
J O N A T H A N Z D Z I A R S K I
J O N A T H A N @ Z D Z I A R S K I . C O M

@ J Z D Z I A R S K I

Identifying Back Doors, Attack
Points, and Surveillance

Mechanisms in iOS Devices

Whois NerveGas

�  Worked as dev-team member on many of the early
jailbreaks until around iOS 4.

�  Author of five iOS-related O’Reilly books including
“Hacking and Securing iOS Applications”

�  Designed all of the iOS forensics techniques used in law
enforcement and commercial products today

�  Consulted closely with federal and local law enforcement
agencies and US military on high profile projects and
criminal cases

�  Trained law enforcement worldwide in iOS forensics and
penetration arts

iOS Operating System

�  Subject of interest among forensics, law
enforcement, and criminal communities

�  As leaked by Der Spiegel, iOS was targeted by NSA
for targeted collection

�  Later found more evidence of C&C capabilities in
DROPOUTJEEP leaks via close access methods

�  Attacked for everything from cases of national
security to nude photos of marginally attractive
celebrities

�  A number of forensic techniques exist to acquire data

What This Talk Is

�  Overview of a number of undocumented high-value
forensic services running on every iOS device
¡  How they’ve evolved
¡  What kind of data they provide

�  Examples of forensic artifacts acquired that should
never come off the device without user consent

�  Surveillance mechanisms to bypass personal security
(intended for enterprises), but make potential targets

�  Suspicious design omissions in iOS that make
collection easier

What This Talk Is NOT

�  A talk about fun 0days and how we can have a little
temporary fun with them for a few days.
¡  The content discussed here has been around for many years,

and are low level operating system components
¡  Apple is well aware of these components, and has clearly been

updating them and supporting them for reasons unknown
¡  I have emailed both Tim Cook and Steve Jobs at various times

to ask for an explanation about these services, citing them as
“back doors”, and have received no reply

¡  I *have* received replies from Tim Cook about Apple’s
crummy warranty service, so I know he gets my email

Centralized Control

�  Apple has worked hard to make iOS devices
reasonably secure against typical attackers

�  Apple has worked hard to ensure that Apple can
access data on end-user devices on behalf of law
enforcement

�  To their credit, iPhone 5* + iOS 7 is more secure
from everybody except Apple (and .gov)

�  Apple’s Law Enforcement Process Guidelines:
¡  https://www.apple.com/legal/more-resources/law-

enforcement/

Law Enforcement Process

�  Requires a warrant for actual content from iCloud, iTunes, or
from the device itself

�  A subpoena appears good enough for “metadata”
�  Recent changes will notify all customers unless a

confidentiality order is included; so most agencies are now
getting confidentiality orders with every warrant.

�  When provided with the physical device, Apple will retrieve
and return NSProtectionNone data from passcode locked
devices; rumors of a PIN brute forcer are floating around, but
I’m told this practice stopped around iOS 5.

�  Process is now taking about four months on average, and costs
about $1,000, so LE is looking for streamlined / inexpensive
tools to collect evidence.

Apple Law Enforcement Process

Extracting Data from Passcode Locked iOS Devices

Upon receipt of a valid search warrant, Apple can extract
certain categories of active data from passcode locked
iOS devices. Specifically, the user generated active files on
an iOS device that are contained in Apple’s native apps and for
which the data is not encrypted using the passcode (“user
generated active files”), can be extracted and provided to law
enforcement on external media. Apple can perform this data
extraction process on iOS devices running iOS 4 or more recent
versions of iOS. Please note the only categories of user generated
active files that can be provided to law enforcement, pursuant to
a valid search warrant, are: SMS, photos, videos, contacts,
audio recording, and call history. Apple cannot provide:
email, calendar entries, or any third-party App data.

iOS 4 Storage Encryption Overview

Courtesy of Sogeti Labs

Encryption in iOS 7: Not Much Changed

�  Almost all native application / OS data is encrypted with a key
not married to the passcode, but rather encrypted with a
hardware deduced key (NSProtectionNone)

�  As of iOS 7, third party documents are encrypted, but
Library and Caches folders are usually not

�  Once the device is first unlocked after reboot, most of the
data-protection encrypted data can be accessed until the
device is shut down
¡  Screen Lock != Encrypted

�  The undocumented services running on every iOS device help
make this possible

�  Your device is almost always at risk of spilling all data, since
it’s almost always authenticated, even while locked.

Law Enforcement Technologies

�  Latest commercial forensics tools perform deep
extraction using these services

�  Tablet forensics in the field can acquire a device at a
routine traffic stop, or during arrest – before device
can be shut down (leaving encryption unlocked)

�  Federal agencies have always been interested in
black bag techniques (compromised docking
stations, alarm clocks, etc).

�  Snowden Docs: Computer infiltration was used

Undocumented Services

�  Accessed through lockdownd, requiring pairing
authentication. (Explain Pairing)

�  MACTANS talk demonstrated how easy Juice
Jacking can be to establish pairing
¡  iOS 7 trust dialog helps, but third party accessories are making

people stupid again … and people are naturally stupid too
�  Law enforcement agencies moving to tablet devices

for pairing and acquisition in the field; USB thumb
drive to scan computers for pairing records

�  Der Spiegel outlined black bag techniques to access a
target’s computer, where pairing records live

Der Spiegel

�  “The documents state that it is possible for the NSA
to tap most sensitive data held on these smart
phones, including contact lists, SMS traffic,
notes and location information about where a
user has been. In the internal documents, experts
boast about successful access to iPhone data in
instances where the NSA is able to infiltrate the
computer a person uses to sync their iPhone.
Mini-programs, so-called "scripts," then enable
additional access to at least 38 iPhone features.”

Undocumented Services

�  Bypasses “Backup Encryption” mechanism provided
to users

�  Can be accessed both via USB and wirelessly (WiFi,
maybe cellular); networks can be scanned for a
specific target

�  If device has not been rebooted since user last
entered PIN, can access all data encrypted with
data-protection (third party app data, etc)

�  Other (more legitimate) services enable software
installation, APN installation (adding proxy servers)
for continued monitoring

Undocumented Services

�  Most services are not referenced by any known Apple
software (we’ve looked)

�  The raw format of the data makes it impossible to
put data back onto the phone, making useless for
Genius Bar or carrier tech purposes (cpio.gz, etc)

�  The personal nature of the data makes it very
unlikely as a debugging mechanism

�  Bypassing backup encryption is deceptive
�  Services are available without developer mode,

eliminating their purpose as developer tools

DROPOUTJEEP

�  DROPOUTJEEP describes techniques, most of which are possible with Apple’s
undocumented services

�  SMS messaging suggests either jailbreak or baseband code

DROPOUTJEEP
(TS//SI//REL) DROPOUTJEEP is a STRAITBIZARRE based software implant for the
Apple iPhone operating system and uses the CHIMNEYPOOL framework.
DROPOUTJEEP is compliant with the FREEFLOW project, therefore it is supported in
the TURBULENCE architecture.
(TS//SI//REL) DROPOUTJEEP is a software implant for the Apple iPhone that utilizes
modular mission applications to provide specific SIGINT functionality. This
functionality includes the ability to remotely push/pull files from the device,
SMS retrieval, contact list retrieval, voicemail, geolocation, hot mic, camera
capture, cell tower location, etc. Command, control, and data exfiltration can occur
over SMS messaging or a GPRS data connection. All communications with the
implant will be covert and encrypted.
(TS//SI//REL) The initial release of DROPOUTJEEP will focus on installing the
implant via close access methods. A remote installation capability will be pursued
for a future release.

Starting Services

�  Connect to lockdownd (tcp:62078) via usbmux or TCP
�  Authenticate with intercepted / generated pairing record
�  Invoke “StartService” command with name of the service

we wish to start
�  Profit*

�  * A number of commercial law enforcement forensic
manufacturers have started tapping these services:
¡  Cellebrite
¡  AccessData (Mobile Phone Examiner)
¡  Elcomsoft

Open Source!

�  Nearly all lockdownd protocols have been
documented in the libimobiledevice project
(libimobiledevice.org).

�  Been around since 2009 but many of these services
haven’t been re-examined since then; initially benign

�  A number of private tools and source are out there as
well to take advantage of these services

com.apple.pcapd

�  Immediately starts libpcap on the device
�  Dumps network traffic and HTTP request/response data

traveling into and out of the device
�  Does not require developer mode; is active on every iOS

device
�  Can be targeted via WiFi for remote monitoring
�  No visual indication to the user that the packet sniffer is

running.

WHY DO WE NEED A PACKET SNIFFER RUNNING ON

600 MILLION PERSONAL IOS DEVICES?

com.apple.pcapd

Example from iOS 7.1.2

Developer Mode NOT turned on

Packet sniffing now available on 600 million
iOS devices J

com.apple.mobile.file_relay

�  Biggest forensic trove of intelligence on the device
�  Found in /usr/libexec/mobile_file_relay on device
�  Provides physical artifacts vs. logical (databases; deleted

records can be recovered)
�  Transmits large swaths of raw file data in a compressed

cpio archive, based on the data source requested.
�  Completely bypasses Apple’s backup encryption for

end-user security.
�  Once thought benign, has evolved considerably, even in

iOS 7, to expose much personal data.
�  Very intentionally placed and intended to dump data

from the device by request

com.apple.mobile.file_relay

�  File Relay sources in iOS v2:

AppleSupport
Network
WiFi
UserDatabases
CrashReporter
SystemConfiguration

com.apple.mobile.file_relay

�  File Relay sources in iOS 7:
Accounts
AddressBook
AppleSupport
AppleTV
Baseband
Bluetooth
CrashReporter
CLTM
Caches
CoreLocation
DataAccess
DataMigrator
demod
Device-o-Matic

EmbeddedSocial
FindMyiPhone
GameKitLogs
itunesstored
IORegUSBDevice
HFSMeta
Keyboard
Lockdown
MapsLogs
MobileAsset
MobileBackup
MobileCal
MobileDelete
MobileInstallation

MobileMusicPlayer
MobileNotes
NANDDebugInfo
Network
Photos
SafeHarbor
SystemConfiguration
tmp
Ubiquity
UserDatabases
VARFS
VPN
Voicemail
WiFi
WirelessAutomation

com.apple.mobile.file_relay

�  Accounts A list of email, Twitter, iCloud, Facebook
etc. accounts configured on the device.

�  AddressBook A copy of the user’s address book
SQLite database; deleted records recoverable.

�  Caches The user cache folder: suspend screenshots
(last thing you were looking at), shared images,
offline content, clipboard/pasteboard, map tile
images, keyboard typing cache, other personal data

com.apple.mobile.file_relay

�  CoreLocation GPS logs; cache of locations taken at
frequent intervals (com.apple.routined)
¡  fileslockCache_encryptedA.db and cache_encryptedA.db
¡  Similar to the old consolidated.db database from iOS 4
¡  Timestamps span ~60 days on my phone

com.apple.mobile.file_relay

�  HFSMeta (New in iOS 7!) A complete metadata disk
sparseimage of the iOS file system, sans actual content.
¡  Timestamps, filenames, sizes, creation dates of all files
¡  When device was last activated / wiped
¡  All applications installed on a device and filenames of all documents

(e.g. Dropbox documents, etc)
¡  The filenames of all email attachments on the device
¡  All email accounts configured on a device
¡  Host IDs and timestamps of all devices paired with the device
¡  Phone numbers and timestamps of everyone for whom an SMS draft

was saved
¡  Timeline of activity based on timestamp data

com.apple.mobile.file_relay

�  Keyboard A copy of the keyboard autocorrect cache
¡  DynamicDictionary-4: First half contains all recent typed

content from all applications, consolidated and in the order it
was typed

¡  DynamicDictionary-5: Improved, contains words and word
counts only

�  MobileCal, MobileNotes Complete database images
of the user’s calendar, alarms, and notes databases in
SQLite format (deleted records recoverable).

�  Photos Complete dump of user’s photo album (not
just camera roll) stored on the device

com.apple.mobile.file_relay

�  UserDatabases (Been around since v2) dump of
address book, calendar, call history, SMS database,
email metadata (envelope index); SQLite databases
(deleted records recoverable)

�  VARFS (predecessor to HFSMeta) virtual file system
metadata dump in statvfs format.

�  Voicemail Copy of user’s voicemail database and
audio files (AMR format)

com.apple.mobile.house_arrest

�  Originally used to allow iTunes to copy documents
to/from third party applications

�  Even though iTunes doesn’t permit it through GUI,
the service allows access to the Library, Caches,
Cookies, Preferences folders as well

�  These folders provide highly sensitive account
storage, social/Facebook caches, photos and other
data stored in “vaults”, and much more.

Example: Twitter

�  Recent photos from my stream
�  Most recent timeline
�  Private message database; numerous deleted

messages recovered
�  Screenshots of my last use of Twitter
�  OAuth tokens (when combined with consumer key/

secret, can be used to spy on all future
correspondence remotely)

Example: Photo Vaults

�  Copies of the actual photos the vaults are
“protecting”

�  Configuration files including the PIN, or a hash of
the PIN

�  Occasionally, developer will actually encrypt files
�  Sometimes encryption keys or PIN dumped to syslog

Theories

�  Maybe iTunes or Xcode use them? No.
¡  iTunes uses com.apple.mobilesync, backup2, and other

facilities, but none use file relay or pcap
¡  iTunes uses house_arrest, but only for accessing Documents;

there’s no need to allow access to Library, Cache, or other
privileged folders

¡  iTunes respects backup encryption

Theories

�  Maybe for Genius Bar or Apple Support? No.
¡  Data is in too raw a format to be used for tech support
¡  Can’t be put back onto the phone in any way
¡  Tech support use shouldn’t call for bypassing backup password
¡  Data is far too personal in nature for mere tech support

Theories

�  Maybe for Developers for Debugging? No.
¡  Actual developer tools live on the developer image, and are

only available when Developer Mode is enabled
¡  Xcode does not provide a packet sniffing interface for

developers
¡  Developers don’t need to bypass backup encryption
¡  Developers don’t need access to such sensitive content
¡  Apple wants developers to use the SDK APIs to get data
¡  There are no docs to tell developers about these “features”

Theories

�  Maybe for Engineering / Debugging? No.
¡  Not all 600 million devices need debugging always on
¡  By preventing localhost connections, Apple must know these

services are being abused by malware
¡  You still wouldn’t need to bypass backup encryption
¡  Engineering wouldn’t need access to such personal data

Theories

�  Maybe old debug code they forgot was in there? No.
¡  Apple has been maintaining and enhancing this code, even

with iOS 7; they know it’s there
¡  Have emailed Apple’s CEOs and gotten no response
¡  It’s not buried; it’s listed in Services.plist
¡  While house_arrest security issues might be “bugs”, file relay

and pcap most certainly aren’t

The More Benign Services

�  While more benign, the following services are good
attack targets for forensic artifacts:

�  com.apple.iosdiagnostics.relay Provides detailed network
usage per-application on a per-day basis

�  com.apple.mobile.installation_proxy Given an enterprise
certificate, can use this to load custom software onto the
device (which can run invisibly and in the background)

�  com.apple.syslog_relay: Syslog, provides a lot of details
about what the device is doing, and often leaks user
credentials from 3rd party apps via NSLog()

Invisible Malware

�  Installing invisible software that backgrounds is still easy
to do in iOS 7

�  Apple made a crucial security improvement in iOS 7:
prevented socket connections to localhost / local IP
¡  Prior to this, I had spyware running invisibly that could dump a

phone and send its contents remotely anywhere. (never released for
obvious reasons)

�  This stopped a number of privately used spyware apps in
their tracks; they can not connect to localhost:62078

�  Future spyware: phones attacking other phones on the
network (zomg zombies)

Invisible Malware

�  Info.plist:
<key>SBAppTags</key>
<array>
<string>hidden</string>
</array>

<key>UIBackgroundModes</key>
<array>
<string>voip</string>
</array>

Backgrounding Malware

[[UIApplication sharedApplication]
setKeepAliveTimeout: 600 handler:^(void)
{

 /* Do bad things in background */

}

In iOS 7, you can still capture:
•  All socket connections (netstat data)
•  Process information (ps data)
•  A number of personal files on the device
•  Launch some very closely-held-to-the-vest userland exploits

But Wait. I paid $600 for a Fingerprint Reader

�  Fingerprint reader: Doesn’t add any additional
encryption beyond basic PIN

�  Has shown to be spoofed with the right equipment
�  Allows GUI access, therefore allowing pairing,

therefore allowing forensic dumps

�  Oh, and… there’s a bypass switch for pairing anyway

Pairing Bypass

�  Added for supervised devices to be accessible (e.g.
employee dies, leaves on bad terms, criminal
investigation).

�  Devices try to call home when first configured to
download automatic configurator profile. (likely used for
large-scale MDM rollouts).

�  An electronic alternative to interdiction could be
deployed by spoofing Apple’s certificates and
configuring / pairing the device out of the box.

�  OR by penetrating a targeted organization, supervisor
records can be used to pair with and access any device
they’re supervising.

MCCloudConfiguration

�  Deny all pairing
�  Allow pairing, but prompt the user
�  Allow pairing with no user prompt (and while

locked)
�  Allow pairing with a challenge/response

Pairing Bypass

 ; Check –[MCProfileConnection hostMayPairWithOptions:challenge:]
__text:0001938E LDR.W R0, [R8,#0xC]
__text:00019392 BL sub_5754
__text:00019396 CMP R0, #0
__text:00019398 BNE.W loc_19AA8
__text:0001939C LDR.W R1, [R8,#0x1C]
__text:000193A0 ADD R2, SP, #0x7E8+var_420
__text:000193A2 ADD R3, SP, #0x7E8+out
__text:000193A4 MOV R0, R4
__text:000193A6 BL sub_1F100

 ; Pairing is explicitly forbidden by MC
__text:000193AA CMP R0, #0
__text:000193AC BEQ.W loc_19AB0

 ; Pairing is allowed by MC, but with challenge/response
__text:000193B0 LDRB.W R0, [SP,#0x7E8+out]
__text:000193B4 CMP R0, #0
__text:000193B6 BNE.W loc_19AC2

 ; Pairing is allowed by MC while locked / untrusted without
 ; any challenge/response (pairing security is bypassed)

__text:000193BA LDRB.W R0, [SP,#0x7E8+var_420] <- Profit
__text:000193BE CMP R0, #0
__text:000193C0 BNE.W loc_19B06

 ; Pairing is allowed while locked / untrusted if the device
 ; doesn’t support it

__text:000193C4 MOV R0, #(cfstr_Hasspringboa_1 - 0x193D0) ; "HasSpringBoard"
__text:000193CC ADD R0, PC ; "HasSpringBoard"
__text:000193CE BLX _MGGetBoolAnswer
__text:000193D2 CMP R0, #1
__text:000193D4 BNE.W loc_19B06

 ; Actual pairing security routines (check device lock, whether
 ; user has pressed “Trust”, and so on)

__text:000193D8 MOVS R0, #0
__text:000193DA BLX _MKBGetDeviceLockState

In Pseudocode

if (mc_allows_pairing_while_locked || device_has_no_springboard_gui)
{
 goto skip_device_lock_and_trust_checks; /* Skip security */
}

/* Pairing Security */

if (device_is_locked == true) {
 if (setup_has_completed) {
 if (user_never_pushed_trust) {
 error(PasswordProtected);
 }
 }
}

Calling Home

�  On setup, teslad connects to
https://iprofiles.apple.com
¡  /resource/certificate.cer
¡  /session and /profile
¡  Capable of downloading MCCloudConfiguration

�  Could be used for electronic interdiction, either with
technology or secret FISA order

�  MCCloudConfiguration affects pairing bypass
�  Build in mechanism to bypass SSL validation. WTF.

¡  MCTeslaConfigurationFetcher checks for
MCCloudConfigAcceptAnyHTTPSCertificate

Calling Home

�  Once configured, a new cloud configuration can be
downloaded via periodic check-in

�  -[MCProfileConnection retrieveCloudConfiguration
FromURL:username:password:anchorCertificates:
completionBlock:]
¡  Great attack surface if you can get past the SSL
¡  Not necessary if you have a secret FISA order

Questions for Apple

�  Why is there a packet sniffer running on 600 million
personal iOS devices instead of moved to the developer
mount?

�  Why are there undocumented services that bypass user
backup encryption that dump mass amounts of personal
data from the phone?

�  Why is most of my user data still not encrypted with the
PIN or passphrase, enabling the invasion of my personal
privacy by YOU?

�  Why is there still no mechanism to review the devices my
iPhone is paired with, so I can delete ones that don’t
belong?

Pairing Locking

 ; Check –[MCProfileConnection hostMayPairWithOptions:challenge:]
__text:0001938E LDR.W R0, [R8,#0xC]
__text:00019392 BL sub_5754
__text:00019396 CMP R0, #0
__text:00019398 BNE.W loc_19AA8
__text:0001939C LDR.W R1, [R8,#0x1C]
__text:000193A0 ADD R2, SP, #0x7E8+var_420
__text:000193A2 ADD R3, SP, #0x7E8+out
__text:000193A4 MOV R0, R4
__text:000193A6 BL sub_1F100

 ; Pairing is explicitly forbidden by MC

__text:000193AA CMP R0, #0 <- HOW DO WE MAKE THIS WORK?
__text:000193AC BEQ.W loc_19AB0

 ; Pairing is allowed by MC, but with challenge/response
__text:000193B0 LDRB.W R0, [SP,#0x7E8+out]
__text:000193B4 CMP R0, #0
__text:000193B6 BNE.W loc_19AC2

 ; Pairing is allowed by MC while locked / untrusted without
 ; any challenge/response (pairing security is bypassed)

__text:000193BA LDRB.W R0, [SP,#0x7E8+var_420]
__text:000193BE CMP R0, #0
__text:000193C0 BNE.W loc_19B06

 ; Pairing is allowed while locked / untrusted if the device
 ; doesn’t support it

__text:000193C4 MOV R0, #(cfstr_Hasspringboa_1 - 0x193D0) ; "HasSpringBoard"
__text:000193CC ADD R0, PC ; "HasSpringBoard"
__text:000193CE BLX _MGGetBoolAnswer
__text:000193D2 CMP R0, #1
__text:000193D4 BNE.W loc_19B06

 ; Actual pairing security routines (check device lock, whether
 ; user has pressed “Trust”, and so on)

__text:000193D8 MOVS R0, #0
__text:000193DA BLX _MKBGetDeviceLockState

Apple Configurator

�  Free in the Mac App Store
�  Allows you to set enterprise MDM restrictions on your

device
�  Can be used to prevent pairing even when unlocked
�  Pair once with your desktop, then never again… OR (if

you’re paranoid) delete all pairing records and prevent
any comms.

�  Won’t help you if device sent to Apple; should still use a
complex passphrase

�  Removable later if you change your mind

Forensics Tools

�  Every commercial forensics tool, after pair
locking with Configurator:

Pair Locking with Configurator

Pair Locking with Configurator

Pair Locking with Configurator

Pair Locking with Configurator

Design Suggestions

�  Asymmetric cryptography to allow encryption of
incoming SMS, Photos, etc. without requiring decryption

�  File system equivalent of “session keys” for memory
resident processes (CommCenter) to uniquely decrypt
shadow copy of certain data (AddressBook)

�  Add boot password to encapsulate existing FS
encryption; makes stronger / complex passwords less
inconvenient

�  When pairing, encrypt all keys and EscrowBag sent from
phone using backup password, so can’t be used without
something you know.

Summary

�  Apple is dishing out a lot of data behind our backs
�  It’s a violation of the customer’s trust and privacy to

bypass backup encryption
�  There is no valid excuse to leak personal data or allow

packet sniffing without the user’s knowledge and
permission.

�  Much of this data simply should never come off the
phone, even during a backup.

�  Apple has added many conveniences for enterprises that
make tasty attack points for .gov and criminals

�  Overall, the otherwise great security of iOS has been
compromised… by Apple… by design.

Thank You

Questions?

@JZdziarski

