
1

Dynamic right-sizing for power-proportional data centers
Minghong Lin, Adam Wierman, Lachlan L. H. Andrew and Eno Thereska

Abstract—Power consumption imposes a significant cost for
data centers implementing cloud services, yet much of that
power is used to maintain excess service capacity during periods
of low load. This paper investigates how much can be saved
by dynamically “right-sizing” the data center by turning off
servers during such periods, and how to achieve that saving
via an online algorithm. We propose a very general model and
prove that the optimal offline algorithm for dynamic right-sizing
has a simple structure when viewed in reverse time, and this
structure is exploited to develop a new “lazy” online algorithm,
which is proven to be 3-competitive. We validate the algorithm
using traces from two real data center workloads and show that
significant cost-savings are possible. Additionally, we contrast this
new algorithm with the more traditional approach of receding
horizon control.

I. INTRODUCTION

Energy costs represent a significant fraction of a data
center’s budget [1] and this fraction is expected to grow as
the price of energy increases in coming years. Hence, there
is a growing push to improve the energy efficiency of the
data centers behind cloud computing. A guiding focus for
research into “green” data centers is the goal of designing
data centers that are “power-proportional”, i.e., use power only
in proportion to the load. However, current data centers are
far from this goal – even today’s energy-efficient data centers
consume almost half of their peak power when nearly idle [2].

A promising approach for making data centers more power-
proportional is using software to dynamically adapt the num-
ber of active servers to match the current workload, i.e., to
dynamically ‘right-size” the data center. Specifically, dynamic
right-sizing refers to adapting the way requests are dispatched
to servers in the data center so that, during periods of low
load, servers that are not needed do not have jobs routed to
them and thus are allowed to enter a power-saving mode (e.g.,
go to sleep or shut down).

Technologies that implement dynamic right-sizing are still
far from standard in data centers due to a number of chal-
lenges. First, servers must be able to seamlessly transition
into and out of power saving modes while not losing their
state. There has been a growing amount of research into
enabling this in recent years, dealing with virtual machine
state [3], network state [4] and storage state [5], [6]. Second,
such techniques must prove to be reliable, since administrators
we talk to worry about wear-and-tear consequences of such
technologies. Third, and the challenge that this paper ad-
dresses, it is unclear how to determine the number of servers to
toggle into power-saving mode and how to control servers and
requests due to the lack of knowledge about future workloads,

M. Lin and A. Wierman are with California Institute of Technology.
L. L. H. Andrew is with Swinburne University of Technology.
E. Thereska is with Microsoft Research, Cambridge.

which means that a server that is put to sleep may soon need to
be woken again. Although Receding Horizon Control has been
proposed for the online control [7], [8], as shown in Section
III, its performance really depends on the prediction window
and the toggling cost of servers, which may vary widely in
different data centers.

A goal of this paper is to provide a new algorithm to address
this challenge for general settings. To this end, we develop a
general model that captures the major issues that affect the
design of a right-sizing algorithm, including: the cost (lost
revenue) associated with the increased delay from using fewer
servers, the energy cost of maintaining an active server with
a particular load, and the cost incurred from toggling a server
into and out of a power-saving mode (including the delay,
energy, and wear-and-tear costs).

This paper makes three contributions: First, we analytically
characterize the optimal offline solution (Section IV). We
prove that it exhibits a simple, “lazy” structure when viewed
in reverse time.

Second, we introduce and analyze a novel, practical online
algorithm motivated by this structure (Section V). The algo-
rithm, named Lazy Capacity Provisioning (LCP(w)), uses a
prediction window of length w of future arrivals and mimics
the “lazy’ structure of the optimal algorithm, but proceeding
forward instead of backwards in time. We prove that LCP(w)
is 3-competitive, i.e., its cost is at most 3 times that of the
optimal offline solution. This is regardless of the workload
and for very general energy and delay cost models, even when
no information is used about arrivals beyond the current time
period (w = 0). Further, in practice, LCP(w) is far better than
3-competitive, incurring nearly the optimal cost.

Third, we validate our algorithm using two load traces (from
Hotmail and a Microsoft Research data center) to evaluate the
cost savings achieved from dynamic right-sizing in practice
(Section VI). We contrast our new algorithm with Receding
Horizon Control and confirm that our algorithm provides much
more stable cost saving. We show that significant savings
are possible under a wide range of settings and that savings
become dramatic when the workload is predictable over an
interval proportional to the toggling cost. The magnitude of
the potential savings depends primarily on the peak-to-mean
ratio (PMR) of the workload, with a PMR of 3 being enough
to give 30% cost saving. In the context of these real traces,
we also discuss when it does and when it does not make sense
to use dynamic right-sizing versus the alternative of “valley-
filling”, i.e., using periods of low load to run background/
maintenance tasks. We find that dynamic right-sizing provides
more than 15% cost savings even when the background work
makes up 40% of the workload when the PMR is larger than 3.

II. MODEL FORMULATION

Right-sizing problems vary between data centers: some
systems have flexible quality of service (QoS) requirement,
others have hard service level agreements (SLAs); the elec-
tricity price may be time-varying or fixed; workloads can
be homogeneous or heterogeneous, etc. We first introduce a
general model which captures the main issues in many right-
sizing problems in different systems. We then give examples
and show how they fit into this general model.

A. General model

We now describe the general model used to explore the
cost savings possible from dynamic right-sizing. An instance
consists of a constant β > 0, a horizon1 T > 0, a sequence
of non-negative convex functions gt(·) for t = 1, . . . , T − 1;
gt(·) can take on the value ∞ but cannot be identically ∞.
For notational simplicity, let gT (x) ≡ 0 and x0 = xT = 0.
The model is:

minimize
x1,...,xT−1

T∑
t=1

gt(xt) + β

T∑
t=1

(xt − xt−1)+ (1)

subject to xt ≥ 0

where (x)+ = max(0, x), and {xt} are non-negative scalar
variables. The solution to optimization (1) may not be unique.
By Corollary 1 in Appendix A, there exists a solution that
is the elementwise maximum. Unless otherwise stated, “the
solution” refers to this maximum solution. We discuss the
extension to vector xt in Section VIII.

To apply this to data center right-sizing, recall the major
costs of right-sizing: (a) the cost associated with the in-
creased delay from using fewer servers and the energy cost
of maintaining an active server with a particular load; (b)
the cost incurred from toggling a server into and out of a
power-saving mode (including the delay, migration, and wear-
and-tear costs). We call the first part “operating cost” and
the second part “switching cost” and consider a discrete-
time model where the timeslot length matches the timescale
at which the data center can adjust its capacity. There is a
(possibly long) time-interval of interest t ∈ {0, 1, . . . , T} and
the capacity (i.e., number of active servers) at time t is xt.

The operating cost in each timeslot is modelled by gt(xt),
which presents the cost of using xt servers (xt has a vector
value if servers are heterogeneous) to serve requests at timeslot
t. Moreover, gt(·) captures many other factors in timeslot t,
including the arrival rate, the electricity price, the cap on
available servers, the SLA constraints.

For the switching cost, let β be the cost to transition a server
from the sleep state to the active state and back again. We
deem this cost to be incurred only when the server wakes up.
Thus the switching cost for changing the number of active
servers from xt−1 to xt is β(xt − xt−1)+. The constant
β includes the costs of (i) the energy used, (ii) the delay
in migrating connections/data/etc. (e.g., by VM techniques),

1If parameters such as β are known in advance, then the results in this paper
can be extended to a model in which each instance has a finite duration, but
the cost is summed over an infinite horizon.

(iii) increased wear-and-tear on the servers, and (iv) the risk
associated with server toggling. If only (i) and (ii) matter,
then β is either on the order of the cost to run a server for
a few seconds (waking from suspend-to-RAM or migrating
network state [4] or storage state [5]), or several minutes (to
migrate a large VM [3]). However, if (iii) is included, then
β becomes on the order of the cost to run a server for an
hour [9]. Finally, if (iv) is considered then our conversations
with operators suggest that their perceived risk that servers will
not turn on properly when toggled is high, so β may be many
hours’ server costs. Throughout, denote the operating cost
of a vector X = (x1, . . . , xT) by costo(X) =

∑T
t=1 gt(xt),

the switching cost by costs(X) = β
∑T
t=1(xt − xt−1)+, and

cost(X) = costo(X) + costs(X).
Constraints on xt are handled implicitly in functions gt(·)

by extended-value extension, i.e., defining gt(·) to be ∞
outside its domain. This extension makes our description/
notation more clear without introducing particular constraints
in different data centers.

Formulation (1) makes a simplification that it does not
enforce that xt be integer valued. This is acceptable since
the number of servers in a typical data center is large. This
model also ignores the requirement to maintain availability
guarantees. Such issues are beyond the scope of this paper,
however previous work shows that solutions are possible [5].

This optimization problem would be easy to solve offline,
i.e., given functions gt(·) for all t. However, our goal is to
find online algorithms for this optimization, i.e., algorithms
that determine xτ using only information up to time τ + w,
where the “prediction window” w ≥ 0 is part of the problem
instance. Here, we assume that the predictions [gτ , . . . , gτ+w]
are known perfectly at time τ , but we show in Section VI that
our algorithm is robust to this assumption in practice.

We evaluate the performance of an online algorithm A using
the standard notion of competitive ratio. The competitive ratio
ofA is defined as the supremum, taken over all possible inputs,
of cost(A)/cost(OPT), where cost(A) is the objective func-
tion of (1) under A and OPT is the optimal offline algorithm.
The analytic results of Sections IV and V assume that the
service has a finite duration, i.e. T <∞, but hold for arbitrary
sequences of convex functions gt(·). Thus, the analytic results
provide worst-case guarantees. However, to provide realistic
cost estimates, we consider case-studies in Section VI where
gt(·) is based on real-world traces.

B. Special cases

Now let us consider two choices of gt(·) to fit two different
right-sizing problems into Formulation (1). The discrete-time
model consists of finitely many times t ∈ {0, 1, . . . , T}, where
T may be a year, measured in timeslots of 10 minutes. Assume
the workload affects the operating cost at timeslot t only by
its mean arrival rate, denoted λt. (This may have a vector
value if there are multiple types of work). This assumption
is reasonable for many services such as web search, social
network or email service since the request interarrival times
and the response times are much shorter than the timeslots so
that the provisioning can be based on the arrival rate.

2

We model a data center as a collection of homogeneous
servers (except Section VIII where heterogeneous systems are
discussed) and focus on determining xt, the number of active
servers during each time slot t. For notational simplicity, we
assume a load balancer assigns arriving jobs to active servers
uniformly, at rate λt/xt per server (which is widely deployed
and turns out to be optimal for many systems). Assume the
power of an active server handling arrival rate λ is e(λ), and
the performance metric we care about is d(λ) (e.g., average
response time or response time violation probability). For
example, a common model of the power for typical servers
is an affine function e(λ) = e0 + e1λ where e0 and e1 are
constants; e.g., see [10]. The average response time can be
modeled using standard queuing theory results. If the server
happens to be modeled by an M/GI/1 Processor Sharing queue
then the average response time is d(λ) = 1/(µ−λ), where the
service rate of the server is µ [11]. Other examples include,
for instance, using the 99th percentile of delay instead of the
mean. In fact, if the server happens to be modeled by an
M/M/1 Processor Sharing queue then the 99th percentile is
log(100)/(µ − λ), and so the form of d(λ) does not change
[11]. Note that, in practice, e(λ) and d(λ) can be empirically
measured by observing the system over time without assuming
mathematical models for them. Our analytical results work for
any e(·) and d(·) as long as they result in convex gt(·). But for
simplicity, we will use e(λ) = e0 +e1λ and d(λ) = 1/(µ−λ)
for our numerical experiments.

1) Example 1: Services with flexible QoS requirement:
Many Internet services, such as web search, email service
and social network are flexible in response time in certain
range. For such applications, it is hard to find a threshold to
distinguish “good services” and “bad services”. Instead, the
revenue is lost gradually as the response time increases and
thus our goal is to balance the performance and the power
cost [8], [12]–[14]. One natural model for the lost revenue is
d1λ(d(λ) − d0)+ where d0 is the minimum delay users can
detect and d1 is a constant. This measures the perceived delay
weighted by the fraction of users experiencing that delay. For
the energy cost, assume the electricity price is pt at timeslot t,
then the energy cost is pte(λ). There may be a time-varying
cap Mt on the number of active server available due to other
activities/services in the data center (e.g., backup activities).
The combination together with the dispatching rule at the load
balancer gives

minimize
T∑
t=1

xt

(
d1λt
xt

(
d

(
λt
xt

)
− d0

)+

+ pte

(
λt
xt

))

+ β

T∑
t=1

(xt − xt−1)+ (2)

subject to λt ≤ xt ≤Mt

Compared to Formulation (1), we have gt(xt) =xt
(
d1λt
xt

(
d
(
λt
xt

)
− d0

)+
+ pte

(
λt
xt

))
if λt ≤ xt ≤Mt,

∞ otherwise.

We can see that gt(xt) is in the form of the perspective

function of f(z) = d1z(d(z) − d0)+ + pte(z), which is
convex under common models of d(·) and e(·), such as
M/G/1 queueing models with or without speed scaling [15]
of individual servers. Thus gt(·) is convex under common
models.

2) Example 2: Services with hard QoS constraints: Some
data centers have to support services with hard constraints
such as SLA requirement or delay constraints for multimedia
applications. For such systems, the goal is to minimize energy
cost while satisfy the constraints, as shown in [16], [17]. The
optimization becomes

minimize
T∑
t=1

xtpte

(
λt
xt

)
+ β

T∑
t=1

(xt − xt−1)+ (3)

subject to xt ≥ λt and d
(
λt
xt

)
≤ Dt

where d(·) can be average delay, delay violation probability
or other performance metrics. This constraint usually defines
a convex domain for xt. Actually if we assume that d(·) is
an increasing function of the load, then it is equivalent to
imposing an upper bound on the load per server (i.e., λt/xt
is less than certain threshold) and thus results in a convex
optimization problem.

The corresponding gt(·) can be defined as follows:

gt(xt) =

{
xtpte

(
λt
xt

)
if xt ≥ λt and d

(
λt
xt

)
≤ Dt,

∞ otherwise.

III. RECEDING HORIZON CONTROL

As motivation for deriving a new algorithm, let us first con-
sider the standard approach. An online policy that is commonly
proposed to control data centers [7], [8] (and other dynamic
systems) is Receding Horizon Control (RHC) algorithms, also
known as Model Predictive Control. RHC has a long history
in the control theory literature [18]–[20] where the focus was
on stability analysis. In this section, let us introduce briefly the
competitive analysis result of RHC for our data center problem
(which is proven in [21]) and see why we may need a better
online algorithm.

Informally, RHC(w) works by solving, at time τ , the cost
optimization over the window (τ, τ+w) given the starting state
xτ−1, and then using the first step of the solution, discarding
the rest.

Formally, define Xτ (xτ−1; gτ . . . gτ+w) as the vector in
Rw+1 indexed by t ∈ {τ, . . . , τ +w}, which is the solution to

minimize
τ+w∑
t=τ

gt(xt) + β

τ+w∑
t=τ

(xt − xt−1)+ (4)

subject to xt ≥ 0

Then, RHC(w) works as follows.

Algorithm 1. Receding Horizon Control, RHC(w).
For all t ≤ 0, set the number of active servers to xt = 0. At

each timeslot τ ≥ 1, set the number of active servers to

xτ = Xτ
τ (xτ−1; gτ . . . gτ+w)

3

Note that (4) need not have a unique solution. We define
RHC(w) to select the solution with the greatest first entry.
Define e0 the minimum cost per timeslot for an active server,
then we have the following theorem [21]:

Theorem 1. RHC(w) is (1 + β
(w+1)e0

)-competitive for opti-
mization (1) but not better than (1

w+2 + β
(w+2)e0

)-competitive.

This highlights that, with enough lookahead, RHC(w) is
guaranteed to perform quite well. However, its competitive ra-
tio depends on the parameters β, e0 and w . These parameters
vary widely in different data centers since they host different
services or have different SLAs. Thus, RHC(w) may have a
poor competitive ratio for a data center with big switching cost
or small prediction window.

This poor performance is to be expected since RHC(w)
makes no use of the structure of the optimization we are
trying to solve. We may wonder if there exists better online
algorithm for this problem that performs well for a wider range
of parameters, even when the prediction window w = 0 (no
workload prediction except current timeslot).

IV. THE OPTIMAL OFFLINE SOLUTION

In order to exploit the structure of the specific problem (1),
the first natural task is to characterize the optimal offline
solution, i.e., the optimal solution given gt(·) for all t. The
insight provided by the characterization of the offline optimum
motivates the formulation of our online algorithm.

It turns out that there is a simple characterization of the
optimal offline solution X∗ to the optimization problem (1), in
terms of two bounds on the optimal solution which correspond
to charging cost β either when a server comes out of power-
saving mode (as (1) states) or when it goes in. The optimal x∗τ
can be viewed as “lazily” staying within these bounds going
backwards in time.

More formally, let us first describe lower and upper bounds
on x∗τ , denoted xLτ and xUτ , respectively. Let (xLτ,1, . . . , x

L
τ,τ)

be the solution vector to the optimization problem

minimize
τ∑
t=1

gt(xt) + β

τ∑
t=1

(xt − xt−1)+ (5)

subject to xt ≥ 0

where x0 = 0. Then, define xLτ = xLτ,τ . Similarly, let
(xUτ,1, . . . , x

U
τ,τ) be the solution vector to the optimization

minimize
τ∑
t=1

gt(xt) + β

τ∑
t=1

(xt−1 − xt)+ (6)

subject to xt ≥ 0

Then, define xUτ = xUτ,τ .
Notice that in each case, the optimization problem includes

only times 1 ≤ t ≤ τ , and so ignores the future information
for t > τ . In the case of the lower bound, β cost is incurred
for each server toggled on, while in the upper bound, β cost
is incurred for each server toggled into power-saving mode.

Lemma 1. For all τ , xLτ ≤ x∗τ ≤ xUτ .

0 5 10 15 20 25
0

50

100

150

time t (hours)

n
u
m

b
e
r

o
f
s
e
rv

e
rs

 x
t

Optimal

bounds

(a) Offline optimal

0 5 10 15 20 25
0

50

100

150

time t (hours)

n
u
m

b
e
r

o
f
s
e
rv

e
rs

 x
t

LCP(0)

bounds

(b) LCP(0)

Fig. 1. Illustrations of (a) the offline optimal solution and (b) LCP(0) for
the first day of the MSR workload described in Section VI with a sampling
period of 10 minutes. The operating cost is defined in (2) with d0 = 1.5,
d1 = 1, µ = 1, pt = 1, e0 = 1 and e1 = 0 and the switching cost has
β = 6 (corresponding to the energy consumption for one hour).

Given Lemma 1, we now characterize the optimal solution
x∗τ . Define (x)ba = max(min(x, b), a) as the projection of x
into [a, b]. Then, we have:

Theorem 2. The optimal solution X∗ = (x∗1, . . . , x
∗
T) of the

data center optimization problem (1) satisfies the backward
recurrence relation

x∗τ =

 0, τ > T ;(
x∗τ+1

)xUτ
xLτ

, τ ≤ T . (7)

Theorem 2 and Lemma 1 are proven in Appendix A.
An example of the optimal x∗t can be seen in Figure 1(a).

Many more numeric examples of the performance of the
optimal offline algorithm are provided in Section VI.

Theorem 2 and Figure 1(a) highlight that the optimal algo-
rithm can be interpreted as moving backwards in time, starting
with x∗T = 0 and keeping x∗τ = x∗τ+1 unless the bounds
prohibit this, in which case it makes the smallest possible
change. This interpretation hightlights that it is impossible for
an online algorithm to compute x∗τ since, without knowledge
of the future, an online algorithm cannot know whether to
keep xτ constant or to follow the upper/lower bound.

V. LAZY CAPACITY PROVISIONING

A major contribution of this paper is the presentation and
analysis of a novel online algorithm, Lazy Capacity Provi-
sioning (LCP(w)). At time τ , LCP(w) knows only gt(·) for
t ≤ τ + w, for some prediction window w. As mentioned
before, we assume that these are known perfectly, but we show
in Section VI that the algorithm is robust to this assumption in
practice. The design of LCP(w) is motivated by the structure
of the optimal offline solution described in Section IV. Like

4

the optimal solution, it “lazily” stays within upper and lower
bounds. However, it does this moving forward in time instead
of backwards in time.

Before defining LCP(w) formally, recall that the bounds xUτ
and xLτ do not use knowledge about the loads in the prediction
window of LCP(w). To use it, define refined bounds xU,wτ and
xL,wτ such that xU,wτ = xUτ+w,τ in the solution of (6) and
xL,wτ = xLτ+w,τ in that of (5). Note that w = 0 is allowed
(no future prediction) and xU,0τ = xUτ and xL,0τ = xLτ . The
following generalization of Lemma 1 is proven in Appendix B.

Lemma 2. xLτ ≤ xL,wτ ≤ x∗τ ≤ xU,wτ ≤ xUτ for all w ≥ 0.

Now, we are ready to define LCP(w) using xU,wτ and xL,wτ .

Algorithm 2. Lazy Capacity Provisioning, LCP(w).
Let XLCP (w) = (x

LCP (w)
0 , . . . , x

LCP (w)
T) denote the vector

of active servers under LCP(w). This vector can be calculated
using the following forward recurrence relation

xLCP (w)
τ =

0, τ ≤ 0;(
x
LCP (w)
τ−1

)xU,wτ
xL,wτ

, τ ≥ 1.
(8)

Figure 1(b) illustrates the behavior of LCP(0). Note its
similarity with Figure 1(a), but with the laziness in forward
time instead of reverse time.

The computational demands of LCP(w) may initially seem
prohibitive as τ grows, since calculating xU,wτ and xL,wτ
requires solving convex optimizations of size τ+w. However,
it is possible to calculate xU,wτ and xL,wτ without using the full
history. Lemma 10 in Appendix B implies that it is enough
to use only the history since the most recent point when the
solutions of (5) and (6) are either both increasing or both
decreasing, if such a point exists. In practice, this period is
typically less than a day due to diurnal traffic patterns, and so
the convex optimization, and hence LCP(w), remains tractable
even as τ grows. In Figure 1(b), each point is solved in under
half a second.

Next, consider the cost incurred by LCP(w). Section VI
discusses the cost in realistic settings, while in this section we
focus on worst-case bounds, i.e., characterize the competitive
ratio. The following theorem is proven in Appendix B.

Theorem 3. cost(XLCP (w)) ≤ cost(X∗) + 2costs(X
∗).

Thus, LCP(w) is 3-competitive for optimization (1). Further,
for any finite w and ε > 0 there exists an instance, with gt of
the form xtf(λt/xt), such that LCP(w) attains a cost greater
than 3− ε times the optimal cost.

Note that Theorem 3 says that the competitive ratio is
independent of the prediction window size w, the switching
cost β, and is uniformly bounded above regardless of the form
of the operating cost functions gt(·). Surprisingly, this means
that even the “myopic” LCP(0) is 3-competitive, regardless
of {gt(·)}, despite having no information beyond the current
timeslot. It is also surprising that the competitive ratio is tight
regardless of w. Seemingly, for large w, LCP(w) should pro-
vide reduced costs. Indeed, for any particular workload, as w
grows the cost decreases and eventually matches the optimal,
when w > T . However, for any fixed w, there is a worst-

0 10 20 30 40 50
0

20

40

60

80

100

time (hours)

lo
a
d

(a) Hotmail

0 20 40 60 80 100 120
0

20

40

60

80

100

time (hours)

lo
a
d

(b) MSR

Fig. 2. Illustration of the traces used for numerical experiments.

case sequence of cost functions such that the competitive ratio
is arbitrarily close to 3. Moreover, there is such a sequence
of cost functions having the natural form xtf(λt/xt), which
corresponds to a time varying load λ being shared equally
among xt servers, which each has a time-invariant (though
pathological) operating cost f(λ) when serving load λ.

Finally, though 3-competitive may seem like a large gap, the
fact that cost(XLCP (w)) ≤ cost(X∗)+2costs(X

∗) highlights
that the gap will tend to be much smaller in practice, where
the switching costs make up a small fraction of the total costs
since dynamic right-sizing would tend to toggle servers once
a day due to the diurnal traffic.

VI. CASE STUDIES

In this section the goal is two-fold: The first is to evaluate
the cost incurred by LCP(w) relative to the optimal solution
and RHC(w) for realistic workloads. The second is more
generally to illustrate the cost savings and energy savings that
come from dynamic right-sizing in data centers. To accomplish
these goals, we experiment using two real-world traces.

A. Experimental setup
Throughout the experimental setup, the aim is to choose

parameters that provide conservative estimates of the cost
savings from LCP(w) and right-sizing in general.

Cost benchmark: Current data centers typically do not use
dynamic right-sizing and so to provide a benchmark against
which LCP(w) is judged, we consider the cost incurred by
a “static” right-sizing scheme for capacity provisioning. This
chooses a constant number of servers that minimizes the costs
incurred based on full knowledge of the entire workload. This
policy is clearly not possible in practice, but it provides a
conservative estimate of the savings from right-sizing since it
uses perfect knowledge of all peaks and eliminates the need
for overprovisioning in order to handle the possibility of flash
crowds or other traffic bursts.

5

Cost function parameters: The cost is of the form (2),
characterized by the parameters d0, d1, µ, pt, e0 and e1, and
the switching cost β. We normalize µ = 1, pt = 1 and choose
units such that the fixed power is e0 = 1. The load-dependent
power is set to e1 = 0, because the energy consumption of
current servers is dominated by the fixed costs [2].

The delay cost d1 reflects revenue lost due to customers
being deterred by delay, or to violation of SLAs. We set
d1/e0 = 1 for most experiments but consider a wide range
of settings in Figure 8. The minimum perceptible delay is
set to d0 = 1.5 times the time to serve a single job. The
value 1.5 is realistic or even conservative, since “valley filling”
experiments similar to those of Section VI-B show that a
smaller value would result in a significant added cost when
using valley filling, which operators now do with minimal
incremental cost.

The normalized switching cost β/e0 measures the duration
a server must be powered down to outweigh the switching
cost. We use β = 6e0, which corresponds to the energy
consumption for one hour (six samples). This was chosen as
an estimate of the time a server should sleep so that the wear-
and-tear of power cycling matches that of operating [9].

Workload information: The workloads for these experi-
ments are drawn from I/O traces of two real-world data
centers. The first set of traces is from Hotmail, a large email
service running on tens of thousands of servers. We used traces
from 8 such servers over a 48-hour period, starting at midnight
(PDT) on Monday August 4 2008 [5]. The second set of traces
is taken from 6 RAID volumes at MSR Cambridge. The traced
period was 1 week starting from 5PM GMT on the 22nd
February 2007 [5]. These activity traces represent respectively
a service used by millions of users and a small service used
by hundreds of users. The traces are normalized such that the
peak load is 100, which are shown in Figure 2. Notice that this
normalization does not affect the experiment results since only
the shape of trace matters for cost saving. Both sets of traces
show strong diurnal properties and have peak-to-mean ratios
(PMRs) of 1.64 and 4.64 for Hotmail and MSR respectively.
Loads were averaged over disjoint 10 minute intervals.

The Hotmail trace contains significant nightly activity due
to maintenance processes (backup, index creation etc) which
is not shown fully in Figure 2(a). The data center, however,
is provisioned for the peak foreground activity. This creates
a dilemma: should our experiments include the maintenance
activity or to remove it? Figure 5 illustrates the impact of this
decision. If the spike is retained, it makes up nearly 12% of
the total load and forces the static provisioning to use a much
larger number of servers than if it were removed, making
savings from dynamic right-sizing much more dramatic. To
provide conservative estimates of the savings from right-
sizing, we chose to trim the size of the spike to minimize the
savings from right-sizing. This trimming makes the nightly
background spike have value roughly equal to 100 (the peak
foreground activity).

B. When is right-sizing beneficial?
Our experiments are organized in order to illustrate the

impact of a wide variety of parameters on the cost-savings

0 2 4 6 8 10 12
−5

0

5

10

prediction window, w

%
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

LCP(w)

RHC(w)

(a) Hotmail

0 2 4 6 8 10 12
0

10

20

30

40

50

prediction window, w

%
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

LCP(w)

RHC(w)

(b) MSR

Fig. 3. Impact of prediction window size on cost incurred by LCP(w).

provided by dynamic right-sizing with LCP(w). The goal is
to better understand when dynamic right-sizing can provide
large enough cost-savings to warrant the extra implementation
complexity. Remember that throughout, we have attempted to
choose experimental settings so that the benefit of dynamic
right-sizing is conservatively estimated.

The analytic results in Theorem 1 and Theorem 3 show that
the performance of RHC(w) is more sensitive to the prediction
window w and the switching cost β/e0 while LCP(w) works
well for general settings. The first two experiments consider
the realistic cost saving from RHC(w) and LCP(w) with
varying w and β/e0 under real-world traces.

Impact of prediction window size: The first parameter we
study is the impact of the predictability of the workload. In
particular, depending on the workload, the prediction window
w for which accurate estimates can be made could be on the
order of tens of minutes or on the order of hours. Figure
3 illustrates its impact on the cost savings of RHC(w) and
LCP(w), where the unit of w is one timeslot of is 10 minutes.

The first observation from Figure 3 is that the savings
possible (“Optimal”) in the MSR trace are larger than in
the Hotmail trace. Second, the cost saving of LCP(w) is
similar to RHC(w) when w ≥ 3. However, RHC(w) can
be much worse when w ≤ 2, i.e., LCP(w) has more stable
cost saving than RHC(w), which supports the analytic results
very well. In both traces, a big fraction of the optimal cost
savings is achieved by LCP(0), which uses only workload
predictions about the current timeslot (10 minutes). The fact
that this myopic algorithm provides significant gain over static
provisioning is encouraging. Further, a prediction window that
is approximately the size of β = 6 (i.e. one hour) gives nearly
the optimal cost savings.

Impact of switching costs: One of the main worries when
considering right-sizing is the switching cost of toggling
servers, β, which includes the delay costs, energy costs, costs
of wear-and-tear, and other risks involved. Thus, an important
question to address is: “How large must switching costs be
before the cost savings from right-sizing disappears?”

Figure 4 shows that significant gains are possible provided
β is smaller than the duration of the valleys. Given that the
energy costs, delay costs, and wear-and-tear costs are likely
to be on the order of an hour, this implies that unless the
risks associated with toggling a server are perceived to be
extreme, the benefits from dynamic right-sizing are large in
the MSR trace (high PMR case). Though the gains are smaller

6

min hour day
−40

−20

0

20

β / e
0

%
 c

o
s
t

re
d

u
c
ti
o

n

Optimal

LCP(3)

LCP(0)

RHC(3)

RHC(0)

(a) Hotmail

min hour day

−50

0

50

β / e
0

%
 c

o
s
t

re
d

u
c
ti
o

n

Optimal

LCP(3)

LCP(0)

RHC(3)

RHC(0)

(b) MSR

Fig. 4. Impact of switching cost, against time on a logarithmic scale.

in the Hotmail case for large β, this is because the spike
of background work splits an 8 hour valley into two short 4
hour valleys. If these tasks were shifted or balanced across the
valley, the Hotmail trace would show significant cost reduction
for much larger β, similarly to the MSR trace.

Another key observation is that the cost saving of LCP(w)
is similar to that of RHC(w) when β is small or moderate.
However, when β becomes big, LCP(w) is much better than
RHC(w), which confirms that LCP(w) provides more stable
cost saving than RHC(w). Since we use moderate prediction
window and moderate switching cost as the default setting in
our experiments, we will show only the LCP(w) results but
not RHC(w) results for the remaining experiments.

Prediction error: The LCP(w) algorithm depends on having
estimates for the arrival rate during the current timeslot as well
as for w timeslots into the future. Our analysis in Section
V assumes that these estimates are perfect, but of course
in practice there are prediction errors. Figure 6 shows the
cost reduction for the Hotmail trace when additive white
Gaussian noise of increasing variance is added to the pre-
dictions used by LCP(w), including the workload in current
timeslot. A variance of 0 corresponds to perfect knowledge
of the near-future workload, and this figure shows that the
performance does not degrade significantly when there is
moderate uncertainty, which suggests that the assumptions of
the analysis are not problematic. The plot for the MSR trace
is qualitatively similar, although the actual cost savings are
significantly larger.

Even very inexact knowledge of future workloads can be
beneficial. Note that LCP(0)’s upper and lower bounds xU and
xL implicitly assume that future workloads will be infinite and
0, respectively. Performance can be improved if either of these
bounds can be tightened. For example, it may be possible to
use daily trends to predict a lower bound on the load, while
the upper bound is still taken to be infinite to allow for flash
crowds. Given that prediction errors for real data sets tend
to be small [8], [22], based on these plots, to simplify our
experiments we allow LCP(w) perfect predictions.

Impact of peak-to-mean ratio (PMR): Dynamic right-sizing
inherently exploits the gap between the peaks and valleys of
the workload, and intuitively provides larger savings as that
gap grows. To illustrate this, we artificially scaled the PMR
of each trace and calculated the resulting savings. The results,
in Figure 7, illustrate that the intuition holds for both cost
savings and energy savings. The gain grows quickly from

0 2 4 6 8 10 12
0

20

40

60

% of load due to spike

%
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

w=3

w=0

Fig. 5. Impact of overnight peak in
the Hotmail workload.

0 5 10 15 20 25
0

1

2

3

4

5

Mean prediction error (% mean load)

%
 c

o
s
t
re

d
u
c
ti
o
n

w=3

w=0

Fig. 6. Impact of prediction error on
LCP(w) under Hotmail workload.

2 4 6 8 10

0

20

40

60

peak/mean ratio

%
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

w=3

w=0

(a) Total cost

2 4 6 8 10

0

20

40

60

80

peak/mean ratio

%
 e

n
e
rg

y
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

w=3

w=0

(b) Energy cost

Fig. 7. Impact of the peak-to-mean ratio of the workload on the total cost
and energy cost incurred by LCP(w) in the Hotmail workload.

zero at PMR=1, to 5–10% at PMR≈ 2 which is common
in large data centers, to very large values for the higher
PMRs common in small to medium sized data centers. This
shows that, even for small data centers where the overhead
of implementing right-sizing is amortized over fewer servers,
there is a significant benefit in doing so. To provide some
context for the monetary value of these savings, consider that
a typical 50,000 server data center has an electricity bill of
around $1 million/month [1].

The workload for the figure is generated from the Hotmail
workload by scaling λt as λ̂t = k(λt)

α, varying α and
adjusting k to keep the mean constant. Note that though
Figure 7 includes only the results for Hotmail, the resulting
plot for the MSR trace is nearly identical. This highlights that
the difference in cost savings observed between the two traces
is primarily due to the fact that the PMR of the MSR trace is
so much larger than that of the Hotmail trace.

Impact of energy costs: Clearly the benefit of dynamic
right-sizing is highly dependent on the cost of energy. As the
economy is forced to move towards more expensive renewable
energy sources, this cost will inevitably increase and Figure 8
shows how this increasing cost will affect the cost savings
possible from dynamic right-sizing. Note that the cost savings
from dynamic right-sizing grow quickly as energy costs rise.
However, even when energy costs are quite small relative to
delay costs, we see improvement in the case of the MSR
workload due to its large PMR.

Impact of valley filling: A common alternative to dynamic
right-sizing that is often suggested is to run very delay-
insensitive maintenance/background processes during the peri-
ods of low load, known as “valley filling”. Some applications
have a huge amount of such background work, e.g., search
engines tuning their ranking algorithms. If there is enough

7

10
0

10
2

−10

0

10

20

30

energy cost / delay cost

%
 c

o
s
t
re

d
u

c
ti
o

n

Optimal

w=3

w=0

(a) Hotmail

10
0

10
2

−20

0

20

40

60

80

energy cost / delay cost

%
 c

o
s
t
re

d
u

c
ti
o

n

Optimal

w=3

w=0

(b) MSR

Fig. 8. Impact of increasing energy costs.

such background work, then the valleys can in principle be
entirely filled and so the PMR≈ 1 and thus dynamic right-
sizing is unnecessary. Thus, an important question is: “How
much background work is enough to eliminate the cost savings
from dynamic right-sizing?”

Figure 10 shows that, in fact, dynamic right-sizing pro-
vides cost savings even when background work makes up a
significant fraction of the total load. For the Hotmail trace,
significant savings are still possible when background load
makes upwards of 10% of the total load, while for the MSR
trace this threshold becomes nearly 60%. Note that Figure 10
results from considering “ideal” valley filling, which results
in a perfectly flat load during the valleys, but does not give
background processes lower queueing priority.

Impact of capacity limits: Energy-related expenses account
for almost half of the cost of a data center. However, many of
those, such as power supply and cooling infrastructure, depend
on the peak power rather than the total energy. This raises the
question of whether LCP increases the peak number of servers
used, or equivalently the peak power consumption. The dotted
line of Figure 9 shows the optimal static number of servers to
use, which we call M , while the dashed line in Figure 9(a)
shows the optimal number and that in Figure 9(b) shows the
number used by LCP. Dynamic provisioning uses a higher
peak number of servers, which would increase the cost.

However, the LCP algorithm (and off-line optimization) can
impose an additional constraint xt ≤Mt = M to ensure that
the infrastructure cost is not increased. Indeed, when Mt is
independent of t the constrained optimum appears to have the
very simple form min(M,x∗t) — the unconstrained optimum
clipped to M — though this structure does not hold for general
time-varying bounds. An example of xt is shown by the solid
lines in Figure 9. Despite the additional constraint, most of
the potential gains are still realized by dynamic right sizing.
In this case, the gain of the optimal solution drops from 8%
to 6.5%, and that of LCP drops from 5.1% to 4.4%.

VII. RELATED WORK

Interest in right-sizing has been growing since [14] and [23]
appeared early last decade. Approaches range from very “an-
alytic” work focusing on developing algorithms with provable
guarantees to “systems” work focusing on implementation.
Early systems work such as [23] achieved substantial savings
despite ignoring switching costs in their design. Other designs
have focused on decentralized frameworks, e.g., [24], [25] and

0 6 12 18 24 30 36 42 48
0

20

40

60

80

100

time t (hours)

n
u

m
b

e
r

o
f

s
e

rv
e

rs
 x

t

Static

Optimal

constrained

(a) Offline optimal

0 6 12 18 24 30 36 42 48
0

20

40

60

80

100

time t (hours)

n
u

m
b

e
r

o
f

s
e

rv
e

rs
 x

t

Static

LCP

constrained

(b) LCP(0)

Fig. 9. Illustrations of (a) the offline optimal solution and (b) LCP(0) for
the Hotmail workload described in Section VI with a sampling period of
10 minutes. The operating cost is as in Figure 1. The dotted line shows the
optimal static number of servers to use, the dashed line shows the optimal or
LCP provisioning without constraints, and the solid line shows the constrained
optimum or constrained LCP solution. Notice that the constrained optimum
turns out to correspond to simple clipping of the unconstrained optimum.

[26], as opposed to the centralized framework considered here.
A recent survey is [27].

Related analytic work focusing on dynamic right-sizing in-
cludes [28], which reallocates resources between tasks within a
data center, and [29], [30], which considers sleep of individual
components, among others. Typically, approaches have applied
optimization using queueing theoretic models, e.g., [31], [32],
or control theoretic approaches, e.g., [33]–[35]. A recent
survey of analytic work focusing on energy efficiency in
general is [36]. Our work is differentiated from this literature
by the generality of the model considered, which subsumes
most common energy and delay cost models used by analytic
researchers, and the fact that we provide worst-case guarantees
for the cost of the algorithm, which is typically not possible
for queueing or control theoretic based algorithms.

The model and algorithm introduced in this paper most
closely ties to the online algorithms literature, specifically
the classic rent-or-buy (or “ski rental”) problem [37]. The
best deterministic strategy for deciding when to turn off a
single idle server (i.e., to stop “renting” and to “buy”) is 2-
competitive [38]. Additionally, there is a randomized algorithm
which is asymptotically e/(e−1)-competitive [39]. The “lower
envelope” algorithm of [29], [30], which generalizes the
standard rent-or-buy algorithm, puts a device into deeper sleep
mode m at a time t such that the optimal solution would use
m if the idle period finished right after t. This is like LCP
following xU downward; in [29], [30] a device must be fully
on to serve work, and so there is no equivalent to xL forcing
the system to turn on in stages.

An important difference between these simple models and
the current paper is that the cost of the “rent” action may

8

change arbitrarily over time in the data center optimiza-
tion problem. Problems with this sort of dynamics typically
have competitive ratios greater than 2. For example, when
rental prices vary in time, the competitive ratio is unbounded
in general [40]. Further, for “metrical task systems” [41],
which generalize rent-or-buy problems and the data center
optimization problem, there are many algorithms available,
but they typically have competitive ratios that are at best
poly-logarithmic in the number of servers. Perhaps the most
closely related prior work from this area is the page-placement
problem (deciding on which server to store a file), which
has competitive ratio 3 [42]. The page replacement-problem
is nearly a discrete version of the data center optimization
problem where the cost function is restricted to f(x) = |x−1|.

VIII. EXTENSIONS

The general model captures many applications other than
the right-sizing problems in data centers. Intuitively, this model
seeks to minimize the sum of a sequence of convex functions
while “smooth” solutions are preferred. Other applications
may be captured by this model, such as video streaming [43],
in which encoding quality should vary depending on network
bandwidth, but large changes in encoding quality are visually
annoying to users.

A natural generalization of the framework of (1) is to make
xt a vector, corresponding to managing resources of multiple
different types. This extension has many important appli-
cations, including joint capacity provision in geographically
distributed data centers [25], automatically switched optical
networks (ASONs) in which there is a cost for re-establishing
a lightpath [44], and power generation with dynamic demand,
since the cheapest types of generators typically have very high
switching costs [45]

Unfortunately, LCP(w) does not naturally generalize to the
case that xt is a vector. Moreover, although the RHC(w)
algorithm can be directly applied, it can perform poorly when
xt is a vector [21]. An improved algorithm for the case of
heterogeneous resources with lookahead has been proposed
in [21], but an algorithm without lookahead is still the subject
of active research.

IX. SUMMARY AND CONCLUDING REMARKS

This paper has provided a new online algorithm, LCP(w),
for dynamic right-sizing in data centers. The algorithm is
motivated by the structure of the optimal offline solution and
guarantees cost no larger than 3 times the optimal cost, under
very general settings — arbitrary workloads, and general delay
cost and general energy cost models provided that they result
in a convex operating cost. Further, in realistic settings the cost
of LCP(w) is nearly optimal. Additionally, LCP(w) is simple
to implement in practice and does not require significant
computational overhead. Moreover, we contrast LCP(w) with
the more traditional approach of receding horizon control
RHC(w) and show that LCP(w) provides much more stable
cost saving with general settings.

Additionally, the case studies used to evaluate LCP(w)
highlight that the cost and energy savings achievable by

0 10 20 30 40

0

2

4

6

8

mean background load (% total)

%
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

w=3

w=0

(a) Hotmail

0 20 40 60 80
−10

0

10

20

30

40

50

mean background load (% total)

%
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

w=3

w=0

(b) MSR

Fig. 10. Impact of background processes. The improvement of LCP(w) over
static provisioning as a function of the percentage of the workload that is
background tasks.

dynamic right-sizing are significant. The case studies highlight
that if a data center has PMR larger than 3, a cost of toggling
a server of less than a few hours of server costs, and less than
40% background load then the cost savings from dynamic
right-sizing can be conservatively estimated at larger than
15%. Thus, even if a data center is currently performing valley
filling, it can still achieve significant cost savings by dynamic
right-sizing.

ACKNOWLEDGEMENTS

This work was supported by NSF grants CCF 0830511,
and CNS 0846025, Microsoft Research, the Lee Center for
Advanced Networking, and ARC grant FT0991594.

REFERENCES

[1] J. Hamilton, “Cost of power in large-scale data centers,”
http://perspectives.mvdirona.com/, Nov. 2009.

[2] L. A. Barroso and U. Hölzle, “The case for energy- proportional
computing,” Computer, vol. 40, no. 12, pp. 33–37, 2007.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proc. USENIX
NSDI, 2005, pp. 273–286.

[4] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-
aware server provisioning and load dispatching for connection-intensive
internet services,” in Proc. USENIX NSDI, 2008.

[5] E. Thereska, A. Donnelly, and D. Narayanan, “Sierra: a power-
proportional, distributed storage system,” Microsoft Research, Tech.
Rep. MSR-TR-2009-153, 2009.

[6] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and
K. Schwan, “Robust and flexible power-proportional storage,” in Proc.
ACM SoCC, 2010.

[7] X. Wang and M. Chen, “Cluster-level feedback power control for perfor-
mance optimization,” in IEEE Int. Symp. High Performance Computer
Architecture (HPCA), 2008, pp. 101–110.

[8] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang,
“Power and performance management of virtualized computing envi-
ronments via lookahead control,” Cluster computing, vol. 12, no. 1, pp.
1–15, Mar. 2009.

[9] P. Bodik, M. P. Armbrust, K. Canini, A. Fox, M. Jordan, and D. A.
Patterson, “A case for adaptive datacenters to conserve energy and
improve reliability,” University of California at Berkeley, Tech. Rep.
UCB/EECS-2008-127, 2008.

[10] “SPEC power data on SPEC website at http://www.spec.org.”
[11] L. Kleinrock, Queueing Systems Volume II: Computer Applications.

Wiley Interscience, 1976.
[12] R. Urgaonkar, U. Kozat, K. Igarashi, and M. Neely, “Dynamic resource

allocation and power management in virtualized data centers,” in Proc.
IEEE/IFIP NOMS, Apr. 2010.

[13] R. Das, J. O. Kephart, C. Lefurgy, G. Tesauro, D. W. Levine, and
H. Chan, “Autonomic multi-agent management of power and perfor-
mance in data centers,” in Proc. Int. Joint Conf. Autonomous Agents
and Multiagent Systems, 2008.

9

[14] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle, “Managing energy and server resources in hosting centers,” in
Proc. ACM SOSP, 2001, pp. 103–116.

[15] L. L. H. Andrew, M. Lin, and A. Wierman, “Optimality, fairness and
robustness in speed scaling designs,” in Proc. ACM SIGMETRICS, 2010.

[16] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost:
Optimization of distributed internet data centers in a multi-electricity-
market environment,” in Proc IEEE INFOCOM, Mar 2010.

[17] H. N. Van, F. Tran, and J.-M. Menaud, “Sla-aware virtual resource
management for cloud infrastructures,” in IEEE Int. Conf. Comput.
Inform. Technol. (CIT), OCT 2009.

[18] W. Kwon and A. Pearson, “A modified quadratic cost problem and
feedback stabilization of a linear system,” IEEE Trans. Automatic
Control, vol. AC-22, no. 5, pp. 838–842, 1977.

[19] W. H. Kwon, A. M. Bruckstein, and T. Kailath, “Stabilizing state
feedback design via the moving horizon method.” Int. J. Contr., vol. 37,
no. 3, pp. 631–643, 1983.

[20] D. Q. Mayne and H. Michalska, “Receding horizon control of nonlinear
systems,” IEEE Trans. Automatic Control, vol. 35, no. 7, pp. 814–824,
1990.

[21] M. Lin, Z. Liu, A. Wierman, and L. L. H. Andrew, “Online algorithms
for geographical load balancing,” in Proc. Int. Green Computing Conf.,
San Jose, CA, June 2012.

[22] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Workload analysis
and demand prediction of enterprise data center applications,” in Proc.
IEEE Symp. Workload Characterization, Boston, MA, Sept. 2007.

[23] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath, “Load balancing
and unbalancing for power and performacne in cluster-based systems,”
in proc. Compilers and Operating Systems for Low Power, 2001.

[24] B. Khargharia, S. Hariri, and M. Yousif, “Autonomic power and perfor-
mance management for computing systems,” Cluster computing, vol. 11,
no. 2, pp. 167–181, Dec. 2007.

[25] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H. Andrew, “Greening
geographical load balancing,” in Proc. ACM SIGMETRICS, 2011.

[26] A. Kansal, J. Liu, A. Singh, R. Nathuji, and T. Abdelzaher, “Semantic-
less coordination of power management and application performance,”
in ACM SIGOPS, 2010, pp. 66–70.

[27] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, “A taxonomy and
survey of energy-efficient data centers and cloud computing systems,”
Advances in Computers, vol. 82, pp. 47–111, 2011.

[28] C. G. Plaxton, Y. Sun, M. Tiwari, , and H. Vin, “Reconfigurable resource
scheduling,” in ACM SPAA, 2006.

[29] S. Irani, R. Gupta, and S. Shukla, “Competitive analysis of dynamic
power management strategies for systems with multiple power savings
states,” in Proc. Design, Automation, and Test in Europe, 2002, p. 117.

[30] J. Augustine, S. Irani, and C. Swamy, “Optimal power-down strategies,”
SIAM Journal on Computing, vol. 37, no. 5, pp. 1499–1516, 2008.

[31] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy, “Optimal power
allocation in server farms,” in Proc. of ACM Sigmetrics, 2009.

[32] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch, “Optimality
analysis of energy-performance trade-off for server farm management,”
Performance Evaluation, vol. 67, no. 11, pp. 1155 – 1171, 2010.

[33] T. Horvath and K. Skadron, “Multi-mode energy management for multi-
tier server clusters,” in Proc. PACT, 2008.

[34] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gau-
tam, “Managing server energy and operational costs in hosting centers,”
in Proc. Sigmetrics, 2005.

[35] R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely, “Dynamic
resource allocation and power management in virtualized data centers,”
in Proc. IEEE/IFIP NOMS, Apr. 2010.

[36] S. Albers, “Energy-efficient algorithms,” Comm. of the ACM, vol. 53,
no. 5, pp. 86–96, 2010.

[37] A. Borodin and R. El-Yaniv, Online computation and competitive
analysis. Cambridge University Press, 1998.

[38] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator, “Compet-
itive snoopy caching,” Algorithmica, vol. 3, no. 1, pp. 77–119, 1988.

[39] A. R. Karlin, C. Kenyon, and D. Randall, “Dynamic TCP acknowledge-
ment and other stories about e/(e − 1),” in Proc. ACM Symp. Theory
of Computing (STOC), 2001.

[40] M. Bienkowski, “Price fluctuations: To buy or to rent,” in Approximation
and Online Algorithms, 2008, pp. 25–36.

[41] A. Borodin, N. Linial, and M. E. Saks, “An optimal on-line algorithm
for metrical task system,” J. ACM, vol. 39, no. 4, pp. 745–763, 1992.

[42] D. L. Black and D. D. Sleator, “Competitive algorithms for replication
and migration problems,” Carnegie Mellon University, Tech. Rep. CMU-
CS-89-201, 1989.

[43] M. Zink, O. Künzel, J. Schmitt, and R. Steinmetz, “Subjective impres-
sion of variations in layer encoded videos,” in Proc. Int. Conf. Quality
of service. Springer-Verlag, 2003, pp. 137–154.

[44] Y. Zhang, M. Murata, H. Takagi, and Y. Ji, “Traffic-based reconfiguration
for logical topologies in large-scale WDM optical networks,” IEEE J.
Lightwave Technology, vol. 23, no. 10, p. 2854, 2005.

[45] S. Kaplan, “Power plants: Characteristics and costs,” Congressional
Research Service, 2008.

APPENDIX A
ANALYSIS OF THE OFFLINE OPTIMAL SOLUTION

In this section we will prove Lemma 1 and Theorem 2.
Before beginning the proofs, let us first rephrase the data center
optimization (1) as follows.

minimize
T∑
t=1

gt(xt) + β

T∑
t=1

yt (9)

subject to yt ≥ xt − xt−1, xt ≥ 0, yt ≥ 0.

Next, we want to work with the dual of optimization (9).
The Lagrangian (with respect to the first constraint) is

L(x, y, ν) =

T∑
t=1

gt(xt) + β

T∑
t=1

yt +

T∑
t=1

νt(xt − xt−1 − yt)

=

T∑
t=1

(gt(xt) + (β − νt)yt)

+

T−1∑
t=1

(νt − νt+1)xt + νTxT − ν1x0

and the dual function is D(ν) = infx≥0,y≥0 L(x, y, ν).Since
we are interested in the maximum of D(ν) in the dual problem,
we need only to consider the case β − νt ≥ 0. Then the dual
function becomes

D(ν)

= inf
x≥0

(
T∑
t=1

gt(xt) +

T−1∑
t=1

(νt − νt+1)xt + νTxT − ν1x0

)

=−
T−1∑
t=1

g∗t (νt+1 − νt)− g∗T (−νT)− ν1x0.

where g∗t (·) is the convex conjugate of function gt(·) (enforc-
ing gt(xt) = ∞ when xt < 0). Therefore the corresponding
dual problem of (9) is

max−
T−1∑
t=1

g∗t (νt+1 − νt)− g∗T (−νT)− ν1x0 (10)

subject to 0 ≤ νt ≤ β,

where the complementary slackness conditions are

νt(xt − xt−1 − yt) = 0 (11)
(β − νt)yt = 0, (12)

and the feasibility condition is xt ≥ 0, yt ≥ 0, yt ≥ xt−xt−1
and 0 ≤ νt ≤ β.

Using the above, we now observe a relationship between the
data center optimization in (9) and the upper and lower bounds,
i.e., optimizations (6) and (5). Specifically, if ντ+1 = 0 in a

10

solution of optimization (10), then ν1, . . . , ντ is a solution to:

max−
τ−1∑
t=1

g∗t (νt+1 − νt)− g∗τ (−ντ)− ν1x0 (13)

subject to 0 ≤ νt ≤ β,

which is identical to the dual problem of optimization (5).
Thus, the corresponding x1, . . . , xτ is a solution to optimiza-
tion (5). On the other hand, if ντ+1 = β in a solution of
optimization (10), then ν1, . . . , ντ is a solution to:

max−
τ−1∑
t=1

g∗t (νt+1 − νt)− g∗τ (β − ντ)− ν1x0 (14)

subject to 0 ≤ νt ≤ β.

Let ν′t = β − νt, which makes (14) become

max−
τ−1∑
t=1

g∗t (ν′t − ν′t+1)− g∗τ (ν′τ) + ν′1x0 − βx0

subject to 0 ≤ ν′t ≤ β. (15)

It is easy to check that the corresponding x1, . . . , xτ is a
solution to optimization (6).

We require some notation and two technical lemmas before
moving to the proofs of Lemma 1 and Theorem 2. Denote
hi,j(x;xS ;xE) =

∑j
t=i gt(xt)+β(xi−xS)++β

∑j
t=i+1(xt−

xt−1)+ + β(xE − xj)
+ for j ≥ i, and h′i,j(x;xS ;xE) =∑j

t=i gt(xt)+β(xS−xi)++β
∑j
t=i+1(xt−1−xt)++β(xj−

xE)+ for j ≥ i. Then the objective of (5) is h1,τ (x;x0; 0).
Similarly, the objective of (6) is h′1,τ (x;x0;xM) where

xM = max(max
τ,t

xUτ,t,max
t
x∗t). (16)

The first lemma is to connect hi,j and h′i,j :

Lemma 3. Given xS and xE , any solution minimizing
hi,j(x;xS ;xE) also minimizes h′i,j(x;xS ;xE) and vice versa.

Proof:

hi,j(x;xS ;xE)− h′i,j(x;xS ;xE)

=β(xi − xS) + β

j∑
t=i+1

(xt − xt−1) + β(xE − xj)

=β(xE − xS),

which is a constant. Thus any minimizer of hi,j(x;xS ;xE) or
h′i,j(x;xS ;xE) is also a minimizer of the other.

Lemma 4. Given xS and xE ≤ x̂E , let X = (xi, . . . , xj) min-
imize hi,j(x;xS ;xE), then there exists an X̂ = (x̂i, . . . , x̂j)
minimizing hi,j(x;xS ; x̂E) such that X ≤ X̂ .

Proof: If there is more than one solution minimizing
hi,j(x;xS ; x̂E), let X̂ be a solution with greatest x̂j . We
will first argue that xj ≤ x̂j . By definition, we have
hi,j(X;xS ;xE) ≤ hi,j(X̂;xS ;xE) and hi,j(X̂;xS ; x̂E) ≤
hi,j(X;xS ; x̂E). Note that if the second inequality is an
equality, then xj ≤ x̂j . Otherwise, sum the two inequalities,

to obtain the strict inequality

(xE − xj)+ + (x̂E − x̂j)+ < (x̂E − xj)+ + (xE − x̂j)+.

Since xE ≤ x̂E , we can conclude that xj < x̂j . Therefore,
we always have xj ≤ x̂j .

Next, recursively consider the subproblem hi,j−1(·) with
xE = xj and x̂E = x̂j . The same argument as above yields
that xj−1 ≤ x̂j−1. This continues and we can conclude that
(xi, . . . , xj) ≤ (x̂i, . . . , x̂j).

Lemma 4 shows that the optimizations in our paper have a
unique maximal solution, as follows.

Corollary 1. If there is more than one solution to optimization
problem (1), (4), (5) or (6), there exists a maximum solution
which is not less than others elementwise.

Proof: Let us consider problem (1) with multiple solu-
tions and prove the claim by induction. Assume that x∗ is a
solution with the first τ (τ ≥ 1) entries not less than those
in other solutions, but x∗τ+1 < x̂∗τ+1 where x̂∗ is a solution
with the greatest (τ+1)th entry. Since (x∗1, . . . , x

∗
τ) minimizes

h1,τ (x;x0;x∗τ+1), Lemma 4 implies there exists a solution
(x̄∗1, . . . , x̄

∗
τ) minimizing h1,τ (x;x0; x̂∗τ+1) which is not less

than (x∗1, . . . , x
∗
τ). Thus we can replace (x̂∗1, . . . , x̂

∗
τ) in x̂∗ by

(x̄∗1, . . . , x̄
∗
τ) to get a solution with the first τ + 1 entries not

less than other solutions. The proof for optimization problem
(4), (5) and (6) are similar and thus omitted.

We now complete the proofs of Lemma 1 and Theorem 2.
Proof of Lemma 1: Let XL

τ = (xLτ,1, x
L
τ,2, . . . , x

L
τ,τ) be

the solution of optimization (5) at time τ and define XU
τ

symmetrically for (6). Also, let X∗τ = (x∗1, . . . , x
∗
τ) be the

first τ entries of the offline solution to optimization (1).
We know that XL

τ minimizes h1,τ (x;x0; 0) and X∗τ mini-
mizes h1,τ (x;x0;x∗τ+1). Since x∗τ+1 ≥ 0, Lemma 4 implies
X∗τ ≥ XL

τ , and thus, in particular, the last entry satisfies
x∗τ ≥ xLτ,τ .

Symmetrically, XU
τ minimizes h′1,τ (x;x0;xM) where

xM satisfies (16). By Lemma 3, XU
τ also minimizes

h1,τ (x;x0;xM). Since x∗τ+1 ≤ xM , Lemma 4 implies that
X∗τ ≤ XU

τ , and thus x∗τ ≤ xUτ,τ .
Proof of Theorem 2: As a result of Lemma 1, we know

that x∗τ ∈ [xLτ , x
U
τ] for all τ . Further, if x∗τ > x∗τ+1, by the

complementary slackness condition (11), we have that ντ+1 =
0. Thus, in this case, x∗τ solves optimization (5) for the lower
bound, i.e., x∗τ = xLτ . Symmetrically, if x∗τ < x∗τ+1, we have
that complementary slackness condition (12) gives ντ+1 = β
and so x∗τ solves optimization (6) for the upper bound, i.e.,
x∗τ = xUτ . Thus, whenever x∗τ is increasing/decreasing it must
match the upper/lower bound, respectively.

APPENDIX B
ANALYSIS OF LAZY CAPACITY PROVISIONING, LCP(w)
In this section we will prove Lemma 2 and Theorem 3.

Proof of Lemma 2: First, we prove that xL,wτ ≤ x∗τ . By
definition, xL,wτ = xLτ+w,τ , and so it belongs to a solution min-
imizing h1,τ+w(x;x0; 0). Further, we can view the optimal x∗τ
as an entry in a solution minimizing h1,τ+w(x;x0;x∗τ+w+1).
From these two representations, we can apply Lemma 4, to
conclude that xL,wτ ≤ x∗τ .

11

Next, we prove that xLτ ≤ xL,wτ . To see this we notice that
xLτ is the last entry in a solution minimizing h1,τ (x;x0; 0).
And we can view xL,wτ as an entry in a solution minimiz-
ing h1,τ (x;x0;xLτ+w,τ+1) where xLτ+w,τ+1 ≥ 0. Based on
Lemma 4 we get xLτ ≤ xL,wτ .

The proof that x∗τ ≤ xU,wτ ≤ xUτ is symmetric.
From the above lemma, we immediately obtain an extension

of the characterization of the offline optimum.

Corollary 2. The optimal solution of the data center optimiza-
tion (1) satisfies the following backwards recurrence relation

x∗τ =

{
0, τ > T ;

(x∗τ+1)
xU,wτ
xL,wτ

, τ ≤ T . (17)

Moving to the proof of Theorem 3, the first step is to use
the above lemmas to characterize the relationship between
x
LCP (w)
τ and x∗τ . Note that xLCP (w)

0 = x∗0 = x
LCP (w)
T+1 =

x∗T+1 =0.

Lemma 5. Consider the timeslots 0 = t0 < t1 < . . . <
tm = T such that xLCP (w)

ti = x∗ti . Then, during each segment
(ti−1, ti), either

(i) xLCP (w)
t > x∗t and both x

LCP (w)
t and x∗t are non-

increasing for all t ∈ (ti−1, ti), or
(ii) xLCP (w)

t < x∗t and both x
LCP (w)
t and x∗t are non-

decreasing for all t ∈ (ti−1, ti).

Proof: The result follows from the characterization of
the offline optimal solution in Corollary 2 and the definition
of LCP(w). Given that both the offline optimal solution and
LCP(w) are non-constant only for timeslots when they are
equal to either xU,wt or xL,wt , we know that at any time ti
where xLCP (w)

ti = x∗ti and x
LCP (w)
ti+1 6= x∗ti+1, we must have

that both xLCP (w)
ti and x∗ti are equal to either xU,wti or xL,wti .

Now we must consider two cases. First, consider the case
that xLCP (w)

ti+1 > x∗ti+1. It is easy to see that xLCP (w)
ti+1 doesn’t

match the lower bound since x∗ti+1 is not less than the
lower bound. Thus xLCP (w)

ti ≥ x
LCP (w)
ti+1 since, by definition,

LCP(w) will never choose to increase the number of servers
it uses unless it matches the lower bound. Consequently, it
must be that x∗ti = x

LCP (w)
ti ≥ x

LCP (w)
ti+1 > x∗ti+1. Since x∗

is decreasing, both xLCP (w)
ti and x∗ti match the lower bound.

Further, the next time, ti+1, when the optimal solution and
LCP(w) match is the next time either the number of servers
in LCP(w) matches the lower bound xL,wt or the next time the
number of servers in the optimal solution matches the upper
bound xU,wt . Thus, until that point, LCP(w) cannot increase the
number of servers (since this happens only when it matches
the lower bound) and the optimal solution cannot increase the
number of servers (since this happens only when it matches
the upper bound). This completes the proof of part (i) of the
Lemma. The proof of part (ii) is symmetric.

Given Lemma 5, we bound the switching cost of LCP(w).

Lemma 6. costs(XLCP (w)) = costs(X
∗).

Proof: Consider the sequence of times 0 = t0 < t1 <

. . . < tm = T such that xLCP (w)
ti = x∗ti identified in Lemma

5. Then, each segment (ti−1, ti) starts and ends with the

same number of servers being used under both LCP(w) and
the optimal solution. Additionally, the number of servers is
monotone for both LCP(w) and the optimal solution, thus the
switching cost incurred by LCP(w) and the optimal solution
during each segment is the same.

Next, we bound the operating cost of LCP(w).

Lemma 7. costo(XLCP (w))≤costo(X∗)+β
∑T
t=1|x∗t − x∗t−1|.

Proof: Consider the sequence of times 0 = t0 < t1 <

. . . < tm = T such that xLCP (w)
ti = x∗ti identified in Lemma

5, and consider specifically one of these intervals (ti−1, ti)

such that xLCP (w)
ti−1

= x∗ti−1
, xLCP (w)

ti = x∗ti .
There are two cases in the proof: (i) xLCP (w)

t > x∗τ for all
τ ∈ (ti−1, ti) and (ii) xLCP (w)

t < x∗τ for all t ∈ (ti−1, ti).
We handle case (i) first. Our goal is to prove that

ti∑
t=ti−1+1

gt(x
LCP (w)
t) ≤

ti∑
t=ti−1+1

gt(x
∗
t) + β|x∗ti−1

− x∗ti |. (18)

Define Xτ = (xτ,1, . . . , xτ,τ−1, x
LCP (w)
τ) where

(xτ,1, . . . , xτ,τ−1) minimizes h′1,τ−1(x;x0;x
LCP (w)
τ).

Additionally, define X ′τ = (x′τ,1, . . . , x
′
τ,τ) as the solution

minimizing h′1,τ (x;x0;x
LCP (w)
τ); by Lemma 3 this also min-

imizes h1,τ (x;x0;x
LCP (w)
τ).

We first argue that x′τ,τ = x
LCP (w)
τ via a proof by

contradiction. Note that if x′τ,τ > x
LCP (w)
τ , based on similar

argument in the proof of Theorem 2, we have x′τ,τ = xLτ ,
which contradicts the fact that x′τ,τ > x

LCP (w)
τ ≥ xLτ . Second,

if x′τ,τ < x
LCP (w)
τ , then we can follow a symmetric argument

to arrive at a contradiction. Thus x′τ,τ = x
LCP (w)
τ .

Consequently, x′τ,t = xτ,t for all t ∈ [1, τ] and we get

h′1,τ (X ′τ ;x0;xM) = h′1,τ (Xτ ;x0;xM) (19)

Next, let us consider Xτ+1 =

(xτ+1,1, . . . , xτ+1,τ , x
LCP (w)
τ+1) where (xτ+1,1, . . . , xτ+1,τ)

minimizes h′1,τ (x;x0;x
LCP (w)
τ+1). Recalling x

LCP (w)
t is

non-increasing in case (i) by Lemma 5, we have Xτ+1 ≤ X ′τ
by Lemma 4. In particular, xτ+1,τ ≤ xLCP (w)

τ . Thus

h′1,τ+1(Xτ+1;x0;xM) (20)

≥h′1,τ ((xτ+1,1, . . . , xτ+1,τ);x0;xM) + gτ+1(x
LCP (w)
τ+1)

=h′1,τ ((xτ+1,1, . . . , xτ+1,τ);x0;xLCP (w)
τ) + gτ+1(x

LCP (w)
τ+1)

By definition of X ′τ , we get

h′1,τ ((xτ+1,1, . . . , xτ+1,τ);x0;xLCP (w)
τ) (21)

≥h′1,τ (X ′τ ;x0;xLCP (w)
τ) ≥ h′1,τ (X ′τ ;x0;xM)

Combining equations (19), (20) and (21), we obtain

h′1,τ+1(Xτ+1;x0;xM) ≥ h′1,τ (Xτ ;x0;xM)+gτ+1(x
LCP (w)
τ+1).

By summing this equality for τ ∈ [ti−1, ti), we have
ti∑

t=ti−1+1

gt(x
LCP (w)
t)

≤h′1,ti(Xti ;x0;xM)− h′1,ti−1
(Xti−1 ;x0;xM).

12

Since xLCP (w)
ti−1

= x∗ti−1
, xLCP (w)

ti = x∗ti , we know that both
Xti−1

and Xti are prefixes2 of the offline solution x∗, thus
Xti−1

is the prefix of Xti . Expanding out h′(·) in the above
inequality gives (18), which completes case (i).

In case (ii), i.e., segments where x
LCP (w)
t < x∗τ for all

t ∈ (ti−1, ti), a parallel argument shows that (18) again holds.
To complete the proof we combine the results from case (i)

and case (ii), summing equation (18) over all segments (and
the additional times when xLCP (w)

t = x∗t).
We can now prove the competitive ratio in Theorem 3.

Lemma 8. cost(XLCP (w)) ≤ cost(X∗) + 2costs(X
∗). Thus,

LCP(w) is 3-competitive for the data center optimization (1).

Proof: Combining Lemma 7 and Lemma 6 gives that
cost(XLPC(w)) ≤ cost(X∗) + β|x∗t − x∗t−1|. Note that,
because both LCP(w) and the optimal solution start and
end with zero servers on, we have

∑T
t=1 |x∗t − x∗t−1| =

2
∑T
t=1(x∗t − x∗t−1)+, which completes the proof.

All that remains for the proof of Theorem 3 is to prove that
the bound of 3 on the competitive ratio is tight.

Lemma 9. The competitive ratio of LCP(w) is at least 3.

Proof: The following is a family of instances parameter-
ized by n and m ≥ 2, whose competitive ratios approach the
bound of 3. The operating cost for each server is defined as
f(z) = zm + f0 for 0 ≤ z ≤ 1 and f(z) = ∞ otherwise,
whence gt(xt) = xtf(λt/xt). The switching cost is β = 0.5.
Let δ ∈ (1, 1.5) be such that n = logδ

1
δ−1 . The arrival rate at

time i is λi = δi−1 for 1 ≤ i ≤ n, and λi = 0 for n < i ≤ T ,
where T > β/f0 + n with f0 = β(δm−1)

n(δmn−1) .
For the offline optimization, denote the solution by vector

x∗. First note that x∗i = x∗n for i ∈ [1, n] since x∗i is non-
decreasing for i ∈ [1, n] and, for the above f ,

d

dx
[xf(λi/x)] < 0 for x ∈ [λi, x

∗
n]. (22)

Moreover, x∗i = 0 for i ∈ [n + 1, T]. Hence the minimum
cost is

∑n
i=1

λmi
(x∗
n)
m−1 + (nf0 + β)x∗n. Then by the first order

(stationarity) condition we get

(x∗n)−m =
(nf0 + β)(δm − 1)

(m− 1)(δmn − 1)
, (23)

which is smaller than λ−mn because nf0 + β ≤ 1, m− 1 ≥ 1
and δ > 1. Thus it is feasible (f(λi/x

∗
n) is finite). The cost

for the offline optimal solution is then

C∗ =
m

m− 1
(nf0 + β)x∗n.

We consider LCP (w) with w = 0 before considering the
general case. Let C[i,j] denote the cost of LCP(0) on [i, j].

For the online algorithm LCP(0), denote the result by vector
x̂. We know x̂i is actually matching xLi in [1, n] (xUi is not
less than x∗i = x∗n), thus x̂i is non-decreasing for i ∈ [1, n]
and x̂n = x∗n. By the same argument as for x∗n, we have

(x̂τ)−m =
(τf0 + β)(δm − 1)

(m− 1)(δmτ − 1)
(24)

2That is, Xti−1 is the first ti−1 components of x∗ and Xti is the first ti
components of x∗.

Thus the cost for LCP(0) in [1, n] is

C[1,n] =

n∑
τ=1

(
λmτ

(x̂τ)m−1
+ f0x̂τ

)
+ βx∗n

>

n∑
τ=1

δm(τ−1)
(

(τf0 + β)(δm − 1)

(m− 1)(δmτ − 1)

)m−1
m

+ βx∗n

>

(
β(δm − 1)

m− 1

)m−1
m

n∑
τ=1

δτ−m + βx∗n

=

(
β(δm − 1)

m− 1

)m−1
m δn − 1

(δ − 1)δm−1
+ βx∗n

Thus by (23)

C[1,n]

x∗n
>

δn − 1

(δmn − 1)1/m
· β(δm − 1)

(m− 1)(δ − 1)δm−1
+ β

>
δn − 1

δn
· β(δm − 1)

(m− 1)(δ − 1)δm−1
+ β

As n → ∞, both δ → 1 and (δn − 1)/δn → 1, since n =
logδ

1
δ−1 . Since m is independent of δ, L’Hospital’s Law gives

lim
n→∞

C[1,n]

x∗n
≥ lim
δ→1

βmδm−1

(m− 1)(mδm−1 − (m− 1)δm−2)
+ β

=
m

m− 1
β + β

Now let us calculate the cost for LCP(0) in [n+ 1, T].

For τ > n, by LCP(0), we know that xτ will stay constant
until it hits the upper bound. Let Xτ = {xτ,t} be the solution
of optimization (6) in [1, τ] for any τ > n. We now prove that
for τ such that (τ − n)f0 < β, we have xτ,τ ≥ x∗n, and thus
x̂τ = x∗n.

Note that xτ,n ≥ x∗n since x∗n belongs to the lower bound.
Given xτ,n, we know that xτ,n+1, . . . , xτ,τ is the solution to
the following problem:

minimize
τ∑

t=n+1

f0Xτ,t + β

τ∑
t=n+1

(Xτ,t−1 −Xτ,t)
+

subject to Xτ,t ≥ 0

Let xmin = min{xτ,n, . . . , xτ,τ}. Then
τ∑

t=n+1

f0xτ,t + β

τ∑
t=n+1

(xτ,t−1 − xτ,t)+

≥
τ∑

t=n+1

f0xmin + β(xτ,n − xmin)

≥ (τ − n)f0xτ,n

The last inequality is obtained by substituting β > (τ −n)f0.
We can see that xτ,i = xτ,n(i ∈ [n+ 1, τ]) is a solution, thus
xτ,τ ≥ x∗n. (Recall that, if there are multiple solutions, we
take the maximum one). Therefore, we have

C[n+1,τ] = (τ − n)f0x
∗
n.

Since f0 → 0 as δ → 1, we can find an τ so that (τ−n)f0 →
β, and thus

C[n+1,τ] → βx∗n. (25)

13

By combining the cost for LCP(0) in [1, n] and [n+ 1, T],
we have

C[1,T]/C
∗ ≥

m
m−1β + 2β
m
m−1 (nf0 + β)

=
3− 2/m

1 + nf0/β
.

Using the relationship between n, f0 and δ, we can choose a
large enough m and n to make this arbitrarily close to 3. This
finishes the proof for LCP(0).

Now let us consider LCP(w) for w > 0. Denote the solution
of LCP(w) by x̂′. At time τ ∈ [1, n− w], LCP(w) solves the
same optimization problem as LCP(0) does at τ + w. Thus
x̂′τ = x̂τ+w of LCP(0). Thus

C ′[1,n−w] =

n−w∑
τ=1

(
λmτ

(x̂′τ)m−1
+ f0x̂

′
τ

)
+ βx∗n

=

n∑
τ=1+w

(
1

δwm
λmτ

(x̂τ)m−1
+ f0x̂τ

)
+ βx∗n

>
1

δwm
C[1+w,n]

By pushing n → ∞, and hence δ → 1, we have
C ′[1,n−w]/C[1,n] → 1.

And for τ > n + 1, if f0(τ − n) < β, then C ′[n+1,τ−w] =
(τ−w−n)f0x

∗
n. By pushing δ → 1, we can find a τ such that

C ′[n+1,τ−w] → βx∗n, the same as (25). Therefore, as δ → 1, we
have C ′[1,T]/C[1,T] → 1, thus the supremum over arbitrarily
large m ≥ 2 and arbitrarily small δ > 1 of the competitive
ratio of LCP(w) on this family is also 3.

Finally, the following lemma ensures that the optimizations
solved by LCP(w) at each timeslot τ remain small.

Lemma 10. If there exists an index τ ∈ [1, t − 1] such that
xUt,τ+1 < xUt,τ or xLt,τ+1 > xLt,τ , then (xUt,1, . . . , x

U
t,τ) =

(xLt,1, . . . , x
L
t,τ). No matter what the future functions gi(·) are,

solving either (5) or (6) in [1, t′] for t′ > t is equivalent to
solving two optimizations: one over [1, τ] with initial condition
x0 and final condition xUt,τ and the second over [τ+1, t′] with
initial condition xUt,τ .

Proof: Consider the case xLt,τ+1 > xLt,τ . By the com-
plementary slackness conditions (12), the corresponding dual
variable ντ+1 = β. Based on the argument in the proof of
Theorem 2, we know the dual problem up to time τ is (14),
which is identical to (15), the dual problem of (6). Since the
optimal xi depends only on νi and νi+1, the optimal xi for
i ≤ τ are completely determined by νi for i ∈ [1, τ + 1],
with ντ+1 = β. Hence (xLt,1, . . . , x

L
t,τ) = (xUt,1, . . . , x

U
t,τ). The

proof for the case xUt,τ+1 < xUt,τ is symmetric.
Notice that (xUt,1, . . . , x

U
t,t) minimizes h′1,t(x;x0;xM) and

thus h1,t(x;x0;xM) based on Lemma 3, (xLt,1, . . . , x
L
t,t) min-

imizes h1,t(x;x0; 0). No matter what the future functions
gi(·) are, the first t entries of its solution must minimize
h1,t(x;x0;xt+1) for some xt+1 ∈ [0, xM] by the maximality
of xM . Based on Lemma 4, the first t entries are bounded by
(xUt,1, . . . , x

U
t,t) and (xLt,1, . . . , x

L
t,t). However, we have seen

that (xUt,1, . . . , x
U
t,τ) = (xLt,1, . . . , x

L
t,τ), thus the first τ entries

of its solution are equal to (xUt,1, . . . , x
U
t,τ) no matter what the

future is.

Minghong Lin received the B.Sc. degree in Com-
puter Science from University of Science and Tech-
nology of China in 2006, and the M.Phil degree
in Computer Science from the Chinese University
of Hong Kong in 2008. Currently he is a Ph.D.
student in Computer Science at California Institute
of Technology. His research interests include energy
efficient computing, online algorithms and nonlinear
optimization. He has received best paper award
at IEEE INFOCOM’11, IGCC’12 and best student
paper award at ACM GREENMETRICS’11.

Adam Wierman is an Assistant Professor in the De-
partment of Computing and Mathematical Sciences
at the California Institute of Technology, where he
is a member of the Rigorous Systems Research
Group (RSRG). He received his Ph.D., M.Sc. and
B.Sc. in Computer Science from Carnegie Mellon
University in 2007, 2004, and 2001, respectively.
He received the ACM SIGMETRICS Rising Star
award in 2011, and has also received best paper
awards at ACM SIGMETRICS, IFIP Performance,
IEEE INFOCOM, and ACM GREENMETRICS. He

has also received multiple teaching awards, including the Associated Students
of the California Institute of Technology (ASCIT) Teaching Award. His
research interests center around resource allocation and scheduling decisions
in computer systems and services. More specifically, his work focuses both
on developing analytic techniques in stochastic modeling, queueing theory,
scheduling theory, and game theory, and applying these techniques to applica-
tion domains such as energy-efficient computing, data centers, social networks,
and the electricity grid.

Lachlan Andrew (M’97-SM’05) received the B.Sc.,
B.E. and Ph.D. degrees in 1992, 1993, and 1997,
from the University of Melbourne, Australia. Since
2008, he has been an associate professor at Swin-
burne University of Technology, Australia, and since
2010 he has been an ARC Future Fellow. From 2005
to 2008, he was a senior research engineer in the
Department of Computer Science at Caltech. Prior to
that, he was a senior research fellow at the University
of Melbourne and a lecturer at RMIT, Australia. His
research interests include energy-efficient network-

ing and performance analysis of resource allocation algorithms. He was co-
recipient of the best paper award at IGCC2012, IEEE INFOCOM 2011 and
IEEE MASS 2007. He is a member of the ACM.

Eno Thereska received his PhD (ECE, 2007), Mas-
ters (ECE, 2003) and Bachelor (ECE + CS + Math
minor, 2002) degrees all from Carnegie Mellon. He’s
been a Researcher with Microsoft Research since
2007. He has broad interests in systems but also
enjoys venturing into other areas occasionally, like
machine learning and HCI. He was co-recipient of
the best paper award at IEEE INFOCOM 2011 and
Usenix FAST 2005, and the best student paper at
Usenix FAST 2004.

14

