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1. INTRODUCTION
Nanotechnology is a leading interdisciplinary science that is
emerging as a distinctive field of research. Its advances and
applications will result in technical capabilities that will allow

the development of novel nanomaterials with applications
that will revolutionize the industry in many areas [1, 2]. It is
now well established that dimensionality plays a critical role
in determining the properties of materials, and its study has
produced important results in chemistry and physics [3].

Nanoparticles are one of the cornerstones of nano-
technology. Indeed, even though the research in this field
has been underway for a long time, many present and future
applications are based on nanoparticles. For instance, the
electron tunneling through quantum dots has led to the pos-
sibility of fabricating single-electron transistors [4–9]. One
concept particularly appealing is a new three-dimensional
periodic table based on the possibility of generating artifi-
cial atoms from clusters of all of the elements [10]. This
idea is based on the fact that several properties of nano-
particles show large fluctuations, which can be interpreted
as electronic or shell-closing properties with the appearance
of magic numbers. Therefore, it is conceivable to tailor arti-
ficial superatoms with given properties by controlling the
number of shells on a nanoparticle.
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2 Crystallography and Shape of Nanoparticles and Clusters

The development of nanotechnology can be approached
from several directions; mesoscopic physics, microelectron-
ics, materials nanotechnology, and cluster science. The dif-
ferent fields are now coming together, and a completely new
area is emerging [11, 12]. Figure 1 illustrates how the dif-
ferent approaches are converging; it exhibits the domains
of clusters and nanoparticles with different structures that
result from an increase in the number of atoms. The dif-
ferent possible structures include nanorods, nanoparticles,
fullerenes, nanotubes, and layered materials.

One of the most remarkable advances in this field has
been the synthesis of ligand-capped metallic clusters. In a
seminal contribution, Brust et al. [13] used the classical
two-phase Faraday colloid separation combined with con-
temporary phase-transfer chemistry to produce small gold
nanoclusters coated with alkanethiolate monolayers. Sev-
eral groups have pursued this technique [14–21], and have
introduced improvements and modifications to the original
technique. Whetten and his group [15, 16] made important
contributions to this technique.

A significant property of ligand-capped clusters is that
they can be repeatedly isolated from and redissolved in
common organic solvents without irreversible aggregation or
decomposition. The properties of the monolayer-protected
nanoparticles (MPNs and MPANs) allow handling in ways
that are familiar to the molecular chemist since they are sta-
ble in air conditions. The MPNs of some metals such as Pt
[22], Ag [23], Rh, and Pd [24] have been synthesized.

2. GEOMETRIC CONSIDERATIONS

2.1. Clusters and Nanoparticles

Since the pioneering work of Ino and Ogawa [25, 26], it
was clear that, in most cases, the structure of nanoparticles
cannot be described by the bulk crystallography of the used
material. The concept of multiple twins was used to explain
many of the structures, such as the icosahedron and the
decahedron. This concept was directly imported from the
macroscopic metallurgical studies, and was certainly very
useful for a first understanding of the structure of nano-
particles. Another related research field was the study of
clusters formed by few atoms. From that field, we learned
that structures are formed by shells, and the concept of a
magic number was introduced [27]. Nanoparticles referred
to sizes of ∼5–10 nm, and clusters referred to sizes of
∼1 nm. In recent times, the computational tools for study
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Figure 1. Domains of nanoparticles and clusters with different
structures.

clusters allow the analysis of a large number of atoms,
and the methods to study nanoparticles allow interrogating
smaller nanoparticles. The two fields are merging into one.
In this chapter, we will use the term particle and cluster
indistinctly.

2.2. Clusters with Cubic Symmetry

When considering atom clusters of nanometric dimensions,
it can be supposed that they correspond to some symmetry
group. In previous works, small clusters (up to tens of atoms)
of diverse forms (tetrahedron, hexahedron, octahedron, dec-
ahedron, dodecaheltahedron, trigonal, trigonal prism, and
hexagonal antiprism, with and without a central site) have
already been studied [28]. Partially and totally capped clus-
ters were also considered (clusters to which a site has been
added to each face of the polyhedron, equidistant to every
site of the face), in order to vary the number of sites for all
of the polyhedrons, and thus allowing the comparison as a
function of the number of sites.

Geometric characteristics of the clusters formed by con-
centric layers can be considered, as formed by equivalent
sites: sites located at the same distance from the origin,
which occupy the same geometric place and have the same
environment, that is, the same number and type of neigh-
bors. These layers can be arranged in such a way that they
group in shells forming clusters of different sizes, retaining
the original geometric structure. The number of shells in the
cluster is called the order of the cluster, and is represented
by the letter v. The studied structures were: the icosahedron,
the face-centered cubic structure fcc (the cubooctahedron),
the body-centered cubic bcc, and the simple cubic sc.

In order to determine the stability of the structures from
an energetic point of view, a study of the cubooctahedral
and icosahedral structure was performed using the embed-
ded atom method (EAM) for the transition metals Cu, Pd,
Ag, Ni [29]. It was determined that, for sizes smaller than
2000 atoms, the icosahedron is the most stable structure,
and for larger sizes, it is the cubooctahedron (CO). For this
study, the advantage of having equivalent sites in the clusters
was used to reduce the computation time. In a latter study,
based upon the same metals, small clusters of fewer than
100 atoms with regular polyhedron geometries were used,
and to change the cluster size, partially and totally capped
clusters were considered. Tetrahedral clusters showed the
highest stability for sizes of fewer than 18 atoms, and icosa-
hedrons for larger sizes.

In this work, the structural stability competition among
different regular structures of the concentric shell type is
searched. Here, the studied geometries are reproduced, con-
sidering some other arrays of the layers in shells, which give
rise to other geometries. The fcc structure considers many
structures, which are divided into two groups: (1) with a
central site, and (2) without a central site. Among the cen-
tered ones, the cubooctahedron, octahedron, and truncated
octahedron are considered. For the ones not centered, the
octahedron and the truncated octahedron are considered.
The bcc structure has the dodecahedron. The sc structure
does not allow a study like the one presented here because,
when a truncation is tried, second neighbor distances are
obtained. Once the geometric properties of the structures
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Crystallography and Shape of Nanoparticles and Clusters 3

are determined, the EAM is applied to them, and their sta-
bility is discussed.

2.3. Geometric Characterization

The following procedure was used to determine the geo-
metric characteristics of the structures. (1) First, identify the
structures, that is, their geometric shape; (2) the nature of
the site coordinates which conform the structures; and (3)
their neighbors with surrounding layers, in order to identify
the equivalent sites and generate the concentric shell-type
structures. Once this previous stage is completed, the geo-
metric properties to be determined are defined, the struc-
tures are presented, and the geometric properties of each
structure are numbered. Afterwards, based on the geomet-
ric characteristics of each structure, the analytic expressions
are deducted as a function only of the cluster order for the
defined properties.

An example of the concentric shell-type structures is
shown in Figure 2, which presents the cubooctahedron in
three different sizes. In this figure, a central site surrounded
by 12 sites forming a cubooctahedron with one first shell can
be seen; Figure 2(a). Then it is covered with another shell
of sites distributed in three layers of equivalent sites, as will
be seen later, but retaining the original geometric shape;
Figure 2(b). And finally, Figure 2(c) presents a three-shell
cubooctahedron.

The structures considered are the face-centered cubic fcc
[Fig. 3(a)] and the body-centered cubic bcc [Fig. 3(d) and
(e)]. Although both are cubic, in Figure 3(a), the fcc does
not seem to be cubic, but the face-centered cubic structure
with a central site fccc [Fig. 3(b)] and the face-centered
cubic structure without a central site fccs [Fig. 3(c)] show
that they do have a cubic shape: 8 vertexes, 6 square faces,
and 12 edges. The bcc structure has a central site, while
the fcc structure can be considered with and without a cen-
tral site. Truncating each one of them in a certain direc-
tion, noncubic structures are obtained; they have, besides
vertexes (V ), edges (A), and square faces (C), faces of dif-
ferent shapes: a triangular face (T ), a hexagonal face (H),
and a rombohedral face (R). The resulting structures are:
the cubooctahedron [Fig. 4(a)], the octahedron [Fig. 4(b)],
the truncated octahedron [Fig. 4(c)], and the dodecahe-
dron [Fig. 4(d)]. For the fccc, the obtained structures are
the cubooctahedron CO, the octahedron OCTAC, and the
truncated octahedron OCTTC; for the fccs, the structures
obtained are the octahedron OCTAS and the truncated octa-
hedron OCTTS; and for the bcc, only the decahedron is
obtained, DODE.

(a) (b) (c)

Figure 2. Cubooctahedrons formed by a central site and (a) one layer,
(b) two layers, and (c) three layers.

(a) (b) (c)

(d) (e)

Figure 3. Structures (a) face-centered cubic fcc, (b) face-centered cubic
with central site fccc, (c) face-centered cubic without central site fccs,
and (d), (e) body-centered cubic bcc.

Table 1 presents the number of characteristic sites of each
structure, in such a way that each structure is read as: the
structure is formed by V vertexes attached by A edges form-
ing X faces of different types, where X = C	 T 	H	R, as it
corresponds. The icosahedron is included [Fig. 4(e)] because
it can be obtained by an adequate distortion of the CO, and
it is useful as a reference for a comparison of results. ICO,
the fccc and its derivates, as well as the bcc and the DODE,
present a central site. The OCTTC is centered over an octa-
hedron with a central site of 19 sites, and the OCTTS over
a regular octahedron of 6 sites.

2.3.1. Standard Coordinates
Each of the structures studied here, except the ICO, cor-
responds to a well-defined crystalline structure, fcc or bcc,
so that the coordinates of the geometric sites which com-
pose them are characteristic of each one of them. In each
structure, the standard coordinates are described by triads
(a, b, c); a, b and c are integers, where the total number
of sites is obtained by doing permutations and commuta-
tions of the positive and negative values of a, b, and c.
Table 2 presents the characteristics of standard coordinates
for each structure as a function of the cluster order v for
each structure.

2.3.2. First Neighbors
There will be different types of equivalent sites, depending
on the geometric structure, and each type will occupy a geo-
metric position which will be of type vertex (V ), edge (A),

(a) (b) (c) (d) (e)

Figure 4. Polyhedrons resulting from truncation of fcc and bcc struc-
tures. (a) Cubooctahedron, (b) octahedron, (c) truncated octahedron,
and (d) dodecahedron. As a result of an adequate distortion of the
cubooctahedron, the icosahedron is obtained.
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4 Crystallography and Shape of Nanoparticles and Clusters

Table 1. Number of geometric sites corresponding to the structures of
the first column. Last column presents the number of central sites of
the structure.

Central
V A C T H R site

ICO 12 30 — 20 — — 1
fccc 8 12 6 — — — 1
CO 12 24 6 8 — — 1
OCTAC 6 12 — 8 — — 1
OCTTC 24 36 6 — 8 — 19
fccs 8 12 6 — — — —
OCTAS 6 12 — 8 — — —
OCTTS 24 36 6 — 8 — 6
bcc 8 12 6 — — — 1
DODE 14 24 — — — 12 1

square face (C), triangular face (T ), hexagonal face (H),
and it will have a total number of neighbors, coordination
z, which will correspond to the structure, but the number
of neighbors with layers of its same shell, with interior and
exterior shells, will be characteristic of each site. Table 3
presents the different types of sites in the studied structures,
as well as the number of first neighbors with layers of inte-
rior shells (↓), in the same shell (↔), and with exterior shells
(↑). Also, total coordination z in the structure is presented.
The truncated octahedron with a central site presents two
types of edges, the edges between squared and hexagonal
faces with coordination (2, 5, 5), and the edges between
hexagonal faces with coordination (1, 6, 5), while all of the
other structures have only one. It should be noticed that, in
order to obtain structures of the concentric shell type in the
fccc and fccs structures, two shells will be needed, as shown
in Figure 5 for fccc (similarly for fccs); Figure 5(a) presents
the fccc cube of 13 sites; Figure 5(b) shows the fccc of 63
sites, which will be a complete shell of 62 sites (12+50) over
the central site; Figure 5(c) and (d) present the fccc of 171
sites and the fccc of 365 sites; the latter is the one with two
shells, one with 62 sites and the other with 302 sites. The
surface sites in the fccc of 13 sites become internal when
adding 50 to complete the fccc of 63 sites; the same happens
for that one of the 171 sites when covering it to complete the
one with 365. From Figure 5(b), it is observed that there will
exist 1× 12 A sites, 5× 6 C and 8 V , but looking carefully,
it will be noticed that the C sites are not equivalent because
the one in the center of the squared face has a coordination
of 4 with the surface sites, while the other has a coordina-
tion of 6, but both have a coordination of 4 toward external
layers. It is also observed that in Figure 5(c) the four sites
of type C at the center of the face have a coordination of
4 with the surface sites, and the other eight sites of type
C have a coordination of 5 with surface layers, but all of
them have 4 toward external layers, while in Figure 5(d), it
is observed that the C sites near the vertexes have a coor-
dination of 6 with sites over the same surface shell, and the
ones close to sites A have a coordination of 5; this is why in
Table 3 the coordination for C sites can be of three types,
but all of them with a coordination of 4 toward external lay-
ers. That is why in fccc and fccs there are shells composed
of two subshells, one that will contain the surface sites, and
the other that will remain internal. Surface sites will interact

with the internal sites, and these internal ones with those of
the cluster and the surface ones.

2.3.3. Definition of Geometric Properties
Table 4 presents definitions and their mathematical expres-
sions for the general geometric characteristics, which can be
expressed analytically as a function of only the order of the
cluster v, for each structure or geometric array. The upper
section of Table 4 refers to the geometric characteristics of
the cluster, the middle section to the bonds, and it relates
Table 3 and the superior part of Table 4, and the lower sec-
tion of Table 4 to the average coordination based on the rest
of Table 4.

The cluster can be defined as a nucleus and a surface over
the nucleus. The number of I sites, the number of types of I
sites and what refers to dispersions is over the surface, and
the average number of bonds and coordination is over the
involved sites of the cluster. In the expressions for NCC and
NSS , �↑�I means the number of I -site bonds in the internal
layer (the nucleus surface) with sites in the external layer
(the cluster surface), �↓�I means the number of I-site bonds
in the external layer (the cluster surface) with sites in the
internal layer (the nucleus surface), and (↔�I means the
number of I -site bonds in the surface of the cluster with
sites in the same surface. It must be clear that, due to the
fact that there are many ways to coordinate C sites in the
surface for fccc and fccs structures, the formula for NCC

must only be used as
∑

I �↑�I ×NI�v−1�, and only for these
two structures, the proposed equity does not apply.

2.4. fcc Structure

An fcc structure is that in which the unit cell is a cube with
sites in the vertexes and in the center of squared faces; this
means that there are 14 sites on a cube, 8 vertexes, and 6
squared faces [Fig. 3(a)]; also, it can be seen as a completely
capped octahedron. When attaching many of these arrays
with common or shared sites in faces and vertexes, clusters
are obtained with sites in vertexes, edges, and squared faces.
The origin of coordinates can be chosen to be at the center
of the cube or on a vertex, obtaining structures with and
without a central site, respectively.

2.4.1. fcc Structure with a Central Site
In the fcc structure with a central site, the cubic cluster
of order 1 is a cube with 63 sites, distributed in 5 layers
around a central site [Fig. 5(b)]; it can be seen that it is an
array of 6 unit cells with common sites. The order 2 clus-
ter is obtained when covering the one of order 1 with 302
sites distributed in 13 layers to obtain a total of 365 sites
[Fig. 5(d)], and so on. Layers of equivalent sites can be iden-
tified (Table 1): squared face (C), edges (A), and vertexes
(V ). Table 2 presents the standard coordinates and its char-
acteristics; it can be seen that the sum of the standard coor-
dinates a, b, and c is an even number, and in Table 3, the
coordination of each site. From Figure 5(a)–(d), it can be
seen that a shell is composed of two subshells. Table 5 lists
the geometric characteristics of the fccc structure, separat-
ing each shell into subshells to allow the calculus of surface
dispersions and the number of bonds as defined in Table 4,
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Table 2. Standard coordinate characteristics for each of the structures.

Site a b c b + c a+ b + c
even

fccc S [2v − 1	 2v] �0	 2v − 1� [2v	 6v − 2]
E [2v − 1	 2] �0	 2v − 2� (even) [2v	 6v − 2]
V 2v 6v

even
CO S v �0	 v − 2� �v − 2� �v	 2v − 2�

T �1	 v� 2v
E v �1	 v� v 2v
V v 0 2v

OCTAC T �1	 2v − 2� 2v
E �1	 2v − 1� 0 2v
V 2v 0 0 2v

OCTTC S v + 2 �0	 v − 2� �0	 �v − 2�/2�	 v even �v + 2	 2v�
�0	 �v − 3�/2�	 v odd

H �v − 2	 v + 1� ��v/2�+ 1	 v�	 v even �1	 �v/2�+ 2�	 v even 2v + 2
��v + 1�/2	 v�	 v odd �1	 �v + 3�/2�	 v odd

ES v + 2 �1	 v� v 2v + 2
EH v + 1 0 2v + 2
V v + 2 v 0 2v + 2

odd
fccs S �2v − 2	 2v − 1� �0	 2v − 2� �2v − 1	 6v − 5�

E �2v − 2	 2v − 1� �1	 2v − 1� (odd) �4v − 3	 6v − 3�
V 2v − 1 6v − 3

OCTAS T �1	 v − 1� 2v − 1
E �1	 2v − 1� 0 2v − 1
V 2v − 1 0 0 2v − 1

OCTTS S v + 1 �0	 v − 2� �0	 v/2�	 v even �v − 4	 v − 2�
�0	 �v − 1�/2�	 v odd

H �1	 v� 2v + 1
E v + 1 �v/2	 v� �1	 v/2� 2v + 1

��v − 1�/2	 v� �1	 �v − 1�/2�
V v + 1 v 0 2v + 1

even, v even
odd, v odd

bcc S v �0	 v − 2� �v	 3v − 4�
E v �0	 v − 2� (even) �2v	 3v − 2�

�1	 v − 2� (odd) �2v + 1	 3v − 2�
V v 3v

DODE R �1	 v − 1� 2v − 1
E �0	 2v/− 2� 0 2v − 1
V 2v − 1 0 0 2v − 1

and for each shell. General expressions for the geometric
characteristics of Table 4 are presented in Table 6. These
are shown when they are being considered as shells or sub-
shells; in both columns corresponding to subshells, the first
one is for the internal, and the second one is for the external
or surface. N� represents the number of sites added to the
cluster of order v − 1, Nsup is the number of sites forming
the surface, and it is the same for either of the considered
cases because the internal shell does not form part of the
surface. Besides this, the distinction is made among the dif-
ferent types of sites C forming the surface. In the calculus of
the number of bonds between the two sublayers, the coor-
dination from inside to outside was considered because all

of the types of C sites have a coordination of 4 with the
exterior shell.

When grouping the layers of equivalent sites in shells in
a different manner than the one given in fccc, geometries
that present, besides squared faces, triangular and hexagonal
faces will rise. Here, the cubooctahedron, octahedron, and
truncated octahedron are considered.

2.4.2. Cubooctahedron
The cubooctahedron can be obtained by truncating an fcc
structure in direction (111); this is shown in Figure 6(b),
where a cubooctahedron of 55 sites is presented, and is the
result of removing the 8 corners of a cube of 63 sites. It is
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Table 3. Number of first neighbors with shell on external layers ↑
(internal ↓) and with layers in the same shell ↔ for the different types
of sites of the structures fcc, icosahedral, and bcc. The total coordina-
tion z is given by �↑�+ �↓�+ �↔�.

Faces
C T H R A V z

↑ ↑ ↑ ↑ ↑ ↑ ↑
↔ � 	 H ♦ \ •
↓ ↓ ↓ ↓ ↓ ↓ ↓

4 4 4 — — — 7 9
4 5 6 — — — 4 3 12
4 3 2 — — 1 0

fcc CO 4 3 — — 5 7
4 6 — — 5 4 12
4 3 — — 2 1

OCTAC — 3 — — 5 8
— 6 — — 6 4 12
— 3 — — 1 0

OCTTC 4 — 3 — 5 5 6
4 — 6 — 5 6 5 12
4 — 3 — 2 1 1

4 4 4 — — — 7 9
4 5 6 — — — 4 3 12
4 3 2 — — 1 0

fccs OCTAS — 3 — — 5 8
— 6 — — 6 4 12
— 3 — — 1 0

OCTTS 4 — 3 — 5 6
4 — 6 — 5 5 12
4 — 3 — 2 1

ICO — 3 — — 4 6
— 6 — — 6 5 12
— 3 — — 2 1

bcc 4 — — — 6 7
0 — — — 0 0 8
4 — — — 2 1

DODE — — — 2 3 4
— — — 4 4 4 8
— — — 2 1 0

formed by 8 triangular faces and 6 squared ones, attached
by 24 edges and 12 vertexes; see Table 1. Consequently,
the surface sites are localized in squared faces (C), triangu-
lar faces (T ), edges (A), and vertexes. The CO of order 1

(a) (b) (c) (d)

Figure 5. fcc polyhedrons of (a) 13 sites (central site plus a sublayer
of 12 sites), (b) 63 sites (a complete layer of 62 sites), (c) 171 sites
(a sublayer of 108 sites over the order 1 fccc), and (d) 365 sites (two
complete layers).

has a central site and a first shell with one single layer of
12 vertexes; Figure 6(a). The CO of order 2 is formed by
adding one shell formed by 42 sites in order to complete 55
[Fig. 6(b)], distributed in three layers: one layer of 6 C sites,
another of 24 A sites, and a third one of 12 V sites. When
adding a third shell of 92 sites, the third order CO of 147
sites is completed [Fig. 6(c)]; sites are distributed in four lay-
ers: one of 24 C sites, another of 8 T sites, one more of 48 A
sites, and a fourth one of 12 V sites. Successively, complete
shells are added this way, forming clusters of order v.

The standard coordinates for the cubooctahedron are
listed in Table 2, the number of neighbors for each site can
be found in Table 3, and the geometric characteristics of the
CO are listed in Table 7; from this table, it is possible to
obtain the general expressions for the geometric characteris-
tics of the cubooctahedron defined in Table 4. These expres-
sions are presented in Table 11 for the cubooctahedron and
all of the other structures to be studies.

Figure 6(e) presents an icosahedron of 923 sites of
order 6. When comparing with the CO, which has the same
number of sites, from Figure 6(d), the distortion made to
obtain the ICO can be observed. Table 3 shows the num-
ber of neighbors for each site, and Table 8 reproduces the
geometric characteristics corresponding to the icosahedron,
which have been reported previously. A great similarity can
be noticed between Tables 7 and 8, in the columns refer-
ring to the types of sites or layers by shell (columns for T ,
A, V ), and in the sites at the surface, in the total (the two
last columns of tables N� and N ), and in the expressions
for both in Table 11. Based on these latter, it is possible to
obtain the dispersions due to the surface sites of both struc-
tures obtaining the graphic in Figure 7. Surface and vertex
dispersion is exactly the same for both structures; they start
close to 1 and in 1, respectively, and then they decrease. Dis-
persion in triangular faces, for both structures, shows a very
similar behavior; they start in the same value, and increase
with the size of the cluster, but DT in the ICO increases
faster. Similarly for the edges, they increase rapidly from
zero to a maximum value, and decrease slowly almost paral-
lel. The predominance of DT and DC for large sizes has to
be noticed for ICO and CO, respectively.

2.4.3. Octahedron with a Central Site
The octahedron with a central site has 6 vertexes (V ), 12
edges (A), and 8 triangular faces (T ); Figure 8. In this figure,
the sides of the triangular faces have a length of 2vdNN ,
an even number times the distance to first neighbors; this
means that the triangular faces do not present a central site,
and the number of sites for each edge is odd. The number
of neighbors for each site with sites in other layers can be
found in Table 3, the standard coordinates in Table 2, and
the geometric characteristics for the octahedron with a cen-
tral site are listed in Table 9. From this latter, the general
expressions of the geometric characteristics for the octahe-
dron with a central site (OCTAC) can be deducted, and are
presented in Table 11. Figure 9 shows an octahedron of 891
sites with a central site.

With the same method applied for the CO and the ICO,
the dispersions due to surface sites can be calculated from
Table 5, and the results are presented in the graphic of
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Table 4. General definitions of geometric parameters for different structures.

Symbol Definition Mathematical expression

N Total number of atoms in a cluster of order v
N� Number of atoms in a crust or on the surface
� Dispersion; N�/N
NI Number of surface atoms on site I	 I = S	 T 	H	R	E	V
Ra
I Number of shells in which are contained the I sites (a = even, odd)

�I Dispersion due to surface I sites NI/N�

�CO Number of internal bonds in a cluster of order v 1
2 × z×N�v − 1�

�OO Number of bonds between two adjacent crusts �v − 1� and v
∑

I �↑�I ×NI�v − 1� = ∑
I �↓�I ×NI�v�

Number of bonds between the core and the surface
�SS Number of bonds on the surface of a cluster of order v 1

2

∑
I �↔�I ×NI�v�

�C Number of bonds in a cluster of order v �CO + �CS + �SS

�Z cluster average coordination 2�C�v�/N�v��ZCO Core average coordination 2�CO�v�/N�v − 1�
�ZCS Core–surface average coordination �CC�v�/N��v − 1�
�ZSC Surface–core average coordination �CC�v�/N��v��ZSS Surface average coordination 2�SS�v�/N��v�

Figure 10. It can be observed that the surface dispersion
and dispersions due to edges and vertexes decrease, while
the one due to the triangular faces starts from zero and
increases rapidly, being predominant for larger sizes.

2.4.4. Truncated Octahedron
with a Central Site

A truncated octahedron is a structure centered over an octa-
hedron of 18 sites (2 layers) with a central site (layer 0),
and has 24 vertexes (V ) 36 edges (A), 6 squared faces (C),
and 8 hexagonal faces (H); Figure 11. Edges are of two
types: 24 between squared and hexagonal faces (AC), and
12 between hexagonal faces (AH); the number of AH sites
NAH is always equal to 12, one site in each edge (AH), while
the one in AC sites NAC depends on the order of the cluster;
this means that the length of the edges AC is variable, and
the one of AH edges is 2dNN . And so, the hexagonal faces
are irregular, except when the number of AC sites is 24 and
the number of AH sites is 12, which occurs in the cluster
of order 2. The number of first neighbors for each site can
be found in Table 3, standard coordinates are in Table 2,
and Table 10 presents the geometric characteristics of each
structure. Figure 12 shows the truncated octahedron of 711
sites with a central site.

Table 5. Geometrical characteristics for the face-centered cubic and
with central site fccc.

Sites at Layers at Layers at Sites at
v C A V C A V v Total v Total

1 0 12 0 0 1 0 1 2 12 13
30 12 8 2 1 1 4 6 50 63
30 24 8 2 2 1 5 6 62 63

2 72 36 0 2 2 0 4 10 108 181
150 36 8 6 2 1 9 19 194 365
222 72 8 8 4 1 13 19 302 365

3 240 60 0 6 3 0 9 28 300 665
366 60 8 12 3 1 16 44 434 1099
606 120 8 18 6 1 25 44 734 1099

From Table 10, it can be observed that the number of AH
sites is 12 and of V sites is 24 for all v; besides this, it is
possible to obtain the general expressions of the geometric
characteristics for the truncated octahedron with a central
site, as presented in Table 11.

Figure 13 presents the dispersions for the truncated octa-
hedron and with a central site, derived from the data of
Table 10. The predominance of the dispersion due to the
sites in hexagonal and squared faces for large sizes can be
observed. Dispersions due to other sites and the surface one
decrease with the size of the cluster.

With support from Tables 4 and 6–10, it is possible to
obtain the characteristics defined in the middle and lower
parts of Table 4 for each and every studied structure. Char-
acteristics in the middle part of Table 4 are presented in
Table 11, and Figures 14–17 present the obtained graphics of
the dependence of the number of bonds at the surface NSS ,
the number of bonds between the surface and the internal
cluster NSC , the number of bonds in the internal cluster NC ,
and of the total number of bonds in the cluster N , respec-
tively, for all of the structures studied here; the curves for
the ICO and CO practically coincide, so that just the curve
of CO will be presented, except for NC . It is observed that,
for the structures with a central site, and taking as reference
the CO and the ICO, the OCTAC has a larger number of
surface bonds and the OCTTC has fewer. But for NSC , the
CO and ICO surpass the OCTAC and the OCTTC. For NC ,
the OCTAC and the OCTTC surpass the CO. For N , there
are some crossings for smaller sizes, while for larger sizes,
the OCTAC and OCTTC surpass the CO.

2.4.5. EAM Applied to fcc Structures
The embedded atom method is applied, in the Foiles ver-
sion and with the parameters of copper, to clusters with
central site fcc structures in order to calculate the cohesion
energy per atom, determining in this way the stability of the
clusters. The results are compared with the ones from the
icosahedrons and cubooctahedrons previously reported [28].
Figure 18 presents the cohesive energy graphic as a function
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Table 6. Particular expressions of the geometrical characteristics for the fcc with central site fccc, and without central site fccs structures.

fccc fccs
Shells Subshells Shells Subshells

N 32v3 + 24v2 + 6v + 1 32v3 − 24v2 + 6v
N� 96v2 − 48v + 4 48v2 − 48v + 12 48v2 + 2 96v2 − 144v + 62 48�v − 1�2 48v2 − 48v + 14
N 48v2 + 2 48v2 − 48v + 14

�
48v2 + 2

32v3 + 24v2 + 6v + 1
48v2 − 48v + 14

32v3 + 24v2 + 6v + 1
N 24 — 24 24 — 24
R 1 — 1 1 — 1
N 48�v − 1� — 48�v − 1� 24�2v − 3� — 24�2v − 3�
R v − 1 — v − 1 v − 1 — v − 1
N 24��2v − 1�2 + �2v − 2�2� — 24��2v − 1�2 + �2v − 2�2� 6��2v − 2�2 + �2v − 3�2� — 6��2v − 2�2 + �2v − 3�2�
R v2 — v2 v�v − 1� — v�v − 1�
NE 24�2v − 1� 12�2v − 1� 48�v − 1� 24�v − 1�
R
p
E 2v v 2�v − 1� v − 1

NV 8 0 8 8 0 8
RV 1 0 1 1 0 1
�C 6�32v3 − 24v2 + 6v − 13� 12�16v3 − 36v2 + 27v − 7�
�CC 12�16v2 − 10v + 1� 24�8v2 − 13v + 5�
�SS 48v�4v + 48� 24�8v2 − 6v + 1�
� 4�48v3 + 60v2 − 9v − 14� 12�16v3 − 4v2 − 11v + 5�

of N 1/3 for the octahedron and truncated octahedron clus-
ters of fcc with central site type, for sizes from 300 to 3400
atoms. From Figure 18, it can be seen that the truncated
octahedrons (�) have a higher stability than the icosahe-
drons (•) and cubooctahedrons (�), while the octahedrons
(♦) have sizes larger than 900 atoms.

In a previous work, it was found that the CO presented a
higher stability than the ICO for larger sizes; when analyzing
the number of bonds in the clusters, it is found that this con-
dition is present when the number of bonds of CO surpasses
the ICO ones. The competition among fcc structures with a
central site and the icosahedron observed in the graphic of
Figure 18 must have the same origin.

2.5. fcc Structure without Central Site

In the fcc structure without a central site, the cubic clus-
ter of order 1 has the same unit cell as the fcc structure
of Figure 5(a), a cube with 14 sites, 8 in vertexes and 6
in the center of the squared faces. The second order clus-
ter has 172 sites [Fig. 15(c)], which results from covering
the first-order cluster with one shell of 158 sites, distributed
in 8 layers; the second-order cluster is an array of 9 cubes
attached by faces and common sites. The next cubic cluster
is formed by the second-order one and a shell of 494 sites in
18 layers covering it, and so on. Equivalent sites layers can

(a) (b) (c) (d) (e)

Figure 6. Cubooctahedron of (a) order 1 of 13 sites, (b) order 2 of 55
sites, (c) order 3 of 147 sites, and (d) order 6 of 923 sites. Observe the
distortion of CO (d) to obtain (e) an icosahedron of order 6 of 923
sites.

be identified: Table 1: squared face (C), edges (A), and ver-
texes (V ). As in the fccc structure, each shell is composed of
two subshells. Table 12 lists the geometric characteristics of
the fccs structures, and the separation of subshells for each
shell is done in order to allow the calculus of the number of
bonds as defined in Table 2, and for each shell also. General
expressions for the geometric characteristics of Table 4 are
presented in Table 10. Table 2 presents the standard coordi-
nates and their characteristics; it can be seen that the sum
of the standard coordinates a, b, and c is an odd number,
and in Table 3, the coordination of each site is presented.

When grouping the layers of equivalent sites in shells, in
a different way than for fccs, the geometries presented are
given: besides the squared faces, triangular and hexagonal
faces are included. Here, the cubooctahedron, octahedron,
and truncated octahedron will be considered.

2.5.1. Octahedron without Central Site
The octahedron is formed by 6 vertexes, 12 edges, and 8
triangular faces. Figure 19 shows the octahedrons of 44 and
146 sites, without a central site. In these figures, it can be

Table 7. Geometrical characteristics for the cubooctahedron.

Sites at Layers at Layers at Sites at
v C T A V C T A V v Total v Total

1 0 0 0 12 0 0 0 1 1 1 12 13
2 6 0 24 12 1 0 1 1 3 4 42 55
3 24 8 48 12 1 1 1 1 4 8 92 147
4 54 24 72 12 3 1 2 1 7 15 162 309
5 96 48 96 12 3 2 2 1 8 23 252 561
6 150 80 120 12 6 3 3 1 13 36 362 923
7 216 120 144 12 6 4 3 1 14 50 492 1415
8 294 168 168 12 10 5 4 1 20 70 642 2057
9 384 224 192 12 10 7 4 1 22 92 812 2869

10 486 288 216 12 15 8 5 1 29 121 1002 3871
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Table 8. Geometrical characteristics for the icosahedron.

Sites at Layers at Layers at Sites at
v T A V T A V v Total v Total

1 0 0 12 0 0 1 1 1 12 13
2 0 30 12 0 1 1 2 3 42 55
3 20 60 12 1 1 1 3 6 92 147
4 60 90 12 1 2 1 4 10 162 309
5 120 120 12 2 2 1 5 15 252 561
6 200 150 12 3 3 1 7 22 362 923
7 300 180 12 4 3 1 8 30 492 1415
8 420 210 12 5 4 1 10 40 642 2057
9 560 240 12 7 4 1 12 52 812 2869

10 720 270 12 8 5 1 14 66 1002 3871

seen that there are sites in vertexes (V ), edges (A), and
in triangular faces (T ). In this structure, the sides of the
triangular faces have a length of (2v−1�dNN , an odd number
times the distance to first neighbors dNN ; this means that the
triangular faces can present a central site, and the number
of sites in each edge is even. The number of first neighbors
is presented in Table 3, the standard coordinates in Table 2,
and the geometric characteristics for the octahedron without
a central site are listed in Table 13. Figure 20 shows the
octahedron of 1156 sites without a central site.

The number of V sites NV is equal to 6 for all v, and
they are of just one type. From Table 13, it is possible to
determine, for the octahedron without a central site, the
dependence of the geometric characteristics on the order of
the cluster v, and it is reported in Table 15. This same pro-
cedure is applied for the truncated octahedron, and without
a central site and with the ones from the dodecahedron,
which will be studied afterwards. The surface dispersion and
the one due to each surface site also can be obtained from
Table 13, and are presented in the graphic of Figure 21.
The strong predominance of the sites of triangular faces and
the fast decrease of the dispersions due to the vertexes and
edges can be observed.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of sites N(1/3)

Surface Dispersion

0
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Squared faces (C)
Triangular faces (C)
Edges (C)
Vertices (C e I)
Surface (C e I)
Triangular faces (I)
Edges (I)

Figure 7. Dispersions due to surface sites of the cubooctahedron (C)
and icosahedron (I) as a function of the cubic root of the number of
sites.

(a) (b)

Figure 8. Octahedron of 19 atoms with central site. Smaller atoms are
presented in (a) to allow observation of first neighbor bonds and central
site in (b).

Table 9. Geometrical characteristics for the octahedron with central
site.

Sites at Layers at Layers at Sites at
v T A V T A V v Total v Total

1 0 12 6 0 1 1 2 2 18 19
2 24 36 6 1 2 1 4 6 66 85
3 80 60 6 3 3 1 7 13 146 231
4 168 84 6 5 4 1 10 23 258 489
5 288 108 6 8 5 1 14 37 402 891
6 440 132 6 12 6 1 19 56 578 1469
7 624 156 6 16 7 1 24 80 786 2255
8 840 180 6 21 8 1 30 110 1026 3281
9 1088 204 6 27 9 1 37 147 1298 4579

10 1368 228 6 33 10 1 44 191 1602 6181

Figure 9. Octahedron of 891 atoms, order 5, and with central site.
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2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Figure 10. Dispersions due to surface sites of the octahedron, with a
central site.

(a) (b)

Figure 11. Truncated octahedron with central site of (a) order 1 and 79
atoms, and (b) order 2 and 201 atoms.

Table 10. Geometric characteristics for the truncated octahedron with central site.

Order Sites at Layers at Layers Sites
v C H AC AH V C H AC AH V en v Total en v Total

1 0 24 0 12 24 0 1 0 1 1 3 5 60 79
2 6 56 24 12 24 1 3 1 1 1 6 11 122 201
3 24 96 48 12 24 1 3 1 1 1 7 18 204 405
4 54 144 72 12 24 3 4 2 1 1 11 30 306 711
5 96 200 96 12 24 3 6 2 1 1 13 43 428 1139
6 150 264 120 12 24 6 7 3 1 1 18 61 570 1709
7 216 336 144 12 24 6 9 3 1 1 20 81 732 2441
8 294 416 168 12 24 10 11 4 1 1 27 108 914 3355
9 384 504 192 12 24 10 13 4 1 1 29 137 1116 4471
10 486 600 216 12 24 15 15 5 1 1 37 174 1338 5809

Figure 12. Truncated octahedron of 711 atoms, order 4, with central
site.

2.5.2. Truncated Octahedron without
Central Site

The truncated octahedron without a central site, Figure 22,
is formed by a central octahedron surrounded by 6 squared
faces and 8 irregular hexagonal faces (3 sides of length 1
and 3 of length equal to the order of the cluster v, in units
of dNN , alternated) attached by 24 vertexes and 36 edges, so
the edges are of two types: 24 between squared and hexago-
nal faces and 12 between hexagonal faces; the first ones are
length dependent on the cluster order, and the second ones
on length 1dNN ; this means that there is not a single site in
them, so the first 24 are simply called A. The number of first
neighbors of each site is presented in Table 3, the standard
coordinates in Table 2, and the geometric characteristics for
the truncated octahedron without a central site are listed in
Table 12. Figure 23 shows the truncated octahedron of 1288
without a central site.

The number of V sites NV is equal to 24 for all v, and
they are of just one type. From Table 14, the expressions for
the geometric characteristics for the truncated octahedron
without a central site can be determined, and are presented
in Table 15. Also, the surface dispersions can be determined,
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Table 11. Particular expressions of the geometrical characteristics for the icosahedral and fcc with central site structures.

CO ICO OCTAC OCTTC

N �10/3�v3 + 5v2 + �11/3�v + 1 �16/3�v3 + 8v2 + �14/3�v + 1 �10/3�v3 + 21v2 + �107/3�v + 19
N� 10v2 + 2 16v2 − 48v + 2 10v2 + 32v + 18
� �30v2 + 6�/�10v3 + 15v3 + 11v + 3� 3�v2 − 48v + 2�/�16v3 + 24v2 + 14v + 3� 3�10v2 + 32v + 18�/�10v3 + 63v2 + 107v + 57�
NS 6�v − 1�2 — — 6�v − 1�2

R
p
S v�v + 2�/8 — — v�v + 2�/8

Ri
S �v2 − 1�/8 — — �v2 − 1�/8

NT 4�v − 1��v − 2� 10�v − 1��v − 2� 8�v − 1��2v − 1� 4v2 + 20v
Rm
T A B —

NH — — — 4v2 + 20v
Rm
H — — — C

NE 24�v − 1� 30�v − 1� 12�2v − 1� 24�v − 1�
R
p
E v/2 v − 1 v/2

Ri
E �v − 1�/2 v − 1 �v − 1�/2

�CO 4v�5v2 + 3v + 1� 20v3 + 15v2 + 7v 32v3 − 48v2 + 28v + 11 20v3 + 66v2 + 22v + 6
�CC 12�3v2 − 3/! + 1� 6�5v2 − 5/! + 2� 12�4v2 − 4v + 1� 12�3v2 + 5v + 1�
�SS 24v3 30v2 48v2 24�v2 + 4v + 2�
�C 4�5v3 − 12v2 + 10v − 3� 20v3 − 45v2 + 37v − 12 2�16v2 + 24v2 − 10v + 3� 2�10v3 + 63v2 + 89v + 33�

A =




m/2∑
"=1

�3"+ a�+
�m/2�−1∑
"=1

3"# m

{
v = 3m+ a
a = −1	 0	 1

1+ a
1+ a +

�m−1�/2∑
"=1

�6"+ a�# m

B =




m/2∑
"=1

�3"+ a�+
�m/2�−1∑
"=1

3"# m

{
2v = 3m+ a
a = −1	 0	 1

1+ a
1+ a +

�m−1�/2∑
"=1

�6"+ a�# m

A =




m/2∑
"=1

�3"+ a�+
�m/2�−1∑
"=1

3"+
b∑
1

1# m

{
v = 3m+ a
a = −1	 0	 1

1+ a
1+ a +

�m−1�/2∑
"=1

�6"+ a�+
b∑
1

1# m

where b is the integer of �v +m+ a + 1�/2

and are presented in the graphic of Figure 24. A not so
strong predominance of the sites in squared and hexagonal
faces can be observed, while the other dispersions decrease
as the cluster size increases.
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Figure 13. Dispersions due to surface sites of truncated octahedron
with central site.

With support from Tables 4 and 13, it is possible to obtain
expressions for the number of bonds for the different types
of bonds in the truncated octahedron without a central site,
which are presented in Table 14, and whose graphics are
shown in Figures 16–19.
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Figure 14. Number of surface bonds as a function of the number of
sites.
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Figure 15. Number of bonds between the surface and the internal clus-
ter as a function of the number of sites.
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Figure 16. Number of internal bonds as a function of the number of
sites.
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Figure 17. Total numbers of bonds as a function of the number of sites.
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Figure 18. Cohesive energy per atom as a function of the cubic root of
the number of atoms in the cluster for the octahedrons and truncated
octahedrons type fcc with a central site.

Table 12. Geometric characteristics for the face-centered cubic struc-
ture and without central site, fccs.

Sites at Layers at Layers at Sites at
v C A V C A V v Total v Total

1 0 0 0 0 0 0 0 0 0 0
6 0 8 1 0 1 2 2 14 14
6 0 8 1 0 1 2 2 14 14

2 24 24 0 1 1 0 2 4 48 62
78 24 8 4 1 1 6 10 110 172

102 48 8 5 2 1 8 10 158 172

3 144 48 0 4 2 0 6 16 192 364
246 48 8 9 2 1 12 28 302 666
390 96 8 13 4 1 18 28 494 666

(a) (b)

Figure 19. Octahedron without central site of (a) order 2 with 44 sites,
and (b) order 3 with 146 sites.
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Table 13. Geometric characteristics for the octahedron without central
site.

Sites at Layers at Layers Sites
v T A V T A V v Total v Total

1 0 0 6 0 0 1 1 1 6 6
2 8 24 6 1 1 1 3 4 38 44
3 48 48 6 2 2 1 5 9 102 146
4 120 72 6 4 3 1 8 17 198 344
5 224 96 6 7 4 1 12 29 326 670
6 360 120 6 10 5 1 16 45 486 1156
7 528 144 6 14 6 1 21 66 678 1834
8 728 168 6 19 7 1 27 93 902 2736
9 960 192 6 24 8 1 33 126 1158 3894

10 1224 216 6 30 9 1 40 166 1446 5340

Figure 20. Octahedron of order 6 of 1156 atoms without a central site.
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Figure 21. Dispersions caused by surface sites of octahedron without a
central site as a function of the cluster size.

Figure 22. Truncated octahedron without a central site of order 3 with
260 sites.

2.5.3. EAM Applied to fcc Structures
without Central Site

The embedded atom method is applied, in the Foiles ver-
sion and with the parameters of copper, to clusters with fcc
structures without a central site to calculate the cohesion
energy per atom, determining in this way the stability of
the clusters. The results are compared with the ones from
the icosahedrons and cubooctahedrons previously reported
[28]. Figure 28 presents the cohesive energy graphic as a
function of N 1/3 for the octahedron and truncated octahe-
dron clusters of fcc without central site type, for sizes from
300 to 3400 atoms. From Figure 28, it can be seen that the
truncated octahedrons (�) as well as the octahedrons (♦)
compete in stability with the icosahedrons (•) and cubooc-
tahedrons (�). And most of all, the truncated octahedrons
show a higher stability than the octahedrons.

Figure 23. Truncated octahedron without a central site of order 6 with
1288 sites.
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Table 14. Geometric characteristics for the truncated octahedron with-
out central site.

Sites at Layers at Layers at Sites at
v C H A V C H A V v Total v Total

1 0 8 0 24 0 1 0 1 2 3 32 38
2 6 24 24 24 1 1 1 1 4 7 78 116
3 24 48 48 24 1 2 1 1 5 12 144 260
4 54 80 72 24 3 3 2 1 9 21 230 490
5 96 120 96 24 3 4 2 1 10 31 336 826
6 150 168 120 24 6 5 3 1 15 46 462 1288
7 216 224 144 24 6 7 3 1 17 63 608 1896
8 294 288 168 24 10 8 4 1 23 86 774 2670
9 384 360 192 24 10 10 4 1 25 111 960 3630

10 486 440 216 24 15 12 5 1 33 144 1166 4796

2.6. bcc Structure

The body-centered cubic structure is a cube with sites in the
vertexes and in the center of the cube, that is, there are 9
sites over a cube, 8 in vertexes, and 1 in the center of it; this
is a cluster of order 1 with cubic arrays [Fig. 29(a)]. When
attaching many of these arrays, clusters with sites in vertexes,
edges, and squared faces are obtained. The cubic cluster of
second order consists of an array of 8 cubes, which results
from covering the first cube with a shell of sites distributed
in three layers: 6 in squared face (C), 12 in edge (A), and 8
in vertexes (V ) [Fig. 29(b)]. The next cluster has 56 sites dis-
tributed in 3 layers, and so on. From here, it is deduced that
it is possible to identify layers of equivalent sites; these lay-
ers can be grouped into shells yielding noncubic geometries
which present sites in vertexes, edges, and in rombohedral
faces, such as in the dodecahedron.

2.6.1. Dodecahedron
The dodecahedron is formed by a central site, 14 vertexes of
two types (V 1 and V 2), 24 edges (A), and 12 rombohedral
faces (R); Figure 30. The two types of vertexes are: (1) 6

Table 15. Particular expressions of the geometrical characteristics for the fcc without central site and dodecahedral structures.

OCTAS OCTTS DODE

N �16/3�v2 + �2/3�v �10/3�v3 + 13v2 + �47/3�v + 6 4v3 + 6v2 + 4v + 1
N� 16v2 − 16v + 6 10v2 + 16v + 6 12v2 + 2
� 3�16v2 − 16v + 6�/�16v3 + 2v� 3�10v2 + 16v + 6�/�10v3 + 39v2 + 47v + 18� �12v2 + 2�/�4v3 + 6v2 + 4v + 1�
NS — 6�v − 1�2 —
R
p
S — v�v + 2�/8 —

Ri
S — �v2 − 1�/8— —

NT 8�2v − 3��v − 1� — —
Rm
T A — —

NH — 4v�v + 1� —
Rm
H — C —

NR — — 12�v − 1�2

R
p
R — — v2/4

Ri
R — — �v2 − 1�/4

NE 24�v − 1� 24�v − 1� 24�v − 1�
R
p
E v − 1 v/2 v − 1

Ri
E v − 1 �v − 1�/2 v − 1
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Figure 24. Dispersions due to surface sites of the truncated octahedron
without a central site as a function of the cubic root of the cluster size.

vertexes (V 1) of coordination 4 with sites of their own shell
and of 4 with sites of exterior shells; and (2) 8 vertexes (V 2)
of coordination 1 toward sites of interior shells, 3 with sites
of its own shell, and 4 with sites of exterior shells.

The number of first neighbors is found in Table 3, stan-
dard coordinates in Table 2, and the geometric characteris-
tics of the decahedron are listed in Table 15, from which the
dependence of geometric characteristics for the decahedron
can be determined and are presented in Table 12. Surface
dispersions originating from the different types of sites in
the surface of the decahedron can also be shown graphically;
Figure 31.

Based on Tables 3 and 14, it is possible to construct the
expressions for the number of bonds for the different types
of bonds in the dodecahedron, and are presented in Table 14
and their graphics in Figures 16–29.
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Figure 25. Cohesion energy per atom as a function of the square root
of the number of atoms in the cluster for the octahedron and truncated
octahedron with central site, type fcc.

2.6.2. EAM Applied to bcc Structures
The embedded atom method is applied, in the Foiles ver-
sion and with the parameters of copper, to clusters with
bcc structures to calculate the cohesion energy per atom,
determining in this way the stability of the clusters. The
results are compared with the ones from the icosahedrons
and cubooctahedrons previously reported [28]. Figure 32
presents the cohesion energy graphic as a function of
N 1/3 for dodecahedral clusters, for sizes from 300 to 3400
atoms. From Figure 32, it can be seen that the dodecahe-
drons (♦) compete in stability with the icosahedrons (•) and
cubooctahedrons (�).

3. CLUSTERS AND NANOPARTICLES
WITH PENTAGONAL SYMMETRY

3.1. Introduction

A cluster is defined as an aggregate of atoms; this can lead
to clusters from two atoms (diatomic molecules), a lineal
array of atoms, bidimensional, or three-dimensional arrays.
This work presents the study of clusters with pentagonal
symmetry, with sizes up to thousands of atoms in arrays of
spherical or concentric layer types.

(a) (b)

Figure 26. bcc structure of (a) 9 sites, and (b) 35 sites.

(a) (b)

Figure 27. bcc dodecahedron of (a) order 1 with 15 sites, and (b) order
2 with 175 sites.

Arrays of linked atoms forming three-dimensional clusters
are considered here as sites in geometric positions attached
by the edges in such a way that faces of diverse forms are
generated (triangular, squared, rombohedral, etc.). The dis-
tance between the sites is considered as the distance to first
neighbors dNN , which is normalized to one. There could be
sites in the vertexes, edges, and faces, either in the sur-
face or internals; also, there could be different types of
sites, depending on their position and the number and type
of neighbors in the geometric array. There also could be
equivalent sites, which present the same geometric charac-
teristics: to the same distance from the center of the geo-
metric array, in the same type of site, and with the same
number and type of neighbors.

From the bicaped hexahedron or decahedron,
Figure 33(a), pentagonal symmetry structures can be
obtained. Among the clusters with structures of pentag-
onal symmetry, the following structures are considered:
decahedra with and without a central site, icosahedra,
pentadecahedra, truncated decahedra (Marks decahedra),
star-type decahedra, modified and developed decahedra,
truncated icosahedra, and the decmon.
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Figure 28. Dispersion due to surface sites of the dodecahedron as a
function of the cubic root of the cluster size.
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Figure 29. Cohesive energy per atom as a function of the cubic root of
the number of atoms in the cluster for decahedron bcc type.

3.2. Decahedra

Decahedra are obtained from the bicapped hexahedra, and
also from attaching two pentagonal-based pyramids from
their bases and sharing their sites (which form the equa-
tor of the cluster), yielding geometrical bodies of 7 ver-
texes (2 at poles and 5 at equator), 15 edges (all from the
same length, 5 at the equator), and 10 triangular equilat-
eral faces; 5 of them converge on each pole, and by pairs,
they form the edges of the equator. Decahedra can be with-
out a central site, Figure 33(a) and (c), and with a central
site, Figure 33(b), without losing the decahedral form. So,
decahedra have the vertexes at the poles VP, vertexes at
the equator VE, at the edges over the equator AE, edges at
poles AP, and in triangular faces T . It has to be noticed that

(a) (b)

(c) (d)

Figure 30. Decahedral polyhedrons. (a) Bilayered hexahedron or dec-
ahedron of 7 atoms of order 1, without central site. (b) Decahedron of
23 atoms of order 1 with central site. (c) Decahedron of 835 sites of
order 5, without central site. (d) Decahedron of 1111 atoms of order 5
with central site.

Figure 31. Pentadecahedron of 2766 atoms of order 65, obtained from
a decahedron without a central site of order 6 with 5 layers in the waist,
which means adding 4 SEC-type layers to the original decahedron.

coordination, that is, distribution to first neighbors (NN), is
what makes the difference in each type of sites, although
the total coordination is the same for all of the sites of the
corresponding cluster. Table 16 presents the coordination of
each site, for example, the poles (VP) have 4 first neighbors
(NN) with sites at their same shell, 1 NN toward the inner
shell, and 4 toward the exterior shell. The decahedron of
order 1, without a central site, Figure 33(a), has only 7 ver-
texes in two layers; the one from order 2, Figure 33(c), is
obtained from covering the one of order 1 with a shell of
47 sites distributed as follows: 7 V sites of two types, 30 A
sites in three layers (10 sites of one type ant the equator),
and 10 at triangular faces (sites T , one for each triangular
face) in one single layer, for a total of 54 sites in the cluster.
Decahedra of superior order are formed by coverage of this
cluster of order 2 with successive shells of many layers in
each one.

The decahedron with central site of order 1, Figure 33(b),
has 15 sites A, one per edge, of two types, 5 sites of one
type at the equator, and 7 sites V , a total of 22 sites and the
central one in five layers. The second-order cluster results
from the order 1 cluster covered by a shell of 82 sites dis-
tributed in 8 layers: 45 A sites in 5 layers, 30 T sites in one
single layer, and 7 V sites in two layers, for a total of 105
sites in the cluster, and so on for cluster of superior order.

(a) (b)

Figure 32. (a) Decahedron of 287 sites, of order 3, with a central site.
(b) Decahedron of 609 sites, of order 4, with a central site.

Proof's Only



Crystallography and Shape of Nanoparticles and Clusters 17

(a) (b)

Figure 33. Decahedron of 609 sites of order 4 and (a) a single channel,
and (b) a triple channel per edge converging to the pole, of 532 sites
and 412 sites, respectively.

Table 17 presents the geometrical characteristics of dec-
ahedra with and without a central site. The first column,
common for all decahedra, lists the cluster order v. This is
followed by two groups of 9 columns each, which correspond
to the decahedron with and without a central site. The first
three columns of each group list the number of sites on each
type of site in the cluster: triangular face (T ) NT , edge (A)
NA, and vertex (V ) NV . The two following columns show
the number of sites per shell NSE, and the total of sites in
the plane just above the equator NtSE, (the SE sites). The
following two columns list the number of sites at the equator
(sites EC) per shell NEC, and in the whole cluster NtEC ; the
joint between SE and EC sites form the SEC layer, which
will be needed afterwards, and they both form a pentagonal
flat layer. Finally, the two last columns of each group, the
number of sites in the shell N� , and the total of sites in the
cluster N . Decahedra with (without) a central site have an
odd (even) number of sites per edge, which is important for
the star and truncated-type decahedra, detailed later.

From Table 17, it is observed that, for both decahedron
types, the number of vertexes per shell is 7, 2 type VP, and
5 type VE; we can also obtain, for each type of decahedra,
the dependence with the cluster order of the number of T
sites, A sites, the number of sites in the layer at the equator,
as well as the total sites in the shell (or of the surface),
and from the total of sites over the equator, at the equator
and in the decahedron. Such dependency is expressed in the
following relations for the decahedra with a central site; it
is to be noticed that, for v = 1, there are 11 sites at the
equator because the central site is included:

NA�v� = 15�2v − 1�

{
NAP�v� = 10�2v − 1�
NAE�v� = 5�2v − 1�

NT�v� = 20v2 − 30v + 10

NSE�v� = 10�v − 1�+ 5

Table 16. Coordination or number of first neighbors (NN) of the dif-
ferent types of sites in the decahedron with sites in external, the same
one, and internal shell.

Type of site
Shell T AE AP VE VP

External 3 6 4 8 6
Same 6 6 6 4 5
Internal 3 0 2 0 1

NtSE�v� = 5v2

NEC�v� = 10v

NtEC�v� = 5v�v + 1�+ 1

N��v� = 20v2 + 2

N�v� = 20
3
v3 + 10v2 + 16

3
v + 1

and for decahedra without a central site,

NA�v� = 30�v − 1�

{
NAP�v� = 20�v − 1�
NAE�v� = 10�v − 1�

NT�v� = 20v2 − 50v + 30

NSE�v� = 10�v − 1�

NtSE�v� = 5v�v − 1�+ 1

NEC�v� = 5�2v − 1�

NtEC�v� = 5v2

N��v� = 20v2 − 20v + 7

N�v� = 20
3
v3 + v

3
%

Note that from the expression for NA, and from Figure 33(c)
and (d), the number of AP and AE per edge is 2v−1 �2v−2�
for decahedra with (without) a central site.

If, instead of attaching the base of the two pentagonal
base pyramids to form the decahedron, they are separated,
two types of geometrical figures can be obtained, depending
on the way the sites of the bases are connected: the pen-
tadecahedron and the icosahedron.

3.3. Pentadecahedra

If the pentagonal pyramids which generate the decahedron
when they are joined are separated, they are in a position in
which the vertexes of the base of both can be attached by 5
edges (AC) perpendicular to the base, yielding 5 rectangular
faces, which form the pentadecahedra, Figure 34, that is, a
decahedron with a wide waist or a developed decahedron.
Separation can be done by adding intermediate layers of
type SEC (formed by a layer of sites SE and another of sites
EC as mentioned previously). The number of SEC interme-
diate layers, and the length of the edges perpendicular to the
bases, depend on the desired separation. For example, the
pentadecahedron from Figure 34 has 5 layers in the waist;
to obtain it, 4 layers of type SEC are added to the order 6
decahedron of 1442 sites without a central site, which results
in edges 4dNN long. It has to be noticed that, upon widen-
ing of the waist of a decahedron, from one equatorial layer
to two equatorial layers, an SEC-type layer is added; when
widening three equatorial layers, two SEC-type layers are
added, that is, for each equatorial layer wanted to widen the
decahedra waist, one type of SEC layer is added.

The pentadecahedra are polyhedra of 12 vertexes (2 poles
and 10 in vertexes at the waist), 25 edges (20 of one type
and 5 of the other type, which join the vertexes of the two
pyramids, and whose length depends on the number of inter-
mediate layers added), 10 equilateral triangular faces, and
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Table 17. Geometric characteristics for the decahedra with and without central site. v is the order of the cluster, NI con I = T 	A, and V , is the
number of sites I . Sites SE and EC are also listed, the number of sites in each shell N� , and in total N in the cluster.

With central site Without central site
v NT NA NV NSE NtSE NEC NtEC N� N NT NA NV NSE NtSE NEC NtEC N� N

1 0 15 7 5 5 10 11 22 23 0 0 7 1 1 5 5 7 7
2 30 45 7 15 20 20 31 82 105 10 30 7 10 11 15 20 47 54
3 100 75 7 25 45 30 61 182 287 60 60 7 20 31 25 45 127 181
4 210 105 7 35 80 40 101 322 609 150 90 7 30 61 35 80 247 428
5 360 135 7 45 125 50 151 502 1111 280 120 7 40 101 45 125 407 835
6 550 165 7 55 180 60 211 722 1833 450 150 7 50 151 55 180 607 1442
7 780 195 7 65 245 70 281 982 2815 660 180 7 60 211 65 245 847 2289
8 1050 225 7 75 320 80 361 1282 4097 910 210 7 70 281 75 320 1127 3416
9 1360 255 7 85 405 90 451 1622 5719 1200 240 7 80 361 85 405 1447 4863

10 1710 285 7 95 500 100 551 2002 7721 1530 270 7 90 451 95 500 1807 6670

5 rectangular lateral faces (or squared, depending on the
number of intermediate layers added) (Fig. 34). The number
of sites in these pentadecahedra depends on the size of the
original decahedron and how many intermediate layers are
added; also, whether they are with and without a central site
is considered, depending on the original decahedron from
which they were generated. So, at the surface of the pen-
tadecahedra, there are the same type and number of sites
as in the decahedra, plus the NEC sites added (because the
NEC are not at the surface), which are divided in sites type
VE, sites AE, sites at vertical edges at the width of the waist
AV , and in rectangular faces R. Table 18 presents the coor-
dination of each type of site in the pentadecahedron. Notice
that, upon comparison of Table 16, as expected, only the
sites corresponding to the pentadecahedron are added, and
those of the decahedron are not. Sites NSE added, originally
5 AP sites, and the rest T sites (except for the pentadeca-
hedron of order 11, without a central site) are converted in
internal sites of coordination 12.

For pentadecahedron order, we can use v&, v for the dec-
ahedron order from which comes and & for the number of
layers at the waist, so regular decahedra would be pentadec-
ahedra with & = 1. The number of layers of type SEC which
are added to the decahedron referred to generate the pen-
tadecahedron is & − 1, so that the number of sites added
is equal to the sum of the total of sites SE and the total
of EC sites of the corresponding decahedron, columns 6, 8,
15, and 17 of Table 1. So, in order to have a pentadecahe-
dron of order 55 with a central site, one has to start with a

(a) (b)

Figure 34. Decahedron of order 4 of 609 sites with central site, with (a)
one single channel and (b) with a triple channel per edge converging
to the pole, with three layers in the waist, of 874 sites and 714 sites,
respectively.

decahedron of order 5, 111 sites, and an additional 4 layers
of type SEC of 125 + 151 = 276 sites each, for a total of
1104 added sites and 2215 sites in the cluster.

The number of sites T , AP, and VP is the same as in
the decahedron which originated from the pentadecahedron.
The number of sites AE and VE is duplicated with respect
to the original decahedron. The number of AV and R sites
for the pentadecahedra with and without a central site is
the same, and is presented in Table 18, which shows the
geometric characteristics of the pentadecahedra with and
without a central site, respectively; only some of & values
are presented. There are three groups of three, four, and
five columns, respectively. In the columns of the first group
are listed the quantities common to the two types of pen-
tadecahedra: cluster order v and &, and the number of
sites AV , NAV ; for both polyhedra, in each following group,
the geometric characteristics for each polyhedron are pre-
sented, those of the pentadecahedron both with and without

Table 18. Geometric characteristics for pentadecahedra. Generated
from the corresponding decahedron of order v.

With central site Without central site
v & NAV NR Nag N� N NR Nag N� N

1 1 0 0 0 22 23 0 0 7 7
2 0 0 16 32 39 0 6 12 13

2 1 0 0 0 82 105 0 0 47 54
2 0 0 51 102 156 0 31 62 85
3 5 15 102 122 207 10 62 77 116

3 1 0 0 0 182 287 0 0 127 181
2 0 0 106 212 393 0 76 152 257
3 5 25 212 242 499 20 142 177 333

4 1 0 0 0 322 609 0 0 247 428
2 0 0 181 362 790 0 141 282 569
4 10 70 543 442 1152 60 423 352 851

5 1 0 0 0 502 1111 0 0 407 835
2 0 0 276 552 1387 0 226 452 1061
3 5 45 552 602 1653 40 452 497 1287
5 15 135 1104 702 2215 120 904 587 1739

Note: & is the number of equatorial layers in the cluster. Number of sites
AV , NAV , R sites NR, of sites added Nag , surface site N� , and of total sites N
in the cluster of order v&. Notice that, for & = 1, values of Table 1 are obtained.
Even when & can have any value higher than zero, here only some values are
presented.
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a central site. A list of the number of R sites NR, the number
of sites added Nag , of sites at the surface N� , and the total
of sites N in the cluster of order v& is given. Note that, for
& = 1, the values from Table 16 are obtained.

From Table 18, the analytic expressions for the number of
sites AV can be obtained as a function of & and v:

NAV �v	&� = 5�&− 2�

as well as the number of R sites, sites which are added, sites
in the surface, and the total of sites for pentadecahedra with
a central site:

NR�v	&� = 5�2v − 2��&− 2�

Nag�v	 &� = �&− 1��10v2 + 5v + 1�

N��v	 &� = 20v2 + 2 + 10v�&− 1�

N�v	&� = 20
3
v3 + 10v2 + 16

3
v + 1

+ �10v2 + 5v + 1��&− 1�

and for pentadecahedra without a central site:

NR�v	&� = 10�v − 2��&− 2�

Nag�v	 &� = �&− 1��10v2 − 5v + 1�

N��v	 &� = 20v2 − 20v + 7+ 5�2v − 1��&− 1�

N�v	&� = 20
3
v3 + v

3
+ �10v2 + 5v + 1��&− 1�%

3.4. Modified Decahedra

In a certain decahedron, with or without a central site,
the number of sites per edge increases in 2 sites per shell
increased. For example, in the decahedron of 287 sites of
order 3 with a central site, Figure 35(a), in the surface shell,
there are 5 sites in each edge, and in the one of order 4,

Figure 35. Decahedron of order 4 with 609 sites and with a central site,
with 360 sites aggregated for surface reconstruction for a total of 969
sites.

there are 609 sites, Figure 35(b); there are 7 sites per edge.
The decahedron modification can be done in two ways:
(1) as channels at the surface, and (2) as surface recon-
struction. Besides, modified decahedra can be obtained,
adding SEC-type layers in order to widen the waist of the
decahedra.

3.4.1. Decahedra with Additional Faceting
(Channels at Twin Boundaries)

When suppressing surface sites from the edges converging
in the poles (AP sites) and from all of the vertexes in a deca-
hedron, a one-channel decahedron is obtained; for example,
from the decahedron of 609 sites of order 4 with a central
site [Fig. 35(b)], a decahedron of 532 sites is obtained with
one channel convergent to the pole, Figure 36(a), eliminat-
ing 77 sites. These result in a polyhedron formed by a dec-
ahedron of order 3 with triangular faces covered with sites
corresponding to the decahedron of order 4, in a way that
some surface sites that were T type are now type A. If, now,
the following edges (which were type T sites) are eliminated
from the surface, a triple-channel decahedron of 412 sites
is obtained; 120 sites were eliminated [Fig. 36(b)]. It can be
continued in this way until the desired number of channels
is reached. The construction of the first channel, eliminat-
ing vertexes and AP edges from the surface, in other words,
remains with a coordination lower than 12, which implies
that there are free bonds. Type VP sites from the internal
decahedron have two free bonds, sites VE have three, and
sites AP have four. So, surface sites are not only the dif-
ference between surface sites and the ones that were elim-
inated, but the interior decahedron sites are added which
have a coordination lower than 12.

Table 19 lists geometrical characteristics for the decahe-
dra, with and without a central site, modified with surface
channels. v is the original cluster order. The only character-
istics presented are for an n = 1, a single channel and 2, a

Figure 36. Decahedron with a central site of order 4 (609 sites), with
surface reconstruction (969 sites) and three equatorial layers (two layers
SEC of 181 sites each one) for a total of 1331 sites in the polyhedron.
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Table 19. Geometric characteristics of decahedra with and without a central site, modified with surface
channels.

With central site Without central site
v n Nel NSE NtSE NEC NtEC N� N Nel NSE NtSE NEC NtEC N� N

2 1 37 10 15 15 26 62 68 27 5 6 10 15 27 27

3 1 57 20 40 25 56 162 230 47 15 26 20 40 107 134
2 137 10 30 15 46 122 150 107 5 16 10 30 67 74

4 1 77 30 75 35 96 302 532 67 25 56 30 75 227 361
2 197 20 65 25 86 262 412 167 15 46 20 65 187 261

5 1 97 40 120 45 146 482 1014 87 35 96 40 120 387 748
2 257 30 110 35 136 442 854 227 25 86 30 110 347 608

Note: v is the cluster order. Here are presented only characteristics for n = 1 and 2 channels. The number of
eliminate sites are listed Nel , the number of sites SE and EC per shell and in total, and the number of sites in the
surface and in total in the final cluster.

triple channel. Eliminating the sites for the channel sin the
decahedron affects the number of sites SE and EC of the
original decahedron. Table 5 lists the number of sites that
are eliminated Nel, the number of sites SE and EC, per shell
and in total, and the number of sites at the surface and in
total in the final cluster. The number of sites SE and EC
is needed in order to generate the decahedra with channels
and developed, as was done for the pentadecahedron.

From Table 19 are deduced the analytic expressions for
the number of sites eliminated in a decahedron in order
to obtain the decahedron with channels, the number of SE
and EC sites, and the number of sites in the surface and
the number of total sites in the cluster, which are presented
next for the decahedron with a central site and a simple
channel:

Nel = 20v − 3

NSE = 10�v − 1�

NtSE = 5v2 − 5

NEC = 10v − 5

NtEC = 5v�v + 1�− 4

N� = 20v2 − 18

N = 20
3
v3 + 10v2 − 44

3
v + 4

for the decahedron with a central site and a triple channel:

Nel = 60v − 43

NSE = 10v − 20

NtSE = 5v2 − 15

NEC = 10v − 15n

NtEC = 5v�v + 1�− 14

N� = 20v2 − 58

N = 20
3
v3 + 10v2 − 164

3
v + 44

and for the decahedron without a central site and a simple
channel:

Nel = 20v − 13

NSE = 10v − 15

NtSE = 5v�v − 1�− 4

NEC = 10�v − 1�

NtEC = 5v2 − 5

N� = 20v2 − 20v − 13

N = 20
3
v3 − 59

3
v + 13%

For the decahedron without a central site and a triple
channel,

Nel = 60v − 73

NSE = 10v − 25

NtSE = 5v�v − 1�− 14

NEC = 10v − 20

NtEC = 5v2 − 15

N� = 20v2 − 20v − 53

N = 20
3
v3 − 179

3
v + 73%

In the same way used to generate the pentadecahedra, by
modifying the decahedra, the new type of decahedra can be
obtained (Fig. 37). In order to do this, a layer of type SEC
is added for each layer desired to increase the waist of the
decahedron with channels. Table 5 lists the number of sites
SE and EC, which are used to construct Table 20 for the
decahedra with channels and developed.

When adding layers to widen the waist, the number of
sites AE and VE is duplicated with respect to the original
polyhedron, and different type AV and R sites are gener-
ated, as happened with pentadecahedra, and the number of
sites is the same. The number of sites added Nag , of which
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Figure 37. Truncated decahedron of 1372 sites of order 63, without a
central site.

N�ag are added to the surface for & equatorial layers for the
polyhedron with a central site and a single channel, is

Nag = �&− 1��10v2 + 5v − 9�

N�ag = �&− 1��10v − 5�%

With a central site and a triple layer,

Nag = �&− 1��10v2 + 5v − 39�

N�ag = �&− 1��10v − 15�%

Without a central site and a single channel,

Nag = �&− 1��10v2 − 5v − 9�

N�ag = �&− 1��10�v − 1��%

With a central site and a triple channel,

Nag = �&− 1��10v2 − 5v − 39�

N�ag = �&− 1��10v − 20�%

Table 20. Geometric characteristics for the decahedron with and without a central site, modified with surface channels and with added layers in the
waist.

With central site Without central site
One channel Two channels One channel Two channels

v & NAV NR Nag N� N Nag N� N NR Nag N� N Nag N� N

2 1 0 0 0 62 68 — — — 0 0 27 27 — — —
2 0 0 41 77 109 — — — 0 21 37 48 — — —
3 5 15 82 92 150 — — — 10 42 47 69 — — —

3 1 0 0 0 162 230 0 122 150 0 0 107 134 0 67 74
2 0 0 96 187 326 66 137 226 0 66 127 200 36 77 110
3 5 25 192 212 422 132 152 302 20 132 147 266 72 87 146

4 1 0 0 0 302 532 0 262 412 0 0 227 361 0 187 261
2 0 0 171 337 703 151 287 563 0 131 257 492 101 207 362
4 10 70 513 407 1045 453 337 865 60 393 317 754 303 247 564

5 1 0 0 0 482 1014 0 442 854 0 0 387 748 0 347 608
2 0 0 266 527 1280 236 477 1100 0 216 427 964 186 377 794
3 5 45 532 572 1546 472 512 1346 40 432 467 1180 372 407 980
5 15 135 1064 662 2078 944 582 1838 120 864 547 1612 744 467 1352

Note: v is the cluster order, & is the number of equatorial layers. Only the characteristics for n = 1 and 2 channels are presented. Notice that for & = 1 Table 5
values are obtained. Although & can take any value higher than zero, here are only presented some values.

3.4.2. Modified Decahedra with Surface
Reconstruction

Modification of surface reconstruction of a decahedron is
obtained if each triangular face of the decahedron proceeds
as follows: a triangular face is obtained exactly as the one
from the original decahedron; it is transported outwards to
the same distance as the one between parallel triangular
faces, 0.7953dNN , which is the height of a tetrahedron with a
base of 1.05dNN from one side and the other sides of 1.0dNN ,
then in a parallel way is shifted to the waist to a distance
of 0.606dNN , which is 2/3 of the height of the equilateral
triangle of 1.05dNN from one side, until the generated sites
coincide with the triangle centers of the original triangular
face, and finally, the complete edge of the waist is elimi-
nated. Figure 38 shows an example of a decahedron of 287
sites of order 3, to which 21 sites are added per face; this is
210 sites in total, for a total of 497 sites. It should be noted
that it seems that a decahedron with a surface channel is
obtained, although the sites which seem to form the chan-
nel are at a distance of 1.13dNN , while in a decahedron with
a simple channel, they are at 1.63dNN . This is why, in this
modification, a long bond is considered, and the AP sites of
the interior decahedron do not form part of the surface. In
fact, the surface of the resulting polyhedron is formed by
the added sites and the sites VE, VP, and AE of the internal
decahedron, which are those which also can be considered
as a surface because they remain with free bonds.

It should be noted that the planes above the equator and
the sites in the plane of the equator of the original decahe-
dron are not modified. The characteristics of these polyhe-
dra are presented in Table 21. v is the original cluster order,
Nag is the number of sites added, N� is the number of sites
in the surface, and N is the total number of sites in the
cluster.

From Table 21, it is possible to obtain the analytic expres-
sions as a function of the order of the original cluster for the
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Figure 38. Truncated decahedron without a central site of order 63 with
four equatorial layers, for a total of 2230 sites.

different characteristics listed here, and they are presented
next for the polyhedron with a central site:

Nag = 20v2 + 10v

N� = 20v2 + 20v + 2

N = 20
3
v3 + 30v2 + 46

3
v + 1	

and without central site:

Nag = 20v2 − 10v

N� = 20v2 − 3

N = 20
3
v3 + 20v2 − 29

3
v%

Alternatively, it is possible to generate other decahedra with
surface reconstruction. For this, simply add one SEC-type
layer for each layer wanted to increase the waist of the dec-
ahedron with channels. Table 2 presents the sites of type
SE and EC of the original decahedron, used to construct
Table 22 for the decahedra with surface reconstruction and
developed.

When adding the layers to widen the waist of the sites
AE and VE of the original decahedron, they duplicate and
generate the sites of type AV and R, as occurred with the
pentadecahedra, and the number of sites is the same. The
number of added sites Nag from which N�ag are added to

Table 21. Geometric characteristics for decahedra with and without a
central site, modified with surface reconstruction.

With central site Without central site
v Nag N� N Nag N� N

2 100 122 205 60 77 114
3 210 242 467 150 177 331
4 360 402 969 280 317 708
5 550 602 1661 450 497 1285

Note: v is the cluster order. The number of added sites Nag , surface sites N�
and total sites N in the cluster are listed.

Table 22. Geometric characteristic for decahedra with and without a
central site modified with surface reconstruction and added layers in
the waist.

With central site Without central site
v & NAV NR Nag N� N NR Nag N� N

2 1 0 0 0 122 205 0 0 77 114
2 0 0 51 142 256 0 31 92 145
3 5 15 102 162 307 10 62 107 176

3 1 0 0 0 242 497 0 0 177 331
2 0 0 106 272 603 0 76 202 407
3 5 25 212 302 709 20 152 227 483

4 1 0 0 0 402 969 0 0 317 708
2 0 0 181 442 1150 0 151 352 859
4 10 70 343 522 1512 60 453 422 1161

5 1 0 0 0 602 1661 0 0 497 1285
2 0 0 276 652 1937 0 226 542 1511
3 5 45 552 702 2213 40 452 587 1737
5 15 135 1104 802 2765 120 904 677 2189

Note: v is the cluster order, & is the number of equatorial layers. Notice that,
for & = 1, Table 8 values are obtained. Although & can take any value higher
than zero, here are presented only some values.

the surface for & equatorial layers for the polyhedron with
a central site is

Nag = �&− 1��10v2 + 5v + 1�

N�ag = �&− 1��10v�	

and without a central site:

Nag = �&− 1��10v2 − 5v + 1�

N�ag = �&− 1��5�2v − 1��%

3.5. Truncated Decahedra
(Marks Decahedra)

These result from the adequate elimination of some sites of
a certain decahedron. The resulting geometry is a figure of
22 vertexes (of three types), 40 edges (of 4 types, 15 from
the original decahedron, but shorter, and 25 which are gen-
erated by elimination of the adequate sites), 10 pentagonal
faces (triangular faces from the original decahedron are con-
verted to irregular pentagons), and 10 equilateral triangular
faces (at the equator and joint by pairs) (Fig. 39).

The adequate elimination of sites is equivalent to elim-
inating the end sites of the edges which converge in the
vertexes of the equator of the corresponding decahedron.
Notice that in, each elimination, the equatorial edges lose
two sites, while the edges which converge also toward the
poles only lose one; this causes edges converging to the poles
to be larger than the equatorial ones, but shorter then the
ones from the original decahedron.

In the first step, n = 1, the equator vertexes from the
equator of the exterior shell are eliminated, the last shell,
5 sites. In the second step, n = 2, two sites per equatorial
edge are eliminated, and one of the rest of the edges; 20 sites
of the previous stage are converted into 25. In the third step,
n = 3, the step of the edges of the last shell is repeated, 20
sites, plus two sites of each triangular face, 20 sites; besides,
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Figure 39. Star-type decahedron of order 4.

in one shell before the last, the interior decahedron, the
equator vertexes are eliminated, 5 more sites are needed in
order to obtain 40 sites to be eliminated in this step, and
there is a complete total of 70 eliminated sites in three steps,
and so on, for n < v because NAE = 5�2v− 1� �= 5�2v− 2��
for decahedra with (without) a central site; for v = n − 1,
there are only 3 (2) sites AE; see Table 23.

Table 23 lists the truncated decahedra, resulting from dec-
ahedra with and without a central site, respectively. The
order of the truncated decahedron consists of two numbers
corresponding to the first and second columns of Table 23;
the first column is the order of the decahedron generated
v, and the second column is the number of steps n needed
to eliminate the adequate sites, or is half of the sites elim-
inated from each edge at the equator; n = 1 means that
only the vertexes at the equator are eliminated, the first step
in the elimination process. The third column lists the total
number of sites eliminated from the original decahedron to
obtain the truncated decahedron of order vn, N�−�; in the

Table 23. Truncated decahedron constructed from a certain decahe-
dron of order v, with and without a central site.

With central site Without central site
Order Sites in Sites in
v n N�−� AE sobrec EC Total AE sobrec EC Total

1 1 5 1 5 6 18

2 1 5 3 20 26 100 2 11 15 49

3 1 5 5 45 56 282 4 31 40 176
2 25 3 40 46 262 2 26 30 156

4 1 5 7 80 96 604 6 61 75 423
2 25 5 75 86 584 4 56 65 403
3 70 3 65 71 539 2 46 50 358

5 1 5 9 125 146 1106 8 101 120 830
2 25 7 120 136 1086 6 96 110 810
3 70 5 110 121 1041 4 86 95 765
4 150 3 95 101 961 2 71 75 685

6 1 5 11 180 206 1828 10 151 175 1437
2 25 9 175 196 1808 8 146 165 1417
3 70 7 165 181 1763 6 136 150 1372
4 150 5 150 161 1683 4 121 130 1292
5 275 3 130 136 1558 2 101 105 1167

Note: n is the half of sites eliminated from each equator edge.

fourth (eighth), the number of sites per equatorial site AE
remaining in the originals are presented (taking into account
that in these sites are included the two new vertexes VE)
per edge, for the polyhedron with a central site (without
a central site) (n = 1 is the number of sites in edges in
the original decahedron); finally, the fifth, sixth, and seventh
columns (ninth, tenth, and eleventh) present the number of
sites SE and EC and the total in the resulting truncated
decahedron with a central site (without a central site). For
example, the truncated decahedron without a central site of
order 63, Figure 38, is generated from the decahedron with
a central site of order 6 (1442 sites, 10 sites per edge, 151
sites SE, and 180 sites EC), and eliminates the 5 sites VE,
4 sites AE of each one of the equatorial edges of the sur-
face, 2 sites AP from each edge toward the poles and the 5
VE sites from the immediate interior shell, so the truncated
decahedron of order 63 has 6 sites per equatorial edge; 70
sites are eliminated, and it has a total of 136 sites SE, 150
sites EC, and 1372 in total.

The number of eliminated sites, the third column of
Table 23, is the same for the two polyhedra, with and with-
out a central site, and depends only on the number of steps
n given, and is obtained by

N�−� =
5
6
n�n+ 1��2n+ 1�%

Expressions for the number of sites SE, sites EC, and in
total for the truncated decahedra with a central site are

NSE = 5�v2 − n+ 1�

NEC = 5�v2 + v − n�+ 1

N = 20
3
v3 + 10v2 + 16

3
v + 1− 5

6
n�n+ 1��2n+ 1�

and for the truncated decahedra without a central site are

NSE = 5�v2 − v − n+ 1�

NEC = 5�v2 − n�
N = 20

3
v3 + v

3
− 5

6
n�n+ 1��2n+ 1�%

The truncated decahedron is a polyhedron formed by 22
vertexes, joined by 22 vertexes, attached by 40 edges, form-
ing 10 pentagonal faces and 10 triangular. Vertexes are of
three types: VP, VE, V ′, VP (2 vertexes), and are the same
as in the original decahedron; VE and V ′ (10 vertexes each)
result by pairs from elimination of the original VE and from
elimination of sites from AE and AP; sites V ′ are found to
be the end of the edges that converge toward the poles, that
is, the edges AP join sites VP and V ′. Edges are of 4 types:
the original AP edges (10 edges) and AE (5 edges), but the
shorter AT (20 edges) and AV ′ (5 edges) which make up
the triangular faces (10 faces) formed upon elimination of
the equatorial sites; the edges AV ′ join the vertexes V ′ by
pairs, and the edges AT join sites VE and V ′. So, any trun-
cated decahedron will have vertex sites of type VP, VE, V ′,
edge type AP, AE, AT , AV ′, and face type CT and CP. The
number of VP sites is 2, of V ′ is 10, and of VE is also 10.
The number of remaining sites is variable, and is listed in
Table 24 for the truncated decahedra with and without a
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Table 24. Geometric characteristics of truncated decahedra with and without a central site. Number of surface sites for each type of site in the
polyhedron, and number of total sites in the surface and in the cluster.

With central site Without central site
v n NAP NAE NAT NAV ′ NCP NCT N� N NAP NAE NAT NAV ′ NCP NCT N� N

2 1 20 5 0 0 30 0 77 100 10 0 0 0 10 0 42 49

3 1 40 15 0 0 100 0 177 282 30 10 0 0 60 0 122 176
2 30 5 20 5 80 0 162 262 20 0 20 5 40 0 107 156

4 1 60 25 0 0 210 0 317 604 50 20 0 0 150 0 242 423
2 50 15 20 5 190 0 302 584 40 10 20 5 130 0 227 403
3 40 5 40 10 150 10 277 539 30 0 40 10 90 10 202 358

5 1 80 35 0 0 360 0 497 1106 70 30 0 0 280 0 402 830
2 70 25 20 5 340 0 482 1086 60 20 20 5 260 0 387 810
3 60 15 40 10 300 10 457 1041 50 10 40 10 220 10 362 765
4 50 5 60 15 240 30 422 961 40 0 60 15 160 30 327 685

central site. The number of surface sites is also listed as well
as the total sites of the polyhedron. Columns 1 and 2 cor-
respond to the order of the cluster v and n, respectively.
Columns 3–8 (11–16) correspond to sites AP, NAP , AE , NAE,
AT , NAT , AV

′, NAV ′ , CP, NCP , and CT , NCT , respectively,
and the two last columns to the surface sites N� and the
total of sites N for truncated decahedra with (without) a
central site.

From Table 25, it is possible to deduct the analytic expres-
sions for the number of sites of the different types of sites
as a function of the order of the truncated decahedron; the
resulting expressions, common for the polyhedra with and
without a central site, but depending on the number of steps
made for the elimination of the sites, are NAT , NAV ′ , and
NCT :

NAT = 20�n− 1�

NAV ′ = 5�n− 1�

NCT = 5�n− 2��n− 1�	

Table 25. Geometric characteristics for the decahedra with and without
a central site, modified with surface reconstruction and added layers in
the waist.

With a central site Without a central site
v & NEV NRF Nag N� N NRF Nag N� N

2 1 0 0 0 122 205 0 0 77 114
2 0 0 51 142 256 0 31 92 145
3 5 15 102 162 307 10 62 107 176

3 1 0 0 0 242 497 0 0 177 331
2 0 0 106 272 603 0 76 202 407
3 5 25 212 302 709 20 152 227 483

4 1 0 0 0 402 969 0 0 317 708
2 0 0 181 442 1150 0 141 352 849
4 10 70 543 522 1512 60 423 422 1131

5 1 0 0 0 602 1661 0 0 497 1285
2 0 0 276 652 1937 0 226 542 1511
3 5 45 552 702 2213 40 452 587 1737
5 15 135 1104 802 2765 120 904 677 2189

Note: v is the cluster order, & is the number of equatorial layers in the poly-
hedron. Notice that for & = 1 Table 24 values are obtained. Although & can take
any value higher than zero, here only some values are presented.

The expressions for the other types of sites are as follows:
for the one with a central site:

NAP = 10�2v − 1�− 10n

NAE = 5�2v − 1�− 10n

NCP = 10�2v − 1��v − 1�− 10n�n− 1�

N� = 20v2 − 5n2 + 2

and without a central site:

NAP = 20�v − 1�− 10n

NAE = 10�v − 1�− 10n

NCP = 10�2v − 3��v − 1�− 10n�n− 1�

N� = 20v2 − 20v − 5n2 + 7%

3.5.1. Modified Truncated Decahedra
The same method used to generate pentadecahedra is used
here. Intermediate layers can be added to the truncated dec-
ahedra in order to obtain polyhedra with 15 lateral faces, 5
rectangular, and 10 trapezoidal (before triangular) (Fig. 40).

Figure 40. Star-type decahedron of order 4 and three equatorial layers
added, with 661 sites.
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This means that a layer of SEC type is added per each
layer wanted to widen the polyhedron, so the polyhedron of
Figure 9 has 4 equatorial layers; this means that 3 SEC layers
were added. So, in a developed truncated decahedron, there
will be the same sites as in one without development, except
for the CT sites, triangular face, which convert into sites, TR
trapezoidal face, and the sites generated when adding the
SEC layers, sites in the rectangular faces R and in the verti-
cal edges AV , joining the VE sites which are duplicated. The
number of sites that will be added depends on the number
of equatorial layers that the polyhedron will have, NSE+NEC
sites from the original truncated decahedron are added per
each layer to widen them. It is to be noticed that, in this
case, the SE sites corresponding to AV ′ and AT sites will
be added to the surface also, that is, they will not remain
internal, along with the EC sites. Table 26 lists the num-
ber of sites of the different types of sites in the truncated
decahedron with and without a central site and developed.

When adding SEC layers to grow the truncated decahe-
dron, the number of sites VP, AP, AT , V ′, and CP are not
modified, while the number of sites VE and AE are dupli-
cated, sites AV ′ increase, and sites CT are converted to TR,
and they increase with respect to the original truncated deca-
hedron. Sites R and AV appear. From Table 26, it is possible
to obtain the analytic expressions for the different number
of sites in the developed truncated decahedron. The number
of sites AV ′, AV , and TR is common for the two polyhedra
with and without a central site, that is, they only depend on
n and &, and their analytic expression is the following:

NAV ′ = 5�n+ &− 2�

NAV = 10�&− 2�

NTR = 5�n− 1��n+ 2&− 4�%

And the expressions for the other types of sites, for the one
with a central site, are

NR = 5�2v − 2��&− 2�

Nag = �&− 1��10V 2 + 5v − 10n+ 6�

N� = 10v�2v − 1�− 5n�n+ 7�+ 5&�2n+ 2v − 1�

and without a central site,

NR = 10�v − 2��&− 2�

Nag = �&− 1��10v2 − 5v − 10n+ 5�

N� = 20v�v − 1�− 10n�n+ 1�+ 5&�2n+ v − 1�+ 12%

Table 26. Geometric characteristics for developed truncated decahe-
dra. Constructed from truncated decahedra of order v&, with and
without a central site.

With central site Without central site
v n & NTR NAV NR Nag N� N NR Nag N� N

2 1 1 0 0 0 2 77 100 0 0 42 49
2 0 0 0 46 45 146 0 26 75

3 1 1 0 0 182 287 0 127 181

Note: & is the number of equatorial layers. Notice that, for & = 1, Table 10
values are obtained. Although & can take any value higher than zero, here are
only presented some values.

The total number of sites is equal to the total number of
sites in the original decahedron plus the Nag sites.

3.6. Star-Type Decahedra

If the method to obtain a truncated decahedron is applied
to a decahedron without a central site, which has an odd
number of edges, it could be possible to eliminate all of
the sites from the equatorial edges, except one, obtaining
the star-type decahedron, named after the shape it repre-
sents (Fig. 41). For this decahedron, the equator edges from
the original decahedron are practically eliminated, with one
site remaining which converts to a vertex. The edges toward
the poles are reduced to a half. The resulting figure has 17
vertexes, 30 edges, 10 rhombohedral-shaped faces, and 10
lateral triangular faces (over the equator and joint in pairs).
The types of sites present are the same as in the truncated
decahedron, although the CP sites, pentagonal faces, change
to CR sites, rhombohedral faces. The number of VP sites is
2, of V ′ is 10, and of VE is 5; the number of sites AP, AT ,
and AV ′ per edge is the same, not the number of edges of
each type.

The analytic expressions for the star-type decahedra are
presented next:

NAP = 10�v − 1�

NCR = 10�v − 1�2

NAT = 20�v − 1�

NCT = 5�v − 2��v − 1�

(a) (a′)

(b) (b′)

Figure 41. Truncated decahedron without central site of order 74 with
(a) one single channel and 2032 sites, and (b) a triple channel and 1822
sites, eliminating AP, VP, AV , and V ′ sites. [(a′) and (b′) are lateral
views of superior (a) and (b) views, respectively.]
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NAV ′ = 5�v − 1�

N� = 15v2 + 2

N = 5
2
v�v + 1��2v + 1�+ 2v + 1%

To these decahedra, it is possible to add intermediate layers.
The resulting figure has 10 trapezoidal lateral faces (which
were triangular), and besides the 10 rhombohedral, 5 edges
more (Fig. 42). When adding layers of type SEC, the number
of sites VP, AP, AT , V ′, and CR are not modified, while the
number of sites AE and VE are duplicated; the number of
sites AV ′ increases, and the CT sites, triangular face, change
to TR, trapezoidal face. Besides, sites AV appear. Analytical
expressions for the number of sites for the modified sites are
presented next:

NAV ′ = 5�v + &− 2�

NTR = 5�v − 1��v + 2&− 4�

NAV = 5�&− 2�

Nag = �&− 1��5v�v + 1�+ 1�

N� = 5�v − 1��3v + 2&+ 1�+ 10&+ 7

N = %

The total number of sites is equal to the total number of
sites in the original star-type decahedron plus the Nag sites.

(a) (a′)

(b) (b′)

Figure 42. Truncated decahedron without central site of order 74 with
(a) one single channel and 2047 sites, and (b) a triple channel and 1857
sites, eliminating AP, VP, and V ′ sites. [(a′) and (b′) are lateral views
of superior (a) and (b) views, respectively.]

3.7. Additional Truncations in Decahedra

Just as in the decahedra, it is possible to add or eliminate
sites to obtain modified structures of all of the types of dec-
ahedra previously described to obtain new structures. This
is achieved by eliminating the sites on the edges which con-
verge to a pole in a truncated decahedron, for example, the
one of order 74 without a central site with 2139 sites; a trun-
cated decahedron with one channel per edge converging to
a pole is obtained, Figure 43(a), of 2047 sites, having an
elimination of 92 sites, sites AP, VP, AV , and V ′. If only
the sites AP, VP, and V ′ are eliminated, Figure 44(a), a
polyhedron of 2032 sites is obtained. If, now, the following
edges are eliminated, the result is a truncated decahedron
with a triple channel of 1877 sites; 170 sites were eliminated,
[Fig. 43(b)], and also, it is possible to eliminate only the sites
at edges without eliminating the AV sites [Fig. 44(b)]. This
process can continue until obtaining the desired number of
channels. It seems more convenient not to eliminate the AV
sites because, when eliminating them, more abrupt holes are
originated, so the ones of Figure 43 will be studied.

The expressions for the number of sites eliminated from
a truncated decahedron with a single channel and with a
central site is

Nel = 20v − 5&− 3%

For a triple channel,

Nel = 10�2v − &− 3�	

without a central site and a simple channel,

Nel = 20v − 5&− 13	

and a triple channel,

Nel = 10�4v − &− 5�%

Elimination of only the AP, VP, and V ′ does not affect
the number of SE and EC sites from the original polyhe-
dron, while upon elimination of the sites AV , they do mod-
ify. With this, it is possible to add the layers of type SEC
to obtain truncated decahedra with channels and developed
[Fig. 45(a) and (b)]. Table 27 lists also these polyhedra. The
number of sites added is equal to the added in the developed
truncated decahedra.

(a) (b)

Figure 43. Truncated decahedron without central site of order 74 with
(a) one single channel, and (b) with a triple channel and three layers
in the waist.
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Figure 44. Truncated decahedron with surface reconstruction.

Another modification of a truncated decahedron with sur-
face reconstruction, as explained for the decahedron, can be
achieved by shifting the pentagonal face outwards and to
the waist, eliminating then the sites AE, VE, AT , and V ′,
which reflects in adding Nag sites (Fig. 46). Table 28 lists
the geometrical characteristics of the truncated decahedra
modified by surface reconstruction. For the truncated deca-
hedron with a central site are added

Nag = 10�2v2 + v − 2 − �&− 1��&+ 2��	

and without a central site

Nag = 10��2v − 3��v + 1�− �&− 1��&+ 2�+ 1�%

When adding the sites for the surface reconstruction, the
number of sites SE and EN is not affected. So, layers of
type SEC can be added to obtain truncated decahedra with
surface reconstruction and developed.

Figure 45. Truncated decahedron with surface reconstruction and with
three SEC layers.

3.8. Icosahedra

The icosahedron (ICO) is a geometric figure with a cen-
tral site, 12 vertexes, connected with 30 edges, and formed
by 20 triangular faces; Figure 47 shows a 561 icosahedron.
From this figure, it can be seen that the icosahedron can also
be considered as two pentagonal pyramids with a rotation
of 36� of one with respect to the other, and with interme-
diate layers, to adequately join the vertexes of both pyra-
mids. Each icosahedric cluster presents a certain number of
sites, but distributed in different layers, which are formed
by equivalent sites: sites at the same distance from the ori-
gin, which have the same environment, and the same type
of neighbors. Sites in the ICO are localized in triangular
faces (T ), edges (A), and vertexes (V ). The order-1 ICO is
formed by one central site and one first shell with only one
layer of 12 vertexes. The second-order ICO is formed by
the addition of one shell formed by 42 sites, to complete 55
sites, distributed in two layers: one layer of 30 sites A, and a
second layer of 12 sites V . When adding a third shell of 92
sites, the ICO of third order of 147 sites is completed; the
added sites are distributed in three layers: one of 20 sites
T , one more of 60 sites A, and the third of 12 sites V . And
successively, complete shells are added, forming clusters of
order v.

The geometric characteristics of the ICO are listed in
Table 29, to clusters of order 10. The first column lists the
order of the cluster v. The following columns list the num-
ber of sites in each type of site in the cluster. Next is the
number of sites of each type of site or the layers of each
type of site. Finally, the number of sites in the shell and in
the total of sites in the cluster is given. From this table, it
is possible to obtain the dependence on the cluster order v
from the total number of sites N , on the number of sur-
face sites N� , the number of sites T , NT and of sites A,
NA, as well as the number of layers of sites T , RT , and
sites A, RA.

N = 10
3
v3 + 5v2 + 11

3
v + 1

N� = 10v2 + 2

NT = 10�v − 1��v − 2�

NA = 30�v − 1�

Rm
T =




m/2∑
"=1

�3"+ a�+
�m/2�−1∑
"=1

3"# m{
v = 3m+ a
a = −1	 0	 1

1+ a
1+ a +

�m−1�/2∑
"=1

�6"+ a�# m

RA =



v

2
# v

v − 1
2

# v
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Table 27. Truncated decahedron modified with one single channel and a triple channel, eliminating sites VP, AP, V ′, and AV ′.

v n Nel NtSE NtEC N Nel NtSE NtEC N Nel NtSE NtEC N Nel NtSE NtEC N

2 1 32 15 26 30 15 16 22 6 15 10 6 5
3 1 52 40 56 70 40 46 42 26 40 50 26 30

Figure 46. Icosahedron.

Table 28. Geometric characteristics for decahedra with and without a
central site, modified with surface reconstruction.

With central site Without central site
v Nag N� N Nag N� N

2 100 122 205 60 77 114
3 210 242 497 150 177 331
4 360 402 969 280 317 708
5 550 602 1661 450 497 1285

Note: v is the cluster order. Listed are the number of sites added Nag , sites
in the surface N� , and the total of sites N in the cluster.

Figure 47. Decmon-type pyramid.

3.9. Decmon-Type Polyhedra

In contrast with previous polyhedra, decmon polyhedra are
based on a decmon-type pyramid, which is constituted by 16
vertexes joined by 30 edges which form 15 faces: 5 rectan-
gular type (100) and 10 triangular of type (111), 5 of which
are equilateral and 5 isosceles, Figure 48. The 5 equilateral
triangular faces (TE) have m sites per side, and each side of
length 1.05(m− 1)dNN , where dNN is the distance to the first
neighbors; the 10 isosceles triangle faces (TI) have n sites
per side, two sides of length (n − 1)dNN and one of length
1.05(n − 1)dNN ; the 10 rectangular faces (R), with m × n
sites, have sides 1.0(n− 1)dNN and 1.05(m− 1)dNN .

Equal sides of faces TI coincide with the sides of faces
R, and the different side forms part of the equator along
with one of the sides of R faces. Faces TE coincide with
the pole, and have a common side; also, each face has a
common face with one R face. The angle between the planes
of R and TE faces is 190.66�, and between R and TI faces
is 161.94�. The 16 vertexes (V ) are of three types: 1 pole,
where the 5 TE faces converge, 5 where the three types of
faces (V 3) converge, and 10 at the equator, and where an R
and a TI face converge (V 4). These vertexes are joined by
30 edges (A) of 5 types: 5 of length 1.05(m − 1), between
TE faces and which converge at the poles and join the VP
and V 3 vertexes (AE); 5 of length 1.05(m − 1), between
TE and R faces and join vertexes V 3 (A3); 10 of length
1.0(n − 1) between TI and R faces and join vertexes V 3
and V 4 (A34); and 10 at the equator, 5 of them of length
1.05(m− 1) of one R (AR) face and 5 of length 1.05(n− 1)
of one T I (AI) face, which joins V 4 vertexes. Based on
the decmon pyramid, many polyhedra can be obtained: the

Table 29. Geometrical characteristics for icosahedra.

Sites at Layers of Layers of Sites at
v T A V T A V en v Total en v Total

1 0 0 12 0 0 1 1 1 12 13
2 0 30 12 0 1 1 2 3 42 55
3 20 60 12 1 1 1 3 6 92 147
4 60 90 12 1 2 1 4 10 162 309
5 120 120 12 2 2 1 5 15 252 561
6 200 150 12 3 3 1 7 22 362 923
7 300 180 12 4 3 1 8 30 492 1415
8 420 210 12 5 4 1 10 40 642 2057
9 560 240 12 7 4 1 12 52 812 2869

10 720 270 12 8 5 1 14 66 1002 3871

Note: v is the cluster order; T , A, and V are the type of sites in the icosa-
hedron, triangular face, edge, and vertex, respectively. Listed is the number of
sites of each type of site, the number of layers of each site, and the number of
layers and sites in each shell and in the entire cluster.
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(a)

(d) (e) (f)

(b) (c)

Figure 48. (a) Icosahedron Ih of 561 atoms. (b) Truncated icosahedron
T Ih of 409 atoms. (c) T Ih of 257 atoms. (d) Ih of 309 atoms. (e) T Ih of
207 atoms. (f) T Ih of 105 atoms.

truncated icosahedron, the decmon, and the decmon with
intermediate aggregated layers.

3.9.1. Decmon Icosahedra
The truncated icosahedron or icosahedron of decmon type
is a polyhedron obtained upon adequate truncation and in
a symmetric way of an icosahedron (however, they can be
truncated asymmetrically also). An asymmetric truncation
of an icosahedron is done in the following manner: sur-
face sites forming a cover with a pentagonal pyramid shape
over a vertex, yielding a decmon-type pyramid, with rect-
angular faces and a side with a length of dNN . In order
to perform a symmetrical truncation, first a cover like that
previously presented has to be eliminated, but from the
vertex diagonally opposite. The following truncations have
to be done by elimination of sites which form a pyramid-
shaped cover of decmon type. Figure 49 shows two icosa-
hedra with their corresponding truncations. Figure 49(a)
[Fig. 14(d)] shows a 561 (309) site icosahedron that, upon
truncation, yields the 409 (207) sites T Ih (observe in this
one the decmon-type pyramid); Figure 49(b) [Fig. 49(e)]

Figure 49. Decmon-type polyhedron.

which, when truncated, again yields the 257 (105) sites
T Ih, Figure 49(c) [Fig. 49(f)]. From this figure, it can be
observed that it is possible to obtain the T Ih of two different
kinds: (1) the T Iha [Fig. 49(f)], and (2) the T Ib [Fig. 49(b),
(c), (e)].

3.9.2. Truncated Icosahedra T Iha

As shown in Figure 49(f), it is formed by 22 vertexes, joined
by 50 edges, forming faces of three types: rectangular, R
type (110), and two triangular of type (111), one equilateral
(TE) and the other isosceles (T I). Also, from this figure,
it can be noticed that the T Iha can be formed by attaching
two decmon-type pyramids, with T I faces coinciding with
T I faces at the equator or waist.

3.9.3. Truncated Icosahedra T Ihb
As shown in Figure 49(b), (c), and (e), it is formed by 32
vertexes, joined by 80 edges of I order to form 50 faces:
10 vertexes, 30 edges, and 20 faces more than T Iha. The
10 vertexes form one plane, and are of equator type from
T Iha, and the 20 edges connect the vertexes from the two
planes forming the 20 extra faces of trapezoidal type Tr ,
now having the waist of the T Ihb.
T Ih are characterized by three numbers (m, n, r) where

m (n) [r] is the number of sites in one edge between faces
TE, (R and T I) [Tr], including vertexes; for example, in
Figure 49(f), there is T Iha (3, 3, 1), and in Figure 49(b), (e),
and (f), there are the T Ihb (5, 2, 4), (4, 3, 2), and (4, 2, 3).
It is clear that, based on this notation, to the icosahedra
corresponds an m = r and an n = 1; for example, (6, 1, 6)
and (5, 1, 5) from Figure 49(a) and (d), respectively. From
Figure 49, it can be seen also that T Iha results from complete
truncation (when there is only one or two edge sites from the
original icosahedron) of an icosahedron with an odd number
of sites in the edges.

By truncation of an icosahedron, only some T Ih are
obtained, and upon truncation of another icosahedron, oth-
ers are obtained; in each truncation, a certain number of
sites are eliminated, but the same number in each trunca-
tion. Table 30 presents some of the geometric characteristics
of T Ih. The first column shows the order of the icosahe-
dron from where the v comes, the second column shows the
number of truncations done nt , n, the third column shows
the three characteristic numbers, in the fourth column is the
number of sites eliminated from the original icosahedron
n−, in the fifth column the number of sites remaining in the
surface N� is shown, and in the sixth column, the total num-
ber of sites in T Ih, N is shown. So, for example, the T Ih (5,
3, 3) comes from the icosahedron of order 6, to which 424
sites were eliminated in two truncations, yielding a T Ih of
499 sites, of which 242 are at the surface.

From Table 30, it can be seen that the maximum number
of truncations is v/2 [(v− 1�/2], the minimum value of m+
n+ r is (v+ 3) [(v+ 4)], of m is v/2+ 1��v+ 1�2+ 1�, and of
r is 1 [1]; the maximum n value is (v/2 + 1) [�v − 1�/2 + 1]
for v even (odd); besides, the maximum values for m+n+ r
are (2v+ 3), of m and r is v+ 1, and the minimum value of

Proof's Only



30 Crystallography and Shape of Nanoparticles and Clusters

Table 30. Geometric characteristics for truncated icosahedra T Iha.

v nt mnr n− N� N

1 0 2,1,2 0 12 13
2 0 3,1,3 0 42 55

1 2,2,1 32 22 23
3 0 4,1,4 0 92 147

1 3,2,2 62 62 85
4 0 5,1,5 0 162 309

1 4,2,3 102 122 207
2 3,3,1 204 82 105

5 0 6,1,6 0 252 561
1 5,2,4 152 202 409
2 4,3,2 304 152 257

6 0 7,1,7 0 362 923
1 6,2,5 212 302 711
2 5,3,3 424 242 499
3 4,4,1 636 182 287

Note: nt is the number of truncations made.

n is 1 for all v. For n−, N� , and N , there are the following
expressions:

n− = 2nt

[
1+ 5v�v + 1�

2

]
N� = �N��ico − 10v

= 10v2 − 10v + 2

N = �N�ico − n−

= 10
3
v3 − 5v2 + 11

3
v − 1− 2nt

[
1+ 5v�v + 1�

2

]
%

3.9.4. Decmon Polyhedra
A decmon polyhedra, Figure 50, is very similar to T Iha; it has
the same number of vertexes, edges, and faces, and the same
type of sites. Also, it can be constructed by two decmon-type
pyramids. The difference is that, at the equator or at the
waist, faces T I have T I layers, and R have R faces.

The lengths of decmon edges, even when they are of three
sizes, are related to the m and n of the decmon pyramid,
characterizing each particular decmon. mn can be consid-
ered as the order of the decmon (decmon mn), and the
values taken by m and n are not limited. m and n are the
number of edges AE and A34, respectively. Indeed, every
decmon is formed by centered shells in one decmon of an
order in which: (1) m = 1 and n = 1, (2) m > 1 and n = 1,

(a) (b)

Figure 50. Decmon-type decahedron of order 11. In (b), the sizes of
the atoms of (a) were reduced to more clearly observe the squared and
triangular faces by bondings to first neighbors, and to show that this is
a polyhedron with a central site.

or (3) m = 1 and n > 1, which are the smallest. For example,
decmon of Figure 15 is of order 67, decm67, which in turn
is a decm56 + one shell, decm56 is a decm45 + one shell,
decm45 is a decm34 + one shell, decm34 is a decm23 + one
shell, and decm23 is decm12 + one shell, decm12 being the
smallest of this family.

Decmon of order 11 (decm11) is the smallest of all
decmons, and the edges at the equator are all the same;
Figure 51. It only has sites in vertexes, and is centered in
one site, having a cluster of 23 sites. There is a decmon fam-
ily mm, based on decm11, and the possible decmons to be
created are decm22, decm33, decm44, decm55, and so on.

The geometric characteristics of a decahedra-type decmon
of order mm are listed in Table 31. The first column lists the
m value, the four following columns list the number of sites
in each type of site, rectangular sites R, in triangular faces
T , in edges A, and in vertexes V . It should be clear that T
sites include TE and T I sites, which in number are equal.
Besides, the 5 types of edges are included in A, correspond-
ing 1/5 to each of AE and AR, 1/10 to AC, and another to
A34 and 2/5 to AI . Vertexes are always 22, and from the
three kinds already mentioned, 2 poles, 10 V 3, and 10 V 4.
The following three groups of two columns list the number
of sites in the plane above the equator, at the equator, and
for the number of sites in clusters, for each shell and in total.
Figure 52 shows the decmon for m = 4 and of 609 atoms.

From Table 31, it can be seen that, for a decmon of order
m, the dependency with m values of the number of sites in
a rectangular face NR, triangular face NT , edges NA, surface
N� , and total N is given by the following expressions:

NR = 10�m− 1�2

NT = 10�m− 1��m− 2�

NAC = 50�m− 1�

N� = 20m2 + 2

N = 20
3
m3 + 10m2 + 16

3
m+ 1%

Also, expressions for the number of sites SE and EC can be
calculated for each m, NSE, NEC, and total NtSE and NtEC:

NSE = 10�m− 1�

NtSE = 5�m2 −m+ 1�

NEC = 10m

NtEC = 5m�m+ 1�+ 1%

Figure 51. Decmon-type decahedron of order 44, decm44, of 609 sites.
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Table 31. Geometric characteristics for decmons of family of order mm
based on decmons of order 11, decm11.

Sites at sobrec Equator Sites
m R T A V m Total m Total Total

1 0 0 0 22 5 5 10 11 22 23
2 10 0 50 22 10 15 20 31 82 105
3 40 20 100 22 20 35 30 61 182 287
4 90 60 150 22 30 65 40 101 322 609
5 160 120 200 22 40 105 50 151 502 1111
6 250 200 250 22 50 155 60 211 722 1833
7 360 300 300 22 60 215 70 281 982 2815
8 490 420 350 22 70 285 80 361 1281 4096
9 640 560 400 22 80 365 90 451 1622 5718

10 810 720 450 22 90 455 100 551 2002 7720

The next family decmon size, following the decmon fam-
ily mm, is the decmon family mn, with n = m + 1 or n =
m− 1, and based on the decm12 and decm21, respectively.
Decm12 and decm21 have the same number of sites, a total
of 54, although decm21 is more elongated toward the poles;
Figure 53. Decm12 has 20 sites in edges A34 and 5 in AI,
while decm21 has 10 sites in edges AE, 10 in A3, and 5
in AR, and both are centered in a decahedron of 7 sites,
regular for decm12 and more elongated toward the poles
for decm21. From decm12, other decm can be generated:
decm23, decm34, decm45, decm56, and so on. From decm21,
the decm generated are decm32, decm43 decm54, decm65,
and so on.

The geometric characteristics of decmon-type decahedra,
of order mn, with m = n − 1 and m = n + 1, are listed in
Table 32. The first two columns list the m and n values, and
in the following 10 columns, the number of sites of each type
of site, which considers only the sites in rectangular faces
R, equilateral triangular faces TE, isosceles triangular faces
T I , of two types of edges, AC and AL and in vertex V . It
should be clear that sites in AC (AL) include sites AE, AR,
and AC (AI and A34), corresponding (2/5) to AE, (2/5) to
A3, and (1/5) to AR (4/5 to AI and 1/5 to A34). The ver-
texes are always 22, and come from the three types already
mentioned. The number of sites R and V is common for the
two decmon mn families, with m = n − 1 and m = n + 1,
while the number of sites TE and T I , AC and AL are
interchanged. Columns 8–11 correspond to the interchange
of values of m and n; this is what happens with decmon
families of order mn with m = n + 1. The following three
groups of two columns list the number of sites in the plane

(a) (b)

Figure 52. Decmon-type decahedra of 54 sites and (a) order 12,
(b) order 21.

(a) (b)

Figure 53. Decmon-type decahedron of 835 sites of (a) order 45,
decm45, and (b) order 54, decm54.

above the equator (sobrec), at the equator, and the numbers
of sites in the cluster, per shell and in total; these values
are common to the m and n values, and are interchanged.
Figure 54 shows decmons of order 45 and 54, of 835
atoms.

The mn decmon families, with m = n− 1 and m = n+ 1,
follow in size the ones of decmon of order mn, with m =
n−2 and m = n+2, and are based on decm13, and decm31,
respectively.

The decm13 and decm31 decmon have the same number
of sites, 105 in total, although decm31 is more elongated
toward the poles; Figure 55. Decm13 has 40 sites in edges
A34, 10 in AI , and 10 in faces T I , while decm31 presents
20 sites in edges AE, 20 in A3, 10 in AR, and 10 in faces
TE, and both are centered at a decahedron of 23 sites with
a central site, regular for the decm13 and more elongated
toward the poles for the decm31. From the decm13, it is pos-
sible to generate the decm24, decm35, decm46, decm57, and
so on. From decm 31, it is possible to obtain the decm42,
decm53, decm64, decm75, and so on. The geometrical char-
acteristics of the decahedra-type decmon of order mn, with
m = n − 2 and m = n + 2, are listed in Table 33, with the
same indications for the columns as in Table 32. Figure 56
shows the 1111 atoms decmon of order 46 and 64.

From Tables 31–33, it is deduced that, for a decmon order
mn, the dependency on the m and n values of the number of
sites in rectangular face NR sites in the equilateral triangular
face NTE of sites in an isosceles triangular face NTI of sites
in the edge type AC (AE, A3, and AR), NAC , of sites in
the edge type AL (AI and A34), NAL, and of sites in the
surface N� is given by the following expressions:

NR = 10�m− 1��n− 1�

NTE = 5�m− 1��m− 2�

NTI = 5�n− 1��n− 2�

NAC = 25�m− 1�

NAL = 25�n− 1�

N� = 5�m+ n�2 + 2%

Also, it is possible to obtain the number of sites in the imme-
diate superior plane over the equator for each m and n,
NSE and in total NtSE , and in the equator Nec and Ntec for
the number of sites in the surface and the number of sites
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Table 32. Geometric characteristics for decmon of the family of order mn, with m = n − 1 and m = n + 1, based on the decmon of order 12,
decm12, and of order 21, decm21.

Sites at Sites Sites
Order mn nm sobrec equator Sites at
m n R TE TI AC AL TE TI AC AL V mn Total mn Total mn Total

1 2 0 0 0 0 25 0 0 25 0 22 10 11 15 20 47 54
2 3 20 0 10 25 50 10 0 55 25 22 20 31 25 45 127 181
3 4 60 10 30 50 75 30 10 75 50 22 30 61 35 80 247 428
4 5 120 30 60 75 100 60 30 100 75 22 40 101 45 125 407 835
5 6 200 60 100 100 125 100 60 125 100 22 50 151 55 180 607 1442
6 7 300 100 150 125 150 150 100 150 125 22 60 211 65 245 847 2289
7 8 420 150 210 150 175 210 150 175 150 22 70 271 75 320 1127 3416
8 9 560 210 280 175 200 280 210 200 175 22 80 351 85 405 1447 4863
9 10 720 280 360 200 225 360 280 225 200 22 90 441 95 500 1807 6670
10 11 900 360 450 225 250 450 360 250 225 22 100 541 105 605 2207 8877

for each m and n and in total for the decmon for each
combination of m and n used here. For m = n,

Nse = 10�m− 1�

Ntse = 5�m2 −m+ 1�

Nec = 10m

Ntec = 5m�m+ 1�+ 1

N� = 20m2 + 2

N = 20
3
m3 + 10m2 + 16

3
m+ 1%

For n = m± 1,

Nse = 10m

Ntse = 5m�m+ 1�+ 1

Nec = 10m+ 5

Ntec = 5m�m+ 2�+ 5

N� =


20m2 + 20m+ 7	 for �+�
20m2 − 20m+ 7	 for �−�

N =



20
3
m3 + 20m2 + 61

3
m+ 7	 for �+�

20
3
m3 + 1

3
m	 for �−�%

(a) (b)

Figure 54. Decmon-type decahedra of (a) order 13, and (b) order 31.

For n = m± 2,

Nse = 10m+ 5

Ntse = 5m�m+ 2�+ 5

Nec = 10�m+ 1�

Ntec = 5m2 + 6m+ 11

N� =


20m2 + 40m+ 22	 for �+�
20m2 − 40m+ 22	 for �−�

N =



20
3
m3 + 30m2 + 136

3
m+ 23	 for �+�

20
3
m3 − 10m2 + 16

3
m− 24	 for �−�%

3.9.5. Modified Decmon
To obtain decmon-type decahedra, widened with extra lay-
ers, the same procedure is followed as with the decahedrons,
separating the decmon as two pyramids with parallel bases,
making the vertexes coincide, and adding layers of type SEC;
Figure 57. The obtained figure has 10 regular lateral faces
besides the ones previously mentioned, and 10 more edges.

4. SYNTHESIS OF NANOPARTICLES
Metal clusters have been formed in a supersonic beam; this
method to prepare colloidal metals in nonaqueous media
was first reported by the group of Andres at Purdue Uni-
versity [30–32]. A supersonic beam source was used; this

(a) (b)

Figure 55. Decmon-type decahedron of 1111 sites of (a) order 46,
decm46, and (b) order 64, decm64.
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Table 33. Geometric characteristics for decmon of families of order mn, with m = n− 2 and m = n+ 2, based on decmon of order 13, decm13 and
of order 31, decm31.

Sites at Sites Sites
Order mn nm sobrec equator Sites at
m n R TE TI AC AL TE TI AC AL V mn Total mn Total mn Total

1 3 0 0 10 0 50 10 0 50 0 22 15 20 20 31 82 105
2 4 30 0 30 25 75 0 0 75 25 22 25 45 30 61 182 287
3 5 80 10 60 50 100 60 10 100 50 22 35 80 40 101 322 609
4 6 150 30 100 75 125 100 30 125 75 22 45 125 50 151 502 1111
5 7 240 60 150 100 150 150 60 150 100 22 55 180 60 211 722 1833
6 8 350 100 210 125 175 210 100 175 125 22 65 245 70 281 982 2815
7 9 480 150 280 150 200 280 150 200 150 22 75 320 80 361 1282 4097
8 10 630 210 360 175 225 360 210 225 175 22 85 405 90 451 1622 5719
9 11 800 280 450 200 250 450 280 250 200 22 95 500 100 551 2002 7721
10 12 990 360 550 225 275 550 360 275 225 22 105 605 110 661 2412 10143

instrument produces metal clusters with a controlled mean
diameter in the range of 1–20 nm in size. Once the clus-
ters have nucleated, the cluster aerosol is directed through
a spray chamber to be placed in contact with a fine spray of
organic solvent and surfactant.

However, conceptually, the simplest method of preparing
colloidal metals is the condensation of atomic metal vapor
into a dispersing medium [33]. Given the high oxidation
potential of most atomic metals (for example, the oxidation
potential for atomic gold is −1.5 V), the use of water as the
diluent’s phase can be ruled out, so exclusively inert organic
liquids are going to be used in this procedure. Since the acti-
vation energy for the agglomeration of metal atoms is very
low, the possibility for competing molecular complex forma-
tion processes which have higher activation energies can be
mitigated by operating at low temperatures.

The use of metal vapors cocondensed with organic vapors
to prepare colloidal metals in nonaqueous media was first
reported by Roginski and Schalnikoff in 1927 [34], some
50 years before the recent wave of activity in metal vapor
chemistry. The organosols were prepared at reduced pres-
sure by the evaporation of relatively volatile metals such as
cadmium, lead, and thallium, and a subsequent coconden-
sation of these with the vapors of organic diluents such as
benzene and toluene on a liquid air-cooled cold finger. After
cocondensation was complete, a colloidal suspension of the

Figure 56. Decmon-type decahedron of order 78 with 6 intermediate
layers added.

metal was obtained by warming up the frozen matrix and
collecting the liquid (Fig. 58).

A new metal vapor synthesis system for the prepara-
tive scale cocondensation of metal vapors with aerosols of
organic liquids was recently achieved by Bradley’s group
[35]. The use of aerosol overcomes one limitation of the
other methods, in which the organic diluent must be either
volatile or has a liquid range which extends to a temper-
ature low enough to reduce its vapor pressure to a useful
value. The aerosol droplets, ca. 1 &m in diameter, are gen-
erated by feeding the organic liquid (neat liquid, polymer
solutions, solutions of nonvolatile ligands) into an ultrasonic
atomizing nozzle from which they fall onto a rotating plate
cooled to 77 K in a vacuum chamber, as shown in Figure 2.
Vapors of one or more metals, obtained by simultaneous
sputtering from metal or alloy targets, are then cocondensed
with the aerosol. This results in the formation of a frozen
organometallic matrix, which is then warmed up to allow the
aggregation of the metal atoms. The resulting colloid solu-
tion is removed from the reactor under helium atmosphere
for characterization and further studies.

In the 1980s, several research groups in Japan prepared
metal particles of Al, Mg, Mn, Be, Te, Fe, Pb, Co, Ni, Cd,
Ag, In, Pd, and Au by these method [36–45]. The work most

Liquid Reservoir

Feed Pump Sputtering Gun

Metal vapor flux monitor
and feedback

Frozen Matrix

Rotating cold stage

Ferrofluid seal

Liquid Nitrogen reservoir

Liquid Nitrogen

Metal sol

Liquid Nitrogen

Piezoelectric
atomizing nozzle Vacuum chamber

Figure 57. Schematic of sputtering source metal vapor/aerosol for
metal colloid preparation (after design of from Bradley [35]).
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Figure 58. Simulation of HREM images of a cubooctahedral particle
in different orientations with respect to the electron beam.

recently performed was by Uyeda in 1991 [46]. This study
demonstrated the feasibility of producing films of almost any
metal or semiconductor by metal vapor deposition in a noble
gas high-pressure atmosphere.

Another method to produce nanoparticles is the bioreduc-
tion method. Several researchers established that live and
nonlive biologic systems such as algae have the ability to
absorb metal ions from solutions through their cell walls and
various cellular constituents [47, 48]. Studies have shown
that algae are able to bind gold ions from aqueous solutions
and form colloidal particles on their surfaces, yet the mecha-
nisms have not been fully understood [49–53]. Several plants
have been studied for their unique biochemical ability to
accumulate metal compounds over extended periods. In fact,
plant species such as Douglas-fir and rye grass are utilized
as biological indicators of geologic gold deposits [54, 55].
Some other plants such as Indian mustard have been uti-
lized for phytomining; the accumulation of valuable metals
comes from low concentrations in soils by plants [56, 57].
Furthermore, Lujan and co-workers reported that a purple
color, similar to “Purple of Cassius,” resulted when aque-
ous Au(III) was reacted with the biomaterials in their study,
indicating the formation of gold colloids [58–60]. Plants may
possess a unique natural chemical stabilization mechanism
that allows the formation of nanoparticles. In addition, the
plant biomaterials may be isolated for a more thorough
study of the colloidal information mechanisms. Therefore,
by taking advantage of the naturally occurring compounds
found within the plant systems, a novel method may be
found to generate similarly sized stable metal colloids. While
consistency in nanoparticle size and shape is important to
many materials, differences in nanoparticle synthesis may
also lead to changes in particle conformation and spatial
arrangement, which may provide better nanoscopic building
blocks to form new raw materials with distinctly different
properties than their macroscaled counterparts.

Recently, it was shown that live plants can uptake metal
solutions and produce nanoparticles [61]. This approach is
very promising for further developments in nanotechnology.

All of the particles reported in the present work were
produced by the methods described above.

A third way to prepare metal nanoparticles is the col-
loidal methods discussed in the Introduction. In the original
Brust et al. reaction [13], the addition of dodecanethiol to
the organic-phase AuCl−4 (1:1 molecule), followed by reduc-
tion with BH−

4 , led to dodecanethiolate protected Au clus-
ters having a 1–3 nm range of core diameters:

AuCl−4 �toluene�+RSH −→ �−AuSR−�n�polymer�

�−AuSR−�4 + BH4 −→ Aux�SR�y%

Subsequent reports have shown that a wide range of alka-
nethiolate chain lengths (C3–C24) [62], 4-functionalized
alkanethiolates, and dialkyl disulfides [63] can be employed
in this same protocol. An example of a passivated nano-
particles formula is Au145(S(CH2�5CH3�50.

Pt, Rh, and Pd salts can be used following the same
method. One of the possible reactions is

AuCl−4 �toluene�+ PtCl− +R − SH

−→ �−AuxPtySR
−�n�polymer�

�−AuxPtySR
−�4 + BH4 −→ AuxPty�SR�z%

The details of these reactions have not been completely
understood; however, the behavior of the reaction is consis-
tent with a nucleation-growth-passivation process: (1) larger
thiol: gold mole ratios give smaller average nanoparticle
metal core sizes [64, 65], (2) fast reductant addition and
cooled solutions produce smaller, more monodisperse nano-
particles [66, 67], and (3) quenching the reaction imme-
diately following reduction produces higher abundances of
very small core sizes (≤2 nm).

The Schiffrin reaction tolerates considerable modification
with regard to the protecting ligand structures. While alka-
nethiolate passivated nanoparticles (a) are nonpolar, highly
polar ligands (b–d) can yield water-soluble passivated nano-
particles in modified synthesis. Nanoparticles passivated
with arenethiolate [68–71] (e–g) and (5–mercaptopropyl)
trimethyloxysilane ligands (h) have also been prepared. Ster-
ically bulky ligands tend to produce smaller Au core sizes
(relative to alkanethiolate-passivated nanoparticles prepared
using equal thiol/AuCl−4 ratios), suggesting a steric connec-
tion (as yet unproven) with the dynamics of core passivation
[72].

The core metal of passivated nanoparticles can also
be modified. Alloy nanoparticles with Au/Ag, Au/Cu,
Au/Ag/Cu, Au/Pt, Au/Pd, and Au/Ag/Cu/Pd cores [73] have
been reported.

It is well known for the case of bare particles that
noncrystallographic structures are formed in many cases,
these being predominantly icosahedral and decahedral. In
other cases, fcc, bcc, or single twinned particles are also
produced. Extensive literature is found on shape observa-
tions and the kinetic growth conditions in which the different
types of particles are produced [74–86].
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5. TEM AND SIMULATIONS OF IMAGES
OF NANOPARTICLES

5.1. Introduction

Since its inception in the 20th century, electron microscopy
has developed into a powerful tool for scientific research.
Indeed, the use of electron microscopy has facilitated many
fundamental discoveries. This technique has itself been sub-
ject to constant evolution thanks to unceasing design efforts
in the scientific and manufacturing transmission electron
microscopy (TEM) community. The advances in this field
have been characterized by a series of quantum leaps in
technology. For instance, the double condenser lens and
tilting stages revolutionized the study of defects in metals
in the late 1950s and early 1960s. The high lattice resolu-
tion achieved in the 1970s, along with improvements in vac-
uum methods and lens control, produced a less complicated
instrument, capable of achieving rapid results with minimal
training. Consequently, the TEM gained enormous popular-
ity in the materials community. In the second half of the
1980s, a new quantum leap was realized by the achieve-
ment of atomic resolution on a routine basis. Microscopes
with a point resolution of 0.17 nm coupled with spectacu-
lar advances in diffraction theory led to many fine examples
of materials characterization. In the 1990s, another quan-
tum leap occurred with the introduction of highly coherent
field emission electron sources and electron loss analyzers.
Combined with X-ray analysis, this established the TEM as
a powerful analytical machine. For the first time, images,
diffraction, and spectroscopy could be obtained from a sin-
gle instrument. The TEM has become a standard instru-
ment for many scientific fields. During the second half
of the 1990s, the substantial increase in the number of
papers published in Physical Review Letters containing elec-
tron microscopy studies attests to this fact. Other important
developments include the introduction of electron hologra-
phy and dark field images produced using incoherently scat-
tered electrons (Z contrast).

The next quantum leap in electron microscopy will be
produced by the introduction of aberration correctors for
the objective lens and STEM lens-forming system, and
by the development of monochromators for the incident
beam. These techniques will undoubtedly usher in a new
era for TEM. Improved point resolution of 0.007 nm, an
increased information limit, enhanced energy resolution,
and improved stages using MEMS technology will allow
3-D reconstruction of amorphous materials such as glasses.
Refined X-ray techniques will facilitate chemical analysis
essentially at the single atom level. Still more exciting, Cs-
corrected microscopes will allow more space in the objec-
tive lens gap, thus making it possible to construct stages
for the in situ examination of materials at atomic resolu-
tion and analysis with atomic accuracy [87]. The most recent
developments in TEM coincide with the emergence of nano-
technology [88], and because the TEM probe size is ideal for
nanoscale studies, it is clear that advanced TEM will be a
major instrument in subsequent nanotechnological develop-
ments. The TEM will also be fundamental in areas of rapid

development such as advanced materials research, biotech-
nology, and microelectronics. The automation of modern
TEM has led to applications in semiconductor fabrication
processes, and energy filtering will permit the study of poly-
mers and biological materials with unprecedented accuracy.

Transmission electron microscopy is one of the most
important techniques to study nanoparticles. The resolution
of the TEM is well below the size of most of the par-
ticles and in the order of magnitude of the metal–metal
bonds. There are several papers which have explained in a
very detailed way the electron microscopy methods to study
nanoparticles. We will not discuss in this chapter dynamical
diffraction methods, but we rather refer the reader to those
publications [89–92].

Images were obtained using a JEOL 2010-FEG micro-
scope, with a resolution of 0.19 nm and a tilting possibility
of ±30�, and a JEOL 4000EX with a resolution of 0.17 nm.
HREM images of nanoparticles were obtained at the first
optimum defocus (Scherzer focus) or at the second optimum
defocus condition, resulting in images of atomic columns
as black (first maximum) or white (second maximum) dots.
Molecular Dynamics software was used to build theoreti-
cal models of the particles. Simulated images were obtained
using the Simula TEM software of the Institute of Physics
at UNAM, which is especially adequate for studying nano-
particles with noncrystallographic symmetries. A comparison
of experimental and simulated data will allow us to interpret
the experimental images.

In general, in order to recognize a nanoparticle in a
nonambiguous fashion, it is necessary to obtain a tilting
sequence of HREM. Figure 59 illustrates the changes in
contrast when the orientation of the particle is changed with
respect to the electron beam. This case corresponds to a
cubooctahedral particle. This image illustrates a remarkable
difference between nanoparticles and large crystals. In the
latter case, the image will be very sensitive to tilting, and will
disappear with small tilts. The nanoparticle, on the other
hand, always shows images despite the large angle of tilt-
ing. In many cases, the images correspond to pseudolattice
images. Considerable caution should be taken when analyz-
ing fringe images of nanoparticles. The images out of a low-
index direction do not necessarily reflect a structural feature.

Figure 59. Models of an fcc pyramid formed by two tetrahedra.
Observe their contrast in the second row and their diffraction pattern
in the third row.
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In diffraction terms, the finite size of the nanoparticles in
real space results in rel rods in reciprocal space. The Ewald
sphere will always cut the reciprocal space points despite the
angle.

5.2. fcc Particles

The fcc particles are straightforward to identify. Figure 60
illustrates the contrast produced by an fcc by a pyramid
formed by two tetrahedrons and their diffraction pattern
(which in most instances is identical to the FFT of the
image). Experimental examples of a pyramidal and of a
tetrahedral particle are shown in Figure 61.

5.3. Decahedral Particles

Very important cases to consider are the images produced
by pentagonal particles, such as the one shown in Figure 62.

Typical TEM images of pentagonal particles are shown
in Figure 63. The fivefold symmetry of the FFT can be
observed. However, these patterns are a combination of the
diffraction patterns of different portions of the particle, as
shown in Figure 64. This indicates that the overall structure
of the particle has a fivefold symmetry, but this is not the
result of fivefold symmetry in each portion of the particle.
Because of that, it is more correct to consider that the parti-
cle has a pseudofivefold symmetry. This is in sharp contrast
with the case of quasicrystals [93].

It should be remembered that another important effect in
the images observed in a TEM is due to the defocus con-
dition which can change the image significantly. Figure 65
illustrates this effect for the case of a regular decahedron.
In this case, the calculations were made for a JEOL 4000
microscope. As is known from image theories [94], there

b

c d

a

10 nm

Figure 60. Bright field images of: (a) pyramidal particle, (b) tetragonal
particle, (c) FFT of (b), (d) diffraction pattern of (b).

10 nm

Figure 61. Bright field image of a pentagonal gold particle.

are two defocus conditions in which the image represents
the true atomic columns which correspond on the figure
to −40.5 nm (black atoms) and −70.2 nm (white atoms).
If another defocus is used, the image does not necessarily
reflect the atomic positions, but useful information still can
be obtained. For instance, a defocus of −35.5 increases the
grain boundary contrast, and the nature of the interfaces
can be examined. At an even lower defocus of −20.5 nm,
the pentagonal particle structure is reflected on the image.
An experimental example of a pentagonal particle showing
well-defined atomic resolution is shown in Figure 66. In this
case, some of the twin boundaries are incoherent. An exam-
ple of the structure formed at a defocus condition below the
optimum value is shown in Figure 67.

A commonly observed type of pentagonal particle corre-
sponding to a rounded shape and the respective model of
the particle are shown in Figure 68(a) and (b), respectively.
A complete set of images at different tilting angles is shown
in Figure 69. Obtaining different images at different tilting
angles and referring to this sequence should be enough data
to fully identify the structure of that particle.

2 nm

Figure 62. High-resolution images showing atomic contrast of ∼2 nm
pentagonal gold nanoparticles and their corresponding FFT showing
the fivefold symmetry.
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a b

2 nm

Figure 63. (a) Pentagonal particle showing the FFT of different sec-
tions. (b) Overall FFT.

In the previous sections, we described a new type of pen-
tagonal structure that was described originally by Montejano
[95] and was termed a decmon type of particle. This type
of structure belongs to a more general family of decahe-
dral nanoparticles, which includes the truncated decahedron
(Marks) [96], the pancake structure of Koga and Sugarawa
[97], and the truncated icosahedron of Ascencio et al. [98].

A tilting sequence for three different decmon structures
is shown in Figures 70–72. We also include the calculation
a 64-order pentadecahedron in Figure 73. An experimental
example of this type of particle is shown in Figure 74. This
image corresponds to a dark field taken in a weak beam
condition. In this case, a continuous set of thickness fringes
is expected. However, because of the decmon shape, a pen-
tagonal profile is formed at the center of the particle.

Another experimental example is shown in Figure 75(a).
The particle marked by an arrow can be identified using a
model with surface reconstruction, as shown in Figure 75(b).

-605 Å -555 Å

-355 Å

-505 Å

-305 Å

-455 Å

-255 Å

-405 Å

-205 Å

Figure 64. Effect of defocus on TEM images. Calculations made for a
truncated decahedron and for a JEOL 4000 microscope.

2.5 nm

Figure 65. HREM image of a pentagonal particle, showing incoherent
twin boundaries indicated by arrows.

We have found that surface reconstruction particles
are formed very frequently when the sample approaches
the equilibrium condition. For instance, the particle in
Figure 75(a) was obtained after heating the sample with an
electron beam and allowing recrystallization. In this pro-
cess, the total surface energy of the nanoparticle will tend to
be a minimum. There are several ways to achieve this sur-
face energy minimization. Marks described truncations on
the decahedron structure [96] that result in a more stable
structure. However, the energy landscape has many struc-
tures with similar energy. Another possibility is to introduce
faceting along the twin boundaries of the decahedra, result-
ing in the structure shown in Figure 76(a). If images are
formed at the Scherzer condition, the channels can be visu-
alized [Fig. 76(b)], in contrast to the case of the regular
decahedron. We have described these particles previously in
this chapter.

A full map of images for these channeled structures as
a function of the tilting angle for the optimum defocus is
shown in Figure 77(a) and (b). This type of decahedron is
often observed in larger particles, as shown in Figure 78.

a b

2 nm

Figure 66. (a) High-resolution image of a pentagonal particle with a
defocus below the optimal value. (b) Corresponding FFT indicating the
fivefold symmetry.
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a

2 nm

b

50.00 Angstroms

Figure 67. Pentagonal particle with rounded shape. (a) HREM image.
(b) Model of particle.
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Figure 68. Images of a pentagonal particle obtained as a function of
the tilting angles " and 6. The origin of the coordinate system indicates
a 0, 0 position, and the range of the angles is 90�. The model and typical
bright field and HREM image (including FFT) are shown in the left
portion of the figure.
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Figure 69. HREM images calculated for a decmon 10 structure shown
in the left portion of the figure. The rotation angles " and 6 go from 0
to 90�.
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Figure 70. HREM images calculated for a decmon 12 structure shown
in the left portion of the figure. The rotation angles " and 6 go from 0
to 90�.

Another very interesting possibility has been suggested by
molecular dynamic simulations of Chushak and Bartell [99]
and other group [100]. This work indicates that, in the twin
boundaries, a stacking fault is formed. In other words, the
ABC stacking will be converted to ABAB stacking in the
boundary region.

A different situation corresponds to the structure
reported in Figure 46. In this case, the stacking is altered
only in the last layer of the packing. This is illustrated in
Figure 79 in which a regular stacking in a unit of the dec-
ahedra is altered in the surface. In other words, the ABCA
sequence becomes ABCB. In Figure 79, each layer is illus-
trated in a different color. The yellow atoms correspond to
the surface sites. We have found experimentally that this
type of decahedron is very stable, especially at small sizes.
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Figure 71. HREM images calculated for a decmon structure with less
degree of truncation, as the model shown in the left portion of the
figure. The rotation angles " and 6 go from 0 to 90�.
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50.00 Angstroms

Figure 72. HREM images calculated for a pentadecahedral structure
as the model shown in the left portion of the figure. The rotation angles
" and 6 go from 0 to 90�.

a b

5 nm 2 nm

Figure 73. (a) A weak multibeam dark field image of a decmon type
of decahedron obtained in a gold particle synthesized by bioreduction.
(b) An HREM image of a decmon-type particle.

a

2 nm

b

30.00 Angstroms

Figure 74. Analysis of a decmon-type particle supported on a thin por-
tion of a carbon film (indicated by an arrow). (a) TEM Image. (b) Iden-
tification of particle using a model with surface reconstruction.

50.00 Angstroms
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Figure 75. (a) Model of decahedron showing faceting along the twin
boundaries. (b) Simulated TEM image of a decahedron in Scherzer
condition, where the channels can be observed.
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Figure 76. (a) Map of images for the truncated decahedron as function
of the tilting angle for the optimum defocus. (b) Map of images for
the decahedron in Figure 75(a) as function of the tilting angle for the
optimum defocus.
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10 nm 1 nm 1 nm

Figure 77. (a) Bright field image of a large particle produced by biore-
duction showing a typical contrast of channels in the twin boundaries
in the interface. (b) and (c) show the high-resolution image of deca-
hedral shape in which the contrast at the boundaries does not change
with defocus, and can be explained by the model of interface channels
discussed in the theoretical section.

The contrast of this particle is very peculiar, and is
shown in Figure 80 for a different defocus. In this case,
the boundaries show a very strong contrast at all defo-
cus conditions. This provides a practical way to distinguish
this particle from other types of decahedra which, under
some focus conditions, can produce boundary contrast, as
shown before. The contrast of the boundaries will be very
strong, as shown in Figure 80. This type of particle is often
observed experimentally in nanoparticles with sizes ∼1.5 nm,
as shown in Figure 81(a), or when two metals are present.
Figure 81(b) and (c) show the HREM image of a particle of
Au–Pd at 50%–50% in which, in many places, it is possible
to observe the surface atom vacancy. In general, it can be
said that the central atom vacancy is a unique feature of this
type of particle.

c

a

10.00 Angstoms

b

6:DD5C 10.00 Angstoms

Figure 78. (a) Packing of atoms in a decahedron showing a stacking
fault in the last atomic layer. Different colors correspond to differ-
ent layers of the packing sequence, and the ABCA sequence becomes
ABCB. (b) Another view of the same packing, in which the surface
atoms are drawn in a smaller size. (c) Side view of the resulting stricture
in which a missing atom in the center can be observed.

-705

-455 -505 -555 -605 -655

-205 -255 -305 -355 -405

Figure 79. Sequence of simulated images of a decahedron particle with
a missing atom in the center (fivefold site) as the result of surface
reconstruction. The image is calculated at a different defocus.

Finally, in some cases, an irregular or asymmetric deca-
hedral shape is produced. This was described by Uppenbrik
and Wales [101], and most likely is the result of the kinetics
of growth; a typical example is shown in Figure 82. When
the particles grow larger, some special shapes are seen, as
indicated in Figure 83.

5.4. Icosahedral Particles

One of the most frequently observed particles at small sizes
corresponds to the icosahedral structure. A typical TEM
image of these particles is shown in Figure 84. The profile
is typically hexagonal in the threefold orientation.

The most common images are in the two- and threefold
orientation. The calculations of these images are shown
in Figure 85, and are consistent with previous calculations
[102]. Experimental images of a gold icosahedral particle in
a threefold orientation and a twofold orientation are pre-
sented in Figure 86(a), (b) and (c), (d) including the FFT,
which indicates the symmetry. A less commonly observed
orientation is the fivefold. This is probably due to the fact
that, under flat surfaces, particles will be tilted until one tri-
angular face (111) becomes in contact with the substrate.
This results in most cases in a twofold orientation.

However, when the particles are around 1–2 nm, it is pos-
sible to observe the fivefold orientation more frequently.

1 nm 2 nm2 nm

a b c

Figure 80. Decahedral particles, in which a defect was formed in the
last layer of atoms. Notice that the particle in (a) does not have a central
atom in the fivefold site. The particles in (b) and (c) correspond to an
Au–Pd system, and atom vacancies in several sites are observed.
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1.5 nm

Figure 81. Distorted decahedral particle.

10 nm

Figure 82. Large irregular decahedral particle grown from a distorted
decahedral particle.

10 nm

Figure 83. Bright field of an icosahedral gold particle showing a typical
hexagonal profile.

a b

c d

Figure 84. Calculated images of HREM icosahedral particles at
(a) threefold orientation, and (b)–(d) different twofold orientations.

a

c d

b

1 nm

5 nm

Figure 85. Experimental images of icosahedral particles and their
corresponding FFT. (a), (b) Threefold orientation. (c), (d) Twofold
orientation.
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2 nm

20.00 Angstroms

Figure 86. Model and image simulations of an icosahedral particle in
fivefold symmetry (upper portion) and experimental images for a gold
particle in the lower part. In both cases, we include the FFT.

This is probably due to truncations on the surface in con-
tact with the substrate. An example of this contrast and an
experimental example are shown in Figure 87.

When a bimetallic particle is synthesized, the frequency of
the icosahedral particle increases, particularly at the smallest
sizes [103].

5.5. Single Twinned and Complex Particles

Twinning is a very general phenomenon which might happen
in the very early stages of growth, and does not necessarily
result in a decahedral or icosahedral particle. In many cases,
we can observe a pyramidal particle with a single twin. This
particle is shown in Figure 88.

We have observed particles down to 1.5 nm in size which
present single twins. Therefore, is it safe to assume that, in
some cases, twinning proceeds in the very early stages of
growth. However, when the particles grow to larger sizes,
coalescence can occur, leading to a more complex type of
particles. We have found by molecular dynamics that a dou-
ble icosahedral structure can be produced very often. In this
structure, we have two interpenetrating icosahedra to form
a double icosahedron, as shown in Figure 89. This structure

2.5 nm

Figure 87. HREM image of a single twin particle and its corresponding
FFT.

a b

Figure 88. (a) Model for a double icosahedron obtained by molecular
dynamics. (b) Simulated image. As can be seen, one part of the struc-
ture is a fivefold orientation, and the other one is at fivefold orientation.

corresponds to a minimum in the total energy, and has been
observed experimentally by Hofmeister’s group [104].

5.6. Surface Faceting in Nanoparticles

In many cases, the particles can present a surface faceting,
especially when they are annealed or heated in situ. This
faceting is relevant since it can be related to the catalytic
activity of the particles; an example is shown in Figure 90.
The presence of steps will increase the particle curvature,
yielding an almost spherical particle. We have observed that
faceting results in (110) and (112) faces.

6. CONCLUSIONS
We have made a systematic description of the most signifi-
cant geometries which are formed in nanoparticles. We have
calculated the number of different atomic sites and growth
characteristics of the nanoparticles. It has been shown that
the models correspond closely with the experimental HREM
and diffraction data.

New types of particles have been described in this work,
which correspond to a new family of decahedral structures.

We expect that, as the field advances and new synthesis
routes for particles ∼1 nm are developed, all of the pre-
dicted clusters will be observed.

This work also illustrates the richness of the crystallogra-
phy of nanoparticles and clusters. Unlike the bulk materi-
als, fivefold symmetry in nanoparticles produces a very rich
landscape of structures.

2 nm

Figure 89. HREM image of a gold particle showing surface faceting.
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