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ABSTRACT

Material perception is essential in planning interactions with the environment. The visual system relies on diagnostic image
features to achieve material perception efficiently. However, discovering the features, especially for translucent materials, has
been challenging due to the high variability of material appearances under interactions of shape, lighting, and intrinsic materials.
Here, we learn a latent space informative of human translucency perception by developing a deep generative network trained
to synthesize images of perceptually persuasive material appearances. Without supervision, human-interpretable scene
attributes, including object’s shape, material, and body color, spontaneously emerge in the latent space in a scale-specific
manner. Critically, the middle-layers of the latent space selectively encode the translucency features correlating with perception,
suggesting that translucent impressions are established in the mid-to-low spatial scale features. Our findings illustrate the
promising capability of unsupervised learning in finding representative dimensions for materials and discovering perceptually
relevant features for visual inference.

Introduction
Humans assess the appearance of materials every day to recognize objects and plan actions, such as evaluating the ripeness of
the fruits or preparing to pick up a croissant without crushing it. Visually perceiving materials is a first step for anticipating
multi-sensory experiences1–3. Yet, despite its biological significance and importance in connecting perception to action4, 5,
material perception is still poorly understood in human cognition and artificial intelligence. The essential challenge of material
perception is that materials can be made into objects with any color and shape, and their appearances can be profoundly changed
under the joint effect of lighting, view point, and other external factors6–10. Nevertheless, humans can still effortlessly recognize
and discriminate materials under diverse contexts11, 12. How humans extract intrinsic material properties across the enormous
range of different contexts remains unsolved.

The challenge of material perception especially stands out for translucent materials such as wax, fruit, and skin. Nearly
all materials we encounter permit light into the surface to some degree, which involves a physical process of light transport,
namely subsurface scattering13, 14. When light hits a translucent object, some of it penetrates the object, refracts, and scatters
multiple times throughout the body of the medium before exiting from a different location on the surface (see Supplementary
Figure S.2 for an illustration). This gives rise to the essential “translucent” appearance, such as the aliveness of skin. Perceiving
translucency not only plays a critical role in material discrimination and identification, such as telling the difference between
raw and readily cooked food, but also allows us to appreciate the beauty of aesthetic objects such as jewelry, sculptures, and
still life paintings15, 16. Intrinsically, translucency is impacted by the material’s optical properties, including absorption and
scattering coefficients, phase function, and index of refraction17–19. Extrinsically, the object’s shape, the surface geometry, and
the illumination direction also have striking effects7, 20–26. The generative process of translucency involves complex interactions
among various intrinsic and extrinsic factors, leading to a wide variety of appearances under different contexts. There are
two difficulties in studying translucency. First, given the large variation of translucent appearances across materials and scene
factors, it has been difficult for humans to provide explicit labels to describe material properties. For instance, the label “soap”
can refer to a variety of translucent appearances and in the mean time, humans may lack precise descriptions for the subtle
visual differences between two translucent objects. This makes it difficult to measure translucency using real-world stimuli
and obtain image datasets based on human perception, unlike objects and scenes27. The currently available translucent image
datasets mostly used rendered images labeled by physical parameters instead of human perception28. Second, since many
scene factors affect translucent appearance, how the visual system disentangles the contribution of these factors and achieves a
compact representation of materials from the retinal image remains unanswered.
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For the second difficulty, many previous studies in material perception sought to find diagnostic image features for perceived
materials using analytical methods. For example, researchers have used well-controlled photorealistic images to analyze the
physics-image relationships of a target material, extract the essential image features, and test if they are diagnostic for human
perception9, 29–37. Such an approach has been used to study various material qualities, including surface gloss26, 29, 30, 34, 38–51,
surface roughness52, 53, liquid viscosity54–57, stiffness of objects58–61 and cloths62, surface wetness63, transparency64, 65, and
translucency7, 19, 21, 23, 66–71. However, finding image features from the physics-image analysis can be challenging when a
material appears differently across scenes, causing the discovered features to be idiosyncratic to particular scene factors. This
problem is especially amplified in translucency (see 9, 37 for reviews). Recently, data-driven approaches have attempted to learn
material representations by capturing the statistical structure of material appearance across many image samples10, 32, 35, 72–77.
This approach has been successfully used to model human perception. For example, Storrs et al. (2021) rendered opaque
gloss and matte images under various illuminations and geometries, trained a variational autoencoder (VAE) model by the
images without the supervision of physical attributes, and elucidated the latent image features correlated with human gloss
perception35, 78, 79. Their work shows the capability of unsupervised learning to disentangle scene factors without physics-
image analyses. Many recent works in high-level vision also utilize this unsupervised approach76, 80–85. However, decoding
translucency is still challenging because a simple encoder-decoder network used in VAEs cannot disentangle the contributing
factors of translucent appearances due to material complexity without the supervision of physical parameters 28.

Here, we aim to learn, unsupervised, a compact latent representation containing the structural information of translucent
materials and to explore whether such a latent representation informs perception. We propose a Translucent Appearance

Figure 1. The Translucent Appearance Generation (TAG) model. a, The TAG framework, which is based on the
StyleGAN2-ADA generator and pSp encoder architectures, learns to synthesize perceptually convincing images of translucent
objects. The model maps photos of translucent objects into the W+ latent space. The W+ can disentangle the effects of scene
attributes (e.g., shape, material, and body color) and predict human perception of translucency. b, The detailed process of
embedding a photo into StyleGAN’s W+ latent space. This allows us to generate image at a particular location in the latent
space. c, Emergent human-understandable scene attributes in the layer-wise latent space. Without supervision, the W+
spontaneously disentangles three salient scene attributes: material, shape/orientation, and body color. In each row, an original
generated image (left) is gradually manipulated by modifying its latent vectors at specific layers. Early-layer (w1 to w6)
manipulation of W+ transforms the shape and orientation of the object. Middle-layer (w7 to w9) manipulation modifies the
material appearance. Later-layer (w10 to w18) manipulation changes the body color (color of the diffuse component of the
surface reflection).
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Generation (TAG) model trained on our own large-scale dataset of natural photographs of translucent objects (TID). We focus
on a typical translucent object category commonly seen in daily life, soaps. The raw materials of soaps can be manufactured in
varying shapes and colors, serving as a great medium to investigate the variety of translucent appearances. TAG contains two
modules: a style-based generative adversarial network (StyleGAN)86–88 and a pixel2style2pixel (pSp) encoder89 (Figure 1(a)).
StyleGAN learns to synthesize images of perceptually convincing translucent materials using its latent space. Unlike the
traditional deep generative models (e.g., GAN90 and DCGAN91), StyleGAN utilizes a layer-wise latent space to model
high-dimensional distributions of data, leading to an unsupervised separation of visual attributes at different abstraction levels
presented in the image domains86, 92, 93. We use the pSp encoder to navigate in the learned StyleGAN’s latent space and
efficiently explore its representative meaning in the expressiveness of translucency (Figure 1(b)). Our framework provides a
pathway to alleviate two difficulties of studying translucency perception: the lack of an explicitly labeled image dataset, and
obtaining a compact representation of material properties from high-dimensional image data. First, without explicit labels, our
model learns to represent materials by finding a candidate distribution of features that is similar to the distribution corresponding
to real photos of translucent objects. The learning process is based on a straightforward goal of generating samples that are
indistinguishable from the real ones. Second, taking advantage of StyleGAN’s representational power, we discover a layer-wise
space that spontaneously disentangles translucency-relevant attributes and captures the internal dimensions characterizing the
variation of translucent appearances.

We demonstrate that TAG can create perceptually persuasive and diverse translucent appearances (Figure 1(a)). Crucially,
we show that human-understandable scene attributes emerge in our model’s learned latent space (Figure 1(c)). Without
supervision of physical factors, scale-specific scene attributes related to translucency perception can be separately represented
in the layer-wise latent space: material, shape/orientation, and body color. We find that the middle-layers of the latent space
selectively encode the translucency features correlated with human perception. By leveraging the representational properties
of the learned latent space, we identify critical image features diagnostic of translucency such as scale-specific color basis
functions. Our results suggest the unsupervised generative framework may discover an efficient representational space of
materials and reveal image regularities potentially used by the visual system to estimate material properties.

Results

Translucent Appearance Generation (TAG) model
Our main goal is exploring the learned latent space of our model. TAG consists two parts, illustrated by Figure 1(a) and (b): a
StyleGAN2-ADA generator88 and a pSp encoder network89. We began by training a StyleGAN2-ADA generator, a variant of
StyleGAN287 with adaptive discriminator augmentation (ADA), with unlabeled images from our customized Translucent Image
Dataset (TID). TAG’s generator network aims to synthesize novel images that are indistinguishable from the real photographs
of soaps, without having any knowledge about the physical process of translucency. After training the generator, we could use
it to synthesize numerous novel images of translucent objects by sampling from the learned StyleGAN’s latent space.

Instead of generating soaps randomly, we wanted to reconstruct a real photo by mapping it into the StyleGAN’s latent
space so that we could explore how various visual attributes of a material are represented. After obtaining the trained
StyleGAN2-ADA generator, we separately trained a pSp encoder network, which could embed a real photograph of soap
into the StyleGAN’s extended intermediate latent space W+. Mapping the real photo into the layer-wise latent space W+
leads to accurate reconstruction quality and expressiveness of the input94–96. Given a real image, the pSp encoder extracts
the 18 latent vectors of W+ (w1 to w18), which are then inserted into the trained StyleGAN2-ADA generator’s convolution
layers corresponding to their spatial scales in order to reconstruct the input (Figure 1(b)). Figure 1(a) shows examples of
the model-generated images of soaps using these methods. The above steps allowed us to effectively examine whether the
layer-wise latent space can disentangle the effects of scene attributes on the image appearance and further explore whether such
latent representation informs human perception (Figure 1(c)).

TAG synthesizes perceptually convincing and diverse translucent appearances
Before looking into the learned latent space, we first evaluated the perceptual quality of the generated images from two aspects.
In Experiment 1, we evaluated the overall image quality and realism of the generated images. In Experiment 2, we further
investigated whether the material properties of the generated objects were perceptually convincing and could convey material
attributes in the same way as the real images.

In Experiment 1, twenty observers completed a real-versus-generated discrimination task wherein they were instructed to
discriminate whether an image is a photograph of a soap or was generated from the TAG model. We presented the observers
with 300 images of soaps, half of which were real photographs and the other half were generated images. Figure 2(a) shows
examples of the stimuli. Each stimulus was presented for one second, then the observers made the real-versus-generated
judgment (Figure 2(b)). The 300 stimuli were pre-randomized, and each stimulus was judged twice.
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Figure 2. Experiment 1: Real-versus-generated discrimination. a, Examples of real photographs and model-synthesized
images of soaps. The “generated” soaps were synthesized by embedding a real photograph into the W+ latent space of the
trained StyleGAN2-ADA using the pSp encoder. We used 150 real photographs and 150 generated images as stimuli for
Experiment 1 and 2. b, The procedure of Experiment 1. c, Overall correct and error rates of judging real and generated images.
The error rate of 50% indicates pure guessing. d, Distribution of the percentage of real and generated images misjudged by the
observers. The x-axis represents the percentage of observers misjudging an image and the y-axis is the percentage of images
being misjudged. Purple color represents data of real images and gray represents data of generated images.

If observers could perfectly tell the generated image from the real, they would have 0% misjudgment. On the other hand, if
they failed to distinguish between real and generated images, they would be purely guessing and misjudging at a 50% chance.
Our results show that across all observers and trials, the observers misjudged 28% of generated images and 25% of real photos
(Figure 2(c)). Meanwhile, Figure 2(d) shows that the distributions of observers’ misjudgments were very similar for both real
and generated conditions in both repeats. Specifically, approximately 40% of generated images were erroneously judged as
“real” by at least 30% of observers in both repeats. Only 10% of the generated images were correctly identified by all observers.
For a substantial number of images, observers could not discriminate the generated images from the real ones. Our results are
on par with the recent findings of human evaluation of StyleGAN-generated high-resolution human face images, where the
error rate of judging generated images was also 28%97. Overall, the results indicate that our model can successfully generate a
large number of perceptually convincing images that fool observers into judging them as real.

In Experiment 2, we evaluated whether the generated images of soaps could convey perceptually persuasive material
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qualities. Specifically, the same twenty observers from Experiment 1 rated three translucency-related attributes on a seven-point
scale (1 means low, 7 means high): translucency, see-throughness, and glow (Figure 3(a)), which were found in a previous study
to be descriptive in semantic judgments of translucent objects12. Material attribute ratings were normalized to the range 0 to 1
for each observer. For each image, the normalized attribute ratings were averaged across observers, and subsequent data analysis
was based on these values. Figure 3(b) shows that observers perceived different degrees of translucency, see-throughness, and
glow from the generated images, with ratings distributed similarly to those of real photos. This shows that observers could
perceive a wide range of translucent material attributes from the generated images. Meanwhile, the material attributes perceived
by the observers are highly positively correlated with one another for both real photographs and generated images of soaps
(Figure 3(c)). The correlation among the attributes are in agreement with our previous empirical findings12. Figure 3(d) shows
examples of real and generated images judged to have various degrees of translucency similar to that of real photographs.
Together, our results suggest that TAG learns to synthesize diverse perceptually convincing translucent appearances and conveys
material attributes similarly to the real photographs.

Figure 3. Experiment 2: Material attribute rating. a, The user interface of Experiment 2. b, The distribution of the mean
normalized attribute ratings across observers. For each observer, we normalize their attribute ratings to 0 and 1. The x-axis
represents the normalized ratings of an attribute averaged over 20 observers, and the y-axis shows the percentage of images. c,
The scatter plots of ratings between a pair of material attributes, with the Pearson correlations shown at the top. All correlation
coefficients are statistically significant at confidence level of 95%. In both (b) and (c), purple and gray colors represent results
for real and generated images, respectively. d, Examples of real and generated images judged to have different levels of
translucency. We grouped the images based on the mean normalized translucency rating: high (0.6 to 1), intermediate (0.2 to
0.6), and low (0 to 0.2).
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Perceptually meaningful scene attributes emerge in the learned latent space
What makes the generated images convey perceptually persuasive material appearance? We hypothesize that TAG’s W+
latent space is obliged to learn the explanatory factors underlying the structure of observed data. To test our hypothesis, we
systematically manipulated different layers of the latent code and inspected how these manipulations affect the visual attributes
of the output image. Specifically, we applied morphing between the latent codes of a pair of images (a source and a target),
which differ in their shapes, intrinsic materials, lighting environments, and body colors (Figure 4(a)).

Given two generated images A (source) and B (target) with their corresponding W+ latent codes, wA and wB (18 ×
512-dimensional latent codes), morphing can be applied on particular layers of their latent codes to create a sequence of
generated images with visual appearances lying between the source and the target. The morphed latent vectors are generated by
a linear interpolation of a particular set of layers (s) between the source (w{s}

A ) and target (w{s}
B ) while keeping the other layers

from source image unchanged:

w{s}
λ

= (1−λ )(w{s}
A )+λ (w{s}

B ),λ ∈ [0,1] (1)

where λ is the interpolation step and w{s}
λ

is the resultant latent vectors of the set of layers. The generator then uses the

combination of w{s}
λ

and the remaining unchanged latent vectors from the source image to produce a new image (e.g., one of the
intermediate images in image sequence shown in Figure 4(a)). For example, when we apply morphing between the source and
the target on their latent vectors of layers 7, 8, and 9, the resultant latent vectors follow w{7,8,9}

λ
= (1−λ )(w{7,8,9}

A )+λ (w{7,8,9}
B ).

When λ = 0, the output is the original latent vectors of the source image. When λ = 1, the latent vectors on layers 7, 8, and 9
of the source image are replaced by those of the target image (Figure 4(a) middle panel).

Figure 1(c) shows examples of layer-wise manipulation in the W+ latent space. We observed the emergence of three
salient attributes when we performed image morphing at different layers: early-layers (layers 1 to 6) determined the shape
and orientation of the soap, middle-layers (layers 7 to 9) effectively changed the material (e.g., transformed from glycerin to
milky soap, and vice versa), and later-layers (layers 10 to 18) primarily changed the body color of the object. This shows that
StyleGAN’s deep generative representation mechanistically disentangles the scene attributes without external supervision.

Perceptual evaluation of emerged scene attributes
To examine how naive observers interpret the scene attributes that emerged in layer-wise representation of W+ space, we created
image sequences by morphing between selected pairs of images on three different sets of layers (early, middle, later). For each
layer manipulation (equation 1), we selected source-target image pairs under three material conditions: opaque-translucent
(OT), opaque-opaque (OO), and translucent-translucent (TT). Together, we sampled 450 image sequences (see Methods).
Figure 4(a) shows examples of image sequences generated from the three layer-manipulation methods (top panel for early-layer
manipulation, middle panel for middle-layer manipulation, bottom panel for later-layer manipulation) under three source-target
material conditions. For each image sequence, observers were asked to select the “ONE MOST prominent visual attribute
changed from left to right” (Figure 4(b)). Figure 4(c) illustrates which attribute observers chose as the dominant change for
each layer manipulation. The heat maps show that observers unanimously agreed that manipulation on early-layers changed the
shape of the objects (approximately 97%), independently of the material condition of the target and source images. Observers
also agreed that manipulation on middle-layers mainly changed the translucent appearance of the objects (approximately 75%)
for opaque-translucent pairs. When the source and the target have similar materials (OO and TT pairs), the middle-layer
manipulation led to less obvious change of material appearance (approximately 35%), and observers also selected lighting
or color as the main variation factor depending on the scenes. For example, when we morphed two translucent soaps, either
material or lighting could be viewed by observers as the dominant change (Figure 4(a), middle panel, third row). Lastly,
observers mostly agreed that manipulation on later-layers changed the body color of the objects across material conditions
(approximately 70%). We conducted a Bayesian multilevel multinomial logistic regression on the behavioral data, and analysis
results coincided with our observations98. All three layer-manipulation methods are credible parameters for the estimation
of the most prominent scene attribute. We also examined the conditional effects of layer manipulations. For the early-layer
manipulation, the estimated probability of selecting “shape/orientation” was close to 1 across all three types of source-target
pairs. For the middle-layer manipulation applied on OT pairs, the estimated probability of selecting “material” was 77.9% (95%
highest density interval, [69.5%, 84.5%]) (Supplementary Figure S.3). These results show that the scene attributes disentangled
in the latent space are perceptually meaningful and each attribute can be separately controlled in different layers’ latent vectors.

We also observed some participants chose lighting as the dominant change resulting from the middle-layer manipulation
for similar target and source materials, suggesting that the middle-layers of the latent space can also represent lighting to
some degree. The effect of lighting may have two aspects: the direction and the environment of lighting. The direction of
lighting, expressed in the images through the position and shape of the cast shadow, was captured in a subset of earlier layers
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Figure 4. Experiment 3: Perceptual evaluation of emerged scene attributes in the layer-wise latent space. a, Examples
of morphed image sequences used in Experiment 3, generated by linearly interpolating between the latent codes of source (wA)
and target (wB) separately at the early (w1 to w6), middle (w7 to w9), and later-layers (w10 to w18). The λ is the interpolation
step from the source image in the linear interpolation. Source-target pairs were picked under three conditions based on soap’s
material properties: opaque-translucent (OT), opaque-opaque (OO), and translucent-translucent (TT). b, The user interface of
Experiment 3. c, The perceptual results on how different layers correspond to scene attributes. The number in each cell
represents the average percentage of times observers chose a visual attribute as the most prominent one that changes in the
image sequence generated by the corresponding layer manipulation. The standard deviation across observers is shown in
parentheses. Each row of the heat map accounts for 50 image sequences. d, The representation of lighting in the latent space.
Top panel: manipulation of early-layers (layers 4 to 6) also changes the direction of lighting. From left to right, the lighting
direction rotates clockwise. Bottom panel: manipulation of middle-layers (layers 7 to 9) alters the environment of lighting.
From left to right, the strength of backlighting gradually decreases.
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(layers 4, 5, and 6). The top panel in Figure 4(d) shows manipulating such layers conveyed the impression of rotating the light
source clockwise. On the other hand, the environment of lighting (e.g., sunny versus overcast) affects the color distribution of
objects in an image. This effect is manifested in the middle-layers (layers 7 to 9). The bottom panel in Figure 4(d) shows that
manipulating these layers yielded the impression of varying the strength of backlighting. This observation is consistent with
previous findings that lighting environment affects translucent material perception in that objects under strong backlighting
tend to appear more translucent7, 21.

The middle-layers of the model’s latent space capture human translucency perception
Our next goal was to examine whether the middle-layers of the latent space could capture human translucency perception. To
derive quantitative translucency prediction from the model, we trained a linear support vector machine (SVM) classifier to find
the decision boundary with each layer of the images’ latent codes that best distinguishes translucent soaps from opaque ones.
We manually labeled the soaps into two categories based on their listed ingredients: milky and glycerin. We sampled 1000
real photos from the TID dataset. Half were of glycerin soaps, and the other half were of milky soaps. The shape, lighting
condition, and body color largely varied across instances. After obtaining the corresponding W+ latent codes of the embedding
of real photos through the pSp encoder, we extracted their latent vector at each of the 18 layers to train a linear SVM classifier.
Therefore, we had 18 distinct decision boundaries. Figure 5(a) illustrates the trained decision boundary (di) using the i-th layer
of W+.

Next, we computed the SVM model predictions and compared them with the human attribute ratings measured in Experiment
2. Specifically, we obtained 18 distinct model prediction values from each layer’s latent vector for the 150 generated images
used in Experiment 2. For a given image with its i-th layer latent vector, we measured its distance from the learned decision
boundary di (normalized to 0 to 1 range). For example, as shown in the middle columns in Figure 5(b), using an image’s layer-9
latent vector, we could plot its model prediction value against the mean normalized human attribute rating for translucency,
see-throughness, and glow, respectively. The Pearson correlation between the model prediction and perceptual rating (rhc)
is calculated for each attribute. The data shows that predictions from a middle layer (e.g., layer-9) strongly correlate with
human material attribute ratings while the predictions from an earlier layer (e.g., layer-6) and a later layer (e.g., layer-12) have
relatively weak correlation with perception. By repeating this step for each layer, we obtained the correlation coefficients
between each layer’s model prediction and the perceptual ratings. Figure 5(c) shows the tuning curve of correlation coefficients
over the layers. The correlations rhc peaked at the middle-layers (layers 7, 8, and 9), implying that these layers may most
effectively encode visual information that observers also utilized for translucency perception.

The trained SVM serves as a general guidance for material appearance editing. The decision boundaries from middle-layers
reflect the linear separability of intrinsic material in the latent space. The normal to the decision boundary becomes an
interpretable direction that captures the variation of material appearance. As shown in Figure 5(d)’s top row, manipulating
the 9th layer’s latent vector of a given image (left end) along the positive direction of the normal to d9 persuasively made the
material more milky and opaque, without changing the object’s shape. Conversely, moving to the negative direction made an
opaque soap more translucent. In contrast, manipulating a single latent vector from early or later layers (e.g., layer-12) along
the found decision boundary’s normal did not lead to effective modification of the material appearance (Figure 5(d) bottom).
The manipulation on all layers can be found in the Supplementary Figure S.4 and Figure S.5.

Visualization of intermediate outputs of the generator network
To break down how translucent appearance is created in the final output, we examined feature maps generated in the intermediate
stages of the synthesis network of StyleGAN2-ADA86, 99. The generator starts from a learned constant input of size 4 × 4
× 512 and gradually expands the spatial resolution via affine transformation layers. At each resolution, from 8 × 8 to 1024
× 1024, an additional single convolution layer (tRGB layer) transforms the feature maps into the RGB image. As shown in
Figure 6, we visualized the intermediate steps to generate the images of soaps with their corresponding W+ latent codes.

Consistent with the discovery of emerged scene attributes in the latent space, the early-layers (w1 to w6), spanning from 8
× 8 to 16 × 16 resolutions, formed the general shape and contour of the object. The middle-layers, with layer 7 and 8 (w7 and
w8) at 32 × 32 resolution and layer 9 (w9) at 64 × 64 resolution, established the critical features of translucency. The image
contrast and color variation across the volume of the soap in the 64 × 64 resolution images gave the impression of “glow”,
which is useful to distinguish translucent materials from opaque ones. At 128 × 128 resolution (layers 11 and 12), surface
reflectance properties such as specular highlights and caustics were further specified. The later layers (w13 to w18), from 256 ×
256 to 1024 × 1024 resolutions, enriched the details of lighting environment and color scheme, delivering more appealing
material appearance. This suggests that latent image features at relatively coarse spatial scale are sufficient to capture the visual
impression of translucent materials.

Diagnostic image features for translucency
To understand what information the intermediate generative representation encodes, we explored the image descriptors for the
tRGB layer’s representation with the middle spatial scale, which is sensitive to translucency (Figure 7). Inspired by sparse
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Figure 5. The middle-layers of W+ latent space can effectively modulate translucency of generated images and predict
human perception. a, Illustration of a trained layer-specific supported vector machine (SVM) classifier for the
milky-versus-glycerin soap discrimination. b, The scatter plots show the model prediction value computed and the human mean
normalized attribute ratings for each generated image in Experiment 2. Green, blue, and orange colors represent the data for
translucency, see-throughness, and glow, respectively. c, The tuning curve of correlation coefficients (correlation between
model prediction and human perceptual rating, rhc) over all layers in the W+ latent space. Model prediction values using the
middle-layers’ decision boundaries (d7, d8, and d9 ) strongly correlate with human attribute ratings. “*” indicates the
correlations at that layer are statistically insignificant at the 95% confidence level. d, Examples of translucency-modulated
sequences. Top: Manipulating the layer-9 latent vector of the original image (left end) along the normal of the learned decision
boundary has a coherent effect on the translucent material appearance of the object. Left: moving to the positive direction of
the normal of the decision boundary makes the soap appear more opaque. Right: moving to the negative direction of the normal
of the decision boundary makes the soap appear more translucent. Bottom: Manipulating the layer-12 latent vector of the
original image along the normal of the learned decision boundary does not fundamentally change the translucent appearance.
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Figure 6. Visualization of the generative process of the network. Impression of translucency emerges at early stages of the
image synthesis process while more details of the appearance are added in the later stages. Each row corresponds to the
intermediate generative outputs from a sequence of tRGB layers at different spatial resolutions in the StyleGAN2-ADA’s
generative network. Translucency-related features are established as early as 32 pixels × 32 pixels (layers 7 and 8) and 64
pixels × 64 pixels (layer 9). The surface reflective properties such as specular highlights are only clearly visible at 128 pixels ×
128 pixels (layers 11 to 12). The body color of the soap was finalized at the resolution of 1024 pixels × 1024 pixels (layers 17
to 18).

coding used in understanding natural images100–103, we applied independent component analysis (ICA)104 on local regions
of the intermediate tRGB images to investigate the efficient representation of translucent appearances. Specifically, based on
the results of Experiment 2, we created a new set of high-translucency generated images and extracted the intermediate tRGB
images with 64 pixels × 64 pixels, whose layer is sensitive to translucency emergence. While keeping the relative kernel size
constant with the StyleGAN’s convolution process, we applied FastICA to learn 64 basis functions104.

In the learned representation (Figure 7(b)), the activation features are chromatic or achromatic with a variety of orientations.
Figure 7(c) demonstrates the results of applying three-dimensional convolution of each of the 64 kernels to a real photograph of
translucent soap. While luminance kernels provide information of object contours, shadow boundaries, and specular reflectance,
chromatic kernels reveal subtle image features indicating translucency, such as color gradients around the edges and corners.
Figure 7(d) shows examples of filtering results on a few translucent and opaque objects. For example, applying the oriented
chromatic kernels (rows 1–4 in the matrix of convolution results) on the transparent soaps (columns 1 and 3) activated patterns
of color variations on the caustics, which are not present in the more opaque soap (rows 1 and 2, column 2). Next, the red-green
chromatic kernels also detected the internal “glow” of the translucent soaps. For example, the convolution results on the
yellow translucent soap (column 4) showed the spatial gradient of saturation near the edges (row 1, column 4). At the same
time, the resulting image also revealed the “glowing edge” on the same soap (row 1, column 4). Notably, the orientation-free
chromatic kernels revealed the color variation over a relatively coarse spatial scale across the object, which might be diagnostic
of translucency (row 5, column 4). Furthermore, these translucency-related features could not be obtained by the basis functions
extracted from the coarser intermediate representation (Supplementary Figure S.7). Together, our results indicate that the
oriented chromatic kernels with mid-to-low spatial frequency can be diagnostic for translucent appearance.
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Figure 7. Visualization of features for translucency. a, The intermediate generative results (tRGB layer output at 64 pixels
× 64 pixels resolution) of the images from the high-translucency dataset. The images are resized to 128 pixels × 128 pixels for
display. b, Middle-layer ICA kernels obtained by training a system of 64 basis functions on 24 × 24 image patches extracted
from images in (a). The kernels are of size 24 × 24. c, Visualization of applying three-dimensional convolution of the
individual ICA kernels in (b) on a real photograph of translucent soap. d, The resulting filtered images of four different soaps
with selected chromatic kernels. The mid-to-low spatial frequency chromatic kernels can capture features of translucency such
as “chromatic caustics” (row 2, column 1), “glowing edges” (row 1, column 4), and “glow from inside” (row 1, column 1, 3,
and 4). The orientation-free kernel in the last row reveals the variation of color over a relatively coarse spatial scale, which is
also diagnostic of translucency.

Discussion

We presented a deep image generation model trained with natural photographs to obtain a compact layer-wise latent space that
can capture human perception of translucency. Our study demonstrates that the learned latent space spontaneously disentangles
salient visual attributes and captures the latent dimensions of translucent appearances. Notably, we find the represented scene
attributes are scale-specific, where early-layers represent shape, middle-layers represent translucency, and later-layers represent
body color. The middle-layers of the latent space can successfully predict human perception of translucency in various generated
images. Our findings suggest that humans might use a scale-specific structure to characterize visual information from retinal
images, facilitating the representation of materials for robustly estimating their attributes under various contexts. Our framework
could serve as an effective method for discovering generalized image features across a high degree of perceptual variability of
materials.

The image generation process of our model (Figure 6) resembles the strategy an artist uses to paint a translucent object
by structurally depicting the observed visual attributes. Therefore, the representational system the model learns might be
similar to those of the mental process of painting. The Dutch artists in 17th century were capable of painting vivid translucent
objects on canvas by depicting the critical image features that trigger a visual impression of translucent properties, without
strictly conforming to physical laws16, 105. Imagine an artist painting a grape on a dining table (e.g., Still Life with Oysters
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and Grapes, Jan Davidsz. de Heem, 1653). As a first step, before exquisitely adding any details, the artist often starts with
carving out the object’s contour. After the general shape is set, colors are gradually filled in to mimic shadow and shading to
yield a first impression of the 3D shape and reflect the lighting condition in the scene. More details are added to depict surface
reflections and caustics. The artist can continually perfect the painting by adding fine details to deliver a more convincing
material quality. The combination of multiple levels of detail in the painting contributes to the formation of translucency
appearance. Our model generates translucency appearance in a similar scale-specific manner. Given that previous studies have
also shown that the scale-specific process has a role in material perception106–108, discovering and formulating the structure of
visual information in a scale-specific manner might be helpful for recoding the complexity of material appearances to obtain an
efficient representation.

In our study, we use soap as a medium to illustrate the possibility of learning a semantically meaningful representation of
natural images of materials. Although it is possible that the exact meaning represented by the latent space differs across the
training datasets, the corresponding latent space will still disentangle scene attributes with various abstract levels arising from
the scale-specific image features. We expect the middle-layers (medium coarseness) to represent volumetric material appearance
even if the model is trained with image datasets of other materials. For our dataset, we demonstrated that scale-specific image
features can be separately controlled. The translucent appearance (i.e., associated with middle resolution features) and the
body color (i.e., associated with fine resolution features) can be directly manipulated without changing the shape of the object
(i.e., associated with coarse resolution features). The observations from our finding also align with previous investigations of
the StyleGAN’s representative power of its layer-wise latent space. In the generation of images of human faces, “styles” of
coarse spatial resolutions (2 to 4 cycles/image) correspond to high-level aspects such as pose and face shape, “styles” of middle
resolutions (8 to 16 cycles/image) control smaller scales of facial features and hairstyle, and “styles” of fine resolutions (32
to 512 cycles/image) contribute to microstructures and color scheme86. Likewise, in indoor scene synthesis, the latent space
could separately control spatial layout of the room (coarse), categorical objects in the scene (middle), and color scheme (fine)92.
Widening the scope beyond soaps, it is feasible to use TAG to model the image data of broad categories of materials.

Our study constitutes a break from the long history of studying material perception using well-controlled computer-rendered
images. We discovered critical image features that are diagnostic of translucency across diverse geometries and lightings
by applying unsupervised learning schemes on a large-scale dataset of natural photographs of translucent objects without
specifically constrained physical environments. Some of our found image features could be robust indicators for translucent
materials, and they confirm previous empirical findings. For instance, the edge intensity profile on translucent objects has been
found to be different from those of opaque ones109. Our ICA analysis shows that oriented chromatic kernels can detect complex
patterns along the translucent edges (see Figure 7(d) row 2, column 4). In addition, such chromatic kernels also capture the
effect of “glow”, an important feature characterizing the spatial distribution of color of translucent materials12, 21. Furthermore,
our results indicate that the presence of caustic patterns can be an important cue for translucency perception110.

We also discover the intricate role of color in translucent appearance. Most of the previous works explored the effect of color
on material perception and recognition by manipulating the color/luminance distribution of material images12, 21, 63, 70, 111, 112.
For example, converting color translucent images to grayscale ones decreases perceived translucency12, 21, 63, 71. However, it is
still unclear how the visual system functionally processes color information for material perception. Our findings, based on a
data-driven approach, suggest that two functional aspects lie in color translucency processing: body color and spatial color
processes. The body color represents the color of the matte component of surface reflectance, which is usually determined by
the color of the dye used to make the soap. The latent space in our model can represent the body color of soap separately from
material appearance. By manipulating the middle-layers of the latent code, we can create images of objects with different types
of translucent appearances but similar body color. This suggests the model can establish a translucency impression without
varying the body color. The other aspect is the spatial variation of color over the volume and surface of an object (e.g., the color
gradient within an object due to light scattering and absorption). This “spatial color” is crucial for providing the translucent
appearance in the middle-layers (Figure 1(c), top panel) and can be detected by the chromatic kernels with the mid-to-low
scale (Figure 7(d)). Notably, this color process is scale-specific, i.e., a coarser kernel cannot detect the spatial color variation of
translucency (Supplementary Material Figure S.7). Furthermore, the spatial color can be independent of the white-balancing
process because the middle-layers in our model do not fix the white point in the scene (Figure 6). The finding suggests that the
processing of saturation and hue based on a white point may not be necessary for this spatial color process. As such a spatial
color process has been little understood in color vision literature 113, 114, our work might provide novel directions for probing
the role of color in material perception and other high-level visual processing in the brain.

The deep generative network (StyleGAN) is not designed to emulate biological vision systems, even though the elementary
functional mechanisms (e.g., convolution, nonlinearity) are inspired by biological brains115–118. Therefore, we do not assume
the learning process of StyleGAN is necessarily the mechanism of human material perception. Here, we take StyleGAN’s
representative power to model the feature space of diverse material appearances and discover the latent image features that
humans might have used to estimate material properties in the natural scenes by comparing with psychophysical results. We
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also acknowledge that the image features we learned in our model are still considered mid- to low-level sensory information.
Future models need to be developed to address the role of top-down influence, such as context, object identity, and individual
experience, on material perception.

One extension of the current work is to use our stimuli to measure brain responses to translucent material properties. One
large obstacle to probing the neural correlates of material perception has been the lack of an effective way to manipulate the
stimuli that isolate the effects of various external factors on material appearance while keeping the image’s appearance natural
and realistic. Our material manipulation through the latent space illustrates a novel and efficient approach for conditionally
creating stimuli with translucent appearance resulting from a specific combination of scene attributes. Moreover, the discovered
latent representation can be valuable for encoding/decoding investigations in brain-imaging studies to probe the interaction
between neural representations of 3D shape, color, and materials, thus providing an efficient tool to discover the neural correlates
of material perception. More generally, the approach we take here—using StyleGAN to derive a latent representation for
translucency perception—is widely applicable to discover perceptually relevant features for a variety of visual inference tasks
that deal with complex physical stimuli.

Methods

Translucent Image Datasets (TID)
Our customized image dataset of translucent objects has 8085 photographs of soaps. The dataset was created by photographing
a variety of real-world soaps in natural backgrounds. We collected 60 unique soaps that included diverse materials, geometries,
surface relief, and colors. We used an iPhone v12 mini smartphone to photograph our collection of soaps under various lighting
environments and viewpoints at a relatively fixed distance, and built a dataset of high resolution images (1024 pixels × 1024
pixels JPEG images). In each photograph, the object was centered in the image. We did not intentionally balance the dataset on
the distribution of shape, body color, lighting environment, and viewpoint. To our knowledge, this is the first large-scale natural
image dataset of translucent materials and one of few image datasets of real-world materials.

Unsupervised learning framework: Translucent Appearance Generation (TAG) model
Deep generative network StyleGAN2-ADA We trained StyleGAN2-ADA, on the full TID dataset using the TensorFlow
implementation of the model available at https://github.com/NVlabs/stylegan2-ada. StyleGAN2-ADA consists of two networks
trained through a competitive process: a style-based generator, and a discriminator. The generator creates “fake" images,
with the aim of synthesizing realistic images of soaps. The discriminator receives both “fake" and real images, and aims to
distinguish them. As the training progresses, both the generator and the discriminator improve until the “fake" images are
indistinguishable from the real ones. The training of the style-based generator involves two latent spaces. There is a input latent
space Z that is normally distributed. Hence, a sequence of eight fully-connect layers transforms Z to an intermediate latent
space W . The dimensions for both Z and W spaces are 512. With the 1024 pixels × 1024 pixels output, the generator starts
with a constant input of size 4 × 4 × 512 and gradually adjusts the “style" of the image at each of 18 convolution layers based
on the latent vector86. For every major resolution (every resolution from 4 pixels × 4 pixels to 1024 pixels × 1024 pixels),
there are two convolution layers for feature map synthesis and a single convolution layer (i.e. tRGB layer) that converts the
output to a RGB image. Weight modulation and demodulation are applied in all convolution layers, except for the output tRGB
layers87. At each convolution layer i, the generator receives the input through “style", which is a learned affine transformation
from the 512-dimensional latent vector w ∈W . More explicitly, when generating an image from W space, the same vector w is
used for all convolution layers.

Using the network architecture of StyleGAN2, StyleGAN2-ADA inherently applies a wide range of augmentations on the
input data to prevent the discriminator from overfitting, while ensuring that none of the augmentations leak to the generated
images. During training, each image is processed by a series of transformation in a fixed order, and each transformation is
randomly applied with probability p ∈ [0,1], which is adaptively adjusted to counter the effect of overfitting. This variant is
named Adaptive Discriminator Augmentation (ADA)88. In practice, we allowed the following set of transformations: pixel
blitting (x-flip, 90-degree rotatation, integer translation), general geometric transformation (isotropic scaling, anisotropic
scaling, fractional translation), and color transformation (brightness, luma flip, hue, saturation). The total length of training
of StyleGAN2-ADA is defined by the “the total number of real images”, since the randomization of transformation is done
separately for each image in a minibatch. We trained the model on one Tesla V100 GPU for a total length of 3,836,000 images,
using the recommended learning rate of 0.002 and R1 regularization of 1088 for generating 1024 pixels × 1024 pixels resolution
outputs. The FID (Fréchet Inception Distance), KID (Kernel Inception Distance), and recall for the trained model are 13.07,
0.0038 and 0.330 respectively.

pixel2style2pixel (pSp) encoder Upon training the StyleGAN2-ADA, we separately trained a pSp encoder on 80% of
randomly sampled images from the TID dataset and validated on the rest of the images. We implemented the pSp encoder
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based on the code released by https://github.com/eladrich/pixel2style2pixel89. The pSp encoder aims to efficiently embed a real
photo into the StyleGAN’s extended intermediate latent space W+94. Unlike W space, W+ is a concatenation of 18 different
512-dimensional vectors (w1 to w18), one for each convolution layer of StyleGAN2-ADA generator. Given a real image, we
can map it to the latent space W+ and create its reconstruction image by feeding the obtained latent code into our pre-trained
StyleGAN2-ADA generator.

The pSp encoder is built on a feature pyramid network119 to generate three levels of feature maps (coarse, medium and
fine)86 from which 18 latent vectors of W+ were extracted using a small fully convolutional network (map2style). Latent
vectors w1 and w2 are generated from the small feature map, w3 to w6 are generated from the medium feature map, and w7
to w18 are generated from the large feature map. The latent vectors are then injected into the pre-trained StyleGAN2-ADA
generator corresponding to their spatial scales to synthesize the reconstructed image. The feature pyramid network and the
map2style networks are updated through backpropagation to learn to generate latent vectors which map to reconstructed images
that are perceptually similar to the input real images. The architecture is illustrated in Figure 1(b).

The entire framework was trained on a set of loss function to encourage the accurate reconstruction of the real photos:
pixel-wise loss (L2), LPIPS loss (LLPIPS), and regularization loss (Lreg). For an input image x, the total loss is defined as:
L(x) = λ1L2(x)+λ2LLPIPS(x)+λ3Lreg(x), where λ1, λ2, and λ3 are constants defining the loss weights. Here, we set λ1 = 1,
λ2 = 0.8, λ3 = 0.005. The maximum number of training steps was set at 10000, and the model leading to the minimum total
loss was consistently updated. We trained the model with one Tesla V100 GPU for 2 GPU days, and the model optimized at
training step 9000 was used for the rest of the study. The total loss was 0.181.

Psychophysical experiment
Participants The same group of twenty participants completed Experiment 1 and 2 (N=20, median age, 20; age range,
18-27, 12 female, 8 male). They completed the experiments in one lab-based session. Another group of twenty participants
completed Experiment 3 (N=20; median age, 21; age range, 18–27; 10 female, 10 male). Five individuals participated in
all experiments. Observers received no information about hypotheses of the experiments. No statistical methods were used
to predetermine sample sizes, but our sample sizes are consistent with those reported in previous publications of material
perception measured in the laboratory68, 79, 120. All of the observers had normal or corrected-to-normal visual acuity and normal
color vision. Participants were primarily undergraduate students from American University. The observers were given written
informed consent and were compensated with either research course credits from American University or with $16 per hour.
The experiments were conducted in accordance with the Declaration of Helsinki, with prior approval from the American
University. All the experimental designs involving human participants were approved by the Institutional Review Board at
American University.

Psychophysical procedures The psychophysical experiments were conducted in a dimly lit laboratory room. Observers
sat approximately 7 inch away from the monitor and were given no fixation instructions. The stimuli were presented on an
Apple iMac computer with a 27-inch Retina Display with a resolution of 5120 pixels × 2880 pixels and a refresh rate of 60 Hz.
PsychoPy v.2021.1.2 was used to present the stimuli and collect the data121. At the beginning of each experiment, observers
were given experiment-specific instructions and demos.

Experiment 1: Real-vs-generated discrimination

Stimuli To avoid using the same images as those in the model training process, we took 300 new photographs of our collection
of soaps. We then split these photographs equally into two groups (A and B), which similarly capture the variety of materials,
lighting fields, and view points. The 150 real photographs from Group A and the 150 generated images obtained from Group
B were used as the stimuli for Experiment 1. Specifically, photographs from Group B were first encoded into the W+ latent
space through the pSp encoder, and then were reconstructed through our trained StyleGAN2-ADA generator. In this way, we
obtained generated images that cover the diverse samples of appearances of soaps in our dataset. Examples of stimuli are shown
in Figure 2(a). All images were presented in size 1024 pixels × 1024 pixels.

Experimental procedure We first gave a brief introduction to each observer of how the real photographs and generated
images of soaps were created. The observers were told that the “Real photographs of the soaps (Real) were taken using a
smartphone camera, and the generated images were produced from a computer algorithm (Generated). The generated images
would try to resemble the visual appearances of the object in the real photos." Afterwards, the observers were presented a series
of images and were asked to judge whether the stimulus is Real or Generated. Each image was shortly displayed for one second,
and then the observer made the judgement by a key press. Observers were given the prior knowledge that 50% of the stimuli
were Real. We conducted the experiment with two repeats. In repeat 1, observers judged 300 images of real and generated
images with a pre-randomized order in two blocks of 150 trials. They then completed another repeat of the same 300 images
but with a different pre-randomized order. The experimental procedure is shown in Figure 2(b).
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Experiment 2: Material attribute rating

Stimuli Experiment 2 stimuli were the same 300 images of real photographs and model generated images of soaps as in
Experiment 1.

Experimental procedure Before the experiment started, we introduced the concept of translucency to the observers by
showing them a simplified illustration of the subsurface scattering process (Supplementary Figure S.2). In Experiment 2,
observers were asked to rate the material attributes of the images. On each trial, the observers rated each attribute using a
seven-point scale (7 means high, 1 means low) by adjusting the slider (Figure 3(a)). They had unlimited time to make the
judgements. The 300 images were equally split into two blocks, and presented in a pre-randomized order. This experiment was
conducted with only one repeat.

Observers were provided with the definition of the material attributes as the following:

• Translucency: To what degree the object appears to be translucent.

• See-throughness: To what degree the object allows light to penetrate through.

• Glow: To what degree the object appears to glow light from inside.

Experiment 3: Perceptual evaluation of emerged scene attributes in the layer-wise latent space.

Stimuli We created image sequences by applying morphing between the source image A (wA) and the target image B (wB)
using Equation 1. The morphing was separately applied on three sets of layers of the latent space: early-layers (layer 1 to 6),
middle-layers (layer 7 to 9), and later-layers (layer 10 to 18) , with equal interpolation steps. To generate an image sequence,
the interpolation step (λ ), was set to have four values: 0, 0.33, 0.67, and 1 (see Figure 4(a)).

We picked 24 soaps from the TID dataset, half were opaque milky soaps (generally with low translucency, i.e., opaque)
and half were translucent glycerin soaps (generally with high translucency, i.e., translucent). With these images of soaps,
source-target image pairs were formed under three conditions: opaque-translucent (OT), opaque-opaque (OO), and translucent-
translucent (TT). For each condition of source-target pairs, we created image sequences based on the morphing on the early-,
middle-, and later-layers respectively, and then randomly sampled 50 sequences as stimuli. This led to 3 (condition of
source-target pair) × 3 (layer-manipulation method) × 50 image sequences in total (Figure 4(a)). All individual images in the
image sequences were resized to 256 pixels × 256 pixels for display.

Experimental procedure At the beginning of the experiment, we showed observers a few samples of real soaps of different
materials, shapes, and body colors with the goal of illustrating the effects of these scene attributes on material appearance.

The observers viewed 450 image sequences. For each image sequence, observers selected the “One most prominent visual
attribute changed from left to right" from one of the following: shape/orientation, color, material (e.g., translucency), and
lighting. The image sequences were equally split into three blocks and presented in a pre-randomized order. Observers had
unlimited time to complete their judgement on each trial (Figure 4(b)). This experiment was conducted with one repeat.

Computing translucency decision boundaries from latent code
We trained binary SVM based on the latent vector of each layer of the latent space W+ to classify the material of the soap
in the TAG generated image as either “milky” or “glycerin”. The trained SVM classifiers were then used to generate model
predictions on a continuous scale. We randomly sampled 500 real photographs of “milky" soaps and another 500 photos of
“glycerin" soaps from the TID. We used 60% of images for training and the rest for validation. The 1000 photos were first
embedded into the W+ latent space to obtain their corresponding 18×512 dimensional latent codes through our trained pSp
encoder. Since the latent space contains 18 layers, we trained 18 SVM models based on each layer’s latent vectors of the
embedded images. In other words, there were 18 different feature matrices, each with dimension of n×512, where n is the
number of training samples. We implemented LinearSVC from scikit-learn for model fitting, and used a relatively strong
regularization (C ∈ [0.001,0.1]) to reduce overfitting122. Hence, we obtained a linear decision boundary di for the i-th layer’s
latent vectors. We then computed the model prediction values of the 150 generated images used in Experiment 2. With the
w+ ∈W+ latent code of a generated image, we extracted its i-th layer’s latent vector and measured its distance from di. For
each layer, the model prediction value, which is the normalized distance from di, was compared to human perceptual rating
data from Experiment 2.

Independent Component Analysis (ICA) for the intermediate generative representation
Based on the results of Experiment 2, we selected 40 generated images with the highest translucency ratings (high-translucency).
Meanwhile, we selected another 40 generated images of soaps with various shapes, orientations, and lighting environments.
Then, we fully paired these 80 images (source) with the 40 high-translucency images (target). To create a new “high”
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translucency image, we replaced the middle-layer (layer 7 to 9) latent vectors of the source image with those of the target and
used the resultant latent code to generate the corresponding image through the generator. Then, we extracted the intermediate
generated result from the tRGB layer corresponding to 64 pixels × 64 pixels spatial scale of which translucency is established.
We repeated this step to obtain 3160 “high” translucency images at resolution of 64 pixels × 64 pixels (Figure 7(a)). For each
image in the “high” translucency dataset, we first resized it to 512 pixels × 512 pixels resolution and sampled 10 image patches
of 24 pixels × 24 pixels from random locations. FastICA was then applied on the 3160 × 10 image patches to learn 64 basis
functions (i.e., middle-layer ICA kernels)104. For the learning of middle-layer ICA kernels, we also conducted the FastICA
with different sampling of the image patches with 64 and 100 components (Supplementary Figure S.6.)

Statistical analysis
We used Bayesian multilevel multinomial logistic regression to model the psychophysical results from Experiment 398, 123. The
goal is to examine whether the prominent scene attributes judged by the observers can be predicted by the layer-manipulation
methods. We implemented the brms library supported in R for the analysis. The model’s dependent variable is the scene
attribute (i.e., shape/orientation, color, material, and lighting). The predictors include the layer-manipulation methods (i.e.,
early-layers manipulation, middle-layers manipulation, and later-layers manipulation), the type of source-target pair (i.e.,
opaque-opaque (OO), opaque-translucent (OT), and translucent-translucent (TT)), and the interaction between these two factors,
while considering the individual observer as a grouping variable. Three Markov chains were used for the parameter posterior
distribution estimation, with 8000 iterations for each chain of the Markov Chain Monte Carlo (MCMC) algorithm. We assumed
a uniform distribution for the priors of the parameters. The complete results of the analysis can be found in the Supplementary
Figure S.3 and Table 1.
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Supplementary Information

Experiment 1: Real-versus-generated discrimination

To further illustrate the results of Figure.2(d) in main paper, Figure S. 1 shows examples of real-versus-generated judgment
agreed by the majority of observers (at least 50% of observers).

Figure S. 1. Example stimuli from the real-versus-fake experiment agreed by the majority of observers. Each image is
resized for display.
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Experiment 2: Material attribute rating
Figure S. 2 shows the illustrations of light transport process for opaque and translucent objects that we presented to the observers
in the experiment instruction.

Figure S. 2. Illustrations of the simplified light transport process. Left: light transport process for an opaque object.
Right: subsurface scattering for a translucent object.

Experiment 3: Scene attribute evaluation
Table. 1 summarizes the results from the Bayesian multilevel multinomial logistic regression model. We set the baselines of the
variables in the following way: “lighting” for the scene attribute, “later-layer manipulation” for the layer-manipulation method,
and “opaque-opaque (OO)” for the type of source-target pair.

The most salient output from the model is the mean of posterior distribution for early-layer manipulation. The relative risk
ratio of selecting “shape” in comparison to selecting “lighting” when the layer-manipulation method switches from later-layer
manipulation to early-layer manipulation has an estimated mean posterior of 2644.90 (95% Highest Density Interval (HDI),
[1106.94, 6783.08]). We could make the decision of whether to accept or reject the null value of a parameter based on the
relation between HDI and region of practical equivalence (ROPE). ROPE is set for each parameter with a 0.1 range around 0
using the unexponentiated model. If none of the 95% HDI of the parameter distribution falls into the ROPE, we can reject
the null value. If the 95% HDI of the parameter distribution completely falls into the ROPE, we accept the null as a credible
value. Otherwise, the decision remains undecided. Since zero percent of the 95% HDI of the parameter distribution for
early-layer manipulation falls inside the ROPE, we can reject the null value. Therefore, early-layer manipulation is a credible
parameter and it increases the probability that the observers choose “shape/orientation” as the most prominent change in the
image sequence, regardless of the source-target pair of the materials. Secondly, the relative risk ratio of selecting “material” in
comparison to selecting “lighting” when the layer-manipulation method switches from later-layer manipulation to middle-layer
manipulation has an estimated mean posterior of 2.11 (95% HDI, [1.58, 2.80]). Middle-layer manipulation is also a credible
parameter (Inside.ROPE = 0), and it increases the probability for the observers to select “material” as the most prominent visual
attribute changed as compared to selecting “lighting”. It is also important to note that the middle-layer manipulation applied on
opaque-translucent pairs increases the probability that observers choose “material” as the most prominent visual attribute being
changed (Mean Est = 11.61, 95% HDI, [7.34, 18.39], Inside.ROPE = 0). Lastly, later-layer manipulation is most likely to lead
to change in “color” across all source-target pair conditions.

Figure S. 3 illustrates the conditional effect of layer-manipulation on the prediction of the most prominent scene attribute
chosen by the observers. For the early-layer manipulation, the estimated probability of selecting “shape” is close to 1 across all
three types of source-target pair. For the later-layer manipulation, the estimated probability of selecting “color” is approximately
77.4% (95% HDI, [71.4%, 82.5%]) for OT pairs, 68.7% (95% HDI, [61.4%, 75.1%]) for OO pairs, and 80.0% (95% HDI,
[73.9%, 85.0%]) for TT pairs. For the middle-layer manipulation, the estimated probability of selecting “material” is 77.9%
(95% HDI, [69.5%, 84.5%]) for the OT pair, which is higher than that of the OO or TT condition.
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Figure S. 3. Conditional effect of layer-manipulation method on the prediction of scene attribute using Bayesian
multilevel multinomial logistic regression model. The x-axis is the layer-manipulation method, and the y-axis is the estimated
probability that certain scene attribute is selected as the most prominent attribute that has been changed in an image sequence.
The error bar indicates the upper and lower bounds of the estimation at confidence level of 95%. The panels show the predicted
results for three source-target pair conditions: opaque-translucent (OT), opaque-opaque (OO), and translucent-translucent (TT).
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Response_Predictor Mean Est Est.Error HDI Lower HDI Upper Inside.ROPE (%)
Shape_Early-layers 2644.90 1.59 1106.94 6783.08 0.00

Shape_Middle-layers 0.94 1.50 0.43 2.11 20.25
Shape_Source-target pair(TT) 0.79 1.77 0.24 2.32 13.57
Shape_Source-target pair(OT) 1.63 1.52 0.72 3.69 10.36

Shape_Early-layers and Source-target pair(TT) interaction 1.86 2.14 0.44 8.82 8.10
Shape_Middle-layers and Source-target pair(TT) interaction 1.24 1.96 0.34 4.85 12.80

Shape_Early-layers and Source-target pair(OT) interaction 0.19 1.76 0.06 0.58 0.00
Shape_Middle-layers and Source-target pair(OT) interaction 2.26 1.75 0.77 6.86 5.14

Material_Early-layers 0.72 1.90 0.19 2.35 11.98
Material_Middle-layers 2.11 1.16 1.58 2.80 0.00

Material_Source-target pair(TT) 1.70 1.20 1.18 2.43 0.00
Material_Source-target pair(OT) 0.73 1.22 0.50 1.07 12.38

Material_Early-layers and Source-target pair(TT) interaction 1.83 2.32 0.38 10.12 8.81
Material_Middle-layers and :Source-target pair(TT) interaction 0.54 1.24 0.35 0.82 0.00

Material_Early-layers and Source-target pair(OT) interaction 0.44 2.37 0.08 2.41 5.99
Material_Middle-layers and Source-target pair(OT) interaction 11.61 1.27 7.34 18.39 0.00

Color_Early-layers 0.11 1.89 0.03 0.34 0.00
Color_Middle-layers 0.28 1.12 0.22 0.35 0.00

Color_Source-target pair(TT) 2.22 1.14 1.73 2.85 0.00
Color_Source-target pair(OT) 1.47 1.12 1.16 1.85 0.00

Color_Early-layers and Source-target pair(TT) interaction 0.10 4.36 0.00 1.29 1.58
Color_Middle-layers and Source-target pair(TT) interaction 0.21 1.19 0.15 0.30 0.00

Color_Early-layers and Source-target pair(OT) interaction 0.15 2.49 0.02 0.89 0.07
Color_Middle-layers and Source-target pair(OT) interaction 0.86 1.22 0.59 1.27 32.32

Shape_Intercept 0.05 1.41 0.02 0.09 0.00
Material_Intercept 0.46 1.26 0.30 0.72 0.00

Color_Intercept 3.33 1.17 2.45 4.58 0.00

Table 1. Summary of Bayesian multilevel multinomial logistic regression model outputs. The left most column shows the
name of the parameter. The names of the response variable and the predictor are separated by “_". The second to fifth columns
are the exponentiated mean (Mean Est), the standard error (Est.Error), and the lower (HDI Lower) and upper bounds (HDI
Upper) of the 95% credible interval of the posterior distribution for each parameter. The last column is the percentage of the
95% HDI of parameter distribution falls inside the ROPE.

Visualizing the effect of layer manipulation based on learned decision boundary of milky-versus-glycerin soap classifi-
cation
As an extension of Figure.5(d) in the main paper, we show the image manipulation results based on the learned SVM decision
boundary for each of 18 layers of W+ latent space. Figure S. 4 and Figure S. 5 demonstrate the manipulation along the positive
and negative direction of the normal of the learned decision boundary.

Independent Component Analysis (ICA) for the intermediate generative representation
We used FastICA from scikit-learn for the independent component analysis of image patches extracted from the intermediate
results of the generative process our trained generator. For the intermediate generative result from 64 × 64 tRGB layer, we
conducted the analysis using 64 and 100 components, and found that similar sets of sparse features (i.e. middle-layer ICA
kernels) were extracted. More details can be found in the Result section of the main paper.

We also conducted a similar control analysis based on the intermediate generative result from the early-layers. For the
3160 “high” translucent images used to obtain the middle-layer ICA kernels, we extracted their corresponding intermediate
generative results from 16 × 16 tRGB layer (Figure S. 7(a)). Since a great number of the 16 × 16 generative results were
generated from the same early-layer latent vectors, we randomly sampled 1000 of them to reduce the redundancy. For each
image, we first resized it to 512 pixels × 512 pixels resolution, and then sampled 10 image patches of 96 pixels × 96 pixels
from random locations. We then applied FastICA on the 1000 × 10 image patches to learn 64 basis functions (i.e. early-layer
ICA kernels) (Figure S. 7(b)). The effect of convolving these 96 × 96 kernels with a real photograph of translucent soap is
shown in Figure S. 7(c). Compared with the information extracted from middle-layer kernels, the early-layer chromatic kernels
detect coarser information of the edges, and cannot capture the fine spatial color variations that are indicative of the “glowing”
effect of translucent materials.
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Figure S. 4. Manipulating the i-th layer’s latent vector of the original image (left most) along the positive direction of
the normal of the learned translucent decision boundary (di). The displacement on the middle-layers (layers 7 to 9) can
mainly affect translucent appearance.
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Figure S. 5. Manipulating the i-th layer’s latent vector of the original image (left most) along the negative direction of
the normal of the learned translucent decision boundary (di). The displacement on the middle-layers (layers 7 to 9) can
mainly affect translucent appearance.
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Figure S. 6. Middle-layer ICA kernels extracted from intermediate activation of high-translucency images (see main
paper Figure 7). Top and bottom rows show the FastICA results of using 64 and 100 components respectively. Within each
row, each panel shows the kernels learned from a different random sampling of the image patches. The kernels are 24 × 24,
and are resized for display.
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Figure S. 7. Visualization of features captured in the early-layers of the learned latent space. a, The intermediate
generated results (tRGB layer output at 16 pixels × 16 pixels resolution) of the images from the high-translucency dataset. The
images are resized for display. b, Early-layer ICA kernels obtained by training a system of 64 basis functions on 96 × 96 image
patches extracted from images in (a). The kernels are of size 96 × 96. c, Visualization of applying three-dimensional
convolution of the individual early-layer ICA kernels in (b) on a real photograph of translucent soap. d, The resulting filtered
images of four different soaps with selected chromatic and achromatic kernels.
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