Python (2.5) Virtual Machine

A guided tour

Python

Started Dec 1989 by Guido van Rossum
— First public release Feb 1991 on USENET

— Intended as scripting language for Amoeba
— Benevolent Dictator For Life (BDFL)

Google, Zope, Plone, Pixar, Mailman,
BitTorrent, Yahoo, NASA, ...

Python Enhancement Proposal (PEP)
Free software, “Pascal of the 2000s”

Benefits

Combination of good ideas from other
languages — C, C++, Modula, ABC, Icon, ...

Interpreter approach, no explicit typing,
memory management, first-class object
model, portability of source and byte code,
in-build module documentation

"Batteries included”

— Platform-neutral system calls, built-in standard
library (network, files, GUI, databases, ...)

Interactive mode vs. script mode

Python Language

Meanwhile focus on stability of language

EVERY
— Varia

EVERY
EVERY

'HING is an object
oles, constants, types, functions, ...

"HING has a namespace

'HING can be printed and introspected

Dynamic typing, static scoping

Powerful built-in data types: strings, numerical
types, lists, dictionaries, boolean, ...

Special

ties: >>>, self, global,

Python Language - Structure

e Definitions and statements can be combined
to an importable module

— Dotted module names for package concept

— Import test / From test import x / From test
import * / Import test as theTest

* Indentation to show block structure

* Classes
—def [methodName] (self, ..):
— Constructor denotedby init method
— global statement

Python Language

* Control structures (1f, while,
— Collection iterator (for)
—try: .. / except: .. statements

e No switch statement

— Instead useof i f.elif..elif..else
— See PEP3103 for in-depth discussion

Python Language - Collections

String, lists, and tuples are sequences

Lists — Dynamic arrays (indexing, sub-ranges)
— Similar to Pascal arrays

— Mutable collection of data of the same type
Tuples — light-weight, immutable lists

— Similar to Pascal records or C structs

— Immutable collection of data of different type

Dictionaries — Associative arrays

— Keys must be immutable

Python Language - Collections

Collection iterator for item in coll:
— Dictionary, File and String are iterators

Slicing
Nesting
Single-item tuple

Python Language - Advanced

e Generator function — returns an iterator

—def generateltems (seq) :
for i1tem 1n seq:
vield 'item: %s' %S 1tem

* List comprehension

 There is some more ... (Python 101, books)

Running Python code

* Interpreter vs. Compiler discussion

e Source code is compiled to some kind of byte
code and executed by a virtual machine

— CPython: Source code -> Python byte code
VM written in C, standard implementation

— Jython: Source code -> Java byte code
* JVM as runtime environment

— lronPython: Source code -> IL (““NET”) byte code
* (“NET”) CLR as runtime environment

* PyPy: Runtime environment written in Python

Starting CPython

Py _Main() Modules/Main.c

Py Initialize() Python/pythonrun.c
PySys SetArgv() Python/sysmodule.c

python f.py
python

PyRun_SimpleStringFlags()
Python/pythonrun.c

PyRun_AnyFileExFlags()
Python/pythonrun.c

python -m

RunModule() Modules/Main.c

PyRun_SimpleFileExFlags() PyRun_InteractiveLoopFlags()

Co

PyRun_InteractiveOneFlags()

PyRun_FileExFlags()

PyParser_ASTFromFile()

Lo

CPython Compiler & Interpreter

Source code

(foo.py) .
Interactive mode

def f():

i foo.pyc
print ,Hello” >>> print , Hello”

734928174956

089562093845
692381298979

/

Abstract Python byte code
Syntax Tree

CALL_FUNCTION
POP_TOP

ROT_TWO
PRINT_ITEM

Interpreter

PyObject* stack

CPython 2.5

Parser transforms the strings of tokens into a
concrete syntax tree (ECST)

— Lexer and LL(1) parser

Transformer package then translates this into a
more genuine AST (compiler.transformer)

Input to byte code compiler in compile.c
— Byte code is generated by parsing this AST
— Visitor pattern allows hooking in optimizations

Compilation result for imported code
(not top-level file) is stored in .pyc file

Python AST (Python.asdl)

* Representation of the program without code

* As usual, every node in the AST represents a
syntactic construct
— Tree root is the Module object

— Statements (If, While, With, Print, Class, Global,
Return, Raise, Import, Exec, ...)

— Expressions (BinOp, Dict, Yield, Str, ...)
— Specialized types (excepthandler, alias, slice, ...)

Python VM

Virtual machine part of interpreter executes
Python byte code

— Simple stack machine

— PyObject* stack — byte codes operate on objects
e Stack frames are allocated on the heap

— C stack frames point to heap stack frames
Some high-level byte codes ("PRINT”)

VM knows nearly nothing about C
representation of specific Python types

Python objects know nothing about the VM

Objects in the Runtime

* Every Python object instance has a corresponding
C type instance
— Even basic types are allocated on the heap

— All C types contain PyObject HEAD struct
members (e.g. see intobject.h / object.h)

— Runtime can therefore treat every Python object as
variable of the type PyObject*

— PyObject HEAD contains number of references
on the object (ob->ob refcnt)

* Cmodules need to use Py INCREF (obj) and
friends

Objects in the Runtime

* ob type member of PyObject HEAD
holds pointer to PyTypeObject struct

— Determines C functions to call on activities with

that object — type methods

— Some operations are not feasible for some types

PyTypeObject PyInt Type = {
PyVarObject HEAD INIT (&PyType Type, O0)
" int" ,
sizeof (PyIntObject),

0,

(destructor) int dealloc, /*
(printfunc)int print, &
0, /*
0, /*
(cmpfunc) int compare, &

tp dealloc */
tp print */

tp getattr */
tp setattr */
tp compare */

Interpreter Loop (ceval.c)

* Big switch statement, working on an incoming
PyFrameObject~* structure

— Many opcode implementations call C helper
functions (see PyEval EvalFrameEx)

* For every byte code instruction, management
of reference counting needed

* Few byte code prediction mechanism
— E.g.: COMPARE_OP often followed by JUMP_IF *

— Successful interpreter prediction might lead to
successful processor branch prediction

Frame Objects

* PyFrameObject - argument for interpreter
 Contains caller frame, code, variables, and return address
* Executed by the interpreter loop
 Represents an anonymous code object in execution

— Function calls are mapped to frames

— Parameters of function calls are mapped to local
variables in a frame

— Functions are a programming language construct,
independent from frame concept

Function objects

Function definition (de £) binds function name
in local namespace to function object

Function objects are first class objects

Contains default value arguments

— Computed at definition time, which is relevant
when using mutable objects

Functions store their body as code object in
the func code attribute

Code objects

 Immutable object representing executable
byte code

— co_name: Function name
— co_nlocals, co_varnames: Local variables
— co_names: Names used in the byte code

— co_freevars: Names of free variables

— co_code, co consts, co filename, co firstlineno, ...

* Contains no reference to mutable objects

* Modules and interactive mode rely on
separation of code and functions

Python Byte Code

Documented in DIS module

Special terminology

— TOS: Top-of-stack item

— TOS1: Second top-most stack item

— TOS2: Third top-most stack item

Operations normally take top item(s) from stack
and put back the result item

* Basic stack operations are inline C code

Basic operations on primitive types are usually
thread-safe

Basic Stack Operation

POP_TOP: Remove T0OS

— Implies decreasing of TOS reference counter

ROT TWO, ROT THREE, ROT FOUR

— Rotate up the top-most stack items

— e.g. tuple unpacking : a, b=b, a

DUP_TOP: Duplicate TOS reference

Unary operations on TOS (e.g. UNARY POSITIVE)

Binary operations on TOS and TOS1
(BINARY POWER, MULTIPLY, DIVIDE, ...)

Variables

x =1
def f£():
y = x+1

* Dictionary for variables in a scope

— Lookup for “x” needs to check in local scope,
global scope and built-in scope

* Local variables statically decidable by compiler

— Rule: All assigned variables are local
(assignment operator, import)

— Can be accessed by index, instead of dict lookup

Variables

STORE /LOAD /DELETE GLOBAL name
* Access to global variables
STORE /LOAD /DELETE FAST varnum
— Fast access by using array of local variables
— Uses co_varnames[var _num] array from code object

STORE_/LOAD_/DELETE_NAME namei

— Used when scope is not determinable (e.g. import in
function)

— Code object has co_names list with name indices
— Compilers uses * FAST / * GLOBAL whenever possible

STORE /LOAD /DELETE ATTR nami
e Attributes names are also stored in co_names list

LOAD /CONST consti
— Relies on co_consts[consti] list of constants in code object

In-Place / Slices

* In-place operations are like binary operations,
but demand a ‘self-mutable’ object on TOS1

— INPLACE_POWER, INPLACE_MULTIPLY, ...
— TOS1 then becomes new TOS
— For operations such as +=, —-= (see PEP 203)

* Slice operations

— SLICE+O: T
— SLICE+1: T
— SLICE+2: T

— SLICE+3: T

B
g
oo
o

‘OS|[:]

'0S1
'0S1

OS2

TOS:]
:TOS]

TOS1:TOS]

Slices / Lists

* Slice assignment
— Changes TOS / TOS1 / TOS2 in-place
— STORE_SLICE+0: TOS|[:]=TOS1
— STORE_SLICE+1: TOS1[TOS:]=TOS2
— DELETE SLICE+...
— STORE_SUBSCR: TOS1[TOS]=TOS2
— DELETE SUBSCR: del TOS1[TOS]

* Collection types in Python are cheap and fast !

Printing

* PRINT _EXPR : Implements expression
statement for interactive mode

* PRINT ITEM: Print TOSto sys.stdout
— PRINT _ITEM_TO: Print TOS1 to TOS file-like object
— Needs to consider Unicode and soft space

 PRINT NEWLINE, PRINT NEWLINE TO

Control Structures

BREAK LOOP, CONTINUE_LOOP:
Ends the current block

RETURN VALUE:
Return with TOS to the caller of a function

YIELD VALUE:
Remove TOS and yield it from a generator

END_FINALLY: Interpreter then either re-raises
exception, returns from function or continues

JUMP_FORWARD delta, JUMP_IF_TRUE delta,
JUMP_IF_FALSE delta, JUMP_ABSOLUTE target

Directly mapped concepts

EXEC STMT: run Python code

LIST _APPEND: fast list comprehension
IMPORT_STAR: from [module@TOS] import *
UNPACK_SEQUENCE count: Unpack TOS

FOR_ITER : Treat TOS as iterator, call next()
method, push yielded value on stack

RAISE _VARARGS: Raises an exception,
parameters are on stack

Directly mapped concepts

BUILD TUPLE n
— Create tuple of n top-most items and push result

BUILD LIST n

BUILD MAP
— Create empty dictionary on the stack

BUILD CLASS : Creates a new class object

— TOS: Dictionary of methods
— TOS1: Tuple of base class names

— TOS2: Class name

CALL _FUNCTION argc

* CALL FUNCTION argc

— argc low byte contains number of positional
parameters

— argc high byte contains number of keyword
parameters

— Parameters itself are on the stack, after them the
function object to call

* MAKE FUNCTION argc

— Pushes new function object, TOS is the code, argc
default parameters are below TOS

 And alot more (read ceval.c)

Introducing a new byte code

* Extend official list of opcodes
(Include/opcode.h;
Lib/opcode.py)

 Increase MAGIC number
(Python/import.c)

* Change AST->byte code compiler
(Python/compiler.c)

* Change byte code interpreter
(Python/ceval.c)

Threading in the VM

* Python threads are true OS threads
* Global interpreter lock

— Only one (Python) thread is running interpreter
code at the same time

— Regular context switch after a number of executed
instructions or with long-running operations

— Problem with multi-core CPU'’s

— Released for long-running C code (e.g. system call)
— Performance advantage

* Byte code instructions are atomic

Stackless Python

* Every function call creates a C stack frame
— Subroutines vs. coroutines

* Python functions can act as coroutines or
tasklets, concurrently executed by scheduler

— Support for channel communication
— Act as lightweight threads

* Redesigned interpreter loop to avoid the C
stack frame creation on function call

Memory Management

C code of interpreter / modules

Generic object management (object.c) Object-specific allocators

PyObject New, PyObject Del,.. (e.g. intobject.c)

4) 4

Object Allocator (obmalloc.c) Heap allocation wrapper (pymem.h)
PyObject Malloc, PyMem Alloc,
PyObject Free, .. PyMem Free,

. 4 . 4

OS memory allocator (malloc ())

Operating System VMM (page based)

RAM

Object Allocator

* By design, many very small allocation requests
— Everything is an object !

e Special optimization for performance
(obmalloc.c)

— Requests >256 bytes handled bymalloc

— Smaller requests sizes are grouped (8 bytes apart)

 Memory pools of 4k length each (VMM page size),
with own free list

* Pools are used by different request size allocators
e 8 Byte alignment of returned address

Garbage Collector

* Traditional garbage collection (e.g. mark and
sweep) would demand a set of root objects

— Extension modules can create own Python objects
— GC for allocated C objects not really portable
— Traversing all objects is expensive

* |nstead: Simple reference counting

—In ob->0b refcnt from PyObject HEAD
— Works with every malloc () / free ()

* Py DECREF () - (object.h)

— Calls finalizer when reference count comes to zero

Garbage Collector

* Functions that create an object set the
ob refcnt to 1, and store it - or destroy it

by calling Py DECREF

— Some store functions therefore don’t increase the
reference counter (e.g. PyList SetItem())

* Objects can be stucked in tracebacks
 Weakref module (PEP 205)

— For object caches (weak dicitionaries)
— For circular references (DOM node relations)

Circular References

List element List element List element
ob_refcnt=2 ob_refcnt=1 ob_refcnt=1

List element List element List element
ob_refcnt=1 ob_refcnt=1 ob_refcnt=1

Cyclic Garbage Collector

* Reference cycle: Unused object(s) even
though reference counter is not zero

— Test is only relevant for container types
* Usage of double-linked list of all container
objects (gc next , gc pref)

— Determine all containers which are only
referenced by them self

* Objects in cycles with finalizers del ()
are added to set of uncollectable objects

— Order of finalizer calls in the cycle unclear

Sources

Use the source, Luke (Python SVN trunk, March 2008)
Mark Lutz, Programming Python. O’Reilly 2006
http://mail.python.org/pipermail/python-list

http://www.python.org — PEP’s, Python Tutorial,
Extending and Embedding the Python Interpreter Tutorial, Python FAQ

http://docs.python.org/lib/bytecodes.html
http://docs.python.org/api/threads.html
http://www.voidspace.org.uk/python/articles/code blocks.shtml
http://effbot.org/pyref/type-code.htm
http://www.devshed.com/c/a/Python/How-Python-Runs-Programs/
http://www.rexx.com/~dkuhlman/python 101/python 101.html
http://arctrix.com/nas/python/gc/
http://www.stanford.edu/class/cs242/slides/2006/python-vanRossum.pdf

