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Nowadays, fog computing plays a very vital role in providing many services to end-based IoT (Internet of  ings) systems.  e
end IoTdevices communicate with the middle layer fog nodes and to the above cloud layer to process the user tasks. However, this
large data communication experiences many security challenges as IoTdevices are being compromised and thus the fog nodes at
the fog layer are more prone to a very critical attack known as Distributed Denial of Service (DDoS) attack.  e attackers or the
compromised IoT devices need to be detected well in the network. Deep Learning (DL) plays a prominent role in predicting the
end-user behavior by extracting features and classifying the adversary in the network. But, due to IoTdevice’s constrained nature
in computation and storage facilities, DL cannot be administered on those. In this paper, a deep intelligent DDoS attack detection
scheme (DI-ADS) is proposed for fog-based IoTapplications.  e framework mainly uses a deep learning model (DLM) to detect
DDoS attacks in the network.  e DLM is installed on the computation module of the fog node that predicts the end IoT device
behavior. For the selection of the best DLM model at the fog layer, the performance comparison is made on Deep Neural
Multilayer Perceptron (DNMLP) and Long Short-Term Memory (LSTM) models along with the conventional machine learning
(ML) models such as Support Vector Machine (SVM), K-Nearest Neighbours (KNN), Logistic Regression (LR), and Random
Forest (RF).  e simulation is performed using the Python Anaconda platform by considering a new DDoS-SDN (Mendeley
Dataset) dataset that consists of three DDoS attacks such as TCP Syn, UDP Flood, and ICMP attacks. From the results, DNMLP
showed the best accuracy of 99.44% as compared to other DL andML models. By outperforming nature in the detection of DDoS
attacks, DNMLP is considered in the proposed framework for being implemented at the fog layer.

1. Introduction

IoT is a profoundly arising stage in the present progressing
world. It is planned with di�erent connected devices such as
smart vehicles, smart healthcare, smart grid, surveillance,
etc. Its prominence of monstrous use brought about many
assaults on connected devices in the trading of resources.
Because of its centralized nature, more openness to hazards
like unpathed weaknesses, weak authentication, and weak

APIs may happen. Information on IoT devices is controlled
by sensors and actuators over the cloud which gives on-
request administration to the end clients. Nonetheless, of-
fering types of assistance to IoT by the cloud has its issues in
the method of high latency, data security, and protection and
interruption [1–6].

Tomitigate the issues of IoTwith the cloud, another layer
is developed called fog, the arising innovation that plays
between the cloud and end devices. It disseminated a
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decentralized computing model which helps in offering
types of assistance to the end clients by latency and band-
width utilization and makes information nearer to the edge
of the network. Still on, fog devices are profoundly inclined
to attacks that get compromised with data privacy. ,e most
occurring of attacks are DDoS, IP Spoofing, Man-in-Middle
attack, and port scan attack [7]. To emerge from this, many
attack detection mechanisms are required in fog architec-
ture. On providing benefits to the end-users such as low
latency and mobility an intermediate layer is built between
IoT and cloud [2]. To bring out communication among the
connected devices, IoT devices require communication
protocols. For instance, consider a surveillance systemwhere
huge data will be collected and stored in the cloud for future
retrieval and IT services, but we require only summarized
data in the cloud to prevent the wastage of bandwidth and
storage capacity. To achieve low latency, effective utilization
of bandwidth, and storage we require non-cellular-based
network protocols for communication (COAP, MQTT,
LoRa, and LoRaWAN) [5, 8–10].

IoT devices generated data is communicated and stored
near to devices employing fog using above protocols for fast
accessing of resources. In this case, there is more chance of
happening attacks on fog nodes/fog layer. So, we need to
define attack detection in the fog layer to create a secure
system. Due to the increase in usage of the Internet and a
large amount of data transfer, a greater number of anomalies
may be present. In parallel, the cause of attacks is also in-
creasing consistently. Many organizations are continually
working on network attack detection to provide secure
services to the end-users.,e usage of cloud services and IoT
over the fog layer also leads to more increased risk of data
violation. In this regard to provide or design a more secured
system over legacy methods using high-end DL algorithms
we can identify the attacks dynamically. With the ever-in-
creasing Internet, society is moving towards modern tech-
nologies to predict, detect, or classify, and analysis of
network behavior using DL approaches is being widely used.
Hence attack detection is becoming the most recent trend
and research scope for cyber threats.

Fog layer security has become challenging because of its
geo-distribution and location awareness. Initially to detect
attacks machine learning (ML) techniques are highly used
but unsuitable for a huge volume of data. To overcome the
limitation of ML, DL is used in detecting attacks in the fog
layer. DL is preferable over ML for huge data as it has
multiple layers in processing. DL has been utilized in
classifying many attacks with a high detection rate and
results in the binary classification of normal and abnormal
behavior and multilabel classification and sends it to cloud
for behavior update of a node [1, 4, 7, 11, 12]. Due to re-
source constraint nature of IoT, it is not possible to im-
plement complex DL algorithms; therefore DL is suitable to
implement on fog node/fog layer with high accuracy. Hence,
DL is the best over ML algorithms against a huge volume of
data. In this work, a DDoS attack is detected based on fog-
based IoT applications using DLM.

,e proposed work is designed with a deep intelligence
DDoS attack scheme (DI-ADS) based on fog and DL. By this

framework, the DDoS attack is detected in less span with low
latency compared to attack detection based on the cloud. To
define the best model for attack detection we tested the
potentiality of two DLMs and four ML models at the
computational module of the fog node considering the
DDoS-SDN dataset. ,e dataset involves three different
types of DDoS attacks, namely, TCP Syn, UDP flood, and
ICMP attacks. From accuracy, it is proved that the DNMLP
model is the best model for attack detection and thus in-
stalled at the fog node.,e communication between end IoT
devices and fog is routed by gateways on which fog nodes
detect attacks by classifying IoT data. ,e framework is
implemented in six stages. ,e network setup is imple-
mented in the first stage as three layers (IoTdevice layer, fog
layer, and cloud layer) through interfaces. ,e network
traffic classification setup aims at selecting the best model as
the second stage. In the third stage, model deployment and
network initialization are done by deploying the selected
model on the fog node for attack detection. ,e fourth stage
specifies how the fog node classifies the behavior of IoT
devices and updates to the cloud.,e cloud update is done in
the fifth stage by updating the current behavior on received
information from the fog. ,e sixth stage shows the local
table update at fog for future communication and attack
detection.

,e major contribution of this work is stated as follows:

(1) In this paper, a deep intelligent DDoS attack de-
tection scheme (DI-ADS) is proposed for fog-based
IoT applications. ,e framework mainly uses DLM
to detect DDoS attacks in the network.

(2) ,e DLM is mainly installed at the computation
module of the fog node that predicts the end IoT
device behavior. For the selection of the best DLM
model at the fog layer, the performance comparison
is made between DNMLP and LSTM and also
conventional ML models such as SVM, k-NN, LR,
and RF.

(3) ,e simulations are performed using the Python
Anaconda platform by considering a new DDoS-
SDN Mendeley dataset [13] that consists of three
DDoS attacks such as TCP Syn, UDP Flood, and
ICMP attacks.

(4) From the result, it is found that the DNMLP model
shows better prediction accuracy of 99.44% as
compared to other models and it is implemented at
fog nodes for detection of DDoS attacks.

,e rest of the sections are discussed as follows. Section 2
presents the related works. Section 3 presents the system
model. Section 4 presents the problem statement. Section 5
presents the proposed DI-ADS model. Section 6 presents the
simulations and results. Section 7 presents the conclusion
and future scope.

2. Related Works

In this section, many research works are discussed related to
this concept and they come up with best Deep Learning
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Techniques in proposing attack detection framework for
fog-based IoT system. Ahmed et al. [1] using DL technique
proposed attack detection framework for several cyber-
attacks which results in high detection rate with 99.96%
detection accuracy (DA) in binary classification and 99.65%
DA in multiclassification. Lawal et al. [2] designed two
modules’ framework for oddity detection using signature-
based and anomaly-based methods. Module-1 is six times
faster than module-2. XGBoost Classifier is used for binary
and multiclass classification by module-2 to obtain accuracy
of 99% and 97% for average recall, precision, and F1 score,
respectively. Puthal et al. [3] discussed a 3-layered archi-
tecture and possibilities of threats and unfolding from
threats at each layer and also discussed advanced research
issues required for present architecture. Khater et al. [8]
presented a lightweight IDS using MLP model on vector
space representation. Latency on cloud, mobility support,
and location awareness problems on cloud are addressed
using ADFA-LD and ADFA-WD datasets which resulted in
94%, 95%, and 92% of accuracy, recall, and F1-measure,
respectively. On ADFA-LD dataset, 74% of accuracy, recall,
and F1-measure is found, respectively, using Raspberry Pi.
Bhushan and Deepali [14] proposed a framework for defense
against DDoS attack by generating TCP traffic using LOIC
on Kali Linux Machine. Fog defender is used and applying
rules at fog layer allowed only legitimate requests to cloud
for accessing. Priyadarshini and Barik [15] proposed a novel
source based DDoS defense mechanism to mitigate DDoS
attacks using DLMs by blocking infected packets dissemi-
nated to cloud on CTU-13 Botnet and ISCX 2012 IDS
dataset. ,e training and testing dataset taken is in ratio 90 :
10 with 10-fold cross validation scheme that resulted in
98.88% accuracy. Chaudhary et al. [11] surveyed various
systems and explored existing things based on security,
privacy, limitation, and challenges and open directions of
research in the domain of computing. Douligeris and
Mitrokotsa [7] presented the classification of DDoS defense
system, pros and cons, and effective defense mechanism and
techniques for better understanding. Potluri et al. [12]
discussed DDoS attack, its detection, and prevention
mechanism in cloud computing environment by using
various approaches like ML, DL, NN, blockchain, SDN, and
genetic algorithms. Kalaivani and Chinnadurai [16] pro-
posed an intrusion classification model using CNN and
LSTM to predict attacks accurately using DL models. ,e
dataset used for this purpose is NSL-KDD, and it obtains
96.5% accuracy on attack detection using integrated CNN
with LSTM FCID model. ,e model is deployed in fog layer
which monitors network traffic, and it protects from
malicious users on providing services to the IoT devices by
cloud. It is used in multiclass attack classification such as
DoS, U2R, R2L, and probe attacks. ICNN-FCID model is
provided with different activation function such as ReLU,
Sigmoid, andHyperbolic Tangent (Tanh) activation function
of which ReLU provided high accuracy compared to two
other functions on ICNN-FCID model. Churcher et al. [17]
used several ML algorithms such as KNN, SVM, DT, NB, RF,
ANN, and LR for comparing both binary and multilabel
classification. Considering several parameters such as

accuracy, precision, recall, F1-score, and log loss, the above
algorithms are compared, RF accuracy of which is 99% for
HTTP DDoS attack. But, based on simulation results on
abovementioned parameters RF outperforms in binary
classification, and for multilabel classification KNN out-
performs with accuracy of 99% compared to RF. Kilincer
et al. [18] used CSE-CIC IDS-2018, UNSW-NB15, ISCX-
2012, NSL-KDD, and CIDDS-001 datasets on 3 different ML
algorithms such as SVM, KNN, and DT for classification of
attacks by performingmin-max normalization on dataset for
comparative study. ,e result of this study shows that DT
classifier is more successful that the other two classifiers.
Many such related research works can also be found in
[19–21, 21–30].

From the literature survey done on various attack de-
tection systems, the following research gaps are found; for
example: (i) Most of the papers evaluated the performance
accuracy on a small dataset with a smaller number of at-
tributes that do not provide actual information on attack
detection. Hence, we used DDoS-SDN dataset [13] in the
present study with a greater number of attributes for better
classification of attacks. (ii) ,e second flaw observed is the
usage of classifiers for the classification of attacks made on
only one classifier model. It is difficult to express which ML
method performs better on the selected dataset at the highest
level. Also, conventional ML algorithms are used for attack
detection which is difficult when larger datasets are used. In
this work, we used DLMs for performance evaluation. (iii)
Many studies reported a limited number of attacks based on
the dataset used. Here, we considered a dataset that can
examine different DDoS attack types.

3. System Model

In this section, a system model is discussed with both the
network model and attack model. ,e network model de-
scribes the network components, network topology, and
communication between the network components. ,e
attack model describes how the attackers attack the network.
,e notations used in this work are shown in Table 1.

3.1.NetworkModel. ,e network model mainly consists of a
3-layered architecture such as the cloud as the upper layer,
fog as the middle layer, and IoTor smart devices as the lower
layer [1–3, 17, 18] as shown in Figure 1.

,e upper layer is called cloud layer which consists of a
cloud node C which provides centralized data storage that
stores the updated behaviors of the IoTdevices. ,e cloud C

also updates the IoT devices at the lower layer at regular
intervals for updating the behaviors (normal/DDoS attacker)
of the IoTdevices.,e cloud layer is connected to the middle
layer through a gateway (GT) and base stations (BSs). ,e
communication takes place using wired/wireless
communications.

,emiddle layer is called the fog layer that consists of fog
nodes FN1, FN2, . . . , FNn􏼈 􏼉 to accomplish a considerable
quantity of storage, computation, and local communication.
,ese nodes give services to the IoT devices in proximity.
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 ey also record the behavior of the devices in a timely
manner.  e fog node mainly consists of a computation
module (CMFN) and a memory module (E).  e CMFN of a

fog node is enabled where the CMFN is trained with a DLM
to perform a task to predict the behaviors of the IoT devices
which communicate with the fog node in proximity.  e fog
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Fog layer for DDoS Attacker
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Detection using

Figure 1: System architecture.

Table 1: Notations and descriptions.

Sl. No. Notation Description
1 C Cloud
2 GT Gateway
3 BS Base station
4 FN Fog node
5 CMFN Computation module of fog node
6 MMFN Memory module of fog node
7 iot IoT device
8 A Attacker
9 I Set of IoT devices
10 B Set of behavior instances
11 b Behavior instance
12 T Set of time instances
13 t Time instance
14 Acc Accuracy
15 DT Dataset for training and testing
16 tr Training data
17 ts Testing data
18 TST Total service time
19 Target Label assigned to ¦nal behavior
20 BDT Behavior detection time
21 TUD Time to update IoT devices
22 CA Classi¦cation accuracy
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nodes are also connected to each other through wired/
wireless communications for data communication between
them.  e fog layer is connected to the upper layer through
GT and BSs.  e communication takes place using wired/
wireless communications.  e fog layer is also connected to
the lower layer using GT and BSs through which commu-
nication takes place.

 e lower layer is called the IoT device layer that
comprises IoT devices iot1, iot2, . . . , iotn{ } which carries out
a large volume of end-users data or requests to fog or cloud
for fast computation and service.  e IoT devices com-
municate using BSs and GTfor communication with the fog
layer or cloud layer.  ey have limited storage and com-
putational capability.

3.2.DDoSAttackModel. In this section, the attack model is
discussed, where the attacker Ai attacks the network
components in any format for its control over the network
or disruption of the services provided by the network
components. In this model, we have assumed that the IoT
devices at the lower layer communicate with the fog nodes
for getting services from the cloud or fog nodes in
proximity.

From Figure 2 it is seen that a DDoS attacker A controls
the IoT devices in the network by taking control of the IoT
devices by hacking the devices.  e IoT devices in the
network are now compromised by the attacker.  e attacker
overwrites the particular attack code over the normal
function of the IoT devices by which they behave as a
malicious node as per the behavior of the attack.  e
compromised IoT devices communicate and attack the fog
nodes in many ways such as sending unnecessary requests or
signals to the fog nodes for jamming the network and for
performing any malicious activity or taking control of the
network [14, 15, 31]. In this work, we have considered three
attacks of DDoS such as TCP Syn, UDP ¨ood, and ICMP
attacks by considering a new dataset [13] for training and
testing.

4. Problem Statement

As per above model, there are n number of IoT devices I �
iot1, iot2, . . . , iotn{ } which communicate with a fog node FN
with communication behaviors B � b1, b2, . . . , bn{ }, where
bn is the set of communication instances that is denoted as
b � cin1, cin2, . . . , cinm{ } at di�erent time instances
T � t1, t2, . . . , tm{ } where m is the number of communica-
tion instances made by an IoT device with a fog node FN.
Each communication instance is set of attributes or features
Ft � ft1, ft2, . . . , ftp{ } where p is the number of attributes
or features such as source IP, destination IP, packets sent,
packets received, acknowledgement, etc. with a target label
attribute or feature as attack (1) or normal (0).  e problem
is to predict the communication instance cinm as attack (1)
or normal (0) by implementing a DLM with high accuracy.
Before this, the problem is also to train and test di�erent
DLMs with standard dataset and select the most appropriate
DLM for the fog nodes.

5. Proposed DI-ADS Scheme

In this section, the proposed DI-ADS scheme is described to
solve the above problem.  e DI-ADS scheme mainly
consists of six steps such as (1) Network Setup, (2) Network
Tra©c Classi¦cation Setup, (3) DLM Deployment and
Network Initialization, (4) Attack Detection, (5) Cloud
Update, and (6) Fog Node Update.  e process ¨ow model
of DI-ADS with six steps is presented in Figure 3.  e steps
of the DI-ADS scheme are described as follows.

5.1. Network Setup. In the ¦rst step as shown in Figure 3 of
the DI-ADS process ¨ow model, the network is ¦rst set and
the components of the model are then connected.  e cloud
node C is ¦rst set that provides di�erent services to the users
such as computing, storage, platform, networking, etc. As
per DI-ADS, the cloud node stores the IoTdevice’s behaviors
and also updates them promptly.  en the fog nodes are set
in the network in such a manner that the IoT devices can
communicate to get services in minimum time.  e fog
nodes also solve the issues and provide services to the IoT
devices in proximity.  e fog nodes are connected to each in
a wired/wireless manner.  e IoT devices at the lower layer
are connected to the fog nodes in proximity using BSs and
GT.  ey send and receive data wirelessly using 4G/LTE/
3G/WiMAX communications.  e BSs and GT also send
and receive data wirelessly using 4G/LTE/3G/WiMAX.  e
placements of fog nodes and cloud nodes in any region or
place are out of the scope of this work. We only focus on the
connection of the layers and how communication takes
between the network components.

5.2. Network Tra�c Classi�cation Setup. After setting the
network and connections of each layer, the fog nodes are

Compromised IoT

Attacker

Normal IoT
Compromised IoT

Fog Node

BS

GT

Control

Traffic flow

Figure 2: Attacker model.
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enabled with AI (using DLM) to predict the behavior of the
IoTdevices in the network which communicate with the fog
nodes. e DLM is implemented at the computation module
CMFN of the fog node. At the CMFN AI is implemented using
DLM.  e model is selected based on the highest prediction
accuracy.  e models are ¦rst trained using a standard
dataset of DDoS attack detection.  e dataset needs to
undergo preprocessing steps before training; it goes with
preprocessing steps for feature selection using handling
missing values, feature scaling, one-hot encoding, and fea-
ture selection.  e data preprocessing steps are shown in
Figure 4 and discussed below as follows.

5.2.1. Data Preprocessing.  e dataset used is preprocessed
as follows:

(1) Handling Missing Values: Most of the datasets used
for classi¦cation may have a missing value which
creates a problem for the DLM. As per the proposed
scheme, we handled the missing values by ¦rst re-
moving the rows or columns which have zeros or
null values. Afterward, we also look for mean and
median methods by replacing the missing values
with mean or median. However, it is only used for
numerical data.

(2) Feature Scaling: Datasets that have various features
with a varying magnitude of values need to be scaled
based on the requirement.  ere are two popular

techniques named normalization and standardi-
zation. In general, if the data does not follow
Gaussian distribution, the normalization technique
is used; otherwise standardization technique is
used. Normalization is used to alter the numerical
values of attributes in a dataset to standardize the
scale without changing the di�erences in value
ranges.

(3) One-Hot Encoding: Dataset containing symbolic
features cannot be processed by DL/ML model and
should be converted into numerical values using one-
hot encoding for better prediction. In this encoding
scheme, we assign a binary variable for each integer
encoded variable for each unique variable.

(4) Feature Selection:  e dataset contains several fea-
tures of which some features have no e�ect on the
classi¦cation of attacks that need to be removed from
the dataset [16, 32]. Similarly, the features containing
zero values can also be removed for better feature
selection. Figure 4 shows the data preprocessing,
training, and testing that is performed using DLM in
the fog node.

5.2.2. Splitting Dataset. After the data preprocessing stage,
the dataset was split into a training set and a testing set.  e
training set is used for training the DLM and the test set is
used for testing the model accuracy of prediction.  e

Network
Setup

Start

Fog Node Update

Cloud Update

IoT behaviour IoT behaviour

IoT behaviour

Network Traffic
classification

Setup

Attack
Detection

Model Deployment
and Network
Initialization

1. Set Cloud Layer
2. Set Fog Layer
3. Set IoT Layer
4. Interfacing

5. Training and Testing
Fog nodes
with DLM models
using standard
datasets

6. Select the DLM
with high accuracy

7. Deploy the
selected
DLM model

10. Fog node classify
the behaviour of
the IoT device
as it is trained

11. Send behaviour
to cloud for
update

14. Cloud sends
current behaviour to
all Base Stations

12. Receives the IoT
device behavior

13. Update the
current
behaviour

15. Base Stations
broadcasts
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to the FNs

16. Update in the local
table list of FN

8. Start whole
netwok for
attacker detection

9. IoT nodes
start
communication
with fog nodes

Figure 3: Process ¨ow model of DI-ADS scheme.
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dataset splitting process of the taken dataset is completely
discussed in the performance evaluation section.

5.2.3. DLM Used for Prediction of DDoS Behavior. After
splitting the dataset, we have to train the FNi with this training
dataset using DLMs. In this section, we discuss the DLMs
used for the prediction of the behavior of IoTdevices [1].  e
models used are two DL models such as DNMLP and LSTM.

(1) DNMLP: A DNMLP model minimally consists of 3
layers, namely, an input layer, hidden layer, and
output layer with an arbitrary number of hidden
layers. All the neurons in this layer use a nonlinear
activation function excluding the input layer. In
DNMLP, data ¨ow in the forward direction to get the
data classi¦ed, and neurons in DNMLP are also
trained with a backpropagation algorithm. In the

¦rst step of DNMLP model the input value ai is
multiplied with wi and summed up.

aiwi � a1w1 + a2w2 + · · · + anwn. (1)

In the second step, bias b of the hidden layer is added as

Z � aiwi + b. (2)

In the third step, obtained Z value is progressed
through the activation function ReLU and Softmax,
generally denoted by ŷ:

ŷ � max(0, Z), (3)

where if Z< 0 the function will output zero and if
Z≥ 0 the output is simply input.  en, Softmax can
be de¦ned as

Attacker

Data
Preprocessing

Training Dataset Dataset
Repository

Features

Selected Features

Handling with
missing values

Feature
scaling

One Hot
Encoding

DLM at
fog node

Apply Feature
Extraction on the

attributes

Analyze
the traffic

Attacker Normal User

Test dataTesting

Build and train the model

Normal
user

Figure 4: Data preprocessing, training, and testing using DLM at fog nodes.
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ŷ �
eZi

∑nj�1 e
Zj
. (4)

In the fourth step loss (y − ŷ)2 is calculated and if it
is higher, it should be minimized by changingwi and
b which can be done by an optimizer and thus cost
function is calculated as Σi�1n � (y − ŷ)2. Using this
backpropagation in a certain number of iterations we
arrive at global minima where we can treat this as
completion of training of DNMLP.  e DNMLP
architecture is shown in Figure 5.

(2) LSTM: It is explicitly designed to overcome the
problem of Long-Term Dependencies of RNN also
called Recurrent Neural Network (RNN) in DL
[1, 9, 10]. It is used for classifying and making
predictions on data. Every LSTM unit is composed of
four things as cell state, input gate, forget gate, and
output gate. It is used in language modelling,
anomaly detection in network, image captioning, etc.
LSTM can retain information for long run and hence
used in highly classifying data. Equations involved in
the progressive ¨ow of a LSTM cell are

ft � sigmoid Wf.ht−1( ) + Wfq.qt( ) + bf[ ],

it � sigmoid Wi.ht−1( ) + Wiq.qt( ) + bi[ ],

gt � tanh Wg.ht−1( ) + Wgq.qt( ) + bg[ ],

cst � c
f
t + c

i
t,

ot � sigmoid Wo.ht−1( ) + Woq.qt( ) + bo[ ],

ht � tanh cst( ).ot[ ],

(5)

where ft, it, gt, cst, ot, ht are forget gate, input gate,
input node gate, cell state, output gate, and activation
functions.  e LSTM architecture is shown in
Figure 6.

5.2.4. Used Dataset.  e DLMs were evaluated on a stan-
dard new dataset to detect the di�erent DDoS attacks and
classify the end-user behavior (normal/attacker).  e
DDoS-SDN new dataset is chosen from Mendeley Data
which has 104345 rows with 23 attributes [13]. Dataset is
used to detect tra©c type as benign or malicious based on
TCP Syn attack, UDP ¨ood attack, and the ICMP attack. A
total of 23 attributes are available including Switch_id,
Packet_count, byte_count, and many so with a total of
1,04,345 rows of data. e tra©c classi¦cation is labeled as 0
for benign and 1 as a malicious user.  e dataset is cus-
tomized to 18 attributes of which 17 are features and 01 is
the target variable. Target label binary is classi¦ed with 0
(normal user) and 1 (attacker).  e dataset contains one
categorical attribute named protocol which is one-hot
encoded.

5.3. Deep Learning Model Deployment and Network
Initialization. After training the above models with the

standard dataset, we need that DLM model which pro-
vides the highest prediction accuracy for predicting the
behavior of the IoT device (attack or normal) with high
probability. We found the accuracy of each model trained
and tested and selected the model which has maximum
accuracy.  e selected model is implemented and
deployed at the CMFN on the fog nodes in the fog layer.
Afterward, as the model is deployed successfully in the fog
layer the network is initialized for real-time processing
where the IoT devices start communication with the fog
nodes for getting services as per their requirement. Al-
gorithm 1 shows the selection of the best DLM. Algorithm
2 shows the deployment of DLM at the fog layer and
network initialization for starting the network.

Theorem 1. �e total service time for an IoT device ioti is
represented as TSTioti.

Proof.  ere is an IoT device ioti and it has a nearest fog
node FNi at the proximity. Firstly, ioti sends a request to the
FNi at proximity.  e time to send the request is calculated
as follows:

tioti−FNi
� tioti−BS + tBS−GT + tGT−FNi

, (6)

where tioti−BS is the time to send the request from ioti to BS,
tBS is the time to send the request from BS to the GT, and
tGT−FNi

is the time to send the request fromGTto FNi. en,
the time required by FNi for processing the request is
denoted by tprocessingFNi as follows:

tprocessingFNi
� tqueuingFNi + tcomputationFNi

, (7)

where tqueuingFNi is the waiting time of the request in the
queue and tcomputationFNi

is the time to process the request to
¦nd the result. en the result is transferred to the IoTdevice
ioti with a time of tFNi−ioti.

tFNi−ioti � tFNi−GT + tGT−BS + tBS−ioti, (8)

where tFNi−GT is the time to send the result from FNi to GT,
tGT−BS is the time to send the result from GT to BS, and
tBS−ioti is the time to send the result from BS to ioti.  erefore
the total service time (TST) is calculated as follows:

Input Layer Hidden Layers Output Layer

Figure 5: DNMLP architecture.
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Input: DLM1,DLM2, . . . , DLMn, DDoS Dataset
Output: DLM Selected

(1) DT←Preprocessing(DDoS Dataset);
(2) tr, ts←train test split(DT));
(3) forDLM1 to DLMn do
(4) Train(tr);
(5) Test(ts);
(6) Accn←Calculate Accuracy( ); ⊳ Acc: Accuracy
(7) end for
(8) DLM Selected←Max(Acc1,Acc2, . . . ,Accn);

ALGORITHM 1: Algorithm for selection of best prediction model for the fog layer.

Input: DLM Selected, FN1, FN2, . . . , FNn􏼈 􏼉

Output: Result
(1) forFN1 to FNndo
(2) CMFNi

←DLM Selected; ⊳ DLM is installed at each CMFNi
of the fog layer, where i here is the number of fog nodes.

(3) end for
(4) network start( )

(5) {
(6) foriot1 to iotm do ⊳ ,e network is now ready for real time processing.
(7) if service needed then

(8) ioti ⟶
Sends Request

FNi;

(9) ioti ←
Receives Response

FNi; ⊳FNi in proximity
(10) Connection Established( );
(11) FNi process Request;
(12) FNi records the bi; ⊳ Fog node records the behavior of iot device.

(13) FNi⟶
Result

ioti; ⊳ Sends result to IoT device.
(14) Connection Closed( );
(15) end if
(16) end for
(17) }

ALGORITHM 2: Algorithm for DLM model deployment at fog layer and network initialization.
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TSTioti � tioti−FNi
+ tprocessingFNi

+ tFNi−ioti. (9)
□

5.4. Attack Detection. In the previous step, it is described
how a DLMmodel is selected and installed in the fog nodes.
Afterward, the IoT devices started communicating with the
fog nodes in proximity for getting services. However, after
the communication, the DI-ADS scheme predicts the be-
havior of the nodes from recorded behavior. As the CMFNi

of
a fog node is enabled with DLM it can predict the behavior of
the IoTdevices (DDoS attack or normal). After classification,
the updated behavior of the node is sent to the cloud C for
storage and update. Algorithm 3 shows the classification of
IoT device behavior by fog node.

Theorem 2. :e behavior detection time (BDT) of an IoT
device ioti is represented as BDTioti.

Proof. ,ere are n number of behaviors for n number of IoT
devices in the queue. So, the BDTioti of an IoTdevice ioti of a
fog node FNi is calculated as

BDTioti � tqueuingbi

+ tprediction, (10)

where tqueuingbi

is the time a behavior of an IoTdevice waits in
the queue of FNi to get processed and tprediction is the time
required by FNi to detect the behavior of the IoTdevice. □

5.5.CloudUpdate. After the behavior of an IoTdevice is sent
from a fog node FNi to cloud C the cloud node receives the
behavior of the IoT device and updates the behavior of the
device in the IoT device information table. ,is table is
updated always after a response is received from any fog
node FNi. Algorithm 4 shows the steps to update the be-
havior of IoT devices in the local memory of the cloud.

5.6. Fog Node Update. In this stage, cloud C sends the
Targetbi

of IoT devices to FNs through communication
channels GTC, GTC to BS, BS to GTi, and GTi to FNi for
updating the local tables at FN nearer to BS. In future if any
communication takes place between neighbouring FNs, the
communication is performed only after the behavior veri-
fication from the local table information. If found to be
attacker then further communication with neighbouring
node in the network is stopped. Algorithm 5 shows network
update at FN.

Theorem 3. :e total time cloud C takes to update at FN
about the attacker behavior at any time t is represented by
TUD (time to update device layer about attackers).

Proof. Let, at time t, the set of predicted behaviors for n

attacker devices be represented as
Targetb1,Targetb2, . . . ,Targetbm

􏽮 􏽯 for m IoT devices. ,is set
is sent as a message M to the FNs in the whole network. For
this, the cloud node C sends M to the FNi in TUD time
which is calculated as follows:

TUD � tC−GTC
+ tGTC−BS + tBS−GTi

+ tGTi−FNi
, (11)

where tC−GTC
is the time to send the message M from C to

GTC, tGTC−BS is the time to send the message M from GTC to
BS, tBS−GTi

is the time to send the message M from BS to GTi,
and tGTi−FNi

is the time to send the message M from GTi to
FNi. □

6. Performance Evaluation

,e performance of the proposed framework is evaluated
using Python 3. ,e machine used for this performance
evaluation has Windows 10 OS, core i7-11370 processor,
3.30GHz processor speed, and 16GB RAM. ,e DNMLP
model used in the present framework is compared with the
LSTM model and some conventional ML models such as
SVM, KNN, LR, and RF.,e performance is evaluated using
the following performance parameters:

(1) CA (classification accuracy): ,e number of pre-
dictions made correct from the observed values is
called CA and it is represented below as follows:

CA �
TP + TN

TP + FN + TN + FP
, (12)

where TP is the true positive, TN is the true negative,
FP is the false positive, and FN is the false negative.

(2) F1-Score:,e harmonic mean of precision and recall
to know the accuracy better is shown by F1-score and
it is represented below as follows:

F1 �
2 × Precision × Recall
Precision + Recall

. (13)

(3) Precision: In which proportion the instances are
correctly classified of a particular positive class from
total classified instances of that class and it is rep-
resented below as follows:

Precision �
TP

TP + FP
. (14)

(4) Recall: Recall means the proportion of actual in-
stances correctly classified for a particular class and it
is represented below as follows:

Recall �
TP

TP + FN
. (15)

6.1. Simulation Setup for DDoSAttackDetectionUsingDLMs.
Firstly, using Python 3, DNMLP and LSTM DL models and
RF, LR, KNN, and SVMMLmodels are implemented to find
the best model with high accuracy. ,e DDoS attack SDN
dataset [13] mentioned in Section 5.2.4 is used for predic-
tion. For the implementation of DNMLP and LSTM deep
learning models, the Keras package on TensorFlow is in-
stalled in Anaconda for deep learning support. ,e RF, LR,
KNN, and SVMmodels are also implemented using SkLearn
Package and are also used for performing preprocessing and
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performance evaluation metrics. Accuracy and loss per-
formance graphs are obtained using the package matplotlib.

Using DDoS-SDN dataset, we trained and evaluated
DNMLP and LSTM DLMS and other ML models for binary
classification (normal or attacker). DDoS-SDN dataset [13]
is used to detect the capability of DNMLP, LSTMDLMs, and
ML models for attack detection. ,e dataset contains a total
of 23 features including the target label. In our work to
predict the attacks, we considered 14 features, and 8 features
are discarded as some of the features are having zeros and
some are having no impact on the target label. ,e features
of the list (1, 2, 3, 4, 17, 20, 21, and 22) were removed from
the dataset. On removal of these features, the computational

overhead is reduced, and also the model is trained on
necessary data. Using the standardization technique the
dataset is scaled on various features with varying magnitudes
of values and partitioned into two subsets in the ratio of 80 :
20 as training and test dataset. ,e aim of partitioning the
dataset in a ratio of 80 : 20 is for training the model with
adequate information and to substantiate the created model
with appropriate information.

In the proposed framework to obtain the best-trained
model using DNMLP, we considered a batch size of 10 with
40 epochs on the Adam optimizer for binary classification.
Keras on TensorFlow is used for constructing NN on the
DNMLP model for the DDoS-SDN dataset, considering 14

Input: DLM Selected, FN1, FN2, . . . , FNn􏼈 􏼉, bi

Output: Update cloud C

(1) forFN1 to FNndo
(2) for all IoT devices of FNido⊳i � 1, 2, 3, . . ., n

(3) Targeti �DLM Selected(bi); ⊳ Target is the label assigned to the behavior of the IoT device.

(4) FNi ⟶
Sends Targeti

C

(5) end for
(6) end for

ALGORITHM 3: Classification of IoT device behavior by fog node.

Input: Targetbi
of ioti

Output: Cloud IoT device table update
(1) loop()
(2) {
(3) C receives Targetbi

of ioti;
(4) Update Table(Targetbi

); ⊳ Update the behaviour of the IoT device at cloud IoT device information table.
(5) }

ALGORITHM 4: Cloud update.

Input: Targetb1,Targetb2, . . . ,Targetbn

Output: updating of local table at FN
(1) loop()
(2) {
(3) C⟶ TargetbiGTC

(4) GTC ⟶
TargetbiBS

(5) BS⟶ TargetbiGTi

(6) GTi ⟶
TargetbiFNi

(7) for all FN near BS do
(8) Update LocalTable(Targetbi

);
(9) end for
(10) }
(11) if communication starts between FNi and FNjthen
(12) ifFNj � �DDoS attacker ⊳FNi checks in local table of itself. then
(13) No communication;
(14) else
(15) Communication occurs;
(16) end if
(17) end if

ALGORITHM 5: FN update.
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input values and 1 output value. One categorical attribute,
namely, protocol, is one-hot encoded. In this model, we used
two hidden layers with a dimension of 16. emodel used to
create NN using Keras is sequential which takes the output
of each layer as input to the next layer using the add-on
model. To specify a fully connected layer we used Dense
from the Keras package on 16 input dimensions to generate
16 output dimensions on the ReLu activation function by
passing as an argument to add function. In the last layer, the
output dimension is 1 to obtain binary classi¦cation by using
the sigmoid as an activation function.

In LSTM, we used a learning rate of 0.001 for batch size
64 with 40 epochs on the Adam optimizer algorithm that has
an input layer with 16 input dimensions and 16 as output
dimension space, two hidden layers with 16 input dimen-
sions and 16 as output dimension, and one output layer
using the sigmoid activation function. From [1], it is ob-
served that, with an increase in the number of hidden layers
on a batch size of 128 with 100 epochs on di�erent learning
rates of 0.01, and 0.001 LSTM obtains higher accuracy.

Sklearn package is the most useful library for ML in
Python. It is used to model the data on both supervised and
unsupervised ML algorithms. Here we considered super-
vised ML algorithms such as RF, LR, KNN, and SVM. For
building an RF ensemble classi¦er we used sklearn.ensem-
ble.RandomForestClassi¦er which contains parameters of
max_depth and random_state.  e max_depth as 5 repre-
sents a tree with maximum depth from root to leaf being 5
and parameter value of random_state can be either int or
none which we considered as 0 and also by default n_es-
timators are 100 which contain 100 decision trees. LR is also
used for binary classi¦cation which is imported from
sklearn.Linear_model.LogisticRegression. By default, lbfgs
solver in LR is used in the optimization problem. To im-
plement SVM the module from sklearn.svm.LinearSVC is
imported.  e LinearSVC is highly used on larger datasets
and by default the RBF kernel is used in implementing the
algorithm. In KNN the algorithm is imported from
sklearn.neighbors.KNeighborClassi¦er with a parameter
n_neighbor of either int or default which takes a value of 5
and represents the number of neighbours. In this work based
on RMSE, we found K� 1 which obtain high accuracy
among the other K values.

6.2. Results andDiscussion.  e performance of DNMLP for
the DDoS-SDN dataset [13] in training and validation ac-
curacy is shown in Figure 7. Binary classi¦cation with a
batch size of 10 and an increase in epochs shows an increase
in training and validation accuracy in Figure 7, but the best
accuracy is obtained at the 34th epoch as 99.55% from
experiment evaluation. From Figure 8, the training and
validation loss decrease converged at the 40th epoch. With
an increase in batch size to 64 at the 40th epoch, the model
witnessed a slight decrease in all performance metrics but by
the increase in epochs, the increase in validation accuracy
and decrease in validation loss were observed with good ¦t
learning curves by overcoming under¦tting and over¦tting.
 e training and validation accuracy of the DDoS-SDN

dataset using LSTM is shown in Figure 9. Binary classi¦-
cation with a batch size of 64 and an increase in epochs
shows an increase in training and validation accuracy in
Figure 9, but the best accuracy is obtained at 28th, 33rd, and
39th epochs as from experiment evaluation. From Figure 10,
the training and validation loss decrease converged after the
40th epoch of 64 batch size.

Figure 11 shows the comparison of performance metrics
among the two DLMs and four ML models on the DDoS-
SDN dataset. In terms of accuracy, precision, recall, and F1-
score, DNMLP performs better than considered ML models
and LSTM.  e accuracies of all DNMLP, LSTM, and other
ML models with binary classi¦cation are shown in Figure 12
such that the DNMLP model is predicted to be a higher
ranking than all other models.

Using the DDoS-SDN dataset we trained and evaluated
DNMLP, LSTM, and ML models for binary classi¦cation
and found DNMLP shows better accuracy than all other
models in predicting the behavior of the IoT devices as an
attacker or normal. For the DDoS-SDN dataset, DNMLP
achieves 99.44% accuracy, 99.02% precision, 99.60% recall,
and 99.30% F1-score. LSTM achieves 97.84% accuracy,
96.18% precision, 98.47% recall, and 97.31% F1-score. RF
achieves 97.68% accuracy, 94.62% precision, 99.81% recall,
and 97.15% F1-score. LR achieves 75.87% accuracy, 71.68%
precision, 64.72% recall, and 68.02% F1-score. KNN ach-
ieves 98.73% accuracy, 98.26% precision, 98.55% recall, and
98.40% F1-score. SVM achieves 75.89% accuracy, 72.39%
precision, 63.40% recall, and 67.59% F1-score. Accuracy is
only a basic measure in evaluating a model but proved to be
good when a balanced dataset is used. In this work, the
dataset used is imbalanced as the number of normal users is
60.92% and malicious users are 39.08%; also we used an 80 :
20 train and test split. So, there may be a chance of larger
false positives (FP) than false negatives (FN). In such cases, it
is better to account for the other performance metrics like
precision, recall, and F1-measure.  e recall does only
consider false negatives and true positives (TP) and thus
recall may be high. Precision does only consider FP and TP;
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Figure 7: Model accuracy for DNMLP using accuracy vs. epoch
graph.
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it may su�er from low value. Here F1-score, a harmonic
mean of precision and recall, will have its importance in
deciding the performance of the model and it is evident by
the results showing the highest value of the F1-score
(99.30%) with DNMLP.

To test the scalability issue, the simulation environment
is set as a three-tier architecture where 1 cloud server is
connected to multiple fog nodes. In the last layer, we assume
that there are 10–100 IoT devices connected to the nearest
fog nodes. For example, if 1 fog node is there and 10 IoT
devices are there, then 10 IoTdevices directly connect to the
fog node; however, if the number of fog nodes is greater than
1 then the number of fog nodes equally divides the number
of IoTdevices for providing required service. So, if there are
2 fog nodes then 1 fog node will give service to 5 IoTdevices.
In this scenario, we assume that an IoTdevice communicates
with the fog node and 1 sample is generated (row).  is
sample is then processed at the fog node for behavior
prediction (normal/attack).  e average behavior detection
time from the above experiment using DNMLP is found to
be 0.0004 seconds for 10 IoTdevices/samples and for LSTM
it shows an average of 0.001 seconds for 10 IoT devices/
samples. From this experiment, we have tested if the number
of IoTdevices increases concerning the number of fog nodes
then what the impact on behavior detection time is. Behavior
detection time (BDT) is the time to detect the number of IoT
devices as normal or attacker by the fog nodes using DNMLP
or LSTM. Table 2 shows the parameters and values for the
network simulation.

From Figures 13–17, it is observed that when the number
of IoT devices increases in the network then the behavior
detection time also increases for all the IoTdevices. Figure 13
shows the result when the number of fog nodes in the
network is 1 and the IoT devices increase from 10 to 100.
From this ¦gure, it is observed that DNMLP shows less
behavior detection time than LSTM.  e average behavior
detection time of 100 IoTdevices for DNMLP is found to be
0.022 secs and the average behavior detection time of LSTM
is found to be 0.055 secs. Figure 14 shows the result when the
number of fog nodes in the network is 3 and the IoTdevices
increase from 10 to 100. From this ¦gure, it is observed that
DNMLP shows less behavior detection time than LSTM. e
average behavior detection time of 100 IoT devices for
DNMLP is found to be 0.0073 secs and the average behavior
detection time of LSTM is found to be 0.018 secs. Figure 15
shows the result when the number of fog nodes in the
network is 5 and the IoT devices increase from 10 to 100.
From this ¦gure, it is observed that DNMLP shows less
behavior detection time than LSTM.  e average behavior
detection time of 100 IoTdevices for DNMLP is found to be

0.0044 secs and the average behavior detection time of LSTM
is found to be 0.011 secs. Figure 16 shows the result when the
number of fog nodes in the network is 7 and the IoTdevices
increases from 10 to 100. From this ¦gure, it is observed that
DNMLP shows less behavior detection time than LSTM. e
average behavior detection time of 100 IoT devices for
DNMLP is found to be 0.003142 secs and the average be-
havior detection time of LSTM is found to be 0.007857 secs.
Figure 17 shows the result when the number of fog nodes in
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Figure 13: Comparison of behavior detection time for DNMLP
and LSTM with 1 fog node in the network.
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Figure 14: Comparison of behavior detection time for DNMLP
and LSTM with 3 fog nodes in the network.

Table 2: Network simulation setup for analysing device behavior detection time at fog.

Sl. no. Parameter Value
1 Number of cloud node 1
2 Number of fog nodes 1–10
3 Number of IoT devices 10–100
4 Average behavior detection time for DNMLP for 10 samples 0.0004 sec
5 Average behavior detection time for LSTM for 10 samples 0.001 sec
6 Number of simulation runs 10
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the network is 9 and the IoTdevices increase from 10 to 100.
From this ¦gure, it is observed that DNMLP shows less
behavior detection time than LSTM.  e average behavior
detection time of 100 IoTdevices for DNMLP is found to be
0.0024 secs and the average behavior detection time of LSTM
is found to be 0.0061 secs. From all these results it also
concluded that when the fog nodes in the network increase
the behavior detection time reduces.

7. Conclusion

In this paper, we designed a DI-ADS scheme to detect
DDoS attacks for fog-based IoTsystems using DLM. Firstly,
the network is set with three layers: IoT device layer, fog
layer, and cloud layer, and then DNMLP, LSTM DL
models, RF, LR, KNN, and SVM ML models are evaluated
to predict the best model with high accuracy to be deployed
at the fog nodes.  e result shows 99.44% accuracy using
the DNMLPmodel and hence the fog layer in the network is
deployed with DNMLPwhere each fog node is enabled with
DNMLP. It performs binary classi¦cation into two classes 1
and 0 as attacker and normal devices, respectively, and
sends the device behavior to the cloud for an update.  en,
the cloud sends the attacker information to the IoT device
layer where each device knows about the attacker device
status in the neighbourhood. Further communication with
these attacker nodes is decided by the individual IoT de-
vices by verifying the current behavior status.  is model
will be a better scheme for securing the fog layer from
DDoS attacks. In future, we will implement the same
scheme for attack detection using new DLMs, hybrid
models, and unsupervised learning like Deep Belief Net-
works (DBNs) by training the fog nodes with an increased
size of the dataset and also using newer datasets along with
multiclass classi¦cation can be performed to detect par-
ticular attacks.

In the current work, the DNMLP model shows better
accuracy compared to other considered models which have
implementation level limitations in obtaining the perfor-
mance metrics. In the time ahead it would be apposite to
train the DL models by altering the batch size and learning
rates, and increasing epoch number helps in achieving a
better performance benchmark. It is also possible to get
better results by re¦ning the process of data preprocessing.
Beyond this, we could take on heuristic algorithms for
optimizing the DL models.
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Figure 15: Comparison of behavior detection time for DNMLP
and LSTM with 5 fog nodes in the network.
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Figure 16: Comparison of behavior detection time for DNMLP
and LSTM with 7 fog nodes in the network.
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