
Object Based Storage: A Vision

- Make scalable computing possible
- Make systems more usable, manageable
- Effective, inherent security

"The Storage Utility"

OBSD: Technology Foundation

	1997	2001
Processor	25 Mips	100 Mips
Memory	1-4MB 1-2 parts	8-64MB 1-2 Parts

Resources for OBSD appear to be possible, but cost pressure severe

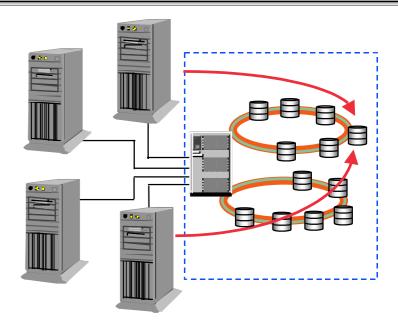
NSIC Network Attached Storage Devices

- IP Agreement signed 2/97
 - Goal: pre-competitive research collaboration
 - Focus: Server Class Storage Management
- Participants
 - HP John Wilkes, Richard Golding, Lou Schreier
 - IBM Paul Hodges, Jack Gelb, Greg Van Hise
 - Quantum Satish Rege, Paul Massiglia, Steve Byan, Geoff Peck
 - STK Chuck Milligan, Scott Robb, Jim Hughes
 - Seagate Dave Anderson, Chris Malakapalli
 - CMU Garth Gibson, Bill Courtright, David Nagle, ...
- Work Product
 - Proposal for an Object Based Storage Device protocol standard
 - Concepts for attribute-based storage management, security model

NSIC Network Attached Storage Devices

Activities

- Private quarterly meetings discuss research, direction
 - First March 1995
- Public meetings education for NASD group, public
 - March 98 general
 - June 98 Intelligence in drives, Active Discs
 - September 98 Networking for Storage
 - May 1999 File Systems
 - August 1999 Data Bases
- Protocol Proposal
 - Requirements document posted to NSIC web site June 1998
 - Continuously revised
 - Will be presented to T10 on November 9th
- Long CDB approved by SCSI


Research Objectives: Find Solutions

Scalable Computing

- Shared access to data
- Heterogeneous computing
- Dynamic scaling without interruption

Storage Management

- Today, more expensive than storage itself
- Platform independent capability
- Goal is self managed storage
 Scales with storage
 Managed by policies and attributes

OBSD: Long CDB

Proposed on 11/2

>80 bytes realistically used 256 total CDB byte limit Bytes 0-9 never encrypted

Encryption ID: Covers bytes 8 - n (Encrypted or not)

Action code: NAS command

Determines values

for Bytes 11 - n

Table xxx – Long CDB definition										
Bit	7	6	5	4	3	2	1	0		
Byte										
0	Long Command Op Code (7Fh)									
1	Control byte									
2	Reserved									
3	Reserved									
4	Reserved									
5	Encryption Identification									
6	Reserved									
7	Additional CDB Length (n-7)									
8	(MSB) Action Code									
9								(LSB)		
10										
-	Action code specific fields									
n										

Now part of SCSI Standard!

NSIC/NASD Command Set

- Command Set:
- Object specific
 - Create Object
 - Open Object
 - Read Object
 - Write Object
 - Append Object
 - Close Object
 - Remove Object
 - Import Object
 - Flush Object

Group

Create Object Group

Remove Object Group

Other

Set Attribute

Get Attribute

Flush

Format OBSD

OBSD Some Key Issues/Features

- Byte addressing only
- Partitions = Object Groups
 - None majority position
 - Needed for legacy support
 - Needed, and lots = 4 byte address
- Open & Close polar division
 - Needed for QoS specification
 - Needed for management support
 - Waste of time
- Object ID
 - Set by OBSD or Requester
 - Length 32, 64, 128 ??
- Sessions

Partitions

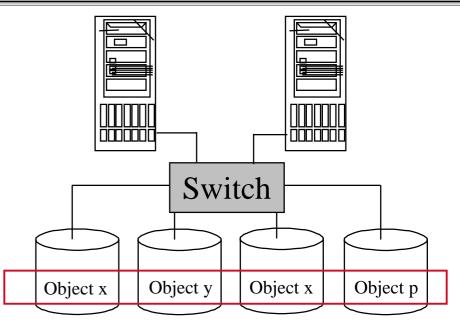
Not divisions of capacity

Sets of Objects

Can have capacity quota

Open/Close

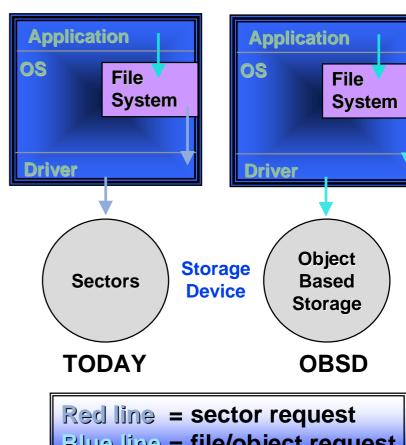
Frame sessions


Sets QoS parms

Not equated to file system Open ..

OBSD: What About Aggregation

- What is an OBSD: A New Boundary
 - Not just a disc drive
 - Tape drive, Tape library, Disc Array, Jukebox, etc
- Aggregation objects across OBSD's
 - Three kinds
 - For redundancy: RAID, mirroring
 - For Performance: Striping
 - For Capacity: Spanning
 - Two solutions
 - Disc Arrays
 - Do on an Object basis
 - Possible also with the Object abstraction
 - Mapping function required
 - RAID 5 harder, but doable


OBSD: Object Based Storage Devices (nee OOD, OBD)

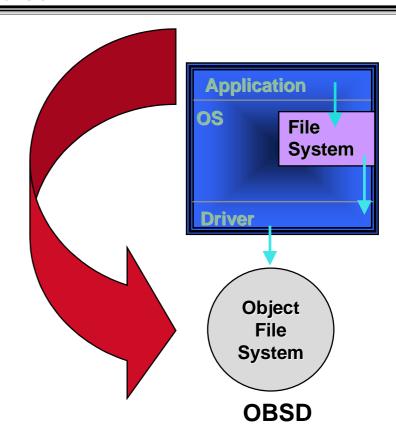
Data stored as objects (files), not sectors

- Still supports OS's file structures
- Disc does space management
- Disc knows when a file is open, in use, ...

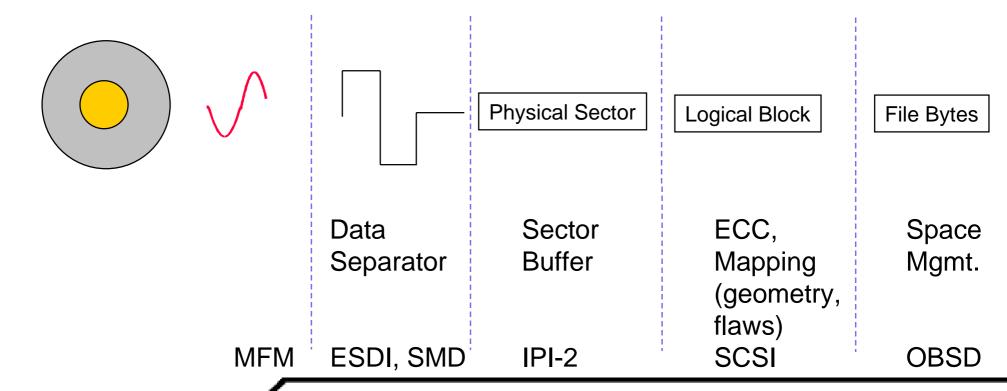
OBSD Advantages

- OS workload greatly reduced
- Space management scales with # of drives
- Storage can be self-managed
- Storage can do off-line work
 - Copy, Mirror, Backup, etc.

Blue line = file/object request


<u>Why Objects</u>

- Key to storage participating in management
- Enables storage supported Quality-of-Service agreements
- Heterogeneous computing made easier(?)
- Performance opportunities
 - Metadata never leaves device
 - More effective cache with Open/Close visibility
 - More knowledgeable prefetching
 - Object level LOCKS + VIA => direct application (DBMS) access


OBSD + VIA = Fast Path to Data

- VIA: Defined by Microsoft, Intel, Compaq
 - Provides shortcut to wire
 - Very low latency communications
- OBSD + VIA
 - Open Objects through OS
 - Then application goes right to disc
 - "Saves 25% of CPU"

OBSD and Interface Progression

- ■Each level was in the host at some point!
- ■Each advancement was met with resistance
- ■Eventually advantages of new interface became compelling

OBSD and SNIA and ANSI

- Object Based Storage affects more than devices
 - Need participation, input from broader industry
 - File system
 - Middle ware suppliers
 - Data based developers
 - Hardware vendors
- Need collaboration with ANSI SCSI committee
 - SNIA not a standards body
 - ANSI lacks broad representation

OBSD and SNIA and ANSI

- NSIC members committed to SNIA activity
- ANSI appears ready to support working group
- Are You?

