44

PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Pythran: Enabling Static Optimization of Scientific
Python Programs

Serge Guelton®*, Pierrick Brunet*, Alan Raynaud*, Adrien Merlini*, Mehdi Amini

http://www.youtube.com/watch?v=KT5-uGEpnGw

Abstract—Pythran is a young open source static compiler that turns modules
written in a subset of Python into native ones. Based on the fact that scientific
modules do not rely much on the dynamic features of the language, it trades
them in favor of powerful, eventually inter procedural, optimizations. These in-
clude detection of pure functions, temporary allocation removal, constant folding,
Numpy ufunc fusion and parallelization, explicit thread-level parallelism through
OpenMP annotations, false variable polymorphism pruning, and automatic vec-
tor instruction generation such as AVX or SSE.

In addition to these compilation steps, Pythran provides a C++ runtime
library that leverages the C++ STL to provide generic containers, and the Nu-
meric Template Toolbox (NT2) for Numpy support. It takes advantage of modern
C++11 features such as variadic templates, type inference, move semantics and
perfect forwarding, as well as classical ones such as expression templates.

The input code remains compatible with the Python interpreter, and output
code is generally as efficient as the annotated Cython equivalent, if not more,
without the backward compatibility loss of Cython. Numpy expressions run faster
than when compiled with numexpr, without any change of the original code.

Index Terms—static compilation, numpy, c++

Introduction

The Python language is growing in popularity as a language for
scientific computing, mainly thanks to a concise syntax, a high
level standard library and several scientific packages.

However, the overhead of running a scientific application
written in Python compared to the same algorithm written in a
statically compiled language such as C is high, due to numerous
dynamic lookup and interpretation cost inherent in high level
languages. Additionally, the Python compiler performs no opti-
mization on the bytecode, while scientific applications are first-
class candidates for many of them.

Following the saying that scientific applications spend 90% of
their time in 10% of the code, it is natural to focus on computation-
intensive piece of code. So the aim may not be to optimize the full
Python application, but rather a small subset of the application.

Several tools have been proposed by an active community to
fill the performance gap met when running these computation-
intensive piece of code, either through static compilation or Just
In Time (JIT) compilation.

« Corresponding author: serge.guelton @telecom-bretagne.eu
§ ENS, Paris, France

Télécom Bretagne, Plouzané, France

9 SILKAN, Los Altos, USA

Copyright © 2013 Serge Guelton et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

*

An approach used by Cython [cython] is to suppress the inter-
pretation overhead by translating Python Programs to C programs
calling the Python C API [pythoncapi]. More recently, Nuitka
[nuitka] has taken the same approach using C++ has a back-
end. Going a step further Cython also uses an hybrid C/Python
language that can efficiently be translated to C code, relying on
the Python C API for some parts and on plain C for others.
ShedSkin [shedskin] translates implicitly strongly typed Python
program into C++, without any call to the Python C APIL.

The alternate approach consists in writing a Just In Time(JIT)
compiler, embedded into the interpreter, to dynamically turn the
computation intensive parts into native code. The numexpr module
[numexpr] does so for Numpy expressions by JIT-compiling them
from a string representation to native code. Numba [numba]
extends this approach to Numpy-centric applications while PyPy
[pypyl applies it to the whole language.

To the notable exception of PyPy, these compilers do not apply
any of the static optimization techniques that have been known for
decades and successfully applied to statically compiled language
such as C or C++. Translators to statically compiled languages
do take advantage of them indirectly, but the quality of generated
code may prevent advanced optimizations, such as vectorization,
while they are available at higher level, i.e. at the Python level.
Taking into account the specificities of the Python language can
unlock many new transformations. For instance, PyPy automates
the conversion of the range builtin into xrange through the use of
a dedicated structure called range-list.

This article presents Pythran, an optimizing compiler for a
subset of the Python language that turns implicitly statically typed
modules into parametric C++ code. It supports many high-level
constructs of the 2.7 version of the Python language such as list
comprehension, set comprehension, dict comprehension, generator
expression, lambda functions, nested functions or polymorphic
functions. It does not support global variables, user classes or any
dynamic feature such as introspection, polymorphic variables.

Unlike existing alternatives, Pythran does not solely perform
static typing of Python programs. It also performs various com-
piler optimizations such as detection of pure functions, temporary
allocation removal or constant folding. These transformations are
backed up by code analysis such as aliasing, inter-procedural
memory effect computations or use-def chains.

The article is structured as follows: Section 1 introduces the
Pythran compiler compilation flow and internal representation.
Section 2 presents several code analysis while Section 3 focuses
on code optimizations. Section 4 presents back-end optimizations

http://www.youtube.com/watch?v=KT5-uGEpnGw
mailto:serge.guelton@telecom-bretagne.eu

PYTHRAN: ENABLING STATIC OPTIMIZATION OF SCIENTIFIC PYTHON PROGRAMS

for the Numpy expressions. Section 5 briefly introduces OpenMP-
like annotations for explicit parallelization of Python programs
and section 6 presents the performance obtained on a few synthetic
benchmarks and concludes.

Pythran Compiler Infrastructure

Pythran is a compiler for a subset of the Python language. In
this paper, the name Pythran will be used indifferently to refer to
the language or the associated compiler. The input of the Pythran
compiler is a Python module —not a Python program— meant to
be turned into a native module. Typically, computation-intensive
parts of the program are moved to a module fed to Pythran.

Pythran maintains backward compatibility with CPython. In
addition to language restrictions detailed in the following, Pythran
understands special comments such as:

#pythran export foo (int

as optional module signature. One does not need to list all the
module functions in an export directive, only the functions meant
to be used outside of the module. Polymorphic functions can be
listed several times with different types.

The Pythran compiler is built as a traditional static compiler: a
front-end turns Python code into an Internal Representation (IR),
a middle-end performs various code optimizations on this IR, and
a back-end turns the IR into native code. The front-end performs
two steps:

1) turn Python code into Python Abstract Syntax Tree(AST)
thanks to the ast module from the standard library;

2) turn the Python AST into a type-agnostic Pythran IR,
which remains a subset of the Python AST.

Pythran IR is similar to Python AST, as defined in the ast
module, except that several nodes are forbidden (most notably
Pythran does not support user-defined classes, or the exec instruc-
tion), and some nodes are converted to others to form a simpler
AST easier to deal with for further analyses and optimizations.
The transformations applied by Pythran on Python AST are the
following:

o list/set/dict comprehension are expanded into loops
wrapped into a function call;

« tuple unpacking is expanded into several variable assign-
ments;

« lambda functions are turned into named nested functions;

o the closure of nested functions is statically computed to
turn the nested function into a global function taking the
closure as parameter;

« implicit return None are made explicit;

o all imports are fully expanded to make function access
paths explicit

« method calls are turned into function calls;

o implicit __builtin__ function calls are made explicit;

e try... finally constructs are turned into nested try ... except
blocks;

« identifiers whose name may clash with C++ keywords are
renamed.

The back-end works in three steps:

1) turning Pythran IR into parametric C++ code;
2) instantiating the C++ code for the desired types;
3) compiling the generated C++ code into native code.

45

The first step requires to map polymorphic variables and
polymorphic functions from the Python world to C++. Pythran
only supports polymorphic variables for functions, i.e. a variable
can hold several function pointers during its life time, but it cannot
be assigned to a string if it has already been assigned to an
integer. As shown later, it is possible to detect several false variable
polymorphism cases using use-def chains. Function polymorphism
is achieved through template parameters: a template function can
be applied to several types as long as an implicit structural typing
is respected, which is very similar to Python’s duck typing, except
that it is checked at compile time, as illustrated by the following
implementation of a generic dot product in Python:
def dot (10, 11):

return sum(x*xy for x,y in zip(10,11)
and in C++:

template<class TO, class T1>

auto dot (TO&& 10, Tl&& 11)

-> decltype (/* skipped */)

{

return pythonic: :sum(
pythonic: :map (
operator_::multiply (),
pythonic::zip(

std: :forward<TO0> (10),
std::forward<T1l>(11)

)i
}
Although far more verbose than the Python version, the C++
version also uses a form of structural typing : the only assumption
these two version make are that I0 and 11 are iterable, their
content can be multiplied and the result of the multiplication is
accumulatable.

The second step only consists in the instantiation of the top-
level functions of the module, using user-provided signatures.
Template instantiation then triggers the different correctly typed
instantiations for all functions written in the module. Note that
the user only needs to provide the type of the functions exported
outside the module. The possible types of all internal functions are
then inferred from the call sites.

The last step involves a template library, called pythonic that
contains a polymorphic implementation of many functions from
the Python standard library in the form of C++ template func-
tions. Several optimizations, most notably expression template,
are delegated to this library. Pythran relies on the C++11 [cxx11]
language, as it makes heavy use of recent features such as move
semantics, type inference through decltype(...) and variadic tem-
plates. As a consequence it requires a compatible C++ compiler
for the native code generation. Boost.Python [boost_python] is
involved for the Python-to-C++ glue. Generated C++ code is
compatible with g++ 4.7.2 and clang++ 3.2.

It is important to note that all Pythran analyses are type-
agnostic, i.e. they do not assume any type for the variables
manipulated by the program. Type specialization is only done in
the back-end, right before native code generation. Said otherwise,
the Pythran compiler analyzes polymorphic functions and poly-
morphic variables.

Figure 1 summarizes the compilation flow and the involved
tools.

Code Analyses

A code analysis is a function that takes a part of the IR (or
the whole module’s IR) as input and returns aggregated high-

46

OpenMP % - -ﬂ Python Module [.py] k— - { Type Info

o

‘Native Module [.so] ‘

boost: :python ‘ ‘ pythonic++

Fig. 1: Pythran compilation flow.

level information. For instance, a simple Pythran analysis called
Identifiers gathers the set of all identifiers used throughout the
program. This information is later used when the creation of new
identifiers is required so that no conflict occurs with existing ones.
One of the most important analysis in Pythran is the alias anal-
ysis, sometimes referred as points-to analysis. For each identifiers,
it computes an approximation of the set of locations this identifier
may point to. For instance, let us consider the polymorphic
function foo defined as follows:
def foo(a,b):

c =aorb
return c*2

The identifier ¢ involved in the multiplication may refer to

o a fresh location if a and b are scalars
« the same location as a if a evaluates to True
« the same location as b otherwise.

As we do not specialise the analysis for different types and the
true value of a is unknown at compilation time, the alias analysis
yields the approximated result that ¢ may point to a fresh location,
aorb.

Without this kind of information, even a simple instruction like
sum(a) would yield very few informations as there is no guarantee
that the sum identifiers points to the sum built-in.

When turning Python AST to Pythran IR, nested functions
are turned into global functions taking their closure as parameter.
This closure is computed using the information provided by the
Globals analysis that statically computes the state of the dictionary
of globals, and Importedlds that computes the set of identifiers
used by an instruction but not declared in this instruction. For
instance in the following snippet:
def outer (outer_argument) :

def inner (inner_argument) :

return cos (outer_argument)
return inner

+ inner_argument

The Globals analysis called on the inner function definition marks
cos as a global variable, and Importedlds marks outer_argument
and cos as imported identifiers.

A rather high-level analysis is the PureFunctions analysis,
that computes the set of functions declared in the module that
are pure, i.e. whose return value only depends from the value
of their argument. This analysis depends on two other analyses,
namely GlobalEffects that computes for each function whether

PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

this function modifies the global state (including I/O, random
generators, etc.) and ArgumentEffects that computes for each
argument of each function whether this argument may be updated
in the function body. These three analyses work inter-procedurally,
as illustrated by the following example:

def fibo(n):

return n if n < 2 else fibo(n-1) + fibo(n-2)
def bar(l):

return map (fibo, 1)
def foo(l):

return map (fibo, random.sample(l, 3)

The fibo function is pure as it has no global effects or argument
effects and only calls itself. As a consequence the bar function is
also pure as the map intrinsic is pure when its first argument is
pure. However the foo function is not pure as it calls the sample
function from the random module, which has a global effect (on
the underlying random number generator internal state).

Several analyses depend on the PureFunctions analysis. Paral-
leIMaps uses aliasing information to check if an identifier points
to the map intrinsic, and checks if the first argument is a pure
function using PureFunctions. In that case the map is added to the
set of parallel maps, because it can be executed in any order. This
is the case for the first map in the following snippet, but not for
the second because the print b involves an /0.

def pure(a):
return ax«*2

def guilty(a):
b = pure(a)
print b
return b

1 = list(...)
map (pure, 1)
map (quilty, 1)

ConstantExpressions uses function purity to decide whether a
given expression is constant, i.e. its value only depends on literals.
For instance the expression fibo(12) is a constant expression
because fibo is pure and its argument is a literal.

UseDefChains is a classical analysis from the static compila-
tion world. For each variable defined in a function, it computes
the chain of use and def. The result can be used to drive various
code transformations, for instance to remove dead code, as a def
followed by a def or nothing is useless. It is used in Pythran to
avoid false polymorphism. An intuitive way to represent use-def
chains is illustrated on next code snippet:

a =1

if cond:
a=a+ 2

else:
a

print a
a =4

Il
w

In this example, there are two possible chains starting from the
first assignment. Using U to denote use and D to denote def, one
gets:

DUDUD
and:

DDUD

PYTHRAN: ENABLING STATIC OPTIMIZATION OF SCIENTIFIC PYTHON PROGRAMS

The fact that all chains finish by a def indicates that the last
assignment can be removed (but not necessarily its right hand
part that could have a side-effect).

All the above analyses are used by the Pythran developer to
build code transformations that improve the execution time of the
generated code.

Code Optimizations

One of the benefits of translating Python code to C++ code is
that it removes most of the dynamic lookups. It also unveils all
the optimizations available at C++ level. For instance, a function
call is quite costly in Python, which advocates in favor of using
inlining. This transformation comes at no cost when using C++ as
the back-end language, as the C++ compiler does it.

However, there are some informations available at the Python
level that cannot be recovered at the C++ level. For instance,
Pythran uses functor with an internal state and a goto dispatch
table to represent generators. Although effective, this approach is
not very efficient, especially for trivial cases. Such trivial cases
appear when a generator expression is converted, in the front-
end, to a looping generator. To avoid this extra cost, Pythran turns
generator expressions into call to imap and ifilter from the itertools
module whenever possible, removing the unnecessary goto dis-
patching table. This kind of transformation cannot be made by the
C++ compiler. For instance, the one-liner len(set(vec[i]+i for i in
cols)) extracted from the nqueens benchmarks from the Unladen
Swallow project is rewritten as len(set(itertools.imap(lambda i:
vec[i]+i,cols))). This new form is less efficient in pure Python (it
implies one extra function call per iteration), but can be compiled
into C++ more efficiently than a general generator.

A similar optimization consists in turning map, zip or filter
into their equivalent version from the itertool module. The benefit
is double: first it removes a temporary allocation, second it gives
an opportunity to the compiler to replace list accesses by scalar
accesses. This transformation is not always valid, nor profitable.
It is not valid if the content of the output list is written later on,
and not profitable if the content of the output list is read several
times, as each read implies the (re) computation, as illustrated in
the following code:

def valid_conversion(n):

this map can be converted to imap
1 = map (math.cos, range(n))
return sum(l) # sum iterates once on its input

def invalid_conversion(n) :

this map cannot be converted to imap
1 = map (math.cos, range(n))
1(0] =1 # invalid assi

return sum(l) + max(1l)

The information concerning constant expressions is used to per-
form a classical transformation called ConstantUnfolding, which
consists in the compile-time evaluation of constant expressions.
The validity is guaranteed by the ConstantExpressions analysis,
and the evaluation relies on Python ability to compile an AST into
byte code and run it, benefiting from the fact that Pythran IR is a
subset of Python AST. A typical illustration is the initialization of
a cache at compile-time:

def esieve(n):

candidates = range (2, n+l)
return sorted(
set (candidates) - set (pxi

47

for p in candidates
for i in range(p, n+1)

)

cache = esieve (100)

Pythran automatically detects that eseive is a pure function and
evaluates the cache variable value at compile time.

Sometimes, coders use the same variable in a function to repre-
sent value with different types, which leads to false polymorphism,
as in:

a = cos (1)
a str(a)

These instructions cannot be translated to C++ directly because
a would have both double and str type. However, using UsedDe-
fChains it is possible to assert the validity of the renaming of the
instructions into:

a = cos (1)
a_ = str(a)

that does not have the same typing issue.

In addition to these python-level optimizations, the Pythran
back end library, pythonic, uses several well known optimizations,
especially for Numpy expressions.

Library Level Optimizations

Using the proper library, the C++ language provides an abstraction
level close to what Python proposes. Pythran provides a wrapper
library, pythonic, that leverage on the C++ Standard Template
Library (STL), the GNU Multiple Precision Arithmetic Library
(GMP) and the Numerical Template Toolbox (NT2) [nt2] to
emulate Python standard library. The STL is used to provide a
typed version of the standard containers (list, set, dict and str), as
well as reference-based memory management through shared_ptr.
Generic algorithms such as accumulate are used when possible.
GMP is the natural pick to represent Python’s long in C++. NT2
provides a generic vector library called boost.simd [boost_simd]
that enables the vector instruction units of modern processors in a
generic way. It is used to efficiently compile Numpy expressions.

Numpy expressions are the perfect candidates for library level
optimizations. Pythran implements three optimizations on such
expressions:

1) Expression templates [expression_templates] are used to
avoid multiple iterations and the creation of intermediate
arrays. Because they aggregates all ufunc into a single
expression at compile time, they also increase the com-
putation intensity of the loop body, which increases the
impact of the two following optimizations.

2) Loop vectorization. All modern processors have vector
instruction units capable of applying the same operation
on a vector of data instead of a single data. For instance
Intel Sandy Bridge can run 8 single-precision additions
per instruction. One can directly use the vector instruction
set assembly to use these vector units, or use C/C++
intrinsics. Pythran relies on boost.simd from NT2 that of-
fers a generic vector implementation of all standard math
functions to generate a vectorized version of Numpy ex-
pressions. Again, the aggregation of operators performed
by the expression templates proves to be beneficial, as

48

it reduces the number of (costly) loads from the main
memory to the vector unit.

3) Loop parallelization through OpenMP [openmp]. Numpy
expression computation do not carry any loop-
dependency. They are perfect candidates for loop par-
allelization, especially after the expression templates
aggregation, as OpenMP generally performs better on
loops with higher computation intensity that masks the
scheduling overhead.

To illustrate the benefits of these three optimizations com-
bined, let us consider the simple Numpy expression:

d = numpy.sqgrt (bxb+cxc)

When benchmarked with the timeit module on an hyper-threaded
quad-core i7, the pure Python execution yields:

>>> Stimeit np.sqgrt (bxbtcxc)
1000 loops, best of 3: 1.23 ms per loop

then after Pythran processing and using expression templates:

>>> S$timeit my.pythranized (b, c)
1000 loops, best of 3: 621 us per loop

Expression templates replace 4 temporary array creations and 4
loops by a single allocation and a single loop.

Going a step further and vectorizing the generated loop yields
an extra performance boost:

>>> Stimeit my.pythranized (b, c)
1000 loops, best of 3: 418 us per loop

Although the AVX instruction set makes it possible to store 4
double precision floats, one does not get a 4x speed up because of
the unaligned memory transfers to and from vector registers.

Finally, using both expression templates, vectorization and
OpenMP:

>>> Stimeit my.pythranized (b, c)
1000 loops, best of 3: 105 us per loop

The 4 hyper-threaded cores give an extra performance boost.
Unfortunately, the load is not sufficient to get more than an
average 4x speed up compared to the vectorized version. In the
end, Pythran generates a native module that performs roughly 11
times faster than the original version.

As a reference, the numexpr module that performs JIT opti-
mization of the expression yields the following timing:

>>> S$timeit numexpr.evaluate ("sqgrt (bxb+cxc)™)
1000 loops, best of 3: 395 us per loop

Next section performs an in-depth comparison of Pythran with
three Python optimizers: PyPy, ShedSkin and numexpr.

Explicit Parallelization

Many scientific applications can benefit from the parallel exe-
cution of their kernels. As modern computers generally feature
several processors and several cores per processor, it is critical for
the scientific application developer to be able to take advantage of
them.

As explained in the previous section, Pythran takes advantage
of multiple cores when compiling Numpy expressions. However,
when possible, it is often more profitable to parallelize the outer-
most loops rather than the inner loops —the Numpy expressions—

PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Tool CPython Pythran PyPy ShedSkin
Timing 861ms 11.8ms 29.1ms 24.7Tms
Speedup x1 x72.9 x29.6 x34.8

TABLE 1: Benchmarking result on the Pystone program.

because it avoids the synchronization barrier at the end of each
parallel section, and generally offers more computation intensive
computations.

The OpenMP standard [openmp] is a widely used solution
for Fortran, C and C++ to describe loop-based and task-based
parallelism. It consists of a few directives attached to the code,
that describe parallel loops and parallel code sections in a shared
memory model.

Pythran makes this directives available at the Python level
through string instructions. The semantic is roughly similar to the
original semantics, assuming that all variables have function level
scope.

The following listing gives a simple example of explicit loop-
based parallelism. OpenMP 3.0 task-based parallelism form is also
supported.

def pi_estimate (darts):
hits = 0
"omp parallel for private(x,y,dist),
for i in xrange (darts):
x,y = random (), random()
dist = sqrt(pow(x, 2) + pow(y, 2))
if dist <= 1.0:
hits += 1.0

pi = 4 » (hits / DARTS)

return pi

The loop is flagged as parallel, performing a reduction using the +
operator on the hits variable. Variable marked as private are local
to a thread and not shared with other threads.

Benchmarks

All benchmarks presented in this section are ran on an hyper-
threaded quad-core i7, using examples shipped along Pythran
sources, available at https://github.com/serge-sans-paille/pythran
in the pythran/test/cases directory. The Pythran version used is
the HEAD of the scipy2013 branch, ShedSkin 0.9.2, PyPy 2.0
compiled with the -jit flag, CPython 2.7.3, Cython 0.19.1 and
Numexpr 2.0.1. All timings are made using the timeit module,
taking the best of all runs. All C++ codes are compiled with g++
4.7.3, using the tool default compiler option, generally -O2 plus a
few optimizing flags depending on the target.

Cython is not considered in most benchmarks, because to get
an efficient binary, one needs to rewrite the original code, while
all the considered tools are running the very same Python code
that remains compatible with CPython. The experiment was only
done to have a comparison with Numexpr.

Pystone is a Python translation of whetstone, a famous floating
point number benchmarks that dates back to Algol60 and the 70’s.
Although non representative of real applications, it illustrates the
general performance of floating point number manipulations. Ta-
ble 1 illustrates the benchmark result for CPython, PyPy, ShedSkin
and Pythran, using an input value of 10**3. Note that the original
version has been updated to replace the user class by a function
call.

reduction (+:hits)"

https://github.com/serge-sans-paille/pythran

PYTHRAN: ENABLING STATIC OPTIMIZATION OF SCIENTIFIC PYTHON PROGRAMS

Tool CPython Pythran PyPy ShedSkin
Timing 1904.6ms 358.3ms 546.1ms 701.5ms
Speedup x1 x5.31 x3.49 x2.71

49
Tool CPython Pythran Pythran+OpenMP
Timing 450.0ms 4.8ms 2.3ms
Speedup x1 x93.8 x195.7

TABLE 2: Benchmarking result on the NQueen program.

Tool CPython Pythran PyPy ShedSkin
Timing 1295.4ms 270.5ms 277.5ms 281.5ms
Speedup x1 x4.79 x4.67 x4.60

TABLE 3: Benchmarking result on the hyantes kernel, list version.

It comes at no surprise that all tools get more than decent re-
sults on this benchmark. PyPy generates a code almost as efficient
as ShedSkin. Altough both generate C++, Pythran outperforms
ShedSkin thanks to a higher level generated code. For instance
all arrays are represented in ShedSkin by pointers to arrays that
likely disturbs the g++ optimizer, while Pythran uses a vector class
wrapping shared pointers.

Nqueen is a benchmark extracted from the former Unladen
Swallow” project. It is particularly interesting as it makes an
intensive use of non-trivial generator expressions and integer sets.
Table 2 illustrates the benchmark results for CPython, PyPy,
ShedSkin and Pythran. The code had to be slightly updated to
run with ShedSkin because type inference in ShedSkin does not
support mixed scalar and None variables. The input value is 9.

It seems that compilers have difficulties to take advantage of
high level constructs such as generator expressions, as the overall
speedup is not breathtaking. Pythran benefits from the conversion
to itertools.imap here, while ShedSkin and PyPy rely on more
costly constructs. A deeper look at the Pythran profiling trace
shows that more than half of the execution time is spent allocating
and deallocating a set used in the internal loop. There is a memory
allocation invariant that could be taken advantage of there, but
none of the compiler does.

Hyantes' is a geomatic application that exhibits typical usage
of arrays using loops instead of generalized expressions. It is
helpful to measure the performance of direct array indexing.

Table 3 illustrates the benchmark result for CPython, PyPy,
ShedSkin and Pythran, when using lists as the data container. The
output window used is 100x100.

The speed ups are not amazing for a numerical application.
there are two reasons for this poor speedups. First, the hyantes
benchmark makes heavy usage of trigonometric functions, and
there is not much gain there. Second, and most important, the
benchmark produces a big 2D array stored as a list of list, so the
application suffers from the heavy overhead of converting them
from C++ to Python. Running the same benchmark using Numpy
arrays as core containers confirms this assumption, as illustrated
by Table 4. This table also demonstrates the benefits of manual
parallelization using OpenMP.

Finally, arc_distance® presents a classical usage of Numpy
expression. It is typically more efficient than its loop alternative
as all the iterations are done directly in C. Its code is reproduced
below:

def arc_distance (theta_1,

mn

phi_1, theta_2, phi_2):

Calcird o 7 T o e istanc
Calculates the palirwlse arc distance

TABLE 4: Benchmarking result on the hyantes kernel, numpy version.

Tool CPython Cython Numexpr Pythran
Timing 192.2ms 36.0ms 41.2ms 17.1ms
Speedup x1 x5.33 x4.67 x11.23

TABLE 5: Benchmarking result on the arc distance kernel.

between all points in vector a and b.
nwmn

temp = (np.sin((theta_2-theta_1)/2) %2
+ np.cos (theta_1) *np.cos (theta_2)
* np.sin((phi_2-phi_1)/2)*%2)
distance_matrix = 2 % np.arctan?2 (
sgrt (temp), sqrt (1-temp))
return distance_matrix

Figure 5 illustrates the benchmark result for CPython, Cython,
Numexpr and Pythran, using random input arrays of 10**6 el-
ements. Table 6 details the Pythran performance. Cython code
is written using the parallel.prange feature and compiled with -
fopenmp -O2 -march=native.

It shows a small benefit from using expression templates on
their own, most certainly because the loop control overhead is
negligible in front of the trigonometric functions. It gets a decent
x2.5 speed-up when using AVX over not using it. The benefit
of OpenMP, although related to the number of cores, makes a
whole speedup greater than x11 over the original Numpy version,
without changing the input code. Quite the opposite, Numexpr
requires rewriting the input and does not achieve the same level of
performance as Pythran when OpenMP and AVX are combined.

Writing efficient Cython code requires more work than just
typing the variable declarations using Cython’s specific syntax: it
only takes advantage of parallelism because we made it explicit.
Without explicit parallelization, the generated code runs around
176ms instead of 36ms. Cython does not generate vectorized code,
and gcc does not vectorize the inner loop, which explains the
better result obtained with Pythran.

Future Work

Although Pythran focuses on a subset of Python and its standard
library, many optimizations opportunities are still possible. Using

*_ http://code.google.com/p/unladen-swallow/

7. http://hyantes.gforge.inria.fr/

+. The arc_distance test_bed is taken from to https://bitbucket.org/
FedericoV/numpy-tip-complex-modeling

Pythran (raw) Pythran Pythran Pythran (full)
(+AVX) (+OMP)

186.3ms 75.4ms 41.1ms 17.1ms

x1.03 x2.54 x4.67 x11.23

TABLE 6: Benchmarking result on the arc distance kernel, Pythran
details.

http://code.google.com/p/unladen-swallow/
http://hyantes.gforge.inria.fr/
https://bitbucket.org/FedericoV/numpy-tip-complex-modeling
https://bitbucket.org/FedericoV/numpy-tip-complex-modeling

50

as Domain Specific Language(DSL) approach, one could use
rewriting rules to optimize several Python idioms. For instance,
len(set(x)) could lead to an optimized count uniq that would
iterate only once on the input sequence.

There is naturally more work to be done at the Numpy level,
for instance to support more functions from the original module.
The extraction of Numpy expressions from for loops is also a
natural optimization candidate, which shares similarities with code
refactoring.

Numpy expressions also fit perfectly well in the polyhedral
model. Exploring the coupling of polyhedral tools with the code
generated from Pythran offers enthusiastic perspectives.

Conclusion

This paper presents the Pythran compiler, a translator, and an
optimizer, that converts Python to C++. Unlike existing static
compilers for Python, Pythran leverages several function-level
or module-level analyses to provide several generic or Python-
centric code optimizations. Additionally, it uses a C++ library
that makes heavy usage of template programming to provide an
efficient API similar to a subset of Python standard library. This
library takes advantage of modern hardware capabilities —vector
instruction units and multi-cores— in its implementation of parts
of the numpy package.

This paper gives an overview of the compilation flow, the
analyses involved and the optimizations used. It also compares
the performance of compiled Pythran modules against CPython
and other optimizers: ShedSkin, PyPy and numexpr.

To conclude, limiting Python to a statically typed subset does
not hinders the expressivity when it comes to scientific or math-
ematic computations, but makes it possible to use a wide variety
of classical optimizations to help Python match the performance
of statically compiled language. Moreover, one can use high level
information to generate efficient code that would be difficult to
write for the average programmer.

Acknowledgments

This project has been partially funded by the CARP Project® and
the SILKAN Company!.

REFERENCES

[boost_python] D. Abrahams and R. W. Grosse-Kunstleve. Building
Hybrid Systems with Boost.Python, C/C++ Users Jour-
nal, 21(7), July 2003.

P. Estérie, M. Gaunard, J. Falcou, J. T. Lapresté,

B. Rozoy. Boost.SIMD: generic programming for

portable SIMDization, Proceedings of the 21st in-

ternational conference on Parallel architectures and

compilation techniques, 431-432, 2012.

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S.

Seljebotn and K. Smith. Cython: The Best of Both

Worlds, Computing in Science Engineering, 13(2):31-

39, March 2011.

[exx11] ISO, Geneva, Switzerland. Programming Languages
-- C++, ISO/IEC 14882:2011.

[expression_templates] T. Veldhuizen. Expression Templates, C++ Report,
7:26-31, 1995.

[nt2] J. Falcou, J. Sérot, L. Pech, J. T. Laprest¢ Meta-
programming applied to automatic SMP paralleliza-
tion of linear algebra code, Euro-Par, 729-738, Jan-
uary 2008, https://github.com/MetaScale/nt2.

[boost_simd]

[cython]

§. http://carp.doc.ic.ac.uk/external/
q. http://www.silkan.com/

[nuitka]
[numbal]
[numexpr]

[openmp]

[pypy]

[pythoncapi]

[shedskin]

PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

K. Hayen. Nuitka - The Python Compiler, Talk at
EuroPython2012.

T. Oliphant et al. Numba, http://numba.pydata.org/.
D. Cooke, T. Hochberg et al. Numexpr - Fast numeri-
cal array expression evaluator for Python and NumPy,
http://code.google.com/p/numexpr/.

OpenMP Application Program Interface, http:
/Iwww.openmp.org/mp-documents/OpenMP3.1.pdf,
July 2011.

C. F. Bolz, A. Cuni, M. Fijalkowski and A. Rigo.
Tracing the meta-level: PyPy’s tracing JIT compiler,
Proceedings of the 4th workshop on the Implemen-
tation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems, 18-25, 2009.
G. v. Rossum and F. L. Jr. Drake. Python/C API
Reference Manual, September 20012.

M. Dufour. Shed skin: An optimizing python-to-c++
compiler, Delft University of Technology, 2006.

https://github.com/MetaScale/nt2
http://carp.doc.ic.ac.uk/external/
http://www.silkan.com/
http://numba.pydata.org/
http://code.google.com/p/numexpr/
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

	Introduction
	Pythran Compiler Infrastructure
	Code Analyses
	Code Optimizations
	Library Level Optimizations
	Explicit Parallelization
	Benchmarks
	Future Work
	Conclusion
	Acknowledgments
	References

