
Lean GHTorrent: GitHub Data on Demand

Georgios Gousios

*
, Bogdan Vasilescu

†
, Alexander Serebrenik

†
, Andy Zaidman

*

*
Delft University of Technology

†
Eindhoven University of Technology

Delft, The Netherlands Eindhoven, The Netherlands

{g.gousios, a.e.zaidman}@tudelft.nl {b.n.vasilescu, a.serebrenik}@tue.nl

ABSTRACT
In recent years, GITHUB has become the largest code host in the
world, with more than 5M developers collaborating across 10M
repositories. Numerous popular open source projects (such as Ruby
on Rails, Homebrew, Bootstrap, Django or jQuery) have chosen
GITHUB as their host and have migrated their code base to it.
GITHUB offers a tremendous research potential. For instance, it is
a flagship for current open source development, a place for develop-
ers to showcase their expertise to peers or potential recruiters, and
the platform where social coding features or pull requests emerged.
However, GITHUB data is, to date, largely underexplored. To facil-
itate studies of GITHUB, we have created GHTorrent, a scalable,
queriable, offline mirror of the data offered through the GITHUB
REST API. In this paper we present a novel feature of GHTorrent
designed to offer customisable data dumps on demand. The new
GHTorrent data-on-demand service offers users the possibility to
request via a web form up-to-date GHTorrent data dumps for any
collection of GITHUB repositories. We hope that by offering cus-
tomisable GHTorrent data dumps we will not only lower the “bar-
rier for entry” even further for researchers interested in mining
GITHUB data (thus encourage researchers to intensify their min-
ing efforts), but also enhance the replicability of GITHUB studies
(since a snapshot of the data on which the results were obtained can
now easily accompany each study).

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Data sharing.

General Terms
Experimentation

Keywords
GitHub, dataset, data on demand

1. INTRODUCTION
During recent years, GITHUB (2008) has become the largest

code host in the world, with more than 5M developers collabo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

rating across 10M repositories. Due to its support for distributed
version control (Git) and pull-based development [2], as well as
its modern Web UI and focus on social coding [4], GITHUB has
quickly surpassed in size and popularity even much older forges
such as Sourceforge (1999). As a result, numerous projects (espe-
cially open source) are migrating their code base to GITHUB (for
instance, the Google query migrate to github returns more than 4M
results), which now hosts popular projects such as Ruby on Rails,
Homebrew, Bootstrap, Django or jQuery.

Researchers have quickly jumped on board and have started ex-
ploring GITHUB data. So far, studies focused on building lan-
guage topic models of source code [1], understanding the effects
of branching and pull-based software development [9, 15], uncov-
ering associations between crowdsourced knowledge and software
development [24], visualizing collaboration and influence [12], ex-
ploring the social network of developers [14, 19, 22], or investi-
gating how the social nature of GITHUB impacts collaboration and
impression formation [4,16] and could be used to improve develop-
ment practices [17, 18]. More studies are expected to be published
this year, since GITHUB is the topic of the Mining Challenge at
the 2014 edition of the Working Conference on Mining Software
Repositories (MSR). However, as opposed to Stack Overflow (also
2008), the largest Q&A site for programming-related questions and
the topic of the Mining Challenge at the 2013 edition of MSR, the
richness of GITHUB data remains largely underexplored in terms
of academic publications [23].

To facilitate studies of GITHUB, we have created GHTorrent [10],
a scalable, queriable, offline mirror of the data offered through
the GITHUB REST API. GHTorrent data has already been used
in empirical studies (e.g., [9, 21, 24]). In this paper we present a
novel feature designed to offer customisable data dumps on de-
mand. The new GHTorrent data-on-demand service offers users
the possibility to request via a web form up-to-date GHTorrent data
dumps (in both MySQL and MongoDB formats) for any collection
of GITHUB repositories.

Apart from lowering the “barrier for entry” even further for re-
searchers interested in mining GITHUB data, this data-on-demand
service offers several advantages. Firstly, while the GHTorrent
project already offered data dumps of both its raw data (MongoDB,
currently more than 2TB) and metadata (MySQL, currently more
than 20GB), downloading and restoring these dumps can be very
time consuming and might not be necessary if a particular analy-
sis is restricted in scope to say a handful of “interesting” GITHUB
projects (e.g., the Ruby on Rails project, for which separate data
sets also started being collected [26]).

Secondly, while the idea of running queries with a restricted
scope is not necessarily new with respect to the official release of
GHTorrent [10], the data-on-demand service enhances replicabil-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

MSR’14, May 31 – June 1, 2014, Hyderabad, India
ACM 978-1-4503-2863-0/14/05
http://dx.doi.org/10.1145/2597073.2597126

384



Web server

Web form

1

GHTorrent server

5

6

8
Job db

Retrieval workers

…

Requests queue

Responses queue

3

Dispatcher

GHTorrent db GitHub API

2

Request 
listener Response 

listener

4

9
7

Requests db

Figure 1: Architecture of the GHTorrent data-on-demand service.

ity of results obtained using GHTorrent data. GHTorrent already
offered an online query interface with access to an archived version
of the relational database, which could be used to restrict the scope
of a query. However, GITHUB is a very dynamic platform where
developers, projects and wikis are created and deleted constantly.
Therefore, online queries of GHTorrent data may return different
results at different times if project data recorded by GHTorrent has
been refreshed in the meantime. To enhance the replicability [7] of
such results, it is therefore preferable to store the exact snapshot of
the data set used in the analysis.

Thirdly, our experiences with curating academic papers based on
Stack Exchange data [23] suggest that researchers prefer to work
with data dumps rather than online data explorers (for reasons such
as eliminating the reliance on a third party service, replicability,
or integration with existing tooling or infrastructure). Even after
factoring out papers published at the Mining Challenge of MSR
2013, an overwhelming fraction of the remaining Stack Exchange
papers published after 2010 (when the Stack Exchange data ex-
plorer became available) have used data dumps rather than the data
explorer. We hope that by offering customisable GHTorrent data
dumps, we will similarly encourage researchers to intensify their
efforts to mine GITHUB data.

The rest of this paper is organised as follows. In Section 2 we
describe the architecture of lean GHTorrent, followed by a discus-
sion of how to use the service in Section 3 and current limitations in
Section 4. Next, we discuss related work in Section 5, and present
our conclusions in Section 6.

2. ARCHITECTURE
The architecture of the new GHTorrent data-on-demand service

consists of two loosely coupled parts: a web server that handles
data requests from users and the GHTorrent server that performs
the data extraction. The two servers communicate via messaging
queues.

The interaction between the different subcomponents of the web
and GHTorrent servers is illustrated in Figure 1. First, users spec-
ify their requests for data by filling in the web form at http:
//ghtorrent.org/lean 1 . A request listener validates each
request (e.g., it must contain an email address, it must not ask for
more than 1000 repositories) and records metadata about its owner,

payload, timestamp and status (completed, in progress) in a rela-
tional database. Then, for each GITHUB repository part of the re-
quest, the listener posts a message to the queue 2 containing the
request identifier, timestamp and repository. On the GHTorrent
server side, a dispatcher listens in on the requests queue 3 and
interprets the messages received as follows. First, if the message
refers to a request for which no previous messages (asking for
different repositories) have been received, a new shared relational
database is created to collect metadata for the repositories part of
this request 4 . This database has the same schema as the orig-
inal GHTorrent MySQL database [10], reproduced for complete-
ness in Figure 2. Then, for each message (repository) referring to
the same job, a retrieval worker is instantiated having as parame-
ters the repository being requested, details for connecting to the job
database, and the timestamp of the request 5 .

Retrieval workers run in parallel and make use of caching. If the
main GHTorrent MongoDB database already contains data for this
repository, then the shared job database is populated with metadata
for this repository extracted from the main GHTorrent MongoDB
database 6 . Otherwise, both the main GHTorrent database and
the job database 7 are updated with data freshly extracted from
the GITHUB API. This data collection process, again designed as a
decentralized process, with decentralization mediated using a sim-
ilar worker queue model, was described previously [8]. Once a
retrieval worker finishes, it posts a message to the responses queue
8 signalling the completion of its task.

On the web server side, a response listener handles incoming
messages (one for each repository in each request) 9 and updates
the status of the job in the requests database. When “task complete”
messages have been received for all repositories in a request, data
dumps are being created from both the job database (MySQL, hav-
ing the GHTorrent schema [8]) and the main GHTorrent database
(MongoDB, only collections–groupings of MongoDB documents–
relevant for this request are extracted). Finally, the request owner
is notified via email that her job has completed and the requested
data dumps are available for download at a given URL.

3. USING THE SERVICE
Essentially any study of a restricted collection of GITHUB repos-

itories can be carried out using the lean GHTorrent, with advan-

385



Figure 2: MySQL database schema [8].

tages such as flexibility in selecting the repositories or reproducibil-
ity of the results. We envision, for example, use cases in which
researchers interested in mining GITHUB data start off by using
the in-browser interface to select a number of GITHUB repositories
matching their research goals. Then, lean GHTorrent can be used
to retrieve data for those repositories.

To use the web form at http://ghtorrent.org/lean,
repositories should be input one per line in the dedicated space.
The input format for a repository is <owner>/<repository> (for in-
stance, gousiosg/github-mirror, or rails/rails). To select the reposi-
tories that are interesting for analysis, researchers can use the exist-
ing GHTorrent MySQL web interface for filtering projects based
on specific criteria (e.g., all Ruby on Rails forks, projects in Java
that have more than 100 pull requests, projects that received a com-
mit throught a pull request in 2014 etc).

Once a job has been submitted, the user is sent an email with
a tracking URL, where information about the status of retrieving
each component (table; commits, forks, pull requests, project mem-
bers, etc.) of each requested repository is displayed. Refreshing the
tracking page will update the status information.

Once the job finishes, an archive containing the MySQL and
MongoDB data dumps is offered for download. The MySQL dump
contains metadata for the requested repositories, having the schema
described in Figure 2. The MongoDB dump contains all the data
extracted by GHTorrent from the GITHUB API (e.g., in addition to
metadata about users, organisations, repositories, commits, issues
and pull requests already available in MySQL, it contains the actual

changes—diffs—to the repository for each commit). To restore the
database dumps locally, the standard procedure of importing sql
archives or mongo collections (i.e., using the mongorestore

script provided with MongoDB) applies.
Furthermore, the Ruby scripts provided together with GHTorrent

(see the GITHUB repository https://github.com/gousiosg/
github-mirror for, e.g., scripts to update all the data related to
a given repository) allow users of lean GHTorrent, once they re-
store locally the database dumps they requested, to update their
local copies independently.

4. LIMITATIONS
Currently, lean GHTorrent has a number of limitations. First,

dumps contain only the first order dependencies (e.g., contribu-
tors to a repository and their followers, but not followers of these
followers). Second, depending on the size of the request and the
load on GHTorrent servers at that time, creating the dumps can be
a lengthy process, potentially requiring several days to complete.
Third, no recovery actions in case of errors are currently imple-
mented, potentially leading to incomplete dumps, e.g., if GITHUB
fails to answer an API request. Researchers using lean GHTorrent
data are advised to check the integrity of the data dumps them-
selves and, in case of incomplete data, use the ght-retrieve-

*

scripts in the main GHTorrent distribution to fill in the data holes,
or request data from lean GHTorrent again. Finally, to limit the
load on GHTorrent servers, requests to lean GHTorrent should
not exceed 1000 repositories. Researchers interested in mining

386



more than 1000 repositories for a given study can still use the
complete GHTorrent dumps available at http://ghtorrent.
org/downloads.html (i.e., not use lean GHTorrent).

5. RELATED WORK
The idea of providing or retrieving software repository data on-

demand as such is not new and can be seen as related to “Data as a
Service” or “Information as a Service” [5]. The data being provided
was usually limited to the meta-data [3] or elements of the reposi-
tory such as files [25]. Similarly to the latter work, lean GHTorrent
provides elements of GITHUB. However, GITHUB is a repository
of repositories [20] or meta repository [11] and, therefore, its el-
ements are repositories themselves. Meta repositories, including
lean GHTorrent, provide for cross-domain analysis [20]. As op-
posed to existing meta repositories such as OHLOH or FLOSS-
MOLE [13], lean GHTorrent provides the researchers with the pos-
sibility to select their own object of study rather than being forced
to analyse the entire collection searching for the proverbial nee-
dle.Moreover, as opposed to such efforts as Boa [6] integrating the
repository analysis tasks in the web-based interface, lean GHTorrent
allows researchers to download the relevant repositories and subject
them to further processing by independent tools, i.e., the analysis
tasks are not restricted to the functionality provided by the web-
interface.

Projects hosted GITHUB or the entire GITHUB collection have
been subject to numerous studies (e.g., [1,4,9,12,14–19,22]). The
GITHUB mirror and the predecessor of the current work [10], has
also been used in empirical studies [21, 24].

6. CONCLUSIONS
We presented a novel feature of GHTorrent that allows users

to request GITHUB data dumps on demand for any collection of
GITHUB projects (repositories). Lean GHTorrent offers several
advantages, being lightweight and easy to use, fostering replicabil-
ity and offering flexibility and independence to researchers inter-
ested in mining GITHUB. Together with the existing GHTorrent
infrastructure, the new lean data-on-demand service lowers the “bar-
rier for entry” for GITHUB miners to a minimum. We hope this will
encourage researchers to intensify their efforts to mine GITHUB
data, as well as serve as inspiration for others willing to share soft-
ware engineering datasets (the implementations of both GHTorrent
and lean GHTorrent are publicly available).

7. ACKNOWLEDGEMENTS
Gousios is funded throught the NWO TestRoots project (639.022.314).

Vasilescu is supported through the NWO 600.065.120.10N235 project.

8. REFERENCES
[1] M. Allamanis and C. Sutton. Mining source code repositories at

massive scale using language modeling. In MSR, pages 207–216.
IEEE, 2013.

[2] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. German, and
P. Devanbu. Cohesive and isolated development with branches. In
FASE, pages 316–331. Springer, 2012.

[3] A. Begel, Y. P. Khoo, and T. Zimmermann. Codebook: discovering
and exploiting relationships in software repositories. In ICSE, pages
125–134. IEEE, 2010.

[4] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in
Github: transparency and collaboration in an open software
repository. In CSCW, pages 1277–1286. ACM, 2012.

[5] A. Dan, R. Johnson, and A. Arsanjani. Information as a service:
Modeling and realization. In International Workshop on Systems
Development in SOA Environments, page 2. IEEE, 2007.

[6] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: A
language and infrastructure for analyzing ultra-large-scale software
repositories. In ICSE, pages 422–431. IEEE, 2013.

[7] J. M. González-Barahona and G. Robles. On the reproducibility of
empirical software engineering studies based on data retrieved from
development repositories. Empirical Software Engineering,
17(1-2):75–89, 2012.

[8] G. Gousios. The GHTorent dataset and tool suite. In MSR, pages
233–236. IEEE, 2013.

[9] G. Gousios, M. Pinzger, and A. van Deursen. An exploratory study
of the pull-based software development model. In ICSE. ACM, 2014.

[10] G. Gousios and D. Spinellis. GHTorrent: Github’s data from a
firehose. In MSR, pages 12–21. IEEE, 2012.

[11] V. Gruhn, C. Hannebauer, and C. John. Security of public continuous
integration services. In WikiSym, pages 15:1–15:10. ACM, 2013.

[12] B. Heller, E. Marschner, E. Rosenfeld, and J. Heer. Visualizing
collaboration and influence in the open-source software community.
In MSR, pages 223–226. ACM, 2011.

[13] J. Howison, M. Conklin, and K. Crowston. FLOSSmole: A
collaborative repository for FLOSS research data and analyses. IJIT,
1(3):17–26, 2006.

[14] J. Jiang, L. Zhang, and L. Li. Understanding project dissemination on
a social coding site. In WCRE, pages 132–141. IEEE, 2013.

[15] H. Lee, B.-K. Seo, and E. Seo. A git source repository analysis tool
based on a novel branch-oriented approach. In ICISA, pages 1–4.
IEEE, 2013.

[16] J. Marlow, L. Dabbish, and J. Herbsleb. Impression formation in
online peer production: activity traces and personal profiles in
Github. In CSCW, pages 117–128. ACM, 2013.

[17] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider.
Creating a shared understanding of testing culture on a social coding
site. In ICSE, pages 112–121. IEEE, 2013.

[18] R. Pham, L. Singer, and K. Schneider. Building test suites in social
coding sites by leveraging drive-by commits. In ICSE, pages
1209–1212. IEEE, 2013.

[19] D. Schall. Who to follow recommendation in large-scale online
development communities. Information and Software Technology,
2013.

[20] S. K. Sowe, L. Angelis, I. Stamelos, and Y. Manolopoulos. Using
repository of repositories (RoRs) to study the growth of F/OSS
projects: A meta-analysis research approach. In Open Source
Development, Adoption and Innovation, volume 234 of IFIP, pages
147–160. Springer, 2007.

[21] M. Squire. Forge++: The changing landscape of FLOSS
development. In HICSS47. IEEE, 2014.

[22] F. Thung, T. F. Bissyandé, D. Lo, and L. Jiang. Network structure of
social coding in GitHub. In CSMR, pages 323–326. IEEE, 2013.

[23] B. Vasilescu. Academic papers using Stack Overflow data.
http://meta.stackoverflow.com/q/134495, 2012.

[24] B. Vasilescu, V. Filkov, and A. Serebrenik. StackOverflow and
GitHub: associations between software development and
crowdsourced knowledge. In SocialCom, pages 188–195. IEEE,
2013.

[25] L. Voinea and A. Telea. Mining software repositories with CVSgrab.
In MSR, pages 167–168. ACM, 2006.

[26] P. Wagstrom, C. Jergensen, and A. Sarma. A network of rails: a
graph dataset of ruby on rails and associated projects. In MSR, pages
229–232. IEEE, 2013.

387


