
iOS 10 - Kernel Heap Revisited
<stefan.esser@sektioneins.de>

Singapore, August 2016

mailto:stefan.esser@sektioneins.de?subject=

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Motivation behind this talk

• my talk about the iOS kernel heap was around time of iOS 5

• however many details have changed between iOS 5 and iOS 9

• there are a number of tweets/blog posts about some of these changes but not all  
(e.g. from Azimuth about iOS 7 page lists)

• some iOS kernel talks at BlackHat do not even mention that there were changes

• and no central talk trying to discuss all these changes

2

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

And then iOS 10 beta happened …

• when this talk was submitted no iOS 10 beta was publicly available

• it was expected that iOS 10 would again slightly change the heap

• expectation was wrong because 1st iOS 10 beta showed bigger changes

• however iOS 10 is still in beta so details might change until final release

• WARNING: because any kind of kernel research on iOS is harder than on OS X/
MacOS the preliminary analysis of new features was performed with debugging
kernel extensions on MacOS and then manually compared to decompilation of
iOS 10 kernel

3

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Agenda

• Part I: What is the iOS kernel heap?

• Part II: iOS kernel heap around iOS 5

• Part III: Changes to the iOS kernel heap between iOS 6 and 9

• Part IV: Upcoming changes to the iOS kernel heap in iOS 10

4

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Part I

What is the iOS Kernel Heap?

5

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Kernel Zone Heap Allocator

• most used heap allocator in kernel

• memory is divided into zones

• zones group allocations of same type/size together

• all allocations in one zone are same size

6

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Zone Allocator Usage

• caller decides what zone is allocated from / freed to

• ptr = zalloc(zone)

• zfree(zone, ptr)

• size of allocated block depends on zone

• no variable length allocations

7

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

List of Zones

8

$ sudo zprint
Password:
 elem cur max cur max cur alloc alloc
zone name size size size #elts #elts inuse size count

zones 288 64K 54K 227 192 215 20K 71
vm.objects 240 35280K 44286K 150528 188956 134502 4K 17 C
vm.object.hash.entries 40 4928K 5832K 126156 149299 120377 4K 102 C
maps 248 92K 90K 379 371 329 8K 33
VM.map.entries 80 5832K 7776K 74649 99532 58296 20K 256 C
Reserved.VM.map.entries 80 356K 2560K 4556 32768 146 4K 51
VM.map.copies 88 16K 24K 186 279 0 8K 93 C
VM.map.holes 32 236K 16K 7552 512 5750 4K 128 C
pmap 368 124K 144K 345 400 317 4K 11 C
pagetable.anchors 4096 1328K 1751K 332 437 317 4K 1 C
pv_list 48 21864K 27217K 466432 580648 466200 12K 256 C
vm.pages 64 127336K 0K 2037376 0 2034534 4K 64 X C
kalloc.16 16 1136K 1167K 72704 74733 52626 4K 256 C
kalloc.32 32 1348K 1751K 43136 56050 40037 4K 128 C
kalloc.48 48 3308K 3941K 70570 84075 59071 4K 85 C
kalloc.64 64 6128K 8867K 98048 141877 84972 4K 64 C
kalloc.80 80 1776K 1751K 22732 22420 21808 4K 51 C
kalloc.96 96 1748K 2335K 18645 24911 18276 8K 85 C
kalloc.128 128 5352K 5911K 42816 47292 32835 4K 32 C
kalloc.160 160 1340K 1556K 8576 9964 6495 8K 51 C
kalloc.256 256 9328K 13301K 37312 53204 24442 4K 16 C
kalloc.288 288 1660K 2594K 5902 9226 5563 20K 71 C
kalloc.512 512 19324K 19951K 38648 39903 35135 4K 8 C
kalloc.1024 1024 6024K 8867K 6024 8867 4945 4K 4 C
kalloc.1280 1280 480K 512K 384 410 186 20K 16 C
kalloc.2048 2048 6164K 8867K 3082 4433 2784 4K 2 C
kalloc.4096 4096 12968K 13301K 3242 3325 1768 4K 1 C
kalloc.8192 8192 6440K 7882K 805 985 412 8K 1 C
mem_obj_control 16 1956K 2187K 125184 139968 120377 4K 256 C
...

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Zone Memory (Region)

• kernel reserves a memory region called zone_map for zone allocator

• default size of this region is 1/4 of the physical memory

• reserved very early on during kernel start

9

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Zone Memory (Pages)

• pages from zone_map are assigned to zones

• zones are grown by their allocation size

• kernel pages are 16kb on new 64 bit device with lots of memory

• all other devices have 4kb pages

• to waste less space zones use optimal allocation sizes >= 1 page

10

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Dynamic Length Allocations?

• zone allocator is not suited for dynamic length allocations

• but for dynamic length allocations various wrappers exist, e.g.:

• kalloc(size) / kfree(ptr, size) - wrapper around zalloc()  
dynamic length but caller must remember length

• MALLOC(size) / FREE(ptr) - wrapper around kalloc()  
dynamic length and uses meta data to remember length

11

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Kernel Heap Allocation Debugging (I)

• iOS has kernel boot arguments to enable heap allocation debugging

• for us the interesting boot arguments are

• -zc selects zone corruption logging mode

• zlog=<zonename> selects ONE zone to log

• zrecs=<number> controls how many log entries should be kept

• because iOS does not allow to control kernel boot arguments these features need

to be activated by means of a kernel exploit

12

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Kernel Heap Allocation Debugging (II)

• kernel zone allocator corruption logging logs for all (de)allocations

• if allocation or deallocation

• pointer allocated / deallocated

• kernel backtrace with up to 15 elements

• data is collected via btlog routines in kernel

• researcher need to create their own routine to extract data from kernel

13

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Kernel Heap Allocation Debugging (III)

14

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Part II

iOS Kernel Heap around iOS 5

15

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Zone Structure

• information
about a zone is
stored in zone
struct

• zone structs are
stored in heap
zone “zones”

16

struct zone {
 int count; /* Number of elements used now */
 vm_offset_t free_elements;
 decl_lck_mtx_data(,lock) /* zone lock */
 lck_mtx_ext_t lock_ext; /* placeholder for indirect mutex */
 lck_attr_t lock_attr; /* zone lock attribute */
 lck_grp_t lock_grp; /* zone lock group */
 lck_grp_attr_t lock_grp_attr; /* zone lock group attribute */
 vm_size_t cur_size; /* current memory utilization */
 vm_size_t max_size; /* how large can this zone grow */
 vm_size_t elem_size; /* size of an element */
 vm_size_t alloc_size; /* size used for more memory */
 uint64_t sum_count; /* count of allocs (life of zone) */
 unsigned int
 /* boolean_t */ exhaustible :1, /* (F) merely return if empty? */
 /* boolean_t */ collectable :1, /* (F) garbage collect empty pages */
 /* boolean_t */ expandable :1, /* (T) expand zone (with message)? */
 /* boolean_t */ allows_foreign :1,/* (F) allow non-zalloc space */
 /* boolean_t */ doing_alloc :1, /* is zone expanding now? */
 /* boolean_t */ waiting :1, /* is thread waiting for expansion? */
 /* boolean_t */ async_pending :1, /* asynchronous allocation pending? */
 /* boolean_t */ caller_acct: 1, /* do we account allocation/free to the caller? */
 /* boolean_t */ doing_gc :1, /* garbage collect in progress? */
 /* boolean_t */ noencrypt :1,
 /* boolean_t */ no_callout:1,
 /* boolean_t */ async_prio_refill:1;
 int index; /* index into zone_info arrays for this zone */
 struct zone * next_zone; /* Link for all-zones list */
 call_entry_data_t call_async_alloc; /* callout for asynchronous alloc */
 const char *zone_name; /* a name for the zone */

 vm_size_t prio_refill_watermark;
 thread_t zone_replenish_thread;
};

DISCLAIMER: this struct layout if taken from OS X 10.7.5 - the iOS 5 layout might have been slightly different

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Free Memory Blocks

• free elements are kept in a single linked freelist per zone

• zone structure has free_elements pointer  
to head of freelist

• free elements have a pointer to next free  
element in beginning

• there is no pointer(-chain) back to zone struct

• not possible to know what zone an  
element (a page) belongs to

• slow garbage collection

17

ptr

free_elements

ptr

ptr

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Allocation (I)

• allocation returns next element from freelist

• when free list is empty zone grows by allocation size

• all elements in added pages are added to free list

• last element will be first in freelist (LIFO)

18

free_elements

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Allocation (II)

• allocation returns next element from freelist

• when free list is empty zone grows by allocation size

• all elements in added pages are added to free list

• last element will be first in freelist (LIFO)

19

ptr

ptr

ptr

ptr

free_elements

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Allocation (III)

• allocation returns next element from freelist

• when free list is empty zone grows by allocation size

• all elements in added pages are added to free list

• last element will be first in freelist (LIFO)

20

“new memory is returned in backward order by heap allocator”

ptr

ptr

ptr

ALLOCATED

free_elements

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

ptr

ptr

ALLOCATED

ALLOCATED

free_elements

Allocation (IV)

• allocation returns next element from freelist

• when free list is empty zone grows by allocation size

• all elements in added pages are added to free list

• last element will be first in freelist (LIFO)

21

“new memory is returned in backward order by heap allocator”

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Dynamic Length Allocations - kalloc()

• to handle dynamic lengths kalloc() registers multiple zones

• named kalloc.<number> 
e.g. kalloc.128 for 128 byte allocations

• allocations will be put into the next larger zone  
e.g. 97 byte allocations in kalloc.128 (31 bytes waste)

• different iOS versions define different zones  
(also depending on 32 bit vs. 64 bit)

• caller needs to remember allocation size so that  
kfree(ptr, size) can put it back into the right zone

22

kalloc.16
kalloc.32
kalloc.48
kalloc.64
kalloc.80
kalloc.96
kalloc.128
kalloc.160
kalloc.256
kalloc.288
kalloc.512
kalloc.1024
kalloc.1280
kalloc.2048
kalloc.4096
kalloc.8192

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Dynamic Length Allocations - MALLOC()

• to handle dynamic lengths MALLOC() stores the size as meta data

• internally uses kalloc() / kfree()

• stores the size infront of data

23

datasize waste due to
zone size

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

How attackers abused the iOS 5 Zone Allocator

• Heap-Feng-Shui

• exploit specific allocation and deallocation primitives  
(e.g. opening/closing NDRV sockets)

• generic allocation deallocation primitives via OSUnserializeXML  
(controlling memory layout via many IOKit API functions using XML - and filling it with
objects and object pointers)

• Corruption Targets

• zone allocator freelist next_ptr pointers 
(control ptr next allocation will return and overwrite with attacker controlled data)

• size fields of elements allocated via MALLOC() or a wrapper 
(tricks kfree() to put element into a zone that is for bigger elements - next allocation will
result in a larger bufferoverflow)

• application data  
(control objects/vtable pointers, object pointers, size fields, …)

24

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Part II

Changes to the iOS kernel heap between iOS 6 and 9

25

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 6 Heap Changes/Hardening

• Apple made some changes to OSUnserializeXML  
that had little impact on usability for heap feng shui

• location of zone_map is randomized due to KASLR

• single linked freelist now protected by heap cookies/canaries

• small free memory blocks are now poisoned

26

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 6 Heap Cookies

• iOS creates two random cookies

• zp_nopoison_cookie  
(lowest bit cleared)

• zp_poisoned_cookie  
(lowest bit set)

• last bytes of a free element will be overwritten with: ptr ^ cookie

• allocation code will detect illegal cookie values and panic()

• protection against overflows and other ptr corruption

27

ptr

free_elements

ptr

ptr

ptr ^ cookie

ptr ^ cookie

ptr ^ cookie

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

0xdeadbeef

free_elements

ptr

ptr

0xdeadbeef

ptr ^ cookie

ptr ^ cookie

iOS 6 Heap Cookie Leak Protection

• both ptr and ptr^cookie get  
overwritten when block is allocated

• value 0xdeadbeef is written over sensitive values

• protects against potential information leak after memory block is returned

28

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 6 Heap Poisoning

• small blocks when freed get overwritten with 0xdeadbeef

• indicated by use of zp_poisoned_cookie

• on allocation 0xdeadbeef is verified - panic() if modified

29

0xdeadbeef 0xdeadbeef 0xdeadbeefptr

free_elements

0xdeadbeef 0xdeadbeef 0xdeadbeefptr

0xdeadbeef 0xdeadbeef 0xdeadbeefptr

ptr ^ cookie

ptr ^ cookie

ptr ^ cookie

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

How attackers abused the iOS 6 Zone Allocator

• Heap-Feng-Shui

• with release of iOS 6 creating vm_map_copy_t structures by sending mach
messages with OOL data became heap-feng-shui method of choice

• previously used methods less often seen but still possible

• Corruption Targets

• because zone allocator freelist got protected all public exploits seem to
target vm_map_copy_t structure overwrites  
(could be used for arbitrary info leak and kfree() confusion)

• other size fields of e.g. MALLOC() and application data still targeted

30

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 7 Heap Changes/Hardening

• poisoning of larger blocks every X frees

• introduction of new heap pagelist feature (for easier GC)

31

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 7 Large Block Poisoning

• zp_factor debugging feature (that already existed before) is now always activated

• randomly set once at boot time to the value 15 (25%), 16 (50%) or 17 (25%)

• controls after every how many frees in a zone a single block is poisoned
(regardless of size)

• counter is zone specific in the zp_count field of the zone structure

32

ptr

free_elements

ptr

ptr

ptr ^ cookie

ptr ^ cookie

ptr ^ cookie

0xdeadbeef 0xdeadbeef 0xdeadbeefptr ptr ^ cookie

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 7 Zone Pagelist Feature

• iOS 7 introduces new pagelist feature

• activated via bit in zone struct (only subset of zones use new feature)

• adds meta data at end of all pages inside a zone

• keeps all pages in one of four double linked lists (queue)

33

zone
struct

page 1

pagemeta

page 2

pagemeta

page 3

pagemeta

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 7 Zone Page Meta Data

• backpointer to zone

• free elements in this page  
(page local freelist)

• forward and backward pointer  
to other pages

• alloc_count - max number of
elements in page

• free_count - number of free
elements in page

34

struct zone_page_metadata {
 queue_chain_t pages;
 struct zone_free_element *elements;
 zone_t zone;
 uint16_t alloc_count;
 uint16_t free_count;
};

page

meta

free

free

free

zone

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 7 Zone Pagelists

• Allocator defines four queues for every zone

• any_free_foreign - for the few zones that allow foreign elements

• intermediate - for pages that are partially allocated at the moment

• all_free - for pages that are completely free at the moment

• all_used - for pages that are completely allocated at the moment

• during allocation or free the allocator ensures that page is always on right queue

35

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 7 Allocation under Page Lists

• allocation now traverses the page queues in the following order

• any_free_foreign

• intermediate

• all_free

• first queue with a usable page is used

• then the first free element from this page’s freelist is returned

• if no usable page found - system adds an all_free page and retries

36

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 7 Freeing under Page Lists

• freeing an element adds it to its page’s freelist

• allocator ensures that page is still on right queue

• page could move

• from intermediate to all_free

• from all_used to intermediate

37

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Impact of iOS7 Page Lists

• garbage collection now super easy  
(just give back all pages from the all_free page queue)

• freeing of memory is local to each page’s freelist  
(less interruption for heap-feng-shui)

• allocations are local to current front page 
(not really a change because compatible exploits always had to concentrate on

staying in one page)

• meta data contained double linked list without any exploit mitigation  
(iOS 7 made heap overflows very easy to exploit)

• NEW ATTACK:  
confusing allocator to free elements from page list zones in freelist zones

38

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Was there a memory corruption? Yes? Continue!

• Apple added code that detects for page list zones if a corruption happened

• when they detect a corruption they try to repair it <—— NEVER EVER DO THAT!

• when they cannot repair they ignore that they detected a memory corruption <—— APPLE REALLY???

39

 if (zone->use_page_list) {
 struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr);
 if (zone != page_meta->zone) {
 /*
 * Something bad has happened. Someone tried to zfree a pointer but the metadata says it is from
 * a different zone (or maybe it's from a zone that doesn't use page free lists at all). We can repair
 * some cases of this, if:
 * 1) The specified zone had use_page_list, and the true zone also has use_page_list set. In that case
 * we can swap the zone_t
 * 2) The specified zone had use_page_list, but the true zone does not. In this case page_meta is garbage,
 * and dereferencing page_meta->zone might panic.
 * To distinguish the two, we enumerate the zone list to match it up.
 * We do not handle the case where an incorrect zone is passed that does not have use_page_list set,
 * even if the true zone did have this set.
 */
 zone_t fixed_zone = NULL;
 int fixed_i, max_zones;

 simple_lock(&all_zones_lock);
 max_zones = num_zones;
 fixed_zone = first_zone;
 simple_unlock(&all_zones_lock);

 for (fixed_i=0; fixed_i < max_zones; fixed_i++, fixed_zone = fixed_zone->next_zone) {
 if (fixed_zone == page_meta->zone && fixed_zone->use_page_list) {
 /* we can fix this */
 printf("Fixing incorrect zfree from zone %s to zone %s\n", zone->zone_name, fixed_zone->zone_name);
 zone = fixed_zone;
 break;
 }
 }
 }
 }

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

How attackers abused the iOS 7 Zone Allocator

• Heap-Feng-Shui

• same methods as before were used

• Corruption Targets

• all previously targeted areas still work

• but double linked lists introduced by pagelist feature easiest target  
(target the next/prev pointers for arbitrary writes)

40

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 8 Heap Changes/Hardening

• pagelist queue hardening

• poisoning of larger blocks made less frequent (depending on size)

41

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 8 Queue Hardening

• iOS 8 adds safe unlink protection to its queue macros

• double linked lists added to iOS 7 heap are now protected

• heap overflows can no longer go after the queue pointers in metadata

42

next

prev

next

prev

next

prev

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 8 Less Frequent Large Block Poisoning

• introduction of zp_scale feature with a default value of 4

• poisoning of large blocks follows now the following formula  
zp_factor + element_size >> zp_scale

• this means the larger element are in a zone the less often they are poisoned

• example: (15/16/17) + 256 >> 4 = (31/32/33)

43

ptr

free_elements

ptr

ptr

ptr ^ cookie

ptr ^ cookie

ptr ^ cookie

0xdeadbeef 0xdeadbeef 0xdeadbeefptr ptr ^ cookie

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

How attackers abused the iOS 8 Zone Allocator

• Heap-Feng-Shui

• same methods as before were used

• Corruption Targets

• targeting double linked lists (pagelists) not possible due to safe_unlink

• all other previously targeted areas still work

44

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 9 Heap Changes/Hardening

• vm_map_copy_t “hardening”

• repositioning of page metadata

• randomization of initial freelist

45

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 9 vm_map_copy_t “hardening”

• vm_map_copy_t structure for kernel buffers was stripped down

• data pointer removed because data should be after header

• secondary size field removed because that is headerlen + size

• smaller structure allows controlling heap in smaller zones

• when overwritten can still lead to zone confusion and info leaks

• but info leaks are limited to 4k because hardcoded limit in code

• and removal of pointer removes possibility for arbitrary info leaks

• some places try to verify that size is not overwritten

46

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 9 Zone Page Metadata

iOS 9 moves the page meta data to the beginning of the page

possible reasoning: protect meta data against overflows

47

page

meta

page

meta

iOS 7 / iOS 8 iOS 9+

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 9.2 Initial Freelist Randomization (I)

• when new memory is added to a zone

elements within are freed one by one

into the freelist

• starting with iOS 9.2 the elements are

no longer added linear from first to last

• instead every time a next element is

added a random decision is made if the

first or last element should be added

48

free_elements

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

free_elements

NULL

iOS 9.2 Initial Freelist Randomization (II)

• when new memory is added to a zone

elements within are freed one by one

into the freelist

• starting with iOS 9.2 the elements are

no longer added linear from first to last

• instead every time a next element is

added a random decision is made if the

first or last element should be added

49

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

free_elements

ptr

NULL

iOS 9.2 Initial Freelist Randomization (III)

• when new memory is added to a zone

elements within are freed one by one

into the freelist

• starting with iOS 9.2 the elements are

no longer added linear from first to last

• instead every time a next element is

added a random decision is made if the

first or last element should be added

50

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

free_elements

ptr

ptr

NULL

iOS 9.2 Initial Freelist Randomization (IV)

• when new memory is added to a zone

elements within are freed one by one

into the freelist

• starting with iOS 9.2 the elements are

no longer added linear from first to last

• instead every time a next element is

added a random decision is made if the

first or last element should be added

51

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

ptr

free_elements

ptr

ptr

NULL

iOS 9.2 Initial Freelist Randomization (V)

• when new memory is added to a zone

elements within are freed one by one

into the freelist

• starting with iOS 9.2 the elements are

no longer added linear from first to last

• instead every time a next element is

added a random decision is made if the

first or last element should be added

52

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 9.2 Initial Freelist Randomization (VI)

• when new memory is added to a zone

elements within are freed one by one

into the freelist

• starting with iOS 9.2 the elements are

no longer added linear from first to last

• instead every time a next element is

added a random decision is made if the

first or last element should be added

53

ptr

free_elements

ptr

ptr

ptr

NULL

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

ptr

ptr

free_elements

ptr

ptr

ptr

NULL

iOS 9.2 Initial Freelist Randomization (VII)

• when new memory is added to a zone

elements within are freed one by one

into the freelist

• starting with iOS 9.2 the elements are

no longer added linear from first to last

• instead every time a next element is

added a random decision is made if the

first or last element should be added

54

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

How attackers abused the iOS 9 Zone Allocator

• Heap-Feng-Shui

• same methods as before were used  
(vm_map_copy_t after “hardening” still usable for heap-feng-shui)

• Corruption Targets

• targeting vm_map_copy_t still allows zone confusion and limited info leaks 
(only larger info leaks and arbitrary pointer info leaks stopped by “hardening”)

• all other previously targeted areas still work

55

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Part III

Upcoming changes to the iOS kernel heap in iOS 10

56

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Changes in upcoming iOS 10

• more vm_map_copy_t “hardening”

• fixed zone structure array

• zone page metadata completely revamped

• page freelist pointer leak protection

• zalloc() wrappers add no inbound metadata anymore

• zone allocator debugging features revamped

57

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 10 Fixed Zonestructure Array

• zone structures are no longer allocated on zone allocator heap

• instead stored in fixed zone_array in __DATA::__bss

• seems to be a bad idea because address of zone structure is now fixed  
(relative to kernelbase)

58

__DATA:__bss:FFFFFFF007552170 public zone_metadata_region_min
__DATA:__bss:FFFFFFF007552170 ; vm_offset_t zone_metadata_region_min
__DATA:__bss:FFFFFFF007552170 zone_metadata_region_min dq 0 ; DATA XREF: zone_element_size+19r
__DATA:__bss:FFFFFFF007552170 ; get_zone_page_metadata+2Fr ...
__DATA:__bss:FFFFFFF007552178 public zone_metadata_region_max
__DATA:__bss:FFFFFFF007552178 ; vm_offset_t zone_metadata_region_max
__DATA:__bss:FFFFFFF007552178 zone_metadata_region_max dq 0 ; DATA XREF: zone_init+F3w
__DATA:__bss:FFFFFFF007552180 public zone_array
__DATA:__bss:FFFFFFF007552180 ; zone zone_array[256]
__DATA:__bss:FFFFFFF007552180 zone_array zone 100h dup(<0>) ; DATA XREF: panic_display_zprint+4Bo
__DATA:__bss:FFFFFFF007552180 ; zone_element_size+5Do ...

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 10 new zone_metadata_region

• in iOS 10 ALL zones make use of page metadata

• a new zone_metadata_region is utilised for that

• region is reserved in the zone_map

• used to keep meta data for every single page in the zone_map

59

zone_map

zone_metadata_region

*elements from outside zone_map store meta data at beginning of page

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

0

0

real_metadata_offset

0

zindex=0xFF

0

0x00

0x08

0x10

0x14

0x16

0x17

0x18

iOS 10 page metadata

• zindex index of zone in zone_array (instead of back pointer)

• page_count number of pages in allocation size

• free_count number of free elements in page

• freelist_offset offset of first free element starting from this page’s address

• real_metadata_offset offset of this secondary meta data from page 0 metadata

60

pages.next

pages.prev

freelist_offset

free_count

zindex

page_count

0x00

0x08

0x10

0x14

0x16

0x17

0x18

real_metadata (page 0) metadata for additional pages

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 10 page freelists

• page metadata does not contain pointer to head of freelist anymore

• instead freelist_offset determines byte offset of first free element in page

• ptr to next free block is always XORed against nopoison_cookie

• backup ptr is ptr value XORed against selected cookie (noposion/poisened)

61

ptr ^
nopoison

page_metadata

ptr ^ cookie

ptr ^ cookie

ptr ^ cookie

ptr ^
nopoison

ptr ^
nopoison

freelist_offset

0

freelist_offset

clever change from before
even if whole memory leaks

it is not possible to determine
cookie values unless you

know exact address of next ptr

ALSO PROTECTION AGAINST 
TYPE CONFUSION OF EMPTY
BLOCKS AS IOKIT OBJECTS

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 10 Metadata vs. Wrong Zone Frees

• every zone uses the new metadata

• this allows determining correct zone by element

• freeing elements into the wrong zone can be reliably detected

• when this happens zfree() panics the kernel

• abuse seems not possible anymore

62

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 10 Wrappers and Metadata

• new meta data can be used to determine size of elements on heap

• heap allocation wrappers like MALLOC() and kern_os_malloc() no
longer need to store the size

• both become simpler wrappers around kalloc() and are therefore
inlined in several places

• allocations are now only application data 
(more codepaths can now be used for heap layout control)

63

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 10 Kernel Heap Allocation Debugging (I)

• kernel heap allocation logging was revamped

• no longer limited to a single zone

• code now limited to logging in max 5 zones

• zones selected by new kernel boot args  
 
zlog1, zlog2, zlog3, zlog4, zlog5  
 
usage: -zc zlog1=kalloc.128 zlog2=kalloc.256

64

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

iOS 10 Kernel Heap Allocation Debugging (II)

• bitfield in zone struct contains new bit 15 to select if zone_logging

• zone struct contains zlog_btlog variable instead of global variable

• btlog_t structure heavily modified

• log is no longer a simple list but a hash table

65

 unsigned __int32 gzalloc_exempt : 1;
 unsigned __int32 alignment_required : 1;
 unsigned __int32 zone_logging : 1;
 unsigned __int32 zone_replenishing : 1;
 unsigned __int32 _reserved : 15;
 int index;
 const char *zone_name;
 uint32_t_0 zleak_capture;
 uint32_t_0 zp_count;
 vm_size_t prio_refill_watermark;
 thread_t zone_replenish_thread;
 gzalloc_data_t gz;
 btlog_t *zlog_btlog;
};

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

How attackers will abuse the iOS 10 Zone Allocator

• Heap-Feng-Shui

• for simple feng-shui all previous methods should still be usable  
(beside continued hardening of vm_map_copy_t)

• code paths that use MALLOC() are now also usable for heap-feng-shui  
(e.g. posix_spawn())

• Corruption Targets

• application data like object and mach port pointers very interesting

• BUT size field corruption to confuse free into wrong zone will trigger panic()

66

Stefan Esser • iOS 10 Kernel Heap Revisited • August 2016 •

Time for questions...

Questions...?

67

