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PÉTER P. PÁLFY
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Abstract

In this survey paper we discuss some topics from the theory of subgroup lattices.
After giving a general overview, we investigate the local structure of subgroup
lattices. A major open problem asks if every finite lattice occurs as an interval in
the subgroup lattice of a finite group. Next we investigate laws that are valid in
normal subgroup lattices. Then we sketch the proof that every finite distributive
lattice is the normal subgroup lattice of a suitable finite solvable group. Finally,
we discuss how far the subgroup lattice of a direct power of a finite group can
determine the group.

1 Introduction

This survey paper is the written version of my four talks given at the Groups – St
Andrews 2001 in Oxford conference. I selected some topics on subgroup lattices
and normal subgroup lattices according to my personal taste and interest. These
topics, of course, cannot cover all interesting and important parts of the theory.
For a more complete overview the reader should consult the small book of Michio
Suzuki [60] from 1956 and the more recent monograph by Roland Schmidt [54].
The latter one is a thick volume of 541 pages including 384 references. So it is
clearly impossible to give a comprehensive survey here. My choice of topics was
partly guided by the review of Schmidt’s book by Ralph Freese [13].

The study of subgroup lattices has quite a long history, starting with Richard
Dedekind’s work [10] in 1877, including Ada Rottlaender’s paper [47] from 1928
and later numerous important contributions by Reinhold Baer, Øystein Ore, Ken-
kichi Iwasawa, Leonid Efimovich Sadovskii, Michio Suzuki, Giovanni Zacher, Mario
Curzio, Federico Menegazzo, Roland Schmidt, Stewart Stonehewer, Giorgio Busetto,
and many-many others.

In Section 2 we will list some of the most remarkable results on subgroup lattices.
Hints to the contents of Sections 3–6 will also be given there. These later sections
are surveys of some particular topics, therefore proofs are very rarely given, and
even then, they will be quite sketchy.

The lattice formed by all subgroups of a group will be denoted by Sub(G) and will
be called the subgroup lattice of the group G. It is a complete lattice: any number of
subgroups Hi have a meet (greatest lower bound)

∧

Hi, namely their intersection
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⋂

Hi, and a join (least upper bound)
∨

Hi, namely the subgroup generated by all
of them together. Notice that we denote the lattice operations by ∧ and ∨.

An element c ∈ L in a complete lattice is called compact if

c ≤
∨

i∈I

ai implies c ≤
∨

i∈J

ai for a finite subset J ⊆ I.

It is easy to see that H ∈ Sub(G) is compact if and only if H is a finitely generated
subgroup of G. A complete lattice is called algebraic if every element is a join of
compact elements. We see that subgroup lattices are always algebraic.

If the group is finite, it is a convenient way to visualize the lattice using its
Hasse diagram, where the bottom element represents the identity subgroup 1, the
top element the group itself, and between two elements of the lattice a line segment
is drawn whenever the lower subgroup is a maximal subgroup in the upper one.
An example is shown in Figure 1.

Figure 1. Hasse diagram of Sub(A4)

Our notation is mostly standard. For H ≤ G we denote by NG(H), CG(H)
the normalizer and the centralizer of H in G, respectively. The center and the
commutator subgroup of G is denoted by Z(G) and G′. The automorphism group
and the inner automorphism group are written as AutG and InnG. For normal
subgroups we use the notation N ⊳ G. The set of normal subgroups is a sublattice
in Sub(G), it will be denoted by Norm(G). Intervals in lattices will be defined in
Section 2, and in subgroup lattices they will be denoted as Int[H;G]. The cyclic
group of order n will be written as Cn, the dihedral group of degree n (and order
2n) as Dn, the alternating and symmetric groups as An and Sn. Furthermore,
GF(q) will denote the q-element field, and F× the multiplicative group of a field
F .

2 Overview

We start with some simple observations concerning subgroup lattices. Since we
will mainly deal with finite groups, let us remark that the subgroup lattice Sub(G)
is finite if and only if the group G is finite. For some small lattices it is easy to
determine all groups that have the given lattice as subgroup lattice. For example,
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Sub(G) = if and only if G is cyclic of prime order;

Sub(G) = if and only if G is cyclic of order p2 for a prime p;

Sub(G) = if and only if G is cyclic of order pq (with primes p 6= q);

Sub(G) = if and only if G is the four-element Klein group;

Sub(G) = if and only if either G ∼= C3 × C3 or G ∼= D3.

However, there is no group G with Sub(G) = .

So there are lattices which are subgroup lattices of infinitely many, of finitely
many, of a unique, or of no group. That is, the correspondence G 7→ Sub(G) is
neither injective, nor surjective. This fact gives rise to two questions:

1. Which groups are uniquely determined by their subgroup lattices?

2. Which lattices are subgroup lattices?

The answer to the second question is very complicated, as given by B. V. Yakovlev
[64] in 1974, based on his description of the subgroup lattices of free groups. We
would be interested rather in the local structure of subgroup lattices, that is we
would like to know what are the possible intervals in subgroup lattices. If a < b
are elements of a lattice L, by the interval Int[a; b] we mean the sublattice formed
by the intermediate elements:

Int[a; b] = {x ∈ L | a ≤ x ≤ b}.

In Section 3 we will see that every algebraic lattice can occur as an interval in the
subgroup lattice of an infinite group. For finite groups, however, it is not known
whether every finite lattice can be found as an interval in the subgroup lattice of
a suitable finite group. The main subject of Section 3 will be a survey of results
concerning this open problem.

An important line of investigations deals with groups whose subgroup lattices
satisfy certain laws. As it follows from the following basic result, there is no non-
trivial law that holds in the subgroup lattice of every group.
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Theorem 2.1 (Whitman [63], 1946) Every lattice is isomorphic to a sublattice of
the subgroup lattice of some group.

There is also a remarkable finite version of this embedding theorem.

Theorem 2.2 (Pudlák and Tůma [46], 1980) Every finite lattice is isomorphic to
a sublattice of the subgroup lattice of some finite group.

The most familiar lattice law is the distributivity. Recall that a lattice L is called
distributive if the following equivalent conditions hold for every x, y, z ∈ L:

• x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z);

• x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);

• (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).

One of the nicest results in the theory of subgroup lattices characterizes those
groups which have distributive subgroup lattices.

Theorem 2.3 (Ore [37], 1937–38) The subgroup lattice Sub(G) is distributive if
and only if the group G is locally cyclic.

Recall that a group G is said to be locally cyclic, if every finitely generated
subgroup of G is cyclic. There are not too many such groups: a group G is locally
cyclic if and only if it is isomorphic to a subgroup of either the additive group of
the rationals Q or of its quotient group Q/Z.

Cyclic groups can be characterized by the properties that Sub(G) is distributive
and satisfies the ascending chain condition (i.e., it contains no infinite chain of
subgroups H1 < H2 < H3 < . . .). If n = pk1

1 · · · p
kr
r , then the subgroup lattice of

the cyclic group of order n is the direct product of chains of lengths k1, . . . , kr,
independently of the primes pi.

The description of groups with modular subgroup lattices is quite complicated.
As it is well known, a lattice L is called modular if for all x, y, z ∈ L

x ≥ z ⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ z.

(In Section 4 we will give some equivalent conditions as well.) The subgroup lattices
of abelian groups are modular, as it was discovered by Richard Dedekind [10] in
1877 for the case of the subgroup lattice of the additive group of the complex
numbers. So we make the assumption that

G is nonabelian and Sub(G) is a modular lattice.

The characterization consists of several pieces.

Theorem 2.4 (Iwasawa [23], 1943) If G has elements of infinite order, then the
torsion subgroup T (G) of G is abelian, G/T (G) is a torsion-free abelian group of
rank one, etc.

For the omitted details see [54, 2.4.11 Theorem].
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Theorem 2.5 (Schmidt [53], 1986) If G is a torsion group, then G is a direct
product of Tarski groups, extended Tarski groups and a locally finite group, such
that elements from different direct factors have coprime orders.

A Tarski group is an infinite group in which every proper nontrivial subgroup
has prime order. Tarski groups were first constructed by Olshanskii [35] in 1979.
An extended Tarski group is such that G/Z(G) is a Tarski group of exponent p for
some prime p, Z(G) is cyclic of order pr > 1, and for every subgroup H ≤ G, either
H ≤ Z(G) or H ≥ Z(G) holds. The subgroup lattice of an extended Tarski group
is shown in Figure 2. Note that extended Tarski groups do exist if p is sufficiently
large (see Olshanskii [36]).

Figure 2. The subgroup lattice of an extended Tarski group

Theorem 2.6 (Iwasawa [23], 1943) If G is a locally finite group, then G is a direct
product of P ∗-groups and locally finite p-groups, such that elements from different
direct factors have coprime orders.

By definition, a P ∗-group is a semidirect product of an elementary abelian normal
subgroup A with a cyclic group 〈t〉 of prime power order such that t induces a power
automorphism (tat−1 = ar with a fixed r for all a ∈ A) of prime order on A. In
fact, all these groups have modular subgroup lattices.

Theorem 2.7 (Iwasawa [23], 1943) If G is a locally finite p-group, then either G
is a direct product of the quaternion group with an elementary abelian 2-group, or
G contains an abelian normal subgroup A of exponent pk with cyclic quotient group
G/A of order pm and there exist an element b ∈ G with G = A〈b〉 and an integer
s (which is at least 2 if p = 2) such that s < k ≤ s+m and bab−1 = a1+ps

for all
a ∈ A.

Again, all these groups have modular subgroup lattices.

Theorems 2.4, 2.5, 2.6, 2.7 together yield a complete characterization of non-
abelian groups with modular subgroup lattices.

As we have seen, some lattice theoretic properties may correspond to some sim-
ple group theoretic ones, but sometimes the description of groups with subgroup
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lattices of certain type (such as modular lattices) are awkward. Unfortunately, nice
characterisations are rather rare. We list some (maybe all) of them now.

The Jordan–Dedekind chain condition means that all maximal chains in the
lattice have the same length. Finite groups with such subgroup lattices have a
beautiful description.

Theorem 2.8 (Iwasawa [22], 1941) For a finite group G, the subgroup lattice
Sub(G) satisfies the Jordan–Dedekind chain condition if and only if G is super-
solvable.

A lattice L is called sectionally complemented if for every b < c ∈ L there exists
a d ∈ L such that b∧d = 0 (the smallest element of the lattice) and b∨d = c. This
lattice theoretic property also has a neat group theoretic counterpart.

Theorem 2.9 (Bechtell [6], 1965) For a finite group G, the subgroup lattice Sub(G)
is sectionally complemented if and only if every Sylow subgroup of G is elementary
abelian.

Sectionally complemented lattices are more general than relatively complemented
lattices, in which for every a < b < c ∈ L the existence of a d ∈ L with b ∧ d = a
and b ∨ d = c is required (see Figure 3). So here we need an additional condition.
By definition, G is a T∗-group if being a normal subgroup is a transitive relation
among the subgroups of G, that is A ⊳ B ⊳ C ≤ G implies A ⊳ C.

a

b

c

d

Figure 3. Relatively complemented lattice

Theorem 2.10 (Zacher [65], 1952) For a finite group G, the subgroup lattice
Sub(G) is relatively complemented if and only if every Sylow subgroup of G is
elementary abelian and G is a T∗-group.

We shall also investigate laws in normal subgroup lattices. One basic fact is that
Norm(G) is always modular. There are even stronger laws that hold in normal
subgroup lattices, as — for example — the arguesian law. We will deal with this
subject in Section 4. Our main concern will be whether there exist laws that
distinguish subgroup lattices of abelian groups from normal subgroup lattices in
general.
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In Section 5 we are going to show that every finite distributive lattice is the
normal subgroup lattice of a finite solvable group. It does not seem feasible to
describe which lattices can be normal subgroup lattices.

In general Sub(G) does not determine G uniquely. A lattice isomorphism be-
tween subgroup lattices Sub(G) and Sub(H) is called a projectivity. We restrict
our attention — unless stated otherwise — to finite groups. Although there are
cases when infinitely many groups share the same subgroup lattice, these lattices
can be singled out easily.

Theorem 2.11 (Suzuki [59], 1951) If Sub(G) has no chain as a direct factor, then
there are only finitely many nonisomorphic groups H with Sub(H) ∼= Sub(G).

Also certain — but by far not all — properties of groups are preserved by
projectivities. Assume that Sub(G) ∼= Sub(H) for finite groups G, H.

• If G is cyclic, then H is also cyclic.

• If G is abelian, then H need not be abelian (even nilpotent).

• If G is a p-group which is neither cyclic, nor elementary abelian, then H is
also a p-group (Suzuki [59], 1951).

• If G is solvable, then H is also solvable (Suzuki [59], 1951; Zappa [67], 1951;
Schmidt [50], 1968).

• If G is simple, then H is also simple (Suzuki [59], 1951; extension to infinite
groups: Zacher [66], 1982). Moreover, using the classification of finite simple
groups, it follows that H ∼= G.

Without using the classification (of course), Michio Suzuki proved a result which
will motivate our investigations in the final Section 6.

Theorem 2.12 (Suzuki [59], 1951) If G is a finite simple group and Sub(H) ∼=
Sub(G×G), then H ∼= G×G.

We will look at the question, whether the lattice Sub(G× · · · ×G) can be used
to characterize the group G.

3 Local stucture

In this section we are going to study the local structure of subgroup lattices, that is,
the possible intervals Int[H;K] = {X | H ≤ X ≤ K} in subgroup lattices Sub(G)
(where H < K ≤ G). Clearly, we can restrict our attention to top intervals (what
lattice theorists call principal filters), where K = G (see Figure 4). Also, if N ⊳ G
with N ≤ H, then obviously Int[H;G] ∼= Int[H/N ;G/N ], hence we may — and
will — always assume that H is core-free, i.e.,

⋂

g∈G gHg
−1 = 1.

It is easy to see, that intervals in algebraic lattices are algebraic lattices them-
selves, hence every interval in a subgroup lattice is an algebraic lattice. Namely,
a subgroup X ∈ Int[H;G] is a compact element of the interval if and only if it
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H

G

1

Figure 4. Top interval in Sub(G)

is finitely generated over H, i.e., X = 〈H, g1, . . . , gk〉 for a suitable finite set of
elements g1, . . . , gk ∈ G.

Indeed, there is nothing more one can say about the local structure of subgroup
lattices as the following deep result of Jǐŕı Tůma shows.

Theorem 3.1 (Tůma [62], 1989) For every algebraic lattice L there exist groups
H < G such that Int[H;G] ∼= L.

It should be noted that Tůma’s ingenious construction always yields infinite
groups G, even for finite lattices L. Hence we have the following open problem.

Problem 3.2 Is it true that for every finite lattice L there exist finite groups
H < G such that Int[H;G] ∼= L ?

The problem actually originates from universal algebra, so let us make a short
detour to this area. The reader should be reminded of Graham Higman’s witty
remarks about Cohn’s Universal Algebra [19]1:

“Universal algebra is something everyone ought to know about, though nobody
should specialize in it (from which it might appear to follow that though everyone
ought to read this book, nobody should have written it). From the point of view of
the working algebraist, its main function is to remind him that there are several
levels of generality at which work can profitably be done, and that, to get the best
out of a method, it is necessary to set it at the right level.”

In what follows I try to present a problem in universal algebra which had made
me think that it is worthwhile specializing in universal algebra, before I realized
that it is in fact a problem in group theory.

By an algebra A = (A;F ) we mean a nonempty set A equipped with a set of
operations F , that is, each f ∈ F is a map f : An(f) → A for a suitable n(f), called
the arity of f . For example, in a group we have three operations: multiplication
(binary), inverse (unary), and the identity element (considered a nullary operation
G0 → G). In a lattice we have two binary operations: join and meet. The obvious
definitions for subalgebras, homomorphisms, direct products make sense in this
general setting as well.

1I thank Πeter Neumann for calling my attention to Higman’s review.



436 PÁLFY

However, for arbitrary algebras the kernel of a homomorphism ϕ : A→ B cannot
be defined in the way it is done in the case of groups, namely, as a preimage of a
specific element of B; not even for a homomorphism between lattices (cf. Figure 5).

Figure 5. Kernel of a lattice homomorphism

Instead, the appropriate definition of the kernel gives a binary relation

kerϕ = {(a, a′) ∈ A2 | ϕ(a) = ϕ(a′)}.

In fact, α = kerϕ is a congruence relation, that is, an equivalence relation compat-
ible with all operations f ∈ F , i.e., if f is n-ary, and a1, . . . , an, a

′
1, . . . , a

′
n ∈ A are

such that (ai, a
′
i) ∈ α for all i = 1, . . . , n then

(

f(a1, . . . , an), f(a′1, . . . , a
′
n)

)

∈ α.

All congruence relations of an algebra A form an algebraic lattice ConA, the
congruence lattice of A. For a group G the congruence lattice is essentially the
same as the normal subgroup lattice Norm(G). Apart from being algebraic there
is no other general property of congruence lattices as the following classical result
of universal algebra tells us.

Theorem 3.3 (Grätzer and Schmidt [15], 1963) For every algebraic lattice L there
exists an algebra A such that ConA ∼= L.

If we have a group G and a subgroup H < G, then we can consider the per-
mutation representation of G on the left cosets by H as a multi-unary algebra
A = (G/H;G), where g ∈ G as a unary operation sends the coset xH ∈ G/H
to gxH. Now it is easy to see that the congruence lattice of this multi-unary al-
gebra, ConA ∼= Int[H;G]. So Tůma’s Theorem 3.1 yields a new proof for the
Grätzer–Schmidt Theorem.

Both of these proofs are inherently infinite. Namely, the basic idea — without
going into technical details — can be summarized in the following steps, construct-
ing recursively an infinite sequence of algebras (or groups) A1, A2, A3, . . . (see
Figure 6):

1. take Ai and list all the “troubles” occurring in Ai;
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A A A
1 2 3

Figure 6. Infinite procedure

2. add new elements and extend the operations so that these “troubles” are
eliminated and call the extended algebra Ai+1;

3. repeat.

Finally, in A =
⋃∞

i=1 Ai all “troubles” disappear, and it will have the required
congruence lattice.

Clearly, every finite lattice is algebraic. Therefore, the finite version of the
congruence lattice representation problem arises naturally.

Problem 3.4 Is it true that for every finite lattice L there exists a finite algebra
A such that ConA ∼= L ?

Although arbitrary algebras are allowed here, the core of the problem is group
theoretic, as the following result shows.

Theorem 3.5 (Pálfy and Pudlák [42], 1980) The following are equivalent:

(i) Every finite lattice occurs as the congruence lattice of some finite algebra.

(ii) Every finite lattice occurs as an interval in the subgroup lattice of some finite
group.

Using the multi-unary algebra arising from the permutation representation of G
on the left cosets by H, it is obvious that (ii) implies (i). The point here is that the
converse is also true. Note that, in the case when both statements were false, we do
not claim that every finite lattice which is a congruence lattice of a finite algebra
is in fact an interval in the subgroup lattice of a finite group. Quite possibly, there
can be more lattices that are not intervals in subgroup lattices of finite groups,
than lattices that are not congruence lattices of finite algebras.

The “tame congruence theory” developed by David Hobby and Ralph McKenzie
[21] shows that in every finite algebra with a certain type of congruence lattice
there are some subsets (the so-called minimal sets) on which the induced algebras
are actually permutation groups with the same congruence lattice as the one of the
original algebra. Therefore, Problem 3.4 in fact belongs to group theory, not to
universal algebra.

Special attention has been given to finite lattices with the simplest structure.
These lattices Mn consist of a smallest, a greatest, and n pairwise incomparable
elements (see Figure 7).
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Figure 7. The lattice Mn

Some of these lattices are easy to represent as intervals, even as subgroup lattices.
Namely, M1 = Sub(Cp2) for any prime p; M2 = Sub(Cpq) for any pair of distinct
primes p, q; Mp+1 = Sub(Cp ×Cp) for each prime p, but also this is the subgroup
lattice of any nonabelian group of order pq, where q is a prime divisor of p− 1.

If n = pk + 1 for some prime p and exponent k ≥ 1, then it is also possible to
find suitable intervals Int[H;G] =Mn. Namely, let V be the 2-dimensional vector
space over the Galois field GF(pk) = F and take

G = {x 7→ λx+ v | λ ∈ F×, v ∈ V }, H = {x 7→ λx | λ ∈ F×}.

Then every intermediate subgroup H ≤ K ≤ G has the form

K = {x 7→ λx+ v | λ ∈ F×, v ∈ U}

for a suitable subspace U ≤ V , so Int[H;G] is just the lattice of subspaces of V .

For quite a while it had been conjectured that these are the onlyMn’s occurring
as intervals in subgroup lattices of finite groups. However, this is not the case, as
it was first pointed out by Walter Feit. In formulating his observation we shall use
the following notation. If p > 2 is a prime and d | (p− 1)/2 then up to conjugacy
there is a unique subgroup of order pd in the alternating group Ap, which we will
denote simply by p · d.

Example 3.6 (Feit [11], 1983)

(1) M7 = Int[31 · 5, A31], the intermediate subgroups are the normalizer 31 · 15
of 31 · 5 and six subgroups isomorphic to GL5(2).

(2) M11 = Int[31 · 3, A31], the intermediate subgroups are the normalizer 31 · 15
of 31 · 3 and ten subgroups isomorphic to PSL3(5).

These examples cannot be generalized (see also [40]).

Theorem 3.7 (Basile [5], 2001) If Int[H;G] ∼=Mn with G = Sd or Ad, then either
n ≤ 3 or one of the following holds: n = 5, d = 13; n = 7, d = 31; n = 11, d = 31.

Much later a new series of examples was found by Andrea Lucchini.
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Theorem 3.8 (Lucchini [31], 1994) There exist intervals Mn in subgroup lattices
of finite groups with

n = q + 2 or n =
qt + 1

q + 1
+ 1,

where q is a prime power and t is an odd prime.

At present the smallest cases for which no occurrence ofMn is known are n = 16,
23, 35, . . . . In a seminal paper Baddeley and Lucchini [2] analyse the structure of
a hypothetical group providing an example of an intervalMn with n not belonging
to the set of known values. More precisely, they make the following assumptions.

Assumptions. Let n > 50,

n /∈

{

q + 1, q + 2,
qt + 1

q + 1
+ 1

∣

∣

∣
q a prime power, t an odd prime

}

,

and assume that there exist finite groups H < G such that Int[H;G] ∼= Mn.
Furthermore, let G be the smallest one among all groups with this property.

Then, by a result of Peter Köhler [27], G has a unique minimal normal sub-
group M , and M is nonabelian (see [42]). So M is a direct product of isomorphic
nonabelian simple groups. Let F denote one of the simple factors.

The case when M ∩H 6= 1 was dealt with by Lucchini [32] in 1994. He proved
that in this case M itself is simple, so G is an almost simple group. So we suppose
that M∩H = 1. We distinguish two cases, namely, whether MH = G or MH < G.

It can be shown that M is complemented in the second case as well, that is,
G = MK and M ∩ K = 1 with a suitable subgroup K > H. Now G has the
structure of a twisted wreath product of F and K.

Baddeley and Lucchini derive the following properties of the ingredients of this
twisted wreath product:
• K is an almost simple group,

• H is a core-free maximal subgroup of K,

• Q = NK(F ) is a core-free subgroup of K,

• K = QH,

• the homomorphism ϕ : Q→ AutF satisfies ϕ(Q ∩H) ≥ InnF ,

• ϕ|Q∩H has no extension to any subgroup of H properly containing Q ∩H.

Furthermore, n − 1 is the number of those homomorphisms ψ : Q → AutF
for which ψ|Q∩H = ϕ|Q∩H and ψ̃ = ϕ̃ hold, where ϕ̃ denotes the composition of
ϕ with the natural homomorphism onto the outer automorphism group OutF =
AutF/InnF .

It should be noted, however, that no such example is known with n ≥ 3.
The case MH = G leads to even more complex technical conditions, which we

cannot reproduce here in full detail. We only mention that in this case H has a
unique minimal normal subgroup N , which is a direct product of isomorphic copies
of a nonabelian simple group E, and F is isomorphic to a section of E.

These reductions raise several problems about simple groups. We quote only
two of them here.



440 PÁLFY

Problem 3.9 (Baddeley and Lucchini [2], 1997) Describe the maximal nonabelian
simple sections of the nonabelian simple groups.

Problem 3.10 (Baddeley and Lucchini [2], 1997) Describe all pairs (F, L) where
F is a nonabelian simple group and L is a group of automorphisms of F such that
there is exactly one proper nontrivial L-invariant subgroup of F .

Another important development concerning the local structure of subgroup lat-
tices of finite groups is a recent result of Ferdinand Börner. He was able to reduce
Problem 3.2 to two special cases.

Theorem 3.11 (Börner [8], 1999) Every finite lattice is an interval in the subgroup
lattice of some finite group if and only if at least one of the following statements is
true:

(C) For every finite lattice L there exist finite groups H < G such that Int[H; G]
∼= L, with the following properties: G has a unique minimal normal subgroup M ,
M ∩H = 1, MH = G, M is nonabelian, and if F denotes one of the simple direct
factors of M and Q = NH(F ), then Q induces all inner automorphisms of F and
Q is core-free in H.

(D) For every finite lattice L which is generated by its coatoms (maximal ele-
ments) there exist finite groups H < G such that Int[H; G] ∼= L, where G is an
almost simple group and H is core-free in G.

The condition on the lattice in (D) is not very restrictive, as every finite lat-
tice can be embedded as an interval into a finite lattice which is generated by its
coatoms. The key of Börner’s tricky construction is to embed the given lattice as
an interval into a larger lattice as it is vaguely sketched in Figure 8. If this larger
lattice occurs as an interval in the subgroup lattice of a finite group, then this
group must have a very restricted structure.

Figure 8. Börner’s construction

Similar arguments can be found in a paper of Robert Baddeley [1]. The key words
in these investigations are quasiprimitive groups and twisted wreath products.

Let me end this section with some speculation concerning statement (C). It is
so restrictive that probably it can be proved to be false, and then the problem
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would be reduced to the case of almost simple groups. Then it would remain to
do a case-by-case analysis, like it has been done for the alternating and symmetric
groups by Alberto Basile (see Theorem 3.7).

Although it seems unlikely that (C) is true, but if it is, it may be proved “combi-
natorially”, without relying much on the structure of the simple group F (similarly
as in Lucchini’s construction proving Theorem 3.8).

Here we could summarize only the most important developments concerning
Problem 3.2. Some other aspects of it are discussed in more detail in [41].

4 Laws in normal subgroup lattices

It is well-known that normal subgroup lattices are modular. Modular lattices can
be defined via a number of equivalent conditions. The most useful form is an
implication (Horn-formula):

X ≥ Z ⇒ (X ∧ Y ) ∨ Z = X ∧ (Y ∨ Z).

Since the left hand side is always smaller than or equal to the right hand side, it
can be formulated as an inequality as well:

X ≥ Z ⇒ (X ∧ Y ) ∨ Z ≥ X ∧ (Y ∨ Z).

The assumptionX ≥ Z can be eliminated by replacing Z withX∧Z, thus obtaining
the modular law:

(X ∧ Y ) ∨ (X ∧ Z) = X ∧ [Y ∨ (X ∧ Z)].

A characterization of modular lattices can be given by a forbidden sublattice as
well:

A lattice is modular if and only if it contains no sublattice .

The modular law was discovered by Richard Dedekind [10] in 1877. He studied
the subgroup lattice of the additive group of complex numbers, but the proof is
clearly the same for the subgroup lattice of any abelian group. Dedekind called a
subgroup “Modul” and denoted the join of two subgroups by a + b and their meet
by a− b. So the modular law in Dedekind’s work appears in the form

(a− b) + (a− c) = a− (b + (a− c))

and its dual
(a + b)− (a + c) = a + (b− (a + c))

(see [10, p. 17]).
We will consider laws of normal subgroup lattices for various classes of groups.

Let V be a class of groups, P , Q terms in the language of lattices (i.e., elements of
the free lattice). P ≤ Q is a law in the normal subgroup lattices of V if for every
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G ∈ V the inequality P ≤ Q holds in Norm(G) if we arbitrarily substitute normal
subgroups of G for the variables in the terms P , Q and evaluate these terms in
Norm(G). Of course, in Norm(G) the lattice operations are given by intersection
and product:

X ∧ Y = X ∩ Y, X ∨ Y = XY.

We will often use inequalities instead of equalities, but these are certainly equiv-
alent to each other:

P ≤ Q ⇐⇒ P ∨ Q = Q, P = Q ⇐⇒ P ∨ Q ≤ P ∧ Q.

There exist laws of normal subgroup lattices that are even stronger than modu-
larity. The most important one is the arguesian law introduced by Bjarni Jónsson
[24] in 1954. (The idea appeared earlier in a paper of Schützenberger [56] in 1945.)
This is a translation of Desargues’ Theorem from projective geometry into the lan-
guage of lattices. Among the several equivalent formulations we prefer the following
form:

X1 ∧ {Y1 ∨ [(X2 ∨ Y2) ∧ (X3 ∨ Y3)]} ≤ [(Q12 ∨ Q23) ∧ (Y1 ∨ Y3)] ∨ X3,

where Qij = (Xi ∨ Xj) ∧ (Yi ∨ Yj).

Figure 9. Desargues’ Theorem

Consider the subspace lattice of a projective plane. There the join of two points
is the line connecting them, the meet of two lines is their intersection point. Now
if X1X2X3 and Y1Y2Y3 are triangles in a projective plane that are perspective with

respect to a point (i.e., the lines X1Y1, X2Y2, X3Y3 go through a common point)
then the left hand side of the arguesian law yields the point X1, otherwise it yields
the empty set. At the same time, the right hand side is ≥ X1 if and only if the
two triangles are perspective with respect to a line (i.e., if the intersection of the
corresponding sides XiXj and YiYj are denoted by Qij , then the three points Q12,
Q13 and Q23 lie on one line). The reader is strongly advised to check this using
Figure 9. It is a tedious but dull task to show that if the arguesian law holds for the
points of the subspace lattice of a projective geometry then it holds for arbitrary
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substitution of elements of the lattice (see [14, p. 207]). So the arguesian law holds
in the subspace lattice of a projective plane if and only if Desargues’ Theorem is
true in the geometry. Since there are nonarguesian planes, the arguesian law is
stronger than the modular law, as the subspace lattice is always modular.

Theorem 4.1 (Jónsson [24], 1954) The arguesian law holds in the normal subgroup
lattice of every group.

In fact the arguesian law holds in every lattice consisting of permuting equiva-
lence relations. (Two equivalence relations α and β are said to permute if β ◦ α =
α ◦ β, where the relational product is defined by

α ◦ β = {(a, b) | ∃c : (a, c) ∈ α, (c, b) ∈ β}.

For every normal subgroup N ⊳ G there corresponds an equivalence relation αN =
{(a, b) | a, b ∈ G, a−1b ∈ N}, and αK ◦ αN = αKN = αN ◦ αK , since KN = NK
for normal subgroups N,K ⊳ G.)

Proof Let X1, X2, X3, Y1, Y2, Y3 ⊳ G and x1 ∈ X1∧{Y1∨[(X2∨Y2)∧(X3∨Y3)]} =
X1 ∩ Y1[X2Y2 ∩ X3Y3]. Then there exist elements xi ∈ Xi, yi ∈ Yi, m ∈ G such
that x1 = my−1

1 (using Y1M = MY −1
1 ) and m = x2y2 = x3y3. So we have

x1y1 = x2y2 = x3y3, x
−1
2 x1 = y2y

−1
1 ∈ Q12 = (X1 ∨ X2) ∧ (Y1 ∨ Y2), similarly

x−1
3 x2 = y3y

−1
2 ∈ Q23, and multiplying these equations we obtain x−1

3 x1 = y3y
−1
1 ∈

Q12Q23 ∩ Y1Y3. Taking the product with X3 we see that x1 ∈ X3(Q12Q23 ∩ Y1Y3)
indeed. 2

Mark Haiman [17] in 1987 discovered a sequence of laws, the higher arguesian
identities

X1 ∧

[

Y1 ∨

n
∧

i=2

(Xi ∨ Yi)

]

≤

[

n−1
∨

i=1

Qi,i+1 ∧ (Y1 ∨ Yn)

]

∨Xn,

where Qij = (Xi∨Xj)∧(Yi∨Yj), each one being strictly stronger than the previous
one, that all hold in every lattice consisting of permuting equivalence relations.
Later it was proved by Ralph Freese [12] that there is no finite basis for the laws of
the class of all normal subgroup lattices. Like the modular and the arguesian laws,
the higher arguesian identities hold not only in subgroup lattices of abelian groups
(as suggested by the underlying geometry), but also in normal subgroup lattices
of arbitrary groups. Based on such experiences a positive solution of the following
problem had been expected.

Problem 4.2 (Jónsson [24], 1954; Birkhoff [7, p. 179], 1967) Can one embed the
normal subgroup lattice of an arbitrary group into the subgroup lattice of an abelian
group? Do all the laws of subgroup lattices of abelian groups hold in normal
subgroup lattices?

Another reason pointing towards a positive solution was the following observa-
tion:
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Proposition 4.3 If M3 is a sublattice of Norm(G) with top element N , bottom
element M , then N/M is abelian (see Figure 10).

N

M

Figure 10. Abelian section in a normal subgroup lattice

However, together with my student Csaba Szabó we found another lattice iden-
tity with geometric background that shows that the normal subgroup lattice of
some groups cannot be embedded into the subgroup lattice of any abelian group.
A short proof for the nonembeddability of Norm(G) for a certain group G of order
29 is given in [25].

Theorem 4.4 (Pálfy and Szabó [44], 1995) The six-cross law
X1 ∧ {Y1 ∨ [(X2 ∨ Y2) ∧ (X3 ∨ Y3) ∧ (X4 ∨ Y4)]} ≤

({[(P12 ∨ P34) ∧ (P13 ∨ P24)] ∨ P23} ∧ {X4 ∨ Y1}) ∨ Y4,
where Pij = (Xi ∨ Yj) ∧ (Yi ∨ Xj), holds in the subgroup lattice of every abelian
group but fails in the normal subgroup lattice of the free group on five generators.

Another version of this law was given in [43].
Again, our six-cross law is a lattice theoretic translation of a geometric property

(see Figure 11). Take four lines through a point, and two points Xi, Yi on each
of these lines (i = 1, 2, 3, 4). For each pair of lines define the cross point Pij as
the intersection of the lines XiYj and YiXj . We say that the six-cross theorem
holds in the projective plane, if the three lines P12P34, P13P24, and P14P23 go
through a common point. (Actually, we need a more precise definition handling
the degenerate cases as well, for example if some of the cross points coincide.
An interesting case occurs when P12 = P34, P13 = P24, P14 = P23. This is the
famous Reye-configuration, see [20, §22]. For these details we refer to [44].) For a
projective geometry the six-cross theorem is equivalent to Desargues’ theorem, but
their lattice theoretic counterparts differ. The six-cross law implies the arguesian
law, but the converse does not hold.

Although in the formulation of Theorem 4.4 we used a free group, actually there
exist finite quotients of the free group of rank 5 whose normal subgroup lattices
do not satisfy the six-cross law. Moreover, it is enough to consider finite nilpotent
groups, or p-groups, as the following lemma (see [34, p. 41]) shows.

Lemma 4.5 Let |G| = pk1

1 · · · p
kn
n , and Pi a Sylow pi-subgroup of G for each i = 1,

. . . , n. Then Norm(G) is embedded into Norm(P1× · · · ×Pn) via N 7→ (N ∩P1)×
· · · × (N ∩ Pn).
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Figure 11. Six-cross theorem

So if the normal subgroup lattice of a finite group does not satisfy a certain
law, then the same is true for at least one of its Sylow subgroups. If we want to
work with a group of nilpotence class 2, then we better look for 2-groups, since for
groups of odd order the following trick of Reinhold Baer yields an embedding of
the normal subgroup lattice into the subgroup lattice of an abelian group defined
on the same set of elements.

Lemma 4.6 (Baer [3], 1938) If G of odd order has nilpotence class 2, then

x+ y = x1/2yx1/2 (x1/2 = x(|G|+1)/2)

defines an abelian group operation.

Corollary 4.7 If G of odd order has nilpotence class 2, then Norm(G) can be
embedded into the subgroup lattice of an abelian group.

Proof Denote by G+ the abelian group defined in Lemma 4.6. Clearly every
normal subgroup of G is a subgroup of G+. We have to check that for every
X,Y ⊳ G the lattice operations are the same in Norm(G) and in Sub(G+). This
is trivially true for the meet (intersection), and it is also true for the join, because
the join in Norm(G) is a common upper bound for X and Y in Sub(G+) as well,
and the order formula yields that it is indeed the least upper bound:

|X ∨ Y | = |XY | =
|X| · |Y |

|X ∩ Y |
= |X + Y |.

2
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Therefore, we take the smallest noncommutative variety of 2-groups, namely let
V be the group variety defined by x4 = 1 and x2y = yx2. (This is the variety
generated by any of the 8-element noncommutative groups.) In the (relatively)
free groups FV(r) in V with generators g1, . . . , gr the elements have a normal form

gα1

1 · · · gαr
r [g1, g2]

β12 [g1, g3]
β13 · · · [gr−1, gr]

βr−1,r

with 0 ≤ αi < 4 (1 ≤ i ≤ r), 0 ≤ βij < 2 (1 ≤ i < j ≤ r). Hence

|FV(r)| = 4r2r(r−1)/2 = 2(r2+3r)/2.

A tedious calculation gives that the normal subgroup lattice of G = FV(5) of
order 220 does not satisfy the six-cross law. Namely, we have to choose Xi = 〈gi〉

G,
Yi = 〈gig5〉

G (i = 1, . . . , 4), where 〈. . .〉G denotes the generated normal subgroup.
However, the six-cross law holds in the normal subgroup lattice of every group

of odd order ([61]). Csaba Szabó [61] exhibited a law of the subgroup lattices of
abelian groups that fails in the normal subgroup lattice of a group of order 3140.
(The calculations have been performed using GAP [55].)

For larger primes the embedding given by Lemma 4.6 can be generalized for
groups of larger nilpotence class:

Theorem 4.8 (Groves [16], 1976) If the nilpotence class of a finite p-group is less
than p, then there exists a term defining an abelian group operation. Therefore, the
normal subgroup lattice of such a group can be embedded into the subgroup lattice
of an abelian group.

In fact, the formula for the abelian group operation can be obtained from
Lazard’s inversion of the Baker–Campbell–Hausdorff formula (see [30])

x+ y = xy[x, y]−1/2[[x, y], x]1/12[[x, y], y]−1/12 · · · .

If the nilpotence class of the p-group is less than p, then this infinite product can be
truncated at commutators of weight p or less, and the necessary roots in the group
exist (as the denominators are not divisible by p). It is even enough to assume
that every 3-generated subgroup has nilpotence class less than p. Is this the limit
indeed?

Problem 4.9 For every prime p find a law of the subgroup lattices of abelian
groups that fails in the normal subgroup lattice of a finite p-group of nilpotence
class p.

We end this section by mentioning a nice result that the exponent of a group
variety can be recovered from the laws satisfied by the normal subgroup lattices.

Theorem 4.10 (Herrmann and Huhn [18], 1975) The law

(X1 ∨ . . .∨Xn)∧ (Y ∨Z) ≤

n
∨

i=1

[(X1 ∨ . . .∨Xi−1 ∨ Y ∨Xi+1 ∨ . . .∨Xn)∧ (Xi ∨Z)]

holds in Norm(G) for every group of exponent dividing n (i.e., ∀g ∈ G : gn = 1),
but if k does not divide n then it fails in Norm(Cn+1

k ).
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An excellent survey article related to the topics discussed in this section was
written by Robert Burns and Sheila Oates-Williams [9].

5 Distributive normal subgroup lattices

It seems to be a difficult task to describe the possible normal subgroup lattices.
In Section 4 we discussed certain laws that must hold in every normal subgroup
lattice. However, these are not sufficient to characterize normal subgroup lattices,
since this class of lattices is not closed for sublattices, as one can easily check that
M5 is not isomorphic to the normal subgroup lattice of any group, although for
each prime number p one has Mp

∼= Norm(Cp × Cp).

In this section we have a modest goal to represent finite distributive lattices as
normal subgroup lattices.

Theorem 5.1 For every finite distributive lattice D there exists a finite group G
such that Norm(G) ∼= D.

This result has an interesting history. It was first announced by Kuntzmann
[28] in 1947. However, his proof was in error, and it could not be corrected, since
he tried to construct a supersolvable group G for any finite distributive lattice
D. In fact, it is not difficult to show that not every finite distributive lattice
can be represented as the normal subgroup lattice of a supersolvable group (see
Figure 12). E. T. Schmidt [49, p. 101] listed Theorem 5.1 as an open problem,
noting that Kuntzmann’s proof was not correct.

Figure 12. This is not the normal subgroup lattice of any supersolvable group

Finally, Howard Silcock [57] proved the theorem in 1977. He constructed a
suitable group G as an iterated wreath product of nonabelian simple groups.

In 1986 I gave a natural construction which yields solvable groups (see [38], [39]).
Now I am going to sketch this construction.

First recall a condition characterizing when Norm(G) is distributive. Remember
that the socle of a group is the product of its minimal normal subgroups, and
that two normal subgroups N1 and N2 are said to be G-isomorphic, if there is
an isomorphism ϕ : N1 → N2 such that ϕ(gxg−1) = gϕ(x)g−1 for all g ∈ G and
x ∈ N1.
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Theorem 5.2 (Pazderski [45], 1987) For a finite group G the normal subgroup
lattice Norm(G) is distributive if and only if the socle of every quotient group G/N
is a direct product of pairwise non-G/N -isomorphic minimal normal subgroups.

We shall give a recursive proof of Theorem 5.1. In the groups we are going
to construct every chief factor will be a Sylow subgroup, and so Pazderski’s cri-
terion will obviously be satisfied, hence the normal subgroup lattice will become
distributive.

Let us start by choosing an atom a ∈ D and let a′ ∈ D be a pseudocomplement
of a, that is, a′ is the largest element with a′∧a = 0. (By distributivity, if b∧a = 0
and c∧a = 0, then (b∨c)∧a = (b∧a)∨(c∧a) = 0∨0 = 0, so the pseudocomplement
exists.) Now by induction we can find a group H with Norm(H) ∼= Int[a; 1]. Let us
denote by K ⊳ H the normal subgroup corresponding to a∨a′ at this isomorphism.

Next we choose a prime p not dividing |H|. Since inH/K no two minimal normal
subgroups are isomorphic we can invoke a result of Kochendörffer [26] from 1948
guaranteeing the existence of a faithful irreducible representation of H/K over the
p-element field. Let us denote the underlying module by V , and let us take the
natural action of H on V with kernel K.

We claim that the semidirect product G = V H will have the required normal
subgroup lattice Norm(G) ∼= D.

By the irreducibility of the action, V is a minimal normal subgroup of G. If
N ⊳ G, then either N ≥ V or N ∩ V = 1. In the first case N/V ⊳ G/V ∼= H. In
the second case N ≤ CG(V ) = V ×K, so N ≤ K, since (|N |, |V |) = 1. Now it is
clear that Norm(G) ∼= D.

Since the subgroups of G × G containing the diagonal subgroup correspond to
the normal subgroups of G, namely they have the form HN = {(a, b) ∈ G × G |
aN = bN} for N ⊳ G, we obtain the following corollary related to the results of
Section 3.

Corollary 5.3 For every finite distributive lattice D there exists a finite group G
such that for H = {(g, g) | g ∈ G} we have Int[H;G×G] ∼= D.

A similar idea, using higher powers, can be used to turn intervals upside-down
(called the dual lattice).

Theorem 5.4 (Kurzweil [29], 1985) The class of intervals in subgroup lattices of
finite groups is closed under taking dual lattices.

Proof Let L = Int[H;G], with |G : H| = n and take an arbitrary nonabelian
simple group S. Consider the permutation representation of G on the cosets of
H and let this permutation group act on Sn by permuting the coordinates. If
G∗ = SnG and H∗ = {(s, . . . , s) | s ∈ S}G, then it can be checked that Int[H∗;G∗]
is isomorphic to the dual lattice of L. 2
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6 Subgroup lattices of direct powers

The problem we are going to discuss in this section is motivated by the following
classical result of Michio Suzuki.

Theorem 6.1 (Suzuki [59], 1951) If G is a finite simple group and Sub(H) ∼=
Sub(G×G), then H ∼= G×G.

This result was later generalized by Roland Schmidt.

Theorem 6.2 (Schmidt [51], 1981) If G is a finite group with G′ = G, Z(G) = 1,
and Sub(H) ∼= Sub(G×G), then H ∼= G×G.

However, we cannot always expect that Sub(H) ∼= Sub(G × G) would imply
H ∼= G×G. Namely, let p be a prime and q another prime, dividing p− 1. Then
for any d ≥ 2, Sub(Cd

p ) ∼= Sub(G), where G = A〈b〉 is a so-called P-group with

A = Cd−1
p and b of order q acting by a power automorphism on A (bab−1 = ar,

where rq ≡ 1, r 6≡ 1 (mod p)). Instead, we can ask the following question.

Problem 6.3 Does Sub(G×G) ∼= Sub(H×H) imply that G and H are isomorphic
groups? In other words, does the subgroup lattice of the direct square uniquely
determine the group?

Suzuki’s Theorem 6.1 shows that for simple groups this is indeed the case. On
the other end of the spectrum there are the abelian groups.

Theorem 6.4 (Lukács and Pálfy [33], 1986) For a finite abelian group G, if
Sub(G×G) ∼= Sub(H ×H), then G and H are isomorphic.

This result follows easily from the following observation.

Theorem 6.5 (Lukács and Pálfy [33], 1986) Sub(G × G) is modular if and only
if G is abelian.

Nevertheless, Problem 6.3 has a negative answer. Counterexamples are provided
by the Rottlaender groups introduced by Ada Rottlaender [47] in 1928. Let p, q ≥ 5
be primes with q | p − 1. Then there exists r 6≡ 1 (mod p) such that rq ≡ 1
(mod p). For each λ ∈ {2, . . . , q − 2} we define the group

Rλ = 〈x, y, a | xp = yp = aq = [x, y] = 1, axa−1 = xr, aya−1 = yrλ

〉.

Roland Schmidt observed the following.

Example 6.6 (Schmidt [51], 1981) Sub(Rλ ×Rλ) ∼= Sub(Rµ ×Rµ), but Rλ
∼= Rµ

only if λ = µ or λµ ≡ 1 (mod q)
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However, it can be checked that for nonisomorphic Rottlaender groups Rλ, Rµ

the third powers have nonisomorphic subgroup lattices:

Sub(Rλ ×Rλ ×Rλ) 6∼= Sub(Rµ ×Rµ ×Rµ).

This indicated that perhaps the answer to the following question might be pos-
itive.

Problem 6.7 Does Sub(G × G × G) uniquely determine G? (That is, assuming
Sub(G×G×G) ∼= Sub(H ×H ×H), does it follow that G and H are isomorphic?)

Another result where third powers play a crucial role is the following one.

Theorem 6.8 (Baer [4], 1939) Let G be an abelian p-group, H an abelian group.
Assume that for each prime power pk, if G contains an element of order pk, then it
contains at least three independent elements of this order (i.e., a subgroup isomor-
phic to Cpk × Cpk × Cpk). Then every projectivity (lattice isomorphism) between
Sub(G) and Sub(H) is induced by an isomorphism between the groups G and H.

It should be noted, however, that one cannot hope to prove that every isomor-
phism between Sub(G × · · · × G) and Sub(H × · · · × H) is induced by a group
isomorphism, as the following example shows.

Example 6.9 (Schmidt [52], 1982) Let p be a prime, q and r prime divisors of
p − 1, and let G be the direct product of the nonabelian groups of order pq and
pr. Then for every d ≥ 1, Sub(Gd) has lattice automorphisms (autoprojectivities)
that are not induced by group automorphisms.

Note that the order of elements can be recovered from Sub(G × G), and then
from the subgroup lattices of higher powers as well.

Lemma 6.10 If Sub(X) ∼=Mn, then either
(1) X ∼= Cp2 and n = 1; or

(2) X ∼= Cpq and n = 2; or

(3) X ∼= Cp × Cp and n = p+ 1; or

(4) X is a nonabelian group of order pq, q | p− 1 and n = p+ 1.

Corollary 6.11 If P < G × G has order p, then there exists P < X0 ≤ G × G
such that Int[1;X0] ∼= Mp+1 (in fact, X0

∼= Cp × Cp), and if P < X ≤ G × G is
such that Int[1;X] ∼= Mn then either n ≤ 2 or n ≥ p+ 1. Hence

p = min {n− 1 | n > 2, ∃X > P : Int[1;X] ∼= Mn}.

So we can find the order of each minimal subgroup in Sub(G×G). Furthermore,
if Int[1;H] is a chain of length k, then |H| = pk, where p is the order of the unique
minimal subgroup contained in H. Thus p-subgroups can be identified, and the
order of every subgroup can be determined.
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Schmidt [54, 7.6.11 Problem] considers a closely related question. Let ϕ :
Sub(G1 × · · · × Gn) → Sub(H) be a lattice isomorphism (projectivity), where
all direct factors G1, . . . , Gn are isomorphic to a given group G. Assume that
H = ϕ(G1) × · · · × ϕ(Gn). Does it follow that ϕ(G1) ∼= G1? Concerning this
problem there are some positive results, for example in the following cases:

• if G has a self-centralizing normal Hall subgroup (Schmidt [52], 1982);

• if G is a finite p-group and one of the the following holds:
– (a) G has nilpotence class 2, p 6= 2, n ≥ 3;

– (b) G has class ≤ 4 and exponent p, n ≥ 2;

– (c) G is metabelian of exponent p, n ≥ p− 2 (Schenke [48], 1987).

Only after the meeting in Oxford I heard about an apparently forgotten pa-
per by Anne Penfold Street [58]2 that implicitly contains the negative solution of
Problem 6.7.

Example 6.12 (Street [58], 1968) There exist nonisomorphic groups (G, ◦) and
(G, ∗) on the same base set such that for each n ≥ 1 their direct powers (G, ◦)n

and (G, ∗)n have exactly the same subgroups.

Proof Let us choose prime numbers p and q subject to the following restrictions:
q ≡ 1 (mod 3), p ≡ 1 (mod 3q). Furthermore, let m have order 3 modulo p
and let n have order 3 modulo q (i.e., m3 ≡ 1 (mod p) and m 6≡ 1 (mod p)).
Consider the group

G(m,n) = 〈s, t, u | sp = tq = u3 = [s, t] = 1, usu−1 = sm, utu−1 = tn〉

and denote the operation also by ◦. If we define x∗y = xy[x, y]p−1 then it turns out
that ∗ is also a group operation and the group defined this way is G(m2, n) which
is not isomorphic to G(m,n). Now ◦ can be expressed in the same way from ∗ (in
the language of universal algebra (G, ◦) and (G, ∗) are term equivalent), therefore
exactly the same subsets of the cartesian powers of the base set are closed for the
operation ◦ that are closed for ∗, that is the powers of both groups have the same
subgroup lattice. For the calculations the reader is referred to [58, Example V.(i)].

2

Thus even the subgroup lattices of all powers of G are not sufficient to determine
the isomorphism type of G. However, it still may be true that if the subgroup
lattices of some power distinguish two groups than already the third powers do.

Problem 6.13 If Sub(G×G×G) ∼= Sub(H ×H ×H), does it follow that G and
H are term equivalent groups?
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überauflösbaren endlichen Gruppen. Arch. Math. (Basel) 19 (1968), 449–452.

[51] R. Schmidt. Der Untergruppenverband des direkten Produktes zweier isomorpher
Gruppen. J. Algebra 73 (1981), 264–272.

[52] R. Schmidt. Untergruppenverbände endlicher Gruppen mit elementarabelschen Hall-
schen Normalteilern. J. Reine Angew. Math. 334 (1982), 116–140.

[53] R. Schmidt. Gruppen mit modularem Untergruppenverband. Arch. Math. (Basel) 46
(1986), 118–124.

[54] R. Schmidt. Subgroup Lattices of Groups. de Gruyter Expositions in Mathematics,
14, Walter de Gruyter and Co., Berlin, 1994.

[55] M. Schönert et al. Groups, Algorithms and Programming. Lehrstuhl D für Mathe-
matik, RWTH Aachen, 1992.

[56] M. Schützenberger. Sur certains axiomes de la théorie des structures. C. R. Acad.
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