α) calculated in AG, in which the target area was selected by analyzing the contextual information provided by the
activation function and the gate signal (g) obtained from a lower scale.

of the source model (excluding the output layers) were used to
initialize the transfer learning CNN model (TL-model) and all the
transferred weights were fine-tuned to segment RN, SN, and STN

FIGURE 4 | Transfer learning from the source dataset to the target dataset.
Voxel sizes were 0.63 × 0.63 × 2.00 and 0.83 × 0.83 × 0.80 mm3 for the
source and target domain datasets, respectively.

during training. The transfer learning procedure is presented in
Figure 4.

A non-transfer learning CNN model (NTL-model) was also
trained using the target dataset with random weight initialization.

A combination of Dice and cross-entropy loss was used as loss
function in the training:

Diceloss = 1−
2×

N∑
i=1

pigi

N∑
i=1

pi +
N∑
i=1

gi

cross_entropy = −
1
N

N∑
i=1

(
gi log

(
pi
)
+
(
1− gi

)
log

(
1− pi

))
Loss = Diceloss + cross_entropy

where the pi and gi represent the probability and ground truth
of pixel i, respectively; N is the number of total pixels. Since our
models used three output branches to segment three different
nuclei, the weighted sums of loss for each branch were used:

Losstotal = λ1 × Loss1 + λ2 × Loss2 + λ3 × Loss3

Lossn (n = 1, 2, and 3) represent the loss functions calculated
from the three output branches. The weights for the loss function
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(λ1, λ2, and λ3) were assigned as 0.6, 0.3, and 0.1, respectively.
These hyperparameters were optimized by trying different weight
values. The Adam algorithm was used to minimize the loss
function during back-propagation with an initial learning rate of
10−4 (Kingma and Ba, 2015). An early stopping strategy was used
to avoid overfitting, the training process was stopped if the loss on
the validation dataset was not reduced over 20 epochs.

The models were implemented using Pytorch (version: 1.6.0)
and Python (version: 3.7). Experiments were conducted on a
workstation equipped with four NVIDIA TITAN XP GPUs. The
source codes are available online3.

For comparison, an attention U-net model was also trained
by using the target dataset and the weights of the Resnet50
model (He et al., 2016) pre-trained on the ImageNet dataset
(Russakovsky et al., 2015) were used to initialize the encoder part
of the model. During training, all the transferred weights were
fine-tuned. All the experiments shared the same environment,
hyperparameters, loss function, augmentation strategy and used
the same training set and test set.

The performance of all models was evaluated with the
corresponding test cohort. Each slice in a case was preprocessed
identical to the training data before being fed into the trained
U-net to get the predicted 2D probability maps. The results
of the five trained models were ensembled by averaging the
predicted probability maps to obtain the final segmentation
result. A threshold of 0.5 was used to obtain binary segmentation
masks before 2D masks of all slices were combined into a 3D
volume, in which only the largest connected regions (Bernal et al.,
2019) were selected for the final segmentation for each case.

Statistical Analysis of Segmentation
Performance
Dice coefficients were used to assess spatial overlap agreement
between manual delineations (ground truth) and automated
segmentation. Dice scores were estimated with the following
equation:

D =
2× vol(M ∩ A)

vol(M)+ vol(A)

where M and A represent the manual and automated
segmentations, respectively. Meanwhile, vol (·) indicates
the volume of the segmentation. Segmentation was performed
on 2D slices, but the accuracy of deep nuclei segmentation was
calculated at the volume level. D equals 1 when there is a perfect
match between the manual and automated segmentations, and
0 when there is no overlap. The Dice metric was also used to
estimate inter-rater segmentation performance to establish a
baseline for comparison. A paired t-test was used to compare
Dice values obtained by the TL and NTL models. A p-value of
less than 0.05 was deemed significant.

In addition to the Dice coefficients, quantitative values of
tissue volume and magnetic susceptibility between the automated
and manual segmentations were also compared using Pearson
correlation coefficients and Bland-Altman analyses. All statistical
analyses were carried out using IBM SPSS Statistics 22.

3https://github.com/wangyidada/Nuclear_segmentation

RESULTS

Figure 5 shows typical segmentations of the RN, SN, and STN by
manual tracing and by the TL-model. Automatic segmentation
(Figures 5D,H,L) delineated the nuclei with similar boundaries
to manual tracing (Figures 5C,G,K) and captured areas of high
susceptibility in the susceptibility maps.

Dice Similarity Analysis
In the testing cohort of the source dataset, the source model
achieved Dice scores of 0.810 ± 0.089 and 0.788 ± 0.067 for the
RN and SN-STN, respectively, which indicated that this model
could perform preliminary segmentations of the RN and SN-
STN.

Figure 6 shows the distribution of the mean Dice scores for
the TL-model and NTL-model on the test cohort of the target
dataset. The TL-model achieved Dice scores of 0. 903 ± 0.023,
0.864 ± 0.033, and 0.777 ± 0.066 for the RN, SN, and STN,
respectively, while the NTL-model achieved Dice values of
0.903 ± 0.023, 0.866 ± 0.030, and 0.762 ± 0.073 for the
RN, SN, and STN, respectively. A paired t-test with the Dice
values showed that transfer learning improved STN segmentation
performance (p = 0.07). The median, upper and lower quartiles of
the STN Dice scores obtained by the TL-model were higher than
those obtained by the NTL-model. According to the box plot,
outliers in the segmentation by NTL-model disappeared in the
results by the TL-model. Transfer learning reduced training time
from 5 h for the NTL-model to 2 h for the TL-model.

The model without attention gate achieved Dice scores of
0.904 ± 0.020, 0.864 ± 0.035, and 0.767 ± 0.079 for the RN,
SN, and STN, respectively. The model using the weights of the
Resnet50 model pre-trained on the ImageNet dataset achieved
Dice scores of 0.903 ± 0.021, 0.861 ± 0.040, and 0.736 ± 0.102
for the RN, SN, and STN, respectively.

For the remainder of this section, all results refer to those
of the TL-model.

Figure 7 shows the Dice value distribution using pairwise
comparison of the segmentation results from the TL-model and
two researchers. Inter-rater Dice scores were 0.891 ± 0.027,
0.845 ± 0.037, and 0.783 ± 0.061 for the RN, SN, and STN,
respectively. There were no significant differences between Dice
scores from automated segmentation and inter-rater Dice scores
in the RN (t = 1.391, p = 0.186), SN (t = 1.883, p = 0.081) and
STN (t =−0.236, p = 0.817). Automated segmentation compared
with the second rater achieved Dice scores of 0.910 ± 0.028,
0.861 ± 0.031 and 0.772 ± 0.045 for the RN, SN, and
STN, respectively.

Volume and Susceptibility Correlation
Analysis
Region volumes and mean susceptibility values from
manual tracing and the TL-model are plotted in Figure 8
and summarized in Table 1. Overall volume and magnetic
susceptibility values of the ROIs extracted using the TL-model
were significantly correlated (p< 0.01) with those obtained using
manual delineation, with the overall correlation coefficients r
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FIGURE 5 | Segmentations of midbrain structures. First column: coronal QSM images (A,E,I) showing the RN, SN, and STN (red box). Second column: zoomed-in
view (B,F,J) of the structures in the red box in the 1st column. Third column: manual segmentations (blue masks) of the RN (C), SN (G), and STN (K). Fourth
column: automated segmentations (yellow masks) of the RN (D), SN (H), and STN (L).

FIGURE 6 | Boxplots of Dice scores achieved by the non-transfer learning CNN model (NTL-model) and the transfer learning CNN model (TL-model) on the test
cohort of the target dataset. Colored boxes indicate the 25th–75th percentile range, black bars refer to the median values, and red circles represent outliers (more
than 1.5 × the interquartile range away from the box).

equaling 0.98 (Figures 8A,C). The corresponding susceptibility
values from the automated approach showed 95% limits of
agreement of −0.002 ± 0.015 ppm with respect to the manual
approach (Figure 8D). Volume and susceptibility values of
each nucleus extracted with TL-model were also significantly
correlated (p < 0.01) with those extracted manually (Table 1).
All correlation coefficients r were larger than 0.8.

DISCUSSION

In this work, we segmented the midbrain gray matter nuclei
automatically in high-resolution susceptibility maps using a CNN
model with transfer learning. The true ellipsoidal shape of the
STN was reliably reflected in the high-resolution susceptibility
maps, which is the prerequisite for the segmentation of
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FIGURE 7 | Boxplots illustrating segmentation performance of midbrain gray matter nuclei. Automatic segmentations with transfer learning CNN model (TL-model)
are compared to manual segmentations by Rater 1 (yellow boxes) or Rater 2 (red boxes). Dice scores between manual segmentations by two raters (blue boxes) are
also presented. Colored boxes indicate the 25th–75th percentile range, black bars correspond to the median value, and red circles represent outliers (more than
1.5 × the interquartile range away from the box).

individual deep brain nuclei. The application of the CNN
model with transfer learning was another highlight of this
study. The combination of these two aspects allowed this
automatic segmentation procedure to be performed in single-
modal QSM images and yielded comparable results to manual
delineation. Dice scores for the RN, SN, and STN were
commensurate with inter-rater reliability ratings. Moreover,
this proposed segmentation method allowed the volumes and
magnetic susceptibility values of midbrain gray nuclei to be
reproducibly quantified.

A variety of midbrain structures segmentation studies have
been reported (Lim et al., 2013; Li et al., 2016, 2019; Visser
et al., 2016; Garzón et al., 2018; Kim et al., 2019; Plassard et al.,
2019; Beliveau et al., 2021), which are summarized in Table 2.
These studies were mainly based on multi-modality MRI images,
including T1-, T2-, T2∗-weighted or QSM images. Our mean
Dice score between manual and automated segmentation for RN
was 0.903, which is comparable with those from previous studies
(Visser et al., 2016; Garzon et al., 2018; Li et al., 2019). Further,
mean Dice coefficients were 0.864 and 0.777 for SN and STN,
respectively, which are higher than those reported in previous
studies on segmentation of susceptibility-contrast images (Lim
et al., 2013; Visser et al., 2016; Garzon et al., 2018; Zhang et al.,
2018; Li et al., 2019), with ranges of 0.65–0.81 and 0.53–0.70 for
the SN and STN, respectively.

The excellent segmentation achieved in this study can be
partly attributed to the high-resolution susceptibility maps
(Dimov et al., 2019). The true ellipsoidal shape of the STN is
reliably reflected and distinguished from the SN in the high-
resolution susceptibility maps, which is the foundation for
accurate segmentation of the STN. Inter-rater Dice scores in this

study were 0.89, 0.85, and 0.78 for RN, SN, and STN, respectively,
which are comparable to those reported in a previous study
based on high-resolution 0.5 mm isotropic susceptibility maps
from a 7T scanner (Visser et al., 2016), with RN having the
highest among the three nuclei reflecting the best conspicuity.
Inter-rater Dice score for the STN (0.78) in this study is much
higher than those from the previous 3T MRI studies, which
ranged from 0.56 to 0.68 (Xiao et al., 2014; Garzon et al.,
2018; Zhang et al., 2018; Li et al., 2019). An advantage of QSM
is the deconvolution of the local magnetic field, which allows
for a better definition of the deep gray matter nuclei better,
eliminating blurring caused by magnetic susceptibility artifacts
(Li et al., 2012). Previous qualitative and quantitative studies have
demonstrated that QSM is highly reproducible and is superior
to T2w, T2∗w, R2∗, and susceptibility-weighted images in the
depiction of the STN (Schafer et al., 2012; Liu et al., 2013a).
Further, coronal views in high-resolution susceptibility maps
allow easier differentiation of the STN from the SN (Schafer
et al., 2012), which are very small adjacent structures. However,
high-resolution QSM requires increased scan time and leads to
a reduced signal-to-noise ratio (Schafer et al., 2012; Liu et al.,
2013a). In this study, a voxel size of 0.83× 0.83× 0.80 mm3 was
used to balance scan time and image quality. An advantage of this
approximate isotropic voxel size is that the coronal images can be
reformatted from the acquired original transverse images, which
can help discriminate the STN from SN.

Convolutional neural network model with transfer learning is
another attribution for our excellent segmentation performance.
Up to now, no study has utilized CNN to segment midbrain
structures in high-resolution susceptibility maps, though the
CNN model is rapidly evolving in image segmentations
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FIGURE 8 | Scatter plots (A,C) and Bland-Altman plots (B,D) of the volume (A,B) and tissue susceptibility values (C,D) in the midbrain deep nuclei from the
TL-model and manual tracing by rater 1. In the scatter plots, the red and gray lines are the trend line of the linear regression and the line of equality, respectively. In
the Bland-Altman plots, the solid and dashed lines indicate the mean difference and 95% confidence level interval, respectively. SD, standard deviation; RN, red
nucleus; SN, substantia nigra; STN, subthalamic nucleus. ∗∗ Indicates significant correlations p < 0.01 level.

TABLE 1 | Summary of the volumes and mean susceptibility values in the selected regions of interest (ROIs) delineated manually by Rater 1 and the automated
convolutional neural network (CNN) method with transfer learning (TL)-model.

ROIs Volumes (mm3) Correlation Susceptibility (ppm) Correlation

Manual Automated r Manual Automated r

RN 459.0 ± 71.2 485.5 ± 48.1 0.82** 0.082 ± 0.036 0.081 ± 0.036 0.99**

SN 984.5 ± 210.8 1011.1 ± 170.5 0.94** 0.108 ± 0.042 0.111 ± 0.044 0.98**

STN 230.9 ± 63.1 241.1 ± 40.5 0.83** 0.070 ± 0.031 0.072 ± 0.028 0.98**

RN, red nucleus; SN, substantia nigra; STN, subthalamic nucleus.
r: Pearson correlation coefficient.
**Indicates statistical significance with p < 0.01.
Volume and susceptibility values are presented as mean ± standard deviation.

(Kim et al., 2019; Beliveau et al., 2021). The size of the high-
resolution dataset in our study can hardly meet the requirement
of CNN model training. Accordingly, a transfer learning scheme
is applied by borrowing initial weights from an existing model
used to segment two nuclei on QSM images of larger voxel
size, in a manner similar to using a model pre-trained on
large-scale natural images in typical transfer learning studies.
This application of transfer learning may be more effective
because both datasets of brain susceptibility maps contain similar

image content in terms of contrasts and structures, except
voxel size. The knowledge being “transferred” in the process
may involve the basic susceptibility value histogram and the
deep gray nuclei geometries. Our results suggest this transfer
learning reduces training time and improves the segmentation
performance compared with training from scratch, even if the
pre-training dataset is small (only 80 cases). This transfer learning
may be generalized for modeling new data using weights of the
existing CNN model that has been trained on old data, which
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TABLE 2 | Summary of state-of-art automatic midbrain nuclei segmentation studies.

Studies Segmentation methods Dataset Dice

B0 Image type Voxel size (mm3) No. of subjects Directly
visible
STN

Garzón
et al., 2018

Multi-atlas estimation of spatial
priors for a Gaussian mixture
model

3T QSM
T1WI

0.9 × 0.9 × 1.0
0.9 × 0.9 × 1.0

40 Healthy subjects Yes 0.88 (RN)
0.81 (SN)

0.66 (STN)

Li et al.,
2019

Multi-atlas based on
QSM&T1WI

3T QSM
T1WI

1.0 × 1.0 × 1.0
1.0 × 1.0 × 1.2

17 Healthy subjects No 0.83 (RN)
0.80 (SN)

0.70 (STN)

Plassard
et al., 2019

Multi-atlas based on images at
7 T

7T/3T T1WI7T

SWI7T

T1WI3T

0.7 × 0.7 × 0.7
0.2 × 0.2 × 1.1
1.0 × 1.0 × 1.0

Nine healthy subjects No 0.65 (SNleft)
0.70 (STNleft)

Lim et al.,
2013

EvePM atlas created by
multimodal imaging data

3T QSM
T1WI
DTI

1.2 × 1.2 × 1.2
1.2 × 1.2 × 1.2
2.2 × 2.2 × 2.2

Five healthy subjects No 0.88–0.90 (RN)
0.86–0.88 (SN/STN)

Visser
et al., 2016

Modified MIST method with a
Markov random field prior

7T T2*WI
QSM

0.5 × 0.5 × 0.5
0.6 × 0.6 × 0.6

53 Healthy subjects Yes 0.83–0.88 (RN)
0.68–0.78 (SN)

0.59–0.68 (STN)

Li et al.,
2016

Level set method 3T T2WI 0.5 × 0.5 × 3 10 Patients with PD No 0.86–0.88 (SN/STN)

Kim et al.,
2019

Machine learning, statistical
shape and pose relationship
learned from 7 T priors

7T/3T T2WI
SWI

0.39 × 0.39 × 1(2)
0.39 × 0.39 × 0.8

80 Subjects Yes 0.64 (STN)

Beliveau
et al., 2021

Five CNN architectures 3T SWI 0.68 × 0.68 × 2.40 30 Healthy subjects No 0.83–0.87 (RN)
0.79–0.86 (SN)

0.53–0.66 (STN)

Our study CNN with transfer learning 3T QSM 0.83 × 0.83 × 0.8
0.63 × 0.63 × 2.0

175 healthy subjects Yes 0.90 (RN)
0.86 (SN)

0.78 (STN)

B0, main magnetic field strength; QSM, quantitative susceptibility mapping; T1WI, T1-weighted images; T2WI, T2-weighted images; T2*WI, T2*-weighted images; SWI,
susceptibility-weighted images; DTI, diffusion tensor imaging; PD, Parkinson’s disease.

may have become unavailable and may differ from new data
in some characteristics. For example, this transfer learned CNN
segmentation may be adapted for longitudinal study of multiple
sclerosis lesions (Zhang et al., 2016). Therefore, transfer learning
can be used to build models for datasets with similar contrast that
are acquired with different scanning parameters or from different
MR scanners, when the samples in the newly acquired datasets
are not large enough to build a model from scratch.

The proposed method may be used for monitoring brain
morphological evolution and iron deposition in normal aging
and neurodegenerative diseases. Brain morphology and iron
deposition evolve over the entire lifespan (Ward et al., 2014;
Caspi et al., 2020), and increased iron deposition in deep
gray matter nuclei occurs early in the pathogenesis of several
neurodegenerative diseases (Zecca et al., 2004). Our results
demonstrated excellent agreement of the region volume and
magnetic susceptibility values for each nucleus segmented
with the CNN-based method compared to those obtained
using manual tracing. Therefore, this automated segmentation
procedure may dramatically reduce the amount of manual work
and may eliminate operator bias, which will benefit the studies in
aging and neurodegenerative diseases.

Accurately automated delineation of the STN can also help
clinical treatment for PD patients who are undergoing DBS,

because anatomical accuracy of electrode lead placement is
critical for a successful surgical outcome (Wodarg et al., 2012).
Images obtained from QSM can be imported into existing
stereotactic localization software and the automatic segmentation
of the STN may improve surgical targeting for DBS lead
placement and ultimately result in more efficacious surgery in
patients who suffer from advanced PD.

Limitations
There are several strategies that can further improve the
segmentation of midbrain structures. More cases can be included
in the training cohort where some cases are synthesized by
a generative adversarial network (GAN) (Lan et al., 2020).
A 3D model may also make better use of 3D shape and spatial
information of the midbrain structures, though training of 3D
models also requires more training data. In addition, midbrain
structures from each hemisphere may be extracted separately to
adapt to specific applications. Using the segmentation from a
single rater as the ground truth during training is a limitation of
this study, so future work focusing on consensus segmentations
from multiple experts will provide ideal ground truth. Future
work may also require testing the reliability of automatic
segmentation algorithms across imaging devices or institutions
and detecting regional volume and susceptibility values not only

Frontiers in Neuroscience | www.frontiersin.org 10 February 2022 | Volume 16 | Article 801618

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-801618 February 4, 2022 Time: 15:28 # 11

Zhao et al. CNN-Based Midbrain Segmentation in QSM

in healthy subjects with a limited age range, but also in those over
a wider age range and/or with neurological disease.

CONCLUSION

We have presented an automated segmentation method for
the midbrain gray matter nuclei using a combination of high-
resolution susceptibility maps and CNN with transfer learning.
By using transferred knowledge in a model trained with similar
data (acquired with same pulse sequence but different scan
parameters) and different labels, a new network for an extended
target can be effectively trained with a relatively small data
size. This transfer learned CNN allows excellent segmentation
of deep gray nuclei on quantitative susceptibility maps. Future
studies on brain volumetric change or iron deposition across the
lifespan and in neurodegenerative diseases will benefit from this
segmentation approach.
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