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Weak Stability Boundary and Invariant Manifolds∗

Edward Belbruno†, Marian Gidea‡, and Francesco Topputo§

Abstract. The concept of a weak stability boundary has been successfully used in the design of several fuel
efficient space missions. In this paper we give a rigorous definition of the weak stability boundary
in the context of the planar circular restricted three-body problem, and we provide a geometric
argument for the fact that, for some energy range, the points in the weak stability boundary of
the small primary are the points with zero radial velocity that lie on the stable manifolds of the
Lyapunov orbits about the libration points L1 and L2, provided that these manifolds satisfy some
topological conditions. The geometric method is based on the property of the invariant manifolds
of Lyapunov orbits being separatrices of the energy manifold. We support our geometric argument
with numerical experiments.
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1. Introduction. The notion of a weak stability boundary (WSB) was first introduced
heuristically by Belbruno in 1987 for designing fuel efficient space missions and was subse-
quently proven to be useful in related applications [2, 7, 5, 6, 12, 13, 3, 45, 33, 14, 35, 18, 4,
39, 38, 44]. The WSB can be used to construct low energy transfers to the Moon, requiring
little or no fuel for capture into lunar orbit. The first application for an operational spacecraft
occurred in 1991 with the rescue of the Japanese mission Hiten [7]. The WSB was also ap-
plied in the European Space Agency (ESA) spacecraft SMART-1 in 2004 (see [40]). The WSB
technique will be applied again in ESA’s mission BepiColombo to explore planet Mercury in
2013 (see [25]), and in some upcoming NASA missions.

A different methodology for designing fuel efficient trajectories, based on hyperbolic in-
variant manifolds, was proposed in [1, 26, 31, 32, 27, 28] and was successfully applied in several
space missions (see also [21, 22, 23, 24]). In some of these works it has been suggested that
the hyperbolic invariant manifold method can be used to explain the trajectories obtained
through the WSB method. Supporting this assertion, Garćıa and Gómez present in [18] nu-
merical explorations that suggests that, for some range of energies, the WSB is contained
in the closure of the union of the stable manifolds of the periodic orbits about two of the
equilibrium points of the planar circular restricted three-body problem.
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In this paper we use the separatrix property of the invariant manifolds of the periodic orbits
about the equilibrium points to argue that, under some conditions, the points on the stable
manifolds are WSB points. We support our geometrical argument with numerical experiments.
Our result, corroborated by the result in [18], demonstrates, by double inclusion, that, for some
range of energies, the WSB coincides with the set of points on the stable manifolds with zero
radial velocity and negative Kepler energy relative to the small primary.

In section 2 we give some background on the planar circular restricted three-body problem.
In section 3 we define the WSB as follows: in the context of the planar circular restricted
three-body problem, for each radial segment emanating from the small primary, we consider
trajectories that leave that segment at the periapsis of an osculating ellipse whose semimajor
axis is a part of the radial segment; a trajectory is called n-stable if it makes n full turns around
the small primary without going about the large primary and it has negative Kepler energy
when it returns to the radial segment; otherwise the trajectory is called n-unstable; the points
that make the transition from the n-stable regime to the n-unstable one are by definition the
points of the WSB of index n. We make precise the meaning of a full turn about a primary
through the measurement of the net change in the angle swept by the position vector. We also
require that the n intersections of the trajectory with the radial line be transverse. In this
way, the n-stability condition is an open condition, and the set of the n-stable points on the
radial segment is a countable union of open intervals. Thus, the WSB consists of the union of
endpoints of such intervals, resembling a Cantor set (in agreement with [18]). In section 4 we
give a numerical and geometric argument for the fact that the points on the stable manifolds
of the periodic orbits around the libration points L1 and L2, with the property that they have
zero radial velocity and negative Kepler energy relative to the small primary, are contained
in the WSB, for some range of energies. The key idea for our argument is the separatrix
property of these invariant manifolds, meaning that these manifolds separate two types of
motions: transfer orbits between the primaries, and nontransfer orbits. Section 5 exposes the
main conclusions of this paper: the WSB theory overlaps with the invariant manifold theory
for a significant range of energies.

It is important to note that the WSB is not an invariant object for the dynamics. It
is therefore somewhat surprising that the WSB is related to hyperbolic invariant manifolds.
The remarkable feature of the weak stability boundary is that the local behavior near the
small primary and hence far from the equilibrium points is sufficient to assess whether the
trajectory lies on the stable manifold of a periodic orbit near an equilibrium point.

We remark that the definition of the WSB does not rely on the existence of the hyperbolic
invariant manifolds. That is, one can still define and apply the properties of the WSB in models
where the hyperbolic invariant manifolds are no longer well defined or are not separatrices.
Some examples include the elliptic restricted three-body problem and the bicircular restricted
four body problem, for which WSB sets were computed in [38]. These problems are described
by nonautonomous Hamiltonian systems where the notions of stable and unstable manifolds
are not well defined in the phase space.1 It seems possible that the WSB may turn out to

1One can transform a nonautonomous Hamiltonian system into an autonomous one by adding an extra
variable symplectically conjugated with time. Then one can compute invariant manifolds for the extended
system. However, these invariant manifolds contain a dependency on time, so they do not separate transfer
orbits from nontransfer orbits. If one considers a time-discretization of the system by a Poincaré map, one
obtains time-independent invariant manifolds, but these manifolds again do not separate transfer orbits from
nontransfer orbits.
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provide a good substitute for the hyperbolic invariant manifolds in such models (see [19]).

2. Background.

2.1. Planar circular restricted three-body problem. The model that we use to describe
the motion of an infinitesimal particle relative to the Earth-Moon system is the planar circular
restricted three-body problem (PCRTBP). In this model, relative to an inertial frame, two
primary bodies P1, P2 of masses m1 > m2 > 0, respectively, move under mutual gravity on
circular orbits about their common center of mass. The third body P3, assumed to be of
infinitesimal mass, moves under the gravity of the primaries in the same plane. The motion of
the primaries is not affected by the motion of the infinitesimal mass. In our case, P3 represents
a spacecraft, and P1, P2 represent the Earth and the Moon, respectively. Let the mass ratio
of the small body to the total mass be μ = m2/(m1 +m2). In the following we will consider
μ = 0.0121506683.

The motion of the infinitesimal mass, relative to a corotating coordinate system (x, y)
with the origin at the center of mass of the two bodies, and in normalized units of distance,
mass, and time, is described by the following equations (following [43]):

(2.1) ẍ− 2ẏ =
∂Ω

∂x
, ÿ + 2ẋ =

∂Ω

∂y
,

where the effective potential Ω is given by

(2.2) Ω(x, y) =
1

2
(x2 + y2) +

1− μ

r1
+

μ

r2
+

1

2
μ(1− μ),

with r1 = ((x + μ)2 + y2)1/2, r2 = ((x + μ − 1)2 + y2)1/2 as P1, P2 are located at (−μ, 0),
(1− μ, 0), respectively.

The problem has the symmetry

(2.3) (x, y, ẋ, ẏ, t) −→ (x,−y,−ẋ, ẏ,−t),

meaning that each solution of (2.1) either is symmetric or has a symmetric counterpart.
The motion described by (2.1) has five equilibrium points Lk, k = 1, 2, . . . , 5, known as the

Euler–Lagrange libration points. Three of these, L1, L2, and L3, lie along the x-axis, at the
approximate coordinates x1 = 0.8369147188, x2 = 1.1556824834, and x3 = −1.0050626802,
respectively. In our notation, L1 lies between the Earth and Moon, and L2 lies beyond the
Moon. The other two points, L4 and L5, lie at the vertices of two equilateral triangles with
common base extending from P1 to P2.

The system of differential equations (2.1) admits an integral of motion, the Jacobi integral,

(2.4) J(x, y, ẋ, ẏ) = 2Ω(x, y) − (ẋ2 + ẏ2).

The projection of an energy manifold,

(2.5) J (C) = {(x, y, ẋ, ẏ) ∈ R
4|J(x, y, ẋ, ẏ) = C},

onto the configuration space (x, y) is called a Hill region. The motion of P3 is always confined
to the Hill region of the corresponding Jacobi energy C. The boundary of a Hill region is a
zero-velocity curve. The Hill regions vary with the Jacobi energy C (see [43]). The Jacobi
constants corresponding to the libration points are C1 ≈ 3.2003449098, C2 ≈ 3.1841641431,
C3 ≈ 3.0241502628, and C4 = C5 = 3.
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2.2. Equations of motion in polar coordinates. The equations of motion (2.1) can be
written in polar coordinates (r, θ) relative to P2, where r is the distance from P2 to P3 and θ
is the angle between the axis P1P2 and P2P3 measured counterclockwise. See [44].

If the motion of P3 starts at the periapsis (ṙ = 0) of an osculating ellipse around the Moon
of semimajor axis a and eccentricity e ∈ [0, 1), and has initial velocity v with respect to the
sidereal reference frame, then we have

(2.6) r = a(1− e), v =

√
(1 + e)μ

r
.

The Jacobi integral of the motion takes the form (ṙ = 0):

J(r, v, θ) = (1− μ)

[
1 + 2r cos θ +

2√
r2 + 2r cos θ + 1

]
+

2μ

r
+ 2vr − v2, or

J(r, e, θ) = (1− μ)

[
1 + 2r cos θ +

2√
r2 + 2r cos θ + 1

]
+

2μ

r

+ 2

√
(1 + e)μ

r
r − (1 + e)μ

r
.

(2.7)

In the definition of the WSB, we will need to refer to the Kepler energy H2 of P3 with
respect to the primary P2. This is given by

(2.8) H2 =
1

2
v2 − μ

r
.

From (2.6) it follows that

(2.9) H2 =
(e− 1)μ

2r
.

2.3. Invariant manifolds of Lyapunov orbits. The collinear libration points Li, i ∈
{1, 2, 3}, are of center-saddle type. For some range of energies C, there exists a one-parameter
family of periodic orbits {γi(C)}C , also called Lyapunov orbits, emanating from the libration
point Li. As the energy C is decreased, the Lyapunov family of Li approaches the closest
primary, and collision occurs. When the energy is further decreased, the Lyapunov family con-
tinues to periodic orbits around the closest primary; such orbits can describe multiple loops
about the primary, which can eventually shrink or coalesce into one loop. See [43, 8, 16].

For fixed C in some appropriate energy range, each periodic orbit γi possesses stable
and unstable manifolds W s(γi) and W u(γi). For some values of C, the manifolds experience
collisions and close encounters with the primaries. To avoid ill-conditioning and increase of
errors during numerical integration the equations of motion have been regularized, using Levi–
Civita regularization [41, 43], when the motion of the small particle is inside a disc of radius
10−2 around either primary.

The stable and unstable manifolds are 2-dimensional manifolds locally diffeomorphic to
cylinders in the 3-dimensional energy manifold, and they are separatrices of the dynamics
restricted to the energy manifold (see [15]). This means that, for C � C2, the trajectories
starting inside the stable cylinder make a transfer from one lobe of the Hill region to the
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Figure 1. Zero-velocity curves, Lyapunov orbit γ1, and two branches of the stable and unstable manifolds,
W s(γ1) and W u(γ1), for C = 3.19.

other lobe or to the exterior region in forward time, while the trajectories starting inside the
unstable cylinder make a transfer from one lobe of the Hill region to the other lobe or to the
exterior region in backward time. See Figure 1.

2.4. Poincaré sections. We consider the cuts made by the stable and unstable manifolds
of the Lyapunov orbits about L1 and L2 for a fixed Jacobi energy C, with a varying Poincaré
section through P2. Let

Sθ0 = {(r, ṙ, θ, θ̇) | θ = θ0, θ̇ > 0}
be the Poincaré section through P2 which makes an angle θ0 with P1P2. The coordinates (r, ṙ)
of a point in Sθ0 determines a unique trajectory through that point: the θ-coordinate equals
θ0 in this section, and the θ̇-coordinate can be solved uniquely from the energy condition
J(r, ṙ, θ, θ̇) = C, provided that θ̇ > 0. Thus, each section Sθ0 is plotted as an (r, ṙ)-coordinate
plane. The Poincaré first return map to Sθ0 is denoted by Φθ0 .

We are interested in the successive cuts made by the invariant manifolds of γi, i = 1, 2,
with Sθ0 , where γi is the Lyapunov orbit about Li for a fixed energy level C. We label the cuts
in such a way that the label of each cut matches with the number of complete turns about
P2 made by a trajectory starting from that cut until it approaches γi (in positive or negative
time). We denote by W s

θ0,j
(γi) the cut made by the stable manifold W s(γi) with Sθ0 with the

property that all the points in this cut make j complete turns about P2 before approaching
γi in forward time. Similarly, we denote by W u

θ0,j
(γi) the cut made by the unstable manifold

W u(γi) with Sθ0 with the property that all the points in this cut make j complete turns about
P2 before approaching γi in backward time. These labels can be assigned inductively in the
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manner described below.
Consider the branch ofW s(γ1) in the P2-region and a varying Poincaré section Sθ0 rotating

clockwise about P2. Assume that W s(γ1) does not collide with P2 and turns around P2. Let
−θ1 and θ1 be the angles made by the tangent lines from P2 to the Lyapunov orbit γ1. For
−θ1 < θ0 < θ1, the first cut between W s(γ1) and Sθ0 is not well defined, as the trajectories on
the stable manifold approach γ1 asymptotically and intersect Sθ0 infinitely many times. If we
rotate Sθ0 clockwise to an angle θ1 < θ0 < 2π−θ1, the first cut between W s(γ1) and Sθ0 is well
defined, but the trajectories starting from this first cut make less than 1 turn about P2 before
approaching γ1. For these values of θ0, we denote the first cut made by W s(γ1) onto Sθ0 by
W s

θ0,0
(γ1). The angle θ(t) swept by a trajectory starting from W s

θ0,0
(γ1) until it approaches γ1

asymptotically is less than 2π; that is, such a trajectory completes 0 turns about P2. When we
rotate Sθ0 clockwise to an angle 2π−θ1 < θ0 < 2π+θ1, the first cut of W

s(γ1) onto Sθ0 is still
well defined if we restrict the trajectories off some convenient neighborhood of γ1. The angle
θ(t) swept by a trajectory starting from this first cut until it approaches γ1 asymptotically is
a little more than 2π; thus such a trajectory completes 1 turn about P2, and the cut is labeled
by W s

θ0,1
(γ1). If we rotate clockwise Sθ0 to an angle 2π+ θ1 < θ0 < 4π− θ1, the second cut of

W s(γ1) onto Sθ0 consists of points that still make 1 turn about P2 until they approach γ1, so
such a cut is denoted by W s

θ0,1
(γ1). For 4π−θ1 < θ0 < 6π−θ1 a similar argument yields a cut

with the property that the trajectories emerging from this cut complete 2 turns about P2 until
they approach γ1, so such a cut is denoted by W s

θ0,2
(γ1). Inductively, this procedure produces

a labeling W s
θ0,j

(γ1) for the cuts of W s(γ1) onto Sθ0 with 2jπ − θ1 < θ0 < 2(j + 1)π − θ1,
where j ≥ 0. The trajectories starting from W s

θ0,j
(γ1) complete j turns about P2 until they

approach γ1 in forward time. In a similar manner, one can produce a labeling W u
θ0,j

(γ1) of
the cuts of W u(γ1) with Sθ0 , such that the trajectories starting from W u

θ0,j
(γ1) make j turns

about P2 until they approach γ1 in backward time. See Figure 2.
A similar procedure can be applied to label the cuts made by W s(γ2) and W u(γ2) with

a varying Poincaré section Sθ0 by W s
θ0,j

(γ2) and W u
θ0,j

(γ2), respectively, such that the label
j equals the number of complete turns made by the infinitesimal mass about P2 until it
approaches γ2 (in positive or negative time). The threshold values of the angle θ at which the
number of complete turns about P2 changes from (j − 1) to j are the values 2jπ + θ2, j ≥ 1,
where −θ2 and θ2 represent the angles made by the tangent lines from P2 to the Lyapunov
orbit γ2.

The successive cuts made by the invariant manifolds W s,u(γi) with the Poincaré sections
are topological circles in Sθ0 up to some number of turns about the primary. When the first
transverse intersection of W u(γi1) and W s(γi2) occurs, where i1, i2 ∈ {1, 2}, some number
of turns afterwards the topological circles are destroyed (see [20]). For example, if W s

θ0,j
(γi)

intersects transversally W u
θ0,k

(γi) at some point P , then the kth negative iterate of W s
θ0,j

(γi)
under Φθ0 , which is W s

θ0,j+k(γi), is no longer a topological circle, but a finite union of curves
open at both ends, whose ends wrap around W s

θ0,j
(γi) infinitely many times. See Figure 3.

Also, by Smale’s homoclinic orbit theorem, the iterate Φ−k
θ0

of Φθ0 has a hyperbolic horseshoe
near P ; the orbits corresponding to the horseshoe display chaotic behavior that can be coded
through symbolic dynamics. See [27, 20, 17, 36] as well as [10].
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3. The WSB. In this section we give a rigorous algorithmic definition of the WSB (similar
to that of [18]).

We consider trajectories of the infinitesimal particle with the following initial conditions:
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(i) The initial position of the trajectory is on a radial segment l(θ) in the configuration
space departing from P2 and making an angle of θ with the P1P2 line, relative to the
rotating system. The trajectory is assumed to start at the periapsis of an osculating
ellipse around P2, whose semimajor axis lies on l(θ) and whose eccentricity e is held
fixed along l(θ). The initial velocity of the trajectory is perpendicular to l(θ); there
are two different such choices of initial velocities, one positive (direct motion) and one
negative (retrograde motion).

(ii) The initial Keplerian energy H2 relative to P2 is negative; i.e., H2 < 0.
(iii) Then, the motion is said to be n-stable if the infinitesimal mass P3 leaves l(θ) and

makes n complete turns about P2 without making a complete turn around P1, and
if the intersections of the trajectory with l(θ) along this trajectory are all transverse
intersections and have negative Kepler energy with respect to P2 (i.e., H2 < 0). The
motion is otherwise said to be n-unstable.

In condition (i) the distance from P3 to P2 is given by r = a(1−e), where a is the semimajor
axis of the osculating ellipse. The initial velocity vector fulfilling the above condition can be
chosen in two ways, which differ from one another only by the sense of the vector. The initial
radial velocity satisfies ṙ = 0. The motion, for fixed values of the parameters θ and e and
for a choice of direction of the initial velocity vector, depends only on the initial distance r.
Below, we will restrict ourselves to the case of positive initial velocity. The negative initial
velocity case is discussed in [18, 38].

In condition (ii), the initial Kepler energy is given by (2.9), so the condition H2 < 0 is
automatically satisfied since e ∈ [0, 1).

Since v = r(1 + θ̇), from (2.8) we obtain H2 = 1
2r

2(1 + θ̇)2 − μ
r , so the condition H2 = 0

defines a 2-dimensional surface in the 3-dimensional energy manifold {J = C}. This surface
separates the energy manifold into two disjoint regions, whereH2 < 0 andH2 > 0, respectively.
Thus the condition that an intersection point of the trajectory with l(θ) has negative Kepler
energy relative to P2 means that the intersection point is in {J = C} ∩ {H2 < 0}.

In condition (iii), by P3 making 1 complete turn around P2 we mean the following. Let
θ2(t) be the angle made by the position vector of P3 relative to P2, measured continuously
along the trajectory of P3. If we consider that P3 starts from l(θ), we have θ2(0) = θ. Let τ1
be the smallest positive time for which ‖θ2(τ1) − θ2(0)‖ = 2π. Assume that the intersection
of the trajectory with l(θ) at t = τ1 is transverse (for a definition, see, e.g., [9]). If such a τ1
exists, then we say that P3 performed 1 complete turn around P2 in the time interval [0, τ1].
Similarly, let τ2 be the smallest positive time τ for which ‖θ2(τ2) − θ2(τ1)‖ = 2π. Assume
that the intersection of the trajectory with l(θ) at t = τ2 is transverse. If such a τ2 exists,
then it means that P3 performed 2 complete turns around P2 in the time interval [0, τ2]. We
can define inductively, in a similar fashion, what it means for P3 to perform n complete turns
about P2. In this definition we require that the successive intersections of the trajectory of
P3 with l(θ) all be transverse.

In the same manner, we define what it means for P3 to perform 1 complete turn about
P1. Also, if θ1(t) is the angle made by the position vector of P3 relative to P1, measured
continuously along the trajectory of P3, if for some τ > 0 we have ‖θ1(t)− θ1(0)‖ < 2π for all
t ∈ [0, τ ], it means that P3 did not perform 1 complete turn about P1 in the interval [0, τ ].

We note that in condition (iii) the initial point of the trajectory satisfies ṙ = 0, but the
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subsequent intersections of the trajectory with l(θ) do not have to satisfy ṙ = 0. Also, between
intersections, the Kepler energy H2 is allowed to be locally positive. These two conditions are
imposed only for applications to design low energy space missions and not for mathematical
reasons.

In summary, condition (iii) says that a motion is said to be n-stable if there exist τn > 0
such that P3 performed n complete turns about P2 in the interval [0, τn] and did not complete
1 turn around P1 in the same interval.

In the above definition we require that the successive intersections of the trajectory of P3

with l(θ) all be transverse. This generates the notion of n-stability under small perturbation;
that is, if a trajectory is n-stable, then any sufficiently close trajectory will also be n-stable.
This additional restriction does not have any practical consequences in the numerical com-
putation of the WSB, as the initial conditions whose trajectories will fail the transversality
condition have zero measure.

We note that the n-stability condition defined as above is an open condition. This is due
to the fact that H2 < 0 is an open condition, and that the mapping θ(0) 	→ θ(τn) on l(θ) is
smooth. The stability of the number of turns about a primary, as discussed earlier, implies
that if for some value of r the motion is n-stable, then there exists a small δ > 0 depending
on r such that, for each r′ ∈ (r − δ, r + δ), the corresponding motion is also n-stable.

We have observed numerically that for any fixed value of the eccentricity e ∈ [0, 1) all
points r ∈ l(θ) that are sufficiently close to P2 are n-stable. It seems possible that one can
argue this behavior for sufficiently large positive values of the Jacobi energy and in some small
open neighborhood of P2 using the KAM theorem and the Nekhoroshev theorem (see [29, 37]).

Thus the set of the n-stable points on l(θ) is an open subset of l(θ); hence it is a countable
union of open intervals, which we denote by

(3.1) Wn(θ, e) =
⋃
k≥1

(r∗2k−1, r
∗
2k)

with r∗1 = 0. The points r∗ that are at the endpoints of intervals above (except for r∗1)
are n-unstable. In the numerical experiments, it would be impossible to detect a countable
collection of stability intervals. The apparent Cantor-like structures of these sets, also noted
in [18], support the possibility of having a countable collection of stability intervals. In this
sense, our notion of stability seems to resemble KAM stability (see, e.g., [11]).

One example of unstable points is those lying on the stable manifold of the Lyapunov
orbit, since they asymptotically approach the Lyapunov orbit and never return to l(θ).

By varying the parameters θ and e, we obtain the following stable sets:

Wn(e) =
⋃

θ∈[0,2π]
Wn(θ, e),

Wn =
⋃

θ∈[0,2π]
e∈[0,1)

Wn(θ, e).

These sets are also open sets since the n-stability of points depends smoothly on e and θ.
We emphasize that it is essential in the definition of the WSB that the conditions (i)–(iii)
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for n-stable points are open conditions to ensure the smooth dependence of the n-stability on
e and θ.

We remark that Wm(e) ⊂ Wn(e) and Wm ⊂ Wn for m > n.
Definition 3.1. The WSB of index n, denoted by W∗

n, is the locus of all points r∗(θ, e) along
the radial segment l(θ) at which there is a change of stability of the initial trajectory; that is,
r∗(θ, e) is one of the endpoints of an interval (r∗2k−1, r

∗
2k) characterized by the fact that for all

r ∈ (r∗2k−1, r
∗
2k) the motion is n-stable, and there exist r′, r′′ �∈ (r∗2k−1, r

∗
2k) arbitrarily close to

r∗2k−1, r
∗
2k, respectively, for which the motion is n-unstable. Thus

W∗
n = ∂Wn = {r∗(θ, e) | θ ∈ [0, 2π], e ∈ [0, 1)}.

We also define

W∗
n(e) = ∂Wn(e) = {r∗(θ, e) | θ ∈ [0, 2π]}.

In Figure 4 we show the WSB sets W∗
n(e) for n = 1 and e = 0.00, e = 0.20, e = 0.60, and

e = 0.95, which were generated by first computing the stable sets Wn(e) and then computing
the boundary sets W∗

n(e) = ∂Wn(e), using a bisection method as described in [44]. We
emphasize that not all points in the same WSB set W∗

n(e) have the same Jacobi constant.
Remark 3.2. The WSB is not an invariant object for the dynamics. Moreover, the WSB

is not a manifold but rather appears to be a fractal set. (Estimating the fractal dimension of
the WSB is beyond the scope of this paper.) The WSB is concerned only with the behavior of
a trajectory for some limited number of turns about the small primary. Counting the number
of turns imposes some artificial cutoff conditions, in the sense that points with trajectories
behaving rather similarly may be classified differently in terms of their stability, as they can
differ in the number of turns about P1 or P2. For example, the trajectory in Figure 5(left)
is 1-stable, although it seems that it completes 1 turn around P1. In reality, the total angle
swept by the trajectory relative to P1 is a little less than 2π. On the other hand, the trajectory
in Figure 5(right) is 1-unstable, although it is close to the previous orbit and is similar looking
in the first part.

4. Weak stability boundary and invariant manifolds. In this section we describe a ge-
ometric mechanism that distinguishes n-stable points from n-unstable points and produces
points in the WSB. This is based on the separatrix property of the hyperbolic invariant
manifolds of the Lyapunov orbits. Then we present numerical experiments that verify the
geometric mechanism.

4.1. Geometric mechanism. We give a geometric argument that, for some range of en-
ergies, the points on the stable manifold of the Lyapunov orbits about L1 and L2 belong to
the WSB set, provided that they satisfy the zero radial velocity condition and the negative
Kepler energy condition relative to the small primary. This argument is based on the fact
that the invariant manifolds of the Lyapunov orbits are separatrices of the energy manifold in
a neighborhood of the libration points. The stable and unstable manifolds of the Lyapunov
orbits are global invariant objects diffeomorphic to 2-dimensional cylinders. The trajectories
inside the cylinder bounded by the stable manifold of the Lyapunov orbit about L1 or L2

transfer from the P2-region to the P1-region or to the exterior region in forward time, while
the trajectories outside the cylinder bounce back to the P2-region and remain in that region
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Figure 4. Weak stability boundary sets W∗
1 for eccentricities e = 0.00, e = 0.20, e = 0.60, e = 0.95.

until they reach the interior of a cylinder. When these stable manifolds are cut by a plane
of section that makes an angle of θ0 with the axis between the primaries, the points in the
section that are on the stable manifolds and that satisfy the zero radial velocity condition and
the negative Kepler energy condition are points in the WSB: the nearby trajectories on one
side of such points are stable orbits, while the nearby trajectories on the other side of such
points are unstable orbits.

The geometric argument below relates the WSB set W∗
n with the stable manifolds of the

Lyapunov orbits about L1 and L2. We assume the following topological conditions on the
invariant manifolds of the Lyapunov orbits. These conditions are sufficient but not necessary.

Hypothesis A. We assume that the stable manifolds and unstable manifolds of the Lya-
punov orbits γ1 and γ2 satisfy the following topological conditions:
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Figure 5. A 1-stable trajectory that almost completes 1 turn about P1 (left), and a 1-unstable trajectory
that returns on l(θ) with positive Kepler energy (right). The initial condition is represented by the red point.

(i) All the trajectories on the branch of W s(γ1) in the P2-region make at least n turns
about P2.

(ii) All the trajectories on the branch of W u(γ1) in the P1-region make at least 1 turn
about P1.

(iii) All the trajectories on the branch of W s(γ2) in the P2-region make at least n turns
about P2.

(iv) All the trajectories on the branch of W u(γ2) in the exterior region make at least 1
turn about P1.

For some values of μ and C there exist analytical arguments that ensure that some of
these conditions are satisfied. In the case when the mass ratio μ is very small and (μ,C) is
in some open set in the (μ,C) plane, the papers [34] and [30] imply conditions (i) and (iv)
above. We do not know of analytical results to ensure conditions (ii) and (iii). In the case of
the Sun-Jupiter system, for some values of C < C2, numerical and analytical methods in [27]
show the existence of a symbolic dynamics which ensures conditions (i)–(iv) for a certain range
of values of n. A similar type of symbolic dynamics in the case of the Earth-Moon is more
informally described in [28].

There are situations under which conditions (i)–(iv) above are not satisfied. For example,
in the case when W u(γ1) and W s(γ1) collide with P2 it is possible that these manifolds
intersect at some point x < 1 − μ, so there exist trajectories on W s(γ1) that do not turn
around P2, so condition (i) fails. In a similar fashion, collisions of the other branches of the
invariant manifolds with either P1 or P2 can yield trajectories that fail conditions (ii), (iii),
or (iv). We will exclude these situations from the geometric analysis below.

We denote by W∗,A
n the subset of the WSB W∗

n for which the conditions of Hypothesis A
are satisfied. We denote by W∗,B

n the complementary subset of W∗,A
n relative to W∗

n.
In what follows, we will show that, for some range of energies C > Cmin,

(4.1) W∗,A
n = {(r, ṙ, θ, θ̇) ∈ W s

θ,n−1(γ1) ∪W s
θ,n−1(γ2) | ṙ = 0, H2 < 0},
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Figure 6. The region {J = C1} ∩ {H2 < 0} in (r, ṙ)-coordinates for θ fixed, where θ = 0 (left), θ = ±π/2
(middle), and θ = −π (right). The red curves represent the boundary of {J = C1}, and the blue curve
represents {H2 = 0}. In the left panel (θ = 0) the red curve closest to the vertical axis corresponds to the
boundary of the inner Hill region, while the farthest red curve corresponds to boundary of the outer Hill region.
In the middle panel (θ = ±π/2) the blue curve is so distant from the vertical axis that the two red curves
corresponding to the inner and outer boundaries of the Hill region cannot be distinguished in the plot. In the
right panel (θ = −π) the red curves correspond to boundaries of the two components of the inner Hill region. In
each plot, the region between the vertical axis and the rightmost red curve represents {J = C1} and is always
inside the region between the vertical axis and the blue curve, which represents {H2 < 0}.

where W s
θ,n−1(γ1) and W s

θ,n−1(γ2) represent the (n − 1)th cut of W s(γ1) and W s(γ2) with
the Poincaré section Sθ, where the cuts of the invariant manifolds are labeled as described in
subsection 2.4.

4.1.1. Case C ≥ C1. When C ≥ C1 the Hill region is closed at L1, so there are no
transitions between the P2-region and the P1-region. Inside the P2-region the condition H2 < 0
is always satisfied; see Figure 6. Therefore all trajectories are n-stable for any n.

4.1.2. Case C2 < C < C1. We consider a Jacobi energy level C2 < C < C1. The
corresponding Hill region is open at L1 and closed at L2, so transitions are possible between
the P2-region and the P1-region but not between the inner and the outer region.

We consider the Lyapunov orbit γ1 near the libration point L1, corresponding to a fixed
energy level, and the stable and unstable manifolds W s(γ1) and W u(γ1) of γ1.

We relate the dynamics of points on the stable manifold W s(γ1) to the dynamics of points
in the WSB set W∗,A

n . We label the successive cuts made by W s(γ1) with Sθ0 by W s
θ0,j

(γ1)
in the manner as described in subsection 2.4, such that a trajectory starting from W s

θ0,j
(γ1)

completes precisely j turns about P2 before it approaches γ1. By Hypothesis A(i), all the cuts
with 0 ≤ j ≤ n are well defined.

It is possible that all successive cuts of the stable manifold with the section Sθ0 , up to
the order (n − 1), are topological circles: W s

θ0,0
(γ1),W

s
θ0,1

(γ1),W
s
θ0,2

(γ1), . . . ,W
s
θ0,n−1(γ1). If

P is an initial point in Sθ0 inside the region bounded by W s
θ0,0

(γ1), but sufficiently close to it,
then the trajectory of P will make a transfer to the P1-region by making less than 1 complete
turn about P2. If P is outside the region bounded by W s

θ0,0
(γ1) but sufficiently close to it,

the trajectory will stay in the P2-region for at least 1 turn. Similarly, if P is an initial point
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Figure 7. The region {J = C2} ∩ {H2 < 0} in (r, ṙ)-coordinates for θ fixed, where θ = 0 (left), θ = ±π/2
(middle), and θ = −π (right). The red curve represents the boundary of {J = C2}, and the blue curve
represents {H2 = 0}. The region between the vertical axis and the rightmost red curve represents {J = C2}
and is always inside the region between the vertical axis and the blue curve, which is {H2 < 0}.

in Sθ0 inside the region bounded by W s
θ0,1

(γ1), then the trajectory of P will make a transfer
to the P1 region by completing 1 turn about P2 but turning less than 2 times about P2. If
P is outside the region bounded by W s

θ0,1
(γ1) but sufficiently close to it, the trajectory will

stay in the P2-region for at least 2 turns. In general, if P is an initial point in Sθ0 inside
the region bounded by W s

θ0,n−1(γ1), then the trajectory of P will make a transfer to the P1-
region by completing (n − 1) turns about P2 but turning less than n times about P2, and if
P is outside the region bounded by W s

θ0,n−1(γ1) but sufficiently close to it, the trajectory will
stay in the P2-region for at least n turns. A trajectory that goes to the P1-region enters it
through the interior of the region bounded by unstable manifold W u(γ1). By condition (ii)
of Hypothesis A, the trajectory will make one or more complete turns around P1 before it
can return to the P2-region. It is, of course, possible to also study trajectories that, once in
the P1-region, fail to make 1 complete turn around P1 and then return to the P2-region, but
this will involve a more intricate analysis of the associated symbolic dynamics. We avoid this
analysis here.

We represent the section Sθ0 in coordinates (r, ṙ). In the case when the stable manifold
cut W s

θ0,n−1(γ1) transversally intersects the axis ṙ = 0 at some point w∗ of coordinates (r∗, 0),
the points (r, 0) with r near r∗ will be interior points to W s

θ0,n−1(γ1) on one side of (r∗, 0) and
exterior points to W s

θ0,n−1(γ1) on the other side of (r∗, 0). The exterior points (r, 0) are n-
stable, provided they satisfy the Kepler energy conditionH2 < 0. We note that not all points in
this case satisfy the negative Kepler energy condition relative to P2; see Figure 7. The interior
points are n-unstable. The corresponding point w∗ makes the transition from n-stability to
n-instability, so it is a point in the WSB. Moreover, the eccentricity of the osculating ellipse

at w∗ can be computed from (2.6) as e∗ = (v∗)2r∗
μ − 1, where v∗ = r∗(1 + θ̇|θ=θ0). Thus, the

point w∗ is in the WSB set W∗,A
n (θ0, e

∗). If the cut W s
θ0,n−1(γ1) does not intersect the axis

ṙ = 0, it means that on the cut W s
θ0,n−1(γ1) there are no WSB points from the set W∗,A

n (θ0, e)
for any eccentricity e.

We remark that in the case when θ0 = 0 and θ0 = π the WSB points in the section Sθ0 are
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symmetric homoclinic points. Indeed, the symmetry (2.3) implies that if (r(t), θ(t), ṙ(t), θ̇(t))
is an orbit, then (r(−t),−θ(−t),−ṙ(−t), θ̇(−t)) is also an orbit. Thus, an orbit that intersects
Sθ0 with ṙ = 0, for θ0 = 0 or θ0 = π, is a symmetric orbit. Since the stable and unstable
manifolds are also symmetric, a point in W s

θ0,n−1(γ1) with ṙ = 0 is a symmetric homoclinic
point, provided θ0 = 0 or θ0 = π.

It is possible that not all the cuts made by the stable manifold with the plane of section
are topological circles, as noted in subsection 2.4. If W s

θ0,j
(γ1) is a topological circle in Sθ0

that intersects W u
θ0,k

(γ1), which is also a topological circle, then any intersection point is a
homoclinic point that makes j + k − 1 turns around P2, and the region bounded by both
W s

θ0,j
(γ1) and W u

θ0,k
(γ1) consists of trajectories that make transitions to the P1-region in

negative time, after j+k−1 turns about P2. ThusW
s
θ0,j+k(γ1) is no longer a topological circle;

it consists of a finite number of curves open at both ends that wrap asymptotically around
W s

θ0,j
(γ1) infinitely many times. Although the topological circle property is lost, we can still

distinguish between points “interior” to the region bounded by W s
θ0,j+k(γ1) and “exterior”

points (from the point of view of separatrix property): the interior points are precisely the
image under Φ−k

θ0
of the points inside the region bounded by W s

θ0,j
(γ1) and outside the region

bounded by W u
θ0,k

(γ1) in Sθ0 . The conclusion is that the points interior to the region bounded
by W s

θ0,j+k(γ1) correspond to trajectories that leave the P2-region in (j+k−1) turns, while the
points exterior to the region bounded by W s

θ0,j+k(γ1) correspond to trajectories that remain
in the P2-region for at least (j + k) turns.

The same type of argument can be made when a broken topological circle, like W s
θ0,j+k(γ1)

above, intersects some unstable manifold cut W u
θ0,�

(γ1). All the points interior to the region
bounded by both W s

θ0,j+k(γ1) and W u
θ0,�

(γ1) correspond to trajectories that make a transition
to the P1-region in negative time, after (j+k+�−1) turns about P2. The returnW s

θ0,j+k+�(γ1)

of W s
θ0,j+k(γ1) to Sθ0 under Φ−�

θ0
consists of a finite number of curves open at both ends that

wrap asymptotically around the components of W s
θ0,j+k(γ1) infinitely many times. The points

interior to the region bounded by W s
θ0,j+k+�(γ1) are the image under Φ−�

θ0
of the points interior

to the region bounded by W s
θ0,j+k(γ1) and exterior to W u

θ0,�
(γ1) in Sθ0 . The points interior

to the region bounded by W s
θ0,j+k+�(γ1) correspond to trajectories that leave the P2-region

in (j + k + � − 1) turns, while the points exterior to the region bounded by W s
θ0,j+k+�(γ1)

correspond to trajectories that remain in the P2-region for at least (j + k + �) turns.
We conclude that the transverse intersection points between the stable manifold cut

W s
θ0,n−1(γ1) and the axis ṙ = 0 in Sθ0 are points in the WSB set W∗

n(θ0, e
∗) for some e∗,

regardless of whether W s
θ0,n−1(γ1) is a topological circle or not.

4.1.3. Case Cmin < C < C2. We consider a Jacobi energy level Cmin < C < C2 for
some Cmin large enough so that the Lyapunov orbits around L1 and L2 do not collide with
P2. A safe choice is Cmin = 3.15. The corresponding Hill region is open at both L1 and L2,
so transitions are possible between the P2-region and P1-region and also between the inner
region and the outer region. In the numerical computations in subsection 2.3 the value of
Cmin will be restricted by our numerical methods to compute the Lyapunov orbits and their
invariant manifolds.

We consider the Lyapunov orbits γ1 near the libration point L1 and γ2 near the libration
point L2, corresponding to a fixed energy level. We also consider the stable and unstable
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manifolds W s(γ1) and W u(γ1) of γ1, and the stable and unstable manifolds W s(γ2) and
W u(γ2) of γ2. The stable manifolds W s(γ1) and W s(γ2) never intersect, and the unstable
manifoldsW u(γ1) andW u(γ2) never intersect as well. On the other hand, the stable manifolds
can pass very close to one another, and so can the unstable manifolds.

We label the successive cuts made by W s(γ1) with the Poincaré section Sθ0 by W s
θ0,j

(γ1)
in the manner described in subsection 2.4, such that a trajectory starting from W s

θ0,j
(γ1)

completes precisely j turns about P2 before it approaches γ1, and we denote the successive
cuts made by W s(γ2) with Sθ0 by W s

θ0,j
(γ2), such that a trajectory starting from W s

θ0,j
(γ2)

completes precisely j turns about P2 before it approaches γ2. By Hypothesis A(i) and (iii),
all the cuts with 0 ≤ j ≤ n are well defined.

These successive cuts made by the stable manifolds with the surface of section are topo-
logical circles or broken circles, but in either case they bound regions with well-defined interior
points (in the sense of the separatrix property), as explained in subsection 4.1.3. If an initial
point P in Sθ0 is a point interior to the region bounded by W s

θ0,n−1(γ1), then the trajectory
of P will complete (n− 1) turns about P2 and make a transfer to the P1-region. Once in the
P1-region, it will complete at least 1 turn about P1 before it can return to the P2-region, due
to Hypothesis A(ii). On the other hand, if P is outside the region bounded by W s

θ0,n−1(γ1)
but sufficiently close to it, then the trajectory will stay in the P2-region for at least n turns.

Similarly, if an initial point P in Sθ0 is a point interior to the region bounded byW s
θ0,n−1(γ2),

then the trajectory of P will complete (n− 1) turns about P2 and make a transfer to the ex-
terior region. Once the trajectory is in the exterior region, it will complete at least 1 turn
about P1 before it can return to the interior region, according to Hypothesis A(iv). If P is
outside the region bounded by W s

θ0,n−1(γ2) but sufficiently close to it, the trajectory will stay
in the P2-region for at least n turns.

To detect the WSB points we consider the transverse intersection points w∗ of the stable
manifold cuts W s

θ0,n−1(γ1)∪W s
θ0,n−1(γ2) with the axis ṙ = 0 in Sθ0 . These intersection points

are points in the WSB set W∗
n(θ0, e) for some e∗, provided that they satisfy the following

conditions: (1) The points near w∗ interior to W s
θ0,n−1(γ1) ∪ W s

θ0,n−1(γ2) satisfy the Kepler
energy condition H2 < 0. We note that not all points in this case satisfy the negative
Kepler energy condition relative to P2 (see Figure 8). (2) The points near w∗ exterior to
W s

θ0,n−1(γ1) ∪W s
θ0,n−1(γ2) that leave the P2-region make at least 1 full turn about P1 inside

the P1-region or in the exterior region before they may eventually return to the P2-region.
In addition, the points w∗ as above that are found in a plane of section Sθ0 with θ0 = 0

or θ0 = π are symmetric homoclinic points.
Remark 4.1. The key geometrical argument in the above is that the stable and unstable

manifolds of a Lyapunov orbit are 2-dimensional invariant manifolds that separate the 3-
dimensional energy manifold. This shows that, for a fixed energy level, the corresponding
WSB points lie on the stable manifold of the Lyapunov orbit. However, the WSB set consists
of points on different energy manifolds. The WSB set itself is not an invariant manifold and
does not have the separatrix property. As the WSB is not restricted to an energy manifold, the
WSB concept can be extended to other situations where energy manifolds are not invariant
or where stable invariant manifolds of periodic orbits cannot be defined.

Remark 4.2. In the case when W s
θ0,n−1(γi) is a broken topological circle consisting of in-

finitely many open curves that wrap asymptotically about some W s
θ0,m

(γ1) with m < n − 1,
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Figure 8. The region {J = C3} ∩ {H2 < 0} in (r, ṙ)-coordinates for θ fixed, where θ = 0 (left), θ = ±π/2
(middle), and θ = −π (right). The red curve represents the boundary of {J = C3}, and the blue curve
represents {H2 = 0}. The region between the vertical axis and the rightmost red curve represents {J = C3}
and is always inside the region between the vertical axis and the blue curve, which is {H2 < 0}.

each intersection point w∗
j between such a component and the axis ṙ = 0 in Sθ0 yields a point

in the WSB set W∗
n(θ0, e

∗
j ) for some e∗j . We emphasize here that the eccentricities of the

osculating orbits corresponding to the points w∗
j are all different, although very close to one

another, so these points belong to different WSB sets W∗,A
n (e) of different eccentricities e, such

as those in Figure 4. However, a small change in the energy level of γi yields a small change
in the positions w∗

j and hence of the corresponding eccentricities e∗j of the osculating ellipses.
Thus, through a sequence of successive small perturbations of the energy level we can slightly
move each point w∗

j , one at a time, so that all resulting points will have the same eccentricity
for their osculating ellipses (with the resulting points w∗

j at different energy levels). Here we

recall that the WSB sets W∗,A
n (e) contain points not necessarily at the same energy level.

This perturbation argument supports the possibility of having a countably infinite collection
of stable intervals (r∗2k−1, r

∗
2k) in (3.1), and could perhaps explain some of the fine Cantor

set–like structures that are visible in some regions of the WSB sets. See the plots in Figure 4.
Remark 4.3. It seems possible to analyze the WSB in the context of the planar Hill prob-

lem. The structure of invariant manifolds of periodic orbits near the equilibrium points is
similar to that in the PCRTBP [42]. It is expected that the same relationship between the
WSB and the stable invariant manifold of periodic orbits holds in the planar Hill problem as
in the PCRTBP.

4.2. Numerical experiments. We describe a numerical algorithm to test that the points
on the WSB coincide with the points on the stable manifolds of the Lyapunov orbits which
satisfy the zero radial velocity condition and the negative Kepler energy condition relative
to the small primary. This algorithm is centered on the idea that the hyperbolic invariant
manifolds are separatrices of the energy manifold. We illustrate this algorithm with several
examples and discuss the results.

In subsection 4.1 we provided a geometric argument to show that, for some range of
energies,

(4.2) {(r, ṙ, θ, θ̇) ∈ W s
θ,n−1(γ1) ∪W s

θ,n−1(γ2) | ṙ = 0, H2 < 0}
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is the subsetW∗,A
n ofW∗

n, consisting of the WSB points for which the invariant manifolds of the
Lyapunov orbits by L1 and L2 satisfy some topological conditions described by Hypothesis A.
However, Hypothesis A is a sufficient condition for a point in W∗

n to be in the set (4.2), but
not necessary. It is possible that the stable and unstable manifolds of γ1 and γ2 as a whole
fail Hypothesis A, but nevertheless individual trajectories on those manifolds exhibit behavior
consistent with the conditions of Hypothesis A. The numerical experiments below detect the
points in W∗

n that are also in the set (4.2); we will call these points of type A. There are also
points in W∗

n that are not in the set (4.2); we will call these points of type B. The set of all
points of type A includes W∗,A

n .
In what follows, we will numerically compute W∗

n and identify the subset of points of
type A as the WSB points that satisfy (4.2) modulo some margin of error. The numerical
algorithm consists of the following steps:

(1) We numerically compute the WSB set W∗
n(e) for a fixed number of turns n and for a

fixed eccentricity e. We limit our analysis to points with energy Cmin < C < C2. This
computation is done in two steps. In the first step we compute the n-stable set Wn(e).
For this, we divide the eccentricity range into a grid of values e = {0, 0.05, . . . , 0.95}.
We fix one value of e at a time and compute the corresponding n-stable orbits as
follows. We choose a range of radius values around P2 and approximate this range
by a grid of values r ∈ {0, 2 · 10−3, . . . , 1.5}. We also approximate the angular range
θ ∈ [0, 2π] around P2 by a grid of values θ ∈ {0, 2π ·10−3, . . . , 2π}. For each fixed θ from
the grid, we consider an initial point (r, θ) with r from the grid, and an initial velocity
perpendicular to the position vector (r, θ), of size v given by (2.6). We integrate this
initial condition forward in time in polar coordinates with respect to both P2 and
P1. The evolution in time of the angle swept around P2 and P1 is tracked, and the
negative Kepler energy relative to P2 is verified at the intersection points with l(θ).
The point is redeemed as n-stable or n-unstable according to the algorithmic definition
in section 3. The coordinates (r, ṙ, θ, θ̇) and the Jacobi constant C of each n-stable
point are recorded. The Jacobi constant is also given by (2.7). In the second step, the
WSB is computed as the boundary set W∗

n(e) = ∂(Wn(e)) of the n-stable set, using a
bisection algorithm. The output is a data set of points w∗

i with their coordinates and
Jacobi constants. The details of this computation are given in [44].

(2) For each fixed value of the eccentricity e, the points w∗
i of the WSB set W∗

n(e) are
analyzed one at a time with respect to their relationship to the stable manifolds of
the Lyapunov orbits. Each point is retrieved from the data set together with its
coordinates (r∗i , ṙ

∗
i , θ

∗
i , θ̇

∗
i ) and the corresponding Jacobi constant Ci.

(3) For each Jacobi constant Ci the Lyapunov orbits γ1 and γ2 are computed numerically.
(4) The stable manifolds W s(γ1) and W s(γ2) are integrated numerically in polar coordi-

nates relative to P2.
(5) The stable manifolds W s(γ1) and W s(γ2) are cut with the Poincaré section Sθ∗i , where

θ∗i is the angle coordinate associated with the point r∗i . The Poincaré section Sθ∗i is
represented in the coordinates (r, ṙ). The points in the (n − 1)th cut of W s(γ1) and
W s(γ2) with the Poincaré section are retained.

(6) The intersection points between W s(γ1) ∪ W s(γ2) and the axis ṙ = 0 in Sθ∗i are
computed numerically. As, in general, there might be several such intersection points,
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only one of them, w∗∗
i = (r∗∗i , 0, θ∗∗i , θ̇∗∗i ), will have the eccentricity of the corresponding

osculating ellipse equal to e, modulo some small margin of error. Moreover, we select
only those points w∗∗

i that have negative Kepler energy relative to P2

(7) We select the points w∗
i that are within a small margin of error from the corresponding

points w∗∗
i . These are the points of type A, and they include the set W∗,A

n , the set
of points in W∗

n that satisfy Hypothesis A. The complementary set is the points of
type B. The practical method for selecting the points of type A is the following.
We compute the Euclidean distance in phase space between the original point w∗

i ,
computed through the bisection algorithm, and the new point w∗∗

i , computed as the
cuts between the stable manifold and the axis ṙ = 0 in the the Poincaré section:

d = ‖w∗
i −w∗∗

i ‖.
We select only those points w∗∗

i for which the distance from the corresponding w∗
i is

within a tolerance of δ = 10−3. (Since our numerical procedures are automatic proce-
dures that explore a large number of points in the WSB sets, generate the Lyapunov
orbits for the energy level of each point on the WSB, integrate the stable manifolds of
these Lyapunov orbits, compute and count the cuts of these manifolds with Poincaré
sections of prescribed angles, and detect the intersection of these cuts with ṙ = 0,
we found that this indirect procedure to identify the subset W∗,A

n is computationally
effective. It is nevertheless true that these procedures have intrinsic limitations by the
choice of algorithm for each component numerical routine, and by numerical errors.)

(8) To the selected points w∗∗
i , found in the intersections between the stable manifold and

the axis ṙ = 0 in the Poincaré section, we apply a test to verify numerically that they
make the transition between n-stability and n-instability. This test confirms that the
selected points w∗∗

i are in the WSB setW∗
n(e). For a given point w∗∗

i = (r∗∗i , 0, θ∗∗i , θ̇∗∗i ),
two nearby points w′

i and w′′
i are chosen on the radial line θ = θi, of coordinates

w′
i = (r′i, ṙ

′
i, θ

′
i, θ̇

′
i) and w′′

i = (r′′i , ṙ
′′
i , θ

′′
i , θ̇

′′
i ). The coordinates are chosen so that w′

i and
w′′
i are in the same Poincaré section Sθ∗i as w∗∗

i and their associated osculating ellipses

have the same eccentricity e as w∗∗
i , i.e., r′i = r∗∗i + ε, ṙ′i = 0, θ′i = θ∗i , θ̇

′
i =

√
μ(1+e)
(r′i)3

−1,

and r′′i = r∗∗i − ε, ṙ′′i = 0, θ′′i = θ∗i , θ̇
′′
i =

√
μ(1+e)
(r′′i )3

− 1, where ε = 10−8. The points w′
i

and w′′
i are integrated forward in time in polar coordinates with respect to both P2

and P1. The evolution in time of the angle swept around P2 and P1 is tracked, and the
negative Kepler energy condition relative to P2 is verified at the intersection points
with l(θ∗i ). This test is assessed as successful if one of the points w′

i, w
′′
i is redeemed

as n-stable and the other one is redeemed as n-unstable. In the numerical examples
explored, all selected points are found to satisfy this condition.

Example 4.4. An example of applying the algorithm is illustrated in Figure 9. We select
a point w∗

i from the WSB set W∗
1 (0) in a Poincaré section Sθ∗i , θ

∗
i � 3π/4. The Lyapunov

orbits γ1 and γ2 for the Jacobi constant Ci = 3.1645669491 corresponding to the point wi

are computed numerically. The stable manifold W s(γ1) is cut with the Poincaré section Sθ∗i .
This cut is W s

θ∗i ,0
(γ1), as the points in the cut complete 0 turns about P2 before approaching

γ1. The intersection between W s(γ1) and the axis ṙ = 0 in Sθ∗i is identified. In the same plot,
the original point w∗

i is shown. The intersection w∗∗
i between W s

θ∗i ,0
(γ1) and the axis ṙ = 0 in
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Figure 9. (a) A point in the WSB and the Lyapunov orbits for the corresponding energy level. (b) The
stable manifold of the Lyapunov orbit about L1. (c) The cut made by the stable manifold with the Poincaré
section and its intersection with ṙ = 0. (d) Forward integration of two initial points near the intersection of
the stable manifold with ṙ = 0.

Sθ∗i and the original point w∗
i almost overlap in the plot. The points w∗

i and w∗∗
i are within a

δ-tolerance, so the point w∗
i ≈ w∗∗

i is of type A. To apply the test described in step (8) of our
algorithm, the intersection point between W s(γ1) and the axis ṙ = 0 is fixed, and two nearby
points in Sθ∗i , with the eccentricities of the associated osculating ellipses chosen to be e = 0,
are chosen. The two nearby points are integrated forward in time. The trajectories of the two
points show that one is 1-stable and the other one is 1-unstable, which confirms our test.



WEAK STABILITY BOUNDARY AND INVARIANT MANIFOLDS 1081

(a) (b)

−0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

x + 1 − μ

y

γ
1
(C

i
) γ

2
(C

i
)

x
i
∈∂W

1
(0)

−0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

x + 1 − μ

y

γ
1
(C

i
)

γ
2
(C

i
)

x
i
∈∂W

1
(0)

(c) (d)

0 0.02 0.04 0.06 0.08 0.1
−0.2

0

0.2

0.4

0.6

0.8

r

r

r* ∈ ∂ W
1
(0)

.
Wsγ

2

Poincare section of Wsγ
2

for θ = θ
i

−0.2 0 0.2

−0.2

0

0.2

x + 1 − μ

y

γ
1
(C

i
)

x
i
∈∂W

1
(0)

γ
2
(C

i
)

Figure 10. (a) A point in the WSB and the Lyapunov orbits for the corresponding energy level. (b) The
stable manifold of the Lyapunov orbit about L2. (c) The cut made by the stable manifold with the Poincaré
section and its intersection with ṙ = 0. (d) Forward integration of two initial points near the intersection of
the stable manifold with ṙ = 0.

Example 4.5. Another example of applying this algorithm is illustrated in Figure 10. This
is similar to the previous example, with the only difference being that the WSB point selected
matches a point on the stable manifold W s(γ2) of the Lyapunov orbit about L2 for the Jacobi
constant Ci = 3.1539757951.

Example 4.6. We restrict our analysis to an energy range C ∈ [Cmin, C2], and we consider
the WSB sets W∗

n(e) with n = 1, 2 and e = 0.4. We match the points w∗
i obtained from
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Figure 11. Set of points on the WSB selected according to the criteria described in step (7) of our algorithm.
The black points are points w∗∗

i that are within δ from the corresponding points w∗
i ; these are type A points.

Left: n = 1 and e = 0.4. Right: n = 2 and e = 0.4.

the algorithmic definition of the WSB as in step (1) with the points w∗∗
i obtained from the

(n− 1)th cut of W s(γ1) or W
s(γ2) with Poincaré section Sθ∗i intersected with the axis ṙ = 0

inside this section, as described in step (6).
In Figure 11 the displayed curve represents the points (r, θ) for which J = Cmin for e fixed

(see (2.7)). The gray points are the points w∗
i found by the algorithmic definition as in step

(1). The points w∗
i in the interior region bounded by the curve are those that satisfy the

energy restriction C ∈ [Cmin, C2]. The points displayed in black are the points w∗∗
i that are

obtained as in step (7). These are the points of type A, and they contain W∗,A
n . Thus, for

these points we have a matching between the WSB points obtained through the algorithmic
definition and the points obtained through the invariant manifold approach.

There are a few WSB points in the interior region bounded by the energy condition curve
which do not match with points on the stable manifolds. These are the points of type B. These
are points whose trajectories experience close encounters or symbolic dynamics. In Figure 12
a type A point and a type B point of the WSB are chosen inside the region bounded by the
energy curve. The trajectory of the type A point asymptotically approaches a Lyapunov orbit
for the corresponding energy level; therefore the type A point lies on the stable manifold of
the Lyapunov orbit. Meanwhile the trajectory of the type B point undergoes a close encounter
with the primary.

In Figure 13 we show the trajectories of a collection of type A points chosen from the WSB.
These trajectories asymptotically approach the Lyapunov orbit about L1 or the Lyapunov
orbit about L2 corresponding to the energy level. Therefore these points lie on the union of
the stable manifolds of the Lyapunov orbits about L1 and L2.

In Figure 14 we show the distribution of errors d = ‖w∗
i −w∗∗

i ‖ for the type A points, for
C = [Cmin, C2], n = 1, 2, and e = 0.4. The horizontal axis represents the angle coordinate θ
about P2, while the vertical axis shows the distance between the original point w∗

i from W∗
n(e)
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Figure 12. Trajectory of a type A point lying on the stable manifold of a Lyapunov orbit (solid). Trajectory
of a type B point undergoing a close encounter with the primary (dashed).

and the matching point at the corresponding intersection between W s(γ1) or W
s(γ2) and the

axis ṙ = 0 in Sθ∗i . Most of these selected points meet a tolerance level of 10−4, while a few of
them meet only a tolerance level of 10−3.

Example 4.7. In the WSB there are regions where the points of W s(γ1) are intertwined
with those of W s(γ2); see Figure 15. Since the points in W s(γ1) and W s(γ2) cannot overlap,
we want to examine this region more closely. For example, we choose a point w∗

i ∈ W∗
1 (0)

of Jacobi constant Ci = 3.159347461. We compute the stable manifolds W s(γ1) and W s(γ2),
and we intersect them with the corresponding Poincaré section Sθ∗i . In this section, the cut
made by W s(γ2) appears to be a topological circle, and the cut made by W s(γ1) appears to
be a broken circle. Both circles intersect the horizontal axis ṙ = 0. Zooming in, although
both intersections are close to the original point w∗

i on the WSB, it turns out that it is the
intersection point w1

i of W s(γ1) with ṙ = 0 that is closer; see Figure 16. Of course, W s(γ2)
also has an intersection point w2

i with ṙ = 0 in the section, but this point does not correspond
to e = 0, so it actually belongs to a different WSB set W∗

1 (e) with e �= 0 small. When we take
both intersection points w1

i , w
2
i and integrate them forward, the point w1

i , which is essentially
the same as the original point on the WSB, when flown forward, generates an orbit that gets
close to γ2 (because this point is close to W s

γ2), but then it changes course and asymptotically
approaches γ1 (because it is on W s

γ1); see Figure 15. This orbit is close to a heteroclinic
connection between γ2 and γ1. For comparison, we also integrate forward the second point
w2
i , which is also close to the original point w∗

i on the WSB. This second orbit is asymptotic
to γ2. The orbits of w1

i and of w2
i are very close to one another and seem to overlap for a

while, but their final behavior is rather different. Note that the plotted orbits do not remain
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Figure 13. Collection of trajectories of type A points lying on the stable manifolds of Lyapunov orbits for
the corresponding energies.
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Forward integration of two initial points in the intersections of W s(γ1) and W s(γ2) with ṙ = 0.

close to γ1 and γ2, respectively, as theoretically predicted, due to the numerical manifolds
computed.

Example 4.8. An important remark is that the points in the WSB set W∗
n(e) in general
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lie on different Jacobi energy levels. Indeed, for a fixed value of the eccentricity e and a fixed
radial axis l(θ), a point w∗ ∈ W∗

n(e) corresponds to a precise Jacobi energy level J(r∗, θ, e)
given by (2.7). Thus, by moving along the radial axis l(θ), J changes according to (2.7).
However, only certain points on the radial axis l(θ) will be in the WSB set W∗

n(e). When
the Jacobi constant corresponding to W∗

1 (0) is plotted versus the angle θ, one obtains the
structure shown in Figure 17. The two dips in the plot correspond to the two spiral arms
of the set W∗

1 (0). We note that the points on the two spiral arms reach very low values of
the Jacobi energy, corresponding to the case when the Hill region allows a trajectory to move
within the entire plane.

4.3. Summary of geometrical and numerical arguments. We provided a geometrical
argument that for a range of energy C ∈ [Cmin, C1], Cmin = 3.15, the points onW s(γ1)∪W s(γ2)
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that have zero radial velocity and negative Kepler energy relative to P2 are part of the WSB
set, provided that the invariant manifolds of γ1 and γ2 satisfy some topological conditions
described in Hypothesis A. The geometrical argument relies on the separatrix property of the
invariant manifolds. We considered the cuts W s

θ0,n−1(γ1) and W s
θ0,n−1(γ2) made by W s(γ1)

and W s(γ2) with Sθ0 . If a point is outside the region bounded by W s
θ0,n−1(γ1) or W

s
θ0,n−1(γ2),

then it will stay in the P2-region for at least n turns around P2. If a point is inside the region
bounded by W s

θ0,n−1(γ1) or W s
θ0,n−1(γ2), then it will leave the P2-region after (n − 1) turns

around P2, and then it will make a complete turn around P1. Thus the points on W s
θ0,n−1(γ1)

and W s
θ0,n−1(γ2) with ṙ = 0 and H2 < 0 are points in W∗

n.
We numerically verified this geometric argument for a selection of points. We computed

the WSB set for a fixed eccentricity e. For a given point in the WSB we computed W s(γ1)
and W s(γ2), and their cuts W s

θ0,n−1(γ1) and W s
θ0,n−1(γ2) with Sθ0 . We intersected the cuts

with ṙ = 0 and with the H2 < 0 set. We found that one of these intersection points coincides,
within some tolerance, with the original point chosen from the WSB. We tested the point by
taking two nearby initial conditions inside the plane of section θ = θ0 with ṙ = 0, one inside
the region bounded by W s

θ0,n−1(γ1) or W s
θ0,n−1(γ2) and the other one outside that region.

We found that one point is stable and the other is unstable in the sense of the algorithmic
definition of the WSB.

5. Conclusions. In this paper we provided a geometric argument, based on the separatrix
property of the invariant manifolds of the Lyapunov orbits, for the fact that, for some range
of energies, the points on the stable manifold of the Lyapunov orbits about L1 and L2 are
points in the WSB, provided that these points satisfy the zero radial velocity condition and
the negative Kepler energy condition relative to the small primary. We supported our geomet-
ric argument with numerical experiments. This geometric argument justifies the numerical
findings in [18]. The results in this paper, corroborated with those in [18], establish that the
WSB method for the design of fuel efficient spacecraft trajectories substantially overlaps with
the invariant manifold method.

A consequence of our findings is that the algorithmic definition of the WSB provides a
method of finding trajectories on the stable manifold of a Lyapunov orbit which does not
require the a priori knowledge of the Lyapunov orbit. In particular, one can obtain symmetric
homoclinic orbits. This type of approach contrasts with the traditional method for computing
the stable manifold of a Lyapunov orbit, which first computes the Lyapunov orbit and then
integrates nearby initial conditions in the direction of the stable eigenvectors. It is well
known that long-term integration of the invariant manifolds is prone to large numerical errors.
It seems possible that the algorithmic definition of the WSB can be used as a method of
verification and correction for long-term integration of the invariant manifolds.

The existence of homoclinic points inside the WSB is consistent with the results shown
analytically in [3] in the case of near-parabolic motion. However, our numerical experiments
indicate that the WSB contains symmetric homoclinic points for the whole range of Jacobi
constants for which the WSB is defined.

Weak stability boundaries exist even in models where the hyperbolic invariant manifolds
are no longer well defined. It seems possible that the WSB may turn out to provide a good
substitute for the hyperbolic invariant manifolds in such models. We believe that this idea
could be exploited in space mission design and should be explored further.
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of this work was done during M.G.’s visits to the Centre de Recerca Matemàtica, Barcelona,
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[18] F. Garćıa and G. Gómez, A note on weak stability boundaries, Celestial Mech. Dyn. Astron., 97 (2007),
pp. 87–100.

[19] E. S. Gawlik, P. C. Du Toit, S. Campagnola, and J. E. Marsden, Lagrangian coherent structures
in the planar elliptic restricted three-body problem, Celestial Mech. Dyn. Astron., 103 (2009), pp.
227–249.

[20] M. Gidea and J. J. Masdemont, Geometry of homoclinic connections in a planar circular restricted
three-body problem, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), pp. 1151–1169.

[21] G. Gomez, J. Llibre, R. Martinez, and C. Simo, Dynamics and Mission Design near Libration



WEAK STABILITY BOUNDARY AND INVARIANT MANIFOLDS 1089

Points, Volume I. Fundamentals: The Case of Collinear Libration Points, World Sci. Monogr. Ser.
Math., World Scientific, River Edge, NJ, 2001.

[22] G. Gomez, J. Llibre, R. Martinez, and C. Simo, Dynamics and Mission Design near Libration
Points, Volume II. Fundamentals: The Case of Triangular Libration Points, World Sci. Monogr. Ser.
Math., World Scientific, River Edge, NJ, 2001.
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