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 39 

Abstract 40 

Peptides mediate up to 40% of protein interactions, their high specificity and ability to bind in 41 

places where small molecules cannot make them potential drug candidates. However, predicting 42 

peptide-protein complexes remains more challenging than protein-protein or protein-small 43 

molecule interactions, in part due to the high flexibility peptides have. In this review we look at the 44 

advances in docking, molecular simulations, and machine learning to tackle problems related to 45 

peptides such as predicting structures, binding affinities or even kinetics. We specifically focus on 46 

explaining the number of docking programs and force fields used in molecular simulations, so a 47 

prospective user can have an educated guess as to why choose one modeling tool or another to 48 

address their scientific questions.  49 

 50 

Introduction 51 

 52 

Protein-protein interactions (PPI) are a vital component of pathways regulating the behavior of 53 

cells. In disease, some of these pathways become aberrant, therefore identifying ways of 54 

inhibiting them is of great therapeutic importance. Inhibiting PPI with small molecules is not always 55 

possible due to the large interface region, lack of binding cavities and specificity of the interaction. 56 

However, between 15 and 40% of PPI(London et al., 2013) are mediated by peptide epitopes, 57 

giving rise to opportunities for peptide-based inhibition of PPIs. There is a growing market for 58 

peptide-based therapeutic agents(Martins et al., 2021a; L. Wang et al., 2022), and there are 59 

already more than 60 peptide drugs approved in the United States(Lau & Dunn, 2018; Usmani et 60 

al., 2017). Peptides have well known degradation pathways, lower toxicity than small molecules 61 

and are highly specific.  Some of the challenges for peptide-based therapeutics such as the rapid 62 

degradation by proteases or limited ability to cross membranes(Fosgerau & Hoffmann, 2015) can 63 

be overcome by using modified amino acids and cyclization techniques(Bechtler & Lamers, 2021). 64 
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Others, like efficient delivery strategies (e.g., oral delivery) limit broader interest(Ganesh et al., 65 

2021). 66 

 67 

The rational design of peptide based therapeutic requires structural knowledge of peptide-protein 68 

complexes at the atomistic level. Experimental studies are challenging and expensive as peptide 69 

degrades fast, and the spectrum of target candidate is too broad to explore experimentally.  While 70 

the use of computational pipelines is well-stablished in the early stages of drug discovery for small 71 

molecules, peptides present some unique challenges that have limited the success of 72 

computational pipelines for inhibitory peptide design. Structurally, peptides interact with proteins 73 

in different ways(Arkin et al., 2014): 1) as coils through specific amino acid interaction; 2) by 74 

adopting well-defined secondary structures (e.g., hairpins or helices); 3) through discontinuous 75 

interactions along the peptide chain. In these interactions, peptide flexibility is important, as they 76 

are often intrinsically disordered in their free form and adopt well defined structures upon 77 

binding—unlike small molecules where flexibility is more limited.  78 

 79 

Several excellent and exhaustive reviews on peptides as therapeutics10,11, and the role of docking 80 

to identify peptide-protein interactions(Apostolopoulos et al., 2021; Ciemny et al., 2018a; 81 

Fosgerau & Hoffmann, 2015). In this review we describe three major classes of computational 82 

methods that are routinely used to elucidate different aspects of peptide-protein interactions: 1) 83 

docking; 2) molecular dynamics simulations; and 3) machine learning approach. Docking 84 

approaches have traditionally been the most successful at exploring the possible orientations and 85 

interaction sites between proteins and peptides. Their use for peptide systems has evolved from 86 

protein-small molecule and protein-protein docking tools and face different challenges when 87 

accounting for the highly flexible nature of peptides. Hence, these methods are described in most 88 

detail. Molecular dynamics methods draw from the wealth of enhance simulation methods 89 

available in the literature. Their purpose is to confer detail either about the binding energy 90 
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landscape or binding mechanism. They are generally not high-throughput methods and 91 

complement studies where the bound structure is known. Finally, machine learning approaches 92 

are rapidly evolving thanks to AlphaFold’s recent success in protein structure prediction. These 93 

methods have rapidly been ported to other applications such as peptide-protein structure 94 

prediction with a success rate to match those of the best performing docking programs. Although 95 

different in methodology, the three classes of methods need to account for the challenges in 96 

sampling bound conformations as well as identifying them through some scoring function. Our 97 

goal with this review is to identify the current strategies to approach these challenges and provide 98 

a broad understanding of the advances and limitations in the field. 99 

 100 

Docking section 101 

 102 

Docking remains an efficient approach to sample bound conformations given the receptor 103 

structure and the ligand. Their success in small molecule-protein docking and their ease-of-use 104 

through webservers and standalone software have popularized this method for virtual screening 105 

in the early stages of drug discovery(Taylor et al., 2002). Some of this success has been 106 

translated into the protein-protein docking field, as seen from the evolution of predictions in the 107 

CAPRI (Critical Assessment of PRediction of Interaction) competition(Lensink et al., 2017, 2020). 108 

Despite these successes, peptide-protein docking remains a more challenging problem(Ciemny 109 

et al., 2018b). The success of docking relies on the ability to sample bound conformations, and 110 

the ability to identify native-like poses using a scoring function. The flexible nature of the peptides 111 

significantly increases the sampling problem with respect to small molecule docking and limits 112 

sampling native-like poses(Rentzsch & Renard, 2015). Similarly, the flexibility challenges the 113 

ability to transfer standard scoring functions to identify peptide-protein complexes. For example, 114 

despite the poly-aminoacidic nature of peptides, a straightforward application of protein scoring 115 

functions has limited success. Thus, modifications to protein-protein scoring functions are needed 116 
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to correctly identify native-like poses(Agrawal et al., 2019b; Weng, Gao, Wang, Wang, Hu, Yao, 117 

Cao, Hou, et al., 2020). Innovation in the peptide docking field come from strategies for more 118 

efficient handling of flexibility and overcoming limitations in scoring. Along with these 119 

improvements, the curation of peptide-protein databases is crucial for systematic testing, 120 

benchmarking, and assessing these docking methods(Hauser & Windshügel, 2016).  There are 121 

already excellent reviews and benchmark studies assessing the performance of different methods 122 

(Agrawal et al., 2019a; Ciemny et al., 2018b; A. C.-L. Lee et al., 2019; Z. Wang et al., 2016; Weng, 123 

Gao, Wang, Wang, Hu, Yao, Cao, & Hou, 2020a). Hence, we will limit this section to the nature 124 

of the databases and different sampling/scoring strategies prevalent in the field. 125 

 126 

 127 

Databases:  128 

 129 

Many peptide docking methods have evolved from either protein-protein or protein-small molecule 130 

docking tools. Their modification includes better handling of flexibility and specific scoring 131 

functions. To test their performance on peptide-protein complexes several efforts distil the 132 

structural information from the PDB, identifying sets of peptide-protein complexes amongst the 133 

~150,000 structures deposited in the RCSB-PDB(Berman et al., 2002). Thus, the emergence of 134 

databases for peptide-protein complexes streamlines the process and accelerates the 135 

advancement of the field. Several databases are available, each with a specific purpose in mind 136 

– ranging from properties such as length of the peptides to types of binding motifs. Here we 137 

provide an overview of the widely used databases. Table 1 provides a quick reference summary. 138 

 139 

LEADS-PEP(Hauser & Windshügel, 2016) consists of 53 peptide-protein complexes with 140 

peptides ranging from 3 to 12 amino acids with resolution lower than 2 Å. The entries originate 141 
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from a clustering on sequence space, retaining only complexes that are diverse in terms of 142 

sequence – excluding those that interact with DNA or RNA. Due to the short length of the peptides 143 

in this database, it is a suitable for benchmarking docking tools originating from small molecule 144 

docking programs.  145 

 146 

PeptiDB(London et al., 2010) is a non-redundant database of 103 high resolution peptide-protein 147 

complexes. These peptides are 5 to 15 amino acids long with diverse bound conformations (helix, 148 

β-strand, and coil) and functionalities (such as signal-transduction, antibody binding, protein 149 

trafficking and transporting). The set includes complexes with a significant conformational change 150 

upon binding. These characteristics make PeptiDB appropriate for benchmarking docking tools 151 

that account for peptide flexibility.  152 

 153 

PPDbench(Agrawal et al., 2019a) database has been used to benchmark 6 common docking 154 

programs which contains 133 peptide-protein complexes with less than 40% sequence similarity. 155 

The set is diverse with respect to functionality, but the range of peptide lengths is narrower (9 to 156 

15 amino acids).  The benchmark study with this database by Agarwal et. al. showed that different 157 

docking methods perform best on different class of peptides, classified in terms of their 158 

functionality such as enzymatic, signaling and many others(Agrawal et al., 2019a).  In another 159 

study, Weng et. al. created and used the PepSet(Weng, Gao, Wang, Wang, Hu, Yao, Cao, & Hou, 160 

2020a) database to benchmark 14 docking programs. This database contains 185 high resolution 161 

peptide-protein complexes with less than 30% sequence similarity and peptide lengths ranging 162 

from 5 to 20 amino acids.  163 

 164 

Both LEADS-PEP and PeptiDB have been widely used for benchmarking sampling and scoring 165 

ability, but they are limited by peptide length. Peptides longer than 20 amino acids are very 166 

common in nature. The PepPro(Xu & Zou, 2020) database contains 89 non-redundant peptide-167 
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protein complexes with longer peptide sequences (5 to 30 resides), and diverse peptide 168 

secondary structures. As a useful feature of PepPro, the database contains 58 structures of the 169 

unbound receptor proteins --making it ideal to benchmark docking methods for predicting apo to 170 

holo conformational changes. 171 

 172 

While the above databases have a limited number of complexes, a few databases are more 173 

inclusive in their search parameters. For example, PepX(Vanhee et al., 2010) contains 1431 non 174 

redundant complexes from the PDB with peptide size ranging from 5 to 35 amino acids and 175 

resolution less than 2.5 Å. There are redundancies in the database and the number of complexes 176 

can be reduced by clustering on their interaction interface reduces, resulting to 505 unique cluster 177 

centers. Similarly, the PepBind(Das et al., 2013) database is built on similar principles to PepX, 178 

without accounting for sequence/structural redundancy. PepBind contains 3100 protein peptide 179 

complexes. While larger databases may help in assessing the applicability of docking methods 180 

on predicting longer peptides, the databases are not well curated (e.g., complexes in the 181 

databases might contain non-interacting chains, small molecule ligands or ions which might lead 182 

to erroneous assessment of docking tools(Wen et al., 2018). To overcome this limitation, a 183 

curated database PepBDB(Wen et al., 2018) was developed, containing - peptides up to 50 amino 184 

acids, with nearly 13,000 complexes in the dataset. A more recent database, Propedia(Martins et 185 

al., 2021b) contains over 20,000 high resolution complexes with peptides ranging from 2 to 50 186 

residues. Propedia features a hybrid clustering based on sequence, interface structure or binding 187 

site that retains a lower number of clusters (1,845, 1,891, or 1,466 respectively), allowing the user 188 

to be flexible for benchmarking purposes. Finally, PixelDB(Frappier et al., 2018) contains close to 189 

2,000 high resolution and non-redundant complexes. Unlike previous databases, this one relies 190 

on a machine learning algorithm along with a chain length cutoff to identify the receptor and 191 

peptide in a complex. This overcomes the issue of defining protein and peptide, for cases where 192 

the receptor size is smaller than its peptide binder. 193 
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 194 

 195 

Sampling: 196 

 197 

Docking methods can be classified in two major categories depending on their use of templates 198 

for modeling the complex (template-based and template-free docking). 199 

 200 

Template-Based Docking: 201 

 202 

Template-based docking methods take advantage of known structures of either protein 203 

monomers or complexes and extract structural features to predict the unknown peptide-protein 204 

complex structure. We summarize these methods in Table 2, and provide further detail below. 205 

Template-based methods are grounded on the premise that the peptide-protein interaction 206 

interface is conserved and similar to either the protein–protein interaction interface or the different 207 

interacting fragments in a protein. Based on conserved interfaces, these methods build a 208 

modelling scaffold for the target systems. Indeed, 80% of the peptide-protein interfaces can be 209 

derived from fragment interactions in monomeric proteins(Obarska-Kosinska et al., 2016).  The 210 

first step of these class of methods is finding suitable templates for the target system from different 211 

databases. The most popular template-based docking method is GalaxyPepDock(H. Lee et al., 212 

2015). It takes a peptide sequence and a receptor structure as inputs to search for structural 213 

similarity in the PepBind database. It then uses a score (S_complex) for each hit in the database, 214 

which is calculated combining the TM score of the receptor in the database with respect to the 215 

target receptor, and an Interaction similarity score which is calculated based on the protein 216 

structure, peptide sequence, and the interacting residue pairs(H. Lee et al., 2015; “Modeling 217 

Peptide-Protein Interactions, Methods and Protocols,” 2017). The top 10 scoring templates with 218 

scores higher than 90% of the maximum score in the database are selected. These templates are 219 
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then used to build models with GalaxyTBM predicting an estimated accuracy for each model.  220 

Testing on the PeptiDB database where it predicted 37 out of 57 complexes with acceptable or 221 

higher quality. In general, the GalaxyPepDock approach is quite reliably when the receptor TM 222 

score is greater than 0.7(H. Lee & Seok, 2017).  GalaxyPepDock takes 2 to 3 hours to complete 223 

a prediction, making it fast compared to methods that rely on computationally expensive molecular 224 

simulations. The recently developed InterPep2 (and InterPep2-Refined) also belong to the 225 

template-based category, with a similar performance to GalaxyPepDock when tested on unbound 226 

receptors set and slightly better when tested on the bound dataset(Johansson-Åkhe et al., 2020). 227 

 228 

PepComposer(Obarska-Kosinska et al., 2016) is an example of tool which uses structural 229 

knowledge of complexes to design a novel peptide sequence and dock it to the given receptor. 230 

This method, in the first step, finds a structurally similar fragment based on a given a binding site 231 

and retrieves continuous backbone fragments from a structural database based on contacts to 232 

the prior fragment. In the next step, it predicts novel peptide sequences and bound complex 233 

structures using Monte Carlo moves embedded in a python-based tool (pyRosetta(Chaudhury et 234 

al., 2010)). Testing the method on the LEADS-PEP dataset returned a 50% success rate 235 

considering only the top model. However, the caveat here is that the designed peptides are 236 

generally shorter than the native which decreases the RMSD value(Obarska-Kosinska et al., 237 

2016).  238 

 239 

Template-Free Docking: 240 

 241 

This class of methods sample different peptide-protein orientations and positions as well as 242 

generate a diverse set of peptide conformations. Depending on the available knowledge of the 243 

binding site, these methods can be further divided into two subclasses: Local and Global docking. 244 

In local docking, the binding site is known, reducing search space.  In Global docking, no prior 245 
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knowledge of the binding site is used, and the peptides explore the whole receptor surface (see 246 

Fig. 1). We will discuss these two subgroups in two different sections.  247 

 248 

Local Docking: 249 

 250 

As input, local docking methods need a set of user defined information about the binding site, 251 

restricting the search of the ligand to the vicinity of this region, so we only need to sample the 252 

peptide conformations and orientations. Success of this group of docking methods depends on 253 

the accuracy of the initial information(Ciemny et al., 2018b). Knowledge of the binding site can 254 

come from diverse sources such as protein-protein complex interfaces, a docked pose from 255 

another docking tool, hotspot prediction, or even experimental data. Each method has its own 256 

specific input and types of information it can handle, requiring the right fit between prior 257 

information and local docking program used. There are also limitations regarding how much 258 

sampling of the protein and peptide conformations are needed. As an example, HADDOCK uses 259 

Ambiguous Interaction Restraints (AIR) based on hotspot residues (e.g., from NMR chemical shift 260 

perturbation data) on the protein surface to guide sampling – but requires different peptide 261 

conformations as input (e.g., alpha helix, extended and polyproline II) to limit sampling to the 262 

relative position of the protein/peptide without sampling the peptide conformations(Geng et al., 263 

2017; Trellet et al., 2013, 2014). Once the preferred bound conformation is found, HADDOCK 264 

introduces peptide backbone flexibility to sample diverse conformations. HADDOCK has a 14.5% 265 

success rate when tested on the PeptiDB database. HPEPDOCK-local, using binding site hotspot 266 

information and shape complementarity followed by energy minimization, produces fast and 267 

accurate predictions with 33.9% success rate when tested under the same condition as of 268 

HADDOCK(Johansson-Åkhe et al., 2019; P. Zhou et al., 2018). HPEPDOCK relies on MODPEP 269 

to generate an ensemble of unbound peptide conformations. An advantage of HADDOCK over 270 

HPEPDOCK is its ability to handle ambiguous data for the binding site(Deplazes et al., 2016; 271 
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Williamson, 2013). Finally, Rosetta FlexPepDock ab initio, can also produce a diverse set of 272 

peptide conformations for binding, but this comes at a higher computationally expense(Raveh et 273 

al., 2010, 2011). 274 

 275 

The second group of local docking methods are derived from small molecule docking programs 276 

(such as AutoDock Vina(Rentzsch & Renard, 2015), GOLD(Verdonk et al., 2003), or Surflex-277 

Dock(Spitzer & Jain, 2012) to name a few). Although no initial conformation of the peptide is 278 

required, the accuracy rapidly decays when sampling beyond 10 flexible bonds, limiting peptide 279 

size(Ciemny et al., 2018b). In this approach, the peptide is placed in the binding site and peptide 280 

conformations are sampled using either Monte Carlo moves (AutoDock Vina and GOLD) or 281 

rotamer libraries (Surflex-Dock). AutoDock is most reliable with peptide lengths between 2 to 4 282 

amino acids. Several methods have been developed to tackle longer peptides through 283 

incremental docking approaches (e.g., DINC 2 .0(Antunes et al., 2017), DLPepDock(Sun et al., 284 

2021))(Antunes et al., 2017). The incremental pipeline in DINC 2.0 has several stages: 1) dock a 285 

small fragment (preferably 6 rotatable bonds, roughly 2 amino acids) with AutoDock 4; 2) increase 286 

the peptide size by adding 3 more rotatable bonds and freezing 3 of the 6 previous rotatable 287 

bonds; 3) dock the peptide again(Antunes et al., 2017). Using this approach DINC 2.0 has been 288 

successful with up to 25 flexible bonds. The selection of the initial fragment is done based on 289 

heuristics, while the extension of the fragment follows the potential to maximize H-bonding with 290 

the receptor. The benchmark test included a custom dataset of 73 protein peptide complexes with 291 

multiple successes, including the docking of a B2 chicken MHC class I receptor and an 8-mer 292 

chicken peptide (1.61 Å RMSD from the native structure). The Glide SP-PEP method also uses 293 

fragment-based docking with Iterative Residue Docking and Linking (IRDL) to dock peptides 294 

smaller than 8 amino acids(Diharce et al., 2019). It uses Glide’s SP-PEP module to dock each 295 

residue iteratively to the binding site and then uses the covalent module to create bonds between 296 
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them. The success rate for this method was high in a custom-made benchmark set with 10 out of 297 

11 successful docking examples. 298 

 299 

The third group of local docking methods can be termed as refinement methods (DynaDock(Antes, 300 

2010), PepCrawler(Donsky & Wolfson, 2011), Rosetta FlexPepDock(Raveh et al., 2010)) or 301 

peptide inhibitor design methods (PepCrawler) rather than strictly docking tools. These methods 302 

need input structures of either coarse peptide-protein complexes (for refinement) or protein-303 

protein complexes (for inhibitor design)(Ciemny et al., 2018b). DynaDock, In the first step, 304 

generates broad sampling of the peptide conformation at the binding site by performing random 305 

rotation of backbone torsion and sidechain. In the next step, it uses an MD (OPMD) based 306 

refinement of the bound modes which allow the full flexibility to the receptor(Antes, 2010). Rosetta 307 

FlexPepDock uses Monte Carlo moves to sample diverse peptide conformations with full receptor 308 

flexibility with on-the-fly energy minimization(Raveh et al., 2010). Unlike these two methods, 309 

PepCrawler can be used in two ways – refinement and inhibitor peptide design. For refinement, 310 

it uses an initial protein peptide complex structure as input and samples a diverse range of peptide 311 

conformations with a Rapidly-exploring Random Trees (RRT) based algorithm. To design inhibitor 312 

peptides, it uses provided protein-protein complexes to generate the peptide fragment with lowest 313 

binding energy in the first step, followed by the RRT algorithm as refinement to dock the diverse 314 

peptide conformation. PepCrawler allows peptide and protein sidechains flexibility and only the 315 

peptide backbone flexibility(Donsky & Wolfson, 2011). This group of methods produce best results 316 

for short peptides (< 15 amino acids) and when the initial conformation of the peptide is below 5Å 317 

RMSD from the native protein peptide complex(Ciemny et al., 2018b). 318 

 319 

Some of the popular local docking tools are summarized in Table 3, together with suggested 320 

applications where each method is most successful. The first two groups of docking methods can 321 

be used when we only have binding site information and do not have any structural information 322 
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of the complex. They are often used to generate initial models which can be later refined with 323 

other methods. Tools such as PeptiMap(Lavi et al., 2013), PepSite(Trabuco et al., 2012), PEP-324 

SiteFinder(Saladin et al., 2014), SPRINT-str(Taherzadeh et al., 2017), ANCHORSmap(Ben-325 

Shimon & Eisenstein, 2010), or InterPep(Johansson-Åkhe et al., 2019) can predict the binding 326 

site, when no other structural information is available.  The most recent method, InterPep uses 327 

template-based knowledge and a machine learning based model to predict the binding site, 328 

outperforming most the other existing tools(Johansson-Åkhe et al., 2019). Experiments such as 329 

Chemical Shift Perturbation, alanine scan mutagenesis or ligand foot printing mass spectrometry 330 

provide information about the binding site and can be used alternatively to binding site predictors. 331 

 332 

 333 

Global Docking: 334 

 335 

This class of template free docking programs becomes specially useful when there is no 336 

information about the binding site (see Fig.1). This class of methods is the most general as it 337 

requires the least amount of information provided by the user. However, the additional 338 

computational effort required to simultaneously sample the binding site as well as peptide 339 

conformations limits the success rate when compared to the previous classes of methods. Many 340 

of these approaches use a two-step procedure composed of a fast rigid docking stage to identify 341 

the bound state followed by a refinement strategy. Thus, the local docking methods described 342 

above can be used as part of the refining strategy.  343 

 344 

There are several strategies to generate initial peptide conformations for the rigid docking stage: 345 

1) methods such as MDockPeP(Yan et al., 2016), MDockPeP2(Xu & Zou, 2022), Cluspro 346 

PeptiDock(Porter et al., 2017), use a MODELLER(Webb & Sali, 2014) based algorithm and 347 

PIPER- FlexPepDock (PFPD)(Alam et al., 2017) uses the Rosetta fragment picker to extract a 348 
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fragment from an interacting partner of a protein-protein complex with similar sequence.  349 

MDockPep2 additionally considers the physiochemical environment similarity of the binding 350 

interface along with sequence similarity in the fragment picking stage; 2) pepATTRACT(Schindler 351 

et al., 2015; Vries et al., 2017) threads through three major secondary conformations (i.e. alpha, 352 

beta and coil) using PeptideBuilder(Tien et al., 2013); and 3) HPEPDOCK-global uses MODPEP 353 

to generate an ensemble of peptide conformations(P. Zhou et al., 2018). Once the peptide 354 

conformation is identified, each method relies on their own rigid docking strategies. Cluspro 355 

PeptiDock and PFPD use a PIPER based protocol(Kozakov et al., 2006); MDockPeP uses a 356 

modified version of AutoDock vina whereas MDockPeP2 uses ZDock (protein-protein docking 357 

tool) to carry to out the rigid docking step(Xu & Zou, 2022; Yan et al., 2016); pepATTRACT uses 358 

ATTRACT to carry out rigid body docking of the peptide with the ATTRAC coarse grained 359 

representation of the protein and peptide; and HPEPDOCK uses a modified version of MDock 360 

making it suitable for protein –peptide systems to perform rigid body docking. At the end of the 361 

rigid docking step, these methods have their own ways to include flexibility in the system and 362 

refine the docked structures. These strategies include using local docking methods, MD or MC 363 

simulations, or other energy minimizers. For instance, PFPD uses Rosetta FlexPepDock; 364 

pepATTRACT uses iATTRACT and AMBER molecular dynamics simulation for refinement; and 365 

HPEPDOCK uses a SIMPLEX energy minimizer as the fully flexible refinement step(Alam et al., 366 

2017; Schindler et al., 2015; P. Zhou et al., 2018). 367 

 368 

Methods like CABS-dock(Kurcinski et al., 2015, 2019), AnchorDock(Ben-Shimon & Niv, 2015), 369 

AutoDock CrankPep (ADCP)(Zhang & Sanner, 2019) allow flexibility to the peptide during the 370 

whole docking process. CABS-dock generates peptide conformations in explicit solvent in the 371 

presence of the interacting partner, allowing the peptide to adopt its bound conformation. Thus, 372 

this allows full flexibility on both the receptor and peptide side. It uses a coarse-grained 373 

representation of each amino acid where backbone and sidechains are represented by two 374 
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pseudo atoms each for computationally efficiency(Kurcinski et al., 2015, 2019). The limitation in 375 

this case is the need for the peptide’s secondary structure, which is not available in most cases.  376 

PSIPRED(McGuffin et al., 2000) is used when the secondary structure is not known -- even 377 

though it is not ideal for predicting the secondary structure of peptides, which are typically 378 

intrinsically disordered in their free form(Yan et al., 2016). Unlike other global docking tools, 379 

AnchorDock uses the prediction tool ANCHORSmap to identify the anchoring spot and then 380 

performs an anchor-guided MD simulation(Ben-Shimon & Niv, 2015). This strategy combines the 381 

speed-up of the restraints with full flexibility of the peptide/protein system. A recent method, ADCP, 382 

uses Monte Carlo moves to sample peptide conformations under the influence of the potential 383 

landscape generated by the receptor which helps it to find correct fold upon binding making it 384 

highly successful allowing fully flexible docking(Zhang & Sanner, 2019).  385 

 386 

Methods which use molecular simulations (extensive MD or MC) either in the docking stage or in 387 

refinement stage, generally have higher accuracy than the other methods(Agrawal et al., 2019a; 388 

J. Wang et al., 2019; Weng, Gao, Wang, Wang, Hu, Yao, Cao, & Hou, 2020b). For example, 389 

despite the global nature of pepATTRACT, it can be as successful as some of the local docking 390 

approaches, with a local version of the method (pepATTRACT-local) having a higher success 391 

rate(Schindler et al., 2015). PeptiDock+ GaMD which refines Cluspro PeptiDock results with 392 

Gaussian accelerated MD (discussed in the MD section) performs significantly better than the 393 

traditional Cluspro PeptiDock(J. Wang et al., 2019). AnchorDock correctly predicted 10 of 13 394 

complexes (RMSD < 2.2Å) in a custom dataset(Ben-Shimon & Niv, 2015). ADCP has shown 395 

better performance than most of the other existing docking tool for peptide ranging 16 to 20 396 

residues with an 87% success rate (considering 10 models) when tested on LEADS-PEP 397 

dataset(Zhang & Sanner, 2019). Finally, PFPD, considered one of the state-of-the-art methods, 398 

can produce near native complex structures in 70% for bound test sets and 40% for unbound test 399 

sets(Alam et al., 2017). However, due to the nature of the simulation, these methods are 400 
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significantly slower compared to others. The computational resource requirements increase with 401 

longer peptides while maintaining the accuracy (e.g., simulations running for hours on GPUs or 402 

longer in CPUs)(Ciemny et al., 2018b). These expensive simulations are needed to achieve the 403 

higher accuracy as shown by the pepATTRACT web server which removes the refinement 404 

step(Vries et al., 2017). When using the PeptiDB benchmark set, the webserver predicts 14 out 405 

of 80 complexes correctly (within 2 Å RMSD of the experimental structure), whereas the full 406 

pepATTRACT version correctly predicts 38 complexes(Vries et al., 2017). 407 

 408 

Recently, the Furman lab introduced patchMAN, a motif search method (using the MASTER 409 

algorithm) combined with Rosetta FlexPepDock refinement, which outperforms other 410 

methods(Khramushin et al., 2022). At the first step, it searches for the receptor surface motifs in 411 

a non-redundant protein database followed the finding peptide templates that interact with these 412 

motifs and the target peptide sequence is threaded through the models. In the end, Rosetta 413 

FlexPepDock is used to refine all the models. This method allows fully flexibility of the binding site 414 

of the receptor as well as the peptide. When tested on the custom-made PFPD database, it 415 

outperforms PFPD and even recent machine learning based revolutionary AlphaFold(Jumper et 416 

al., 2021a), considering the success criteria as a 2Å RMSD cutoff from the native. However, on a 417 

different dataset (LNR) its performance is comparable to AlphaFold (Khramushin et al., 2022). 418 

Table 4 summarizes the for global docking tools listing their features and suitable application 419 

cases. 420 

 421 

Scoring: 422 

At the sampling step, docking methods obtain an ensemble of docked poses -- some of them are 423 

native-like, while some are far from native. The state of the art in peptide docking is reliable at 424 

sampling the correct binding site. For example, when we only consider sampling efficiency, 425 

MDockPeP has success rate of 95% when starting from bound conformations and 93% when 426 
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starting with challenging unbound structures(Yan et al., 2016). The recent method patchMAN can 427 

sample within 5Å RMSD from the native complex in 100% cases(Khramushin et al., 2022). This 428 

implies that currently, the limitation and overall successes of the docking tools can be attributed 429 

to the scoring stage majorly. Thus, the next crucial step is to find the best docked model, 430 

representing the native complex, in the ensembles of the docked poses(Ciemny et al., 2018b; 431 

Weng et al., 2019a) (see Fig. 1). These methods can be classified in several major groups such 432 

as using a knowledge-based scoring function, energy-based method, clustering-based method, 433 

and integrative or combinational approach. One important feature of a good scoring method is 434 

that it should consider entropic contribution due to conformational change as well as the 435 

interaction energy.   436 

 437 

There are a series of scoring function used successfully in small molecule and protein-protein 438 

docking field. End point methods like MM/PBSA and MM/GBSA, mentioned in the MD section, 439 

are widely used for small molecule binding free affinity calculation and scoring(Hou et al., 2011; 440 

Pu et al., 2017; E. Wang et al., 2019b; Weng et al., 2019a). When applied to peptide-protein 441 

systems, if these methods are used with appropriate parameter, they outperform pepATTRACT 442 

(which uses ATTRACT scoring function) and produce similar quality as HPEPDOCK-local (which 443 

uses an iterative knowledge-based scoring function coming from protein–protein docking tool 444 

MDock)(Weng et al., 2019b). However, these methods do not consider entropic contributions due 445 

to peptide conformational changes, limiting their success to binding processes without significant 446 

changes in the peptide conformation. Ideally, these methods should be modified or combined with 447 

others for generalized use(Spiliotopoulos et al., 2016; Tao et al., 2020). As an improvement, 448 

BiPPred and HADDOCK uses a dampened version of MMPBSA named dMMPBSA algorithm as 449 

a scoring function to calculate the free energy and rank docked poses (Spiliotopoulos et al., 2016). 450 

In this approach they reduce the Coulombic interaction and polar solvation term by factor of 5 to 451 
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compensate the overestimation of free energy due to the omission of entropy. Another recent 452 

approach by H. Tao et. al. combines MM-GBSA scoring function with knowledge-based scoring 453 

function ITScorePP to consider the conformational entropy part(Tao et al., 2020). ITScorePP is 454 

derived from atomic distance-based energies parametrized iteratively using statistical mechanics. 455 

Their work has shown rescoring the pose clustering with this combined scoring function makes 456 

the results significantly better when compared against pepATTRACT, CABS-dock and 457 

HPEPDOCK result with LEADS-PEP dataset.  458 

 459 

A group of methods use clustering algorithms on the ensemble of docked poses (or filtered docked 460 

poses) based on structural RMSD – but they have their own way to use clustering for selecting 461 

structure. Cluspro PeptiDock assigns highest score to the most populated cluster’s medoid, 462 

whereas CABS-dock selects the consensus medoid obtained from different clustering protocols 463 

as the best model(Kurcinski et al., 2015, 2019; Porter et al., 2017). Rosetta FlexPepDock and 464 

PFPD perform clustering and score the top clusters with a modified Rosetta ab-initio energy 465 

function(Alam et al., 2017; Raveh et al., 2010). The modified version of the Rosetta ab-initio 466 

energy function has been shown be successful as it combines standard all atom Rosetta energy 467 

with internal peptide energy and interaction energy. AnchorDock also uses clustering algorithm 468 

on all snapshots from molecular simulation trajectories and scores the clusters based on the 469 

average potential energies of the best 15 models (in term of binding energy) in each cluster(Ben-470 

Shimon & Niv, 2015). pepATTRACT's ATTRACT scoring function is based on modified Lenard-471 

Jones function to select 1000 models and those are further refined by amber followed by 472 

performing clustering on simulated trajectory. The clusters are ranked based on the average 473 

ATTRACT energy of 4 lowest energy models(Schindler et al., 2015).  474 

 475 

Integrative scoring methods combine external information like agreement with co-evolutionary 476 

data or mutagenesis data with energy based or clustering-based scoring which have performed 477 
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very well in the recent CAPRI competitions(Lensink et al., 2020; Yu et al., 2017). Machine learning 478 

is recently becoming one of the methods of choice to derive scoring functions. 479 

InterPepRank(Johansson-Åkhe et al., 2021) is an such example which uses deep graph based 480 

neural network mapping the protein peptide complex, and DockQ(Johansson-Åkhe et al., 2020) 481 

uses a Random Forest model to score and rank the docked poses. Recently, the field of docking 482 

has started using combined multiple scoring method together to compensate each other limitation. 483 

For example, when InterPepRank is combined with PFPD pipeline as rescoring, success rate 484 

increases significantly (40% for the high-quality prediction). Simultaneously, it filters out some the 485 

non-native dock poses using a InterPepRank score cutoff, reducing the number of hits for 486 

refinement steps which increases the computation efficiency(Johansson-Åkhe et al., 2021).  487 

 488 

Summary: 489 

The wealth and diversity of available docking programs and servers for peptide-protein complexes 490 

poses a barrier of entry to newcomers to the field or would-be users. It is difficult to answer a 491 

question like, “which is the best?” as it will depend on the system and available information. Each 492 

method has advantages and disadvantages such as the ability to work on peptides of different 493 

size, or the ability to explore large conformational changes upon binding. In general, local docking 494 

tools outperform the global tools, but the latter does not need any information about the binding 495 

site. Most of the global docking tools can be used as local docking tools when the binding site 496 

information is provided leading to higher success rates(Schindler et al., 2015; P. Zhou et al., 2018). 497 

A benchmark study by Weng el. al. showed that performance of local docking methods that are 498 

based on AutoDock, drop significantly depending on erroneous inputs of the size of binding sites, 499 

especially for peptides longer than 10 residues(Weng, Gao, Wang, Wang, Hu, Yao, Cao, & Hou, 500 

2020b).  In summary, for a user when the target receptor can find a template with enough 501 

homology (TM score >0.7), template-based methods generally offer the highest success rates. 502 

Alternatively, when the TM score is lower than 0.7, template free methods should be used. For 503 
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peptide smaller than 5 residues, the docking tools coming from small molecule docking work the 504 

best(Ciemny et al., 2018b). For the longer peptides, computationally extensive molecular 505 

simulation-based tools such as PFPD, or ADCP and patchMAN  become more relevant. Running 506 

short MD simulation-based refinements have shown higher successes, however computational 507 

expenses also rise. In future, coarse graining on the non-interacting residues might be a way to 508 

reduce the computer time required for these molecular simulation-based tools. Moreover, the 509 

docking field has started to apply combined approaches like combined predictions from 510 

InterPep2-refined and PFPD which has shown better performance than the individual 511 

one(Johansson-Åkhe et al., 2020). 512 

 513 

 514 

MD section 515 

The nature of molecular dynamics (MD) simulations allows, in principle, to obtain thermodynamics, 516 

kinetics and mechanistic understanding of the peptide-protein binding and unbinding process. As 517 

in the application to other biological problems, MD is limited by the accuracy of the physics model 518 

used and the ability to sample the complex energy landscape, which typically requires 519 

computational resources beyond our current capacity.  520 

 521 

Modeling peptide-protein interactions with modern force fields. 522 

 523 

The interactions of molecules can be theoretically determined using quantum mechanics (QM) 524 

but remain unaffordable in practical terms for large biomolecules. In practice an empirical force 525 

field is used to model such interactions along with Newton’s equations of motion to simulate the 526 

dynamics. MD simulations have been shown to accurately predict the binding potency of diverse 527 

small molecule binders(L. Wang et al., 2015). However, there are key differences between protein 528 

https://doi.org/10.1017/qrd.2022.14 Published online by Cambridge University Press

https://doi.org/10.1017/qrd.2022.14


Accepted manuscript 

 22

binding with small molecule and peptide that makes the latter more computationally challenging. 529 

First, while small molecules have a few hot-spot interactions that dominate recognition, peptide 530 

recognition can stem from many weak interactions. Second, the structure of peptides can be 531 

highly flexible, requiring finely tuned parameters that are sensitive to the change in conformational 532 

preferences between the free conformation of peptide and its bound form. Thus, peptides have 533 

been specially affected by known biases in secondary structure preferences present in some force 534 

fields(Perez et al., 2015; Robinson et al., 2016).  535 

 536 

Early force field development was an art, guided by great scientific insights (e.g., some 537 

parameters originated from “guesses” that have remained as part of the force field for decades), 538 

and carried out by a few expert groups. One of the challenges is the unexpected consequence of 539 

parameter changes as modifying one parameter might affect the accuracy of another parameter 540 

that was not adjusted due to the coupling between different terms. Even long MD simulations on 541 

a set of systems with times series, distributions, behavior, and stability analysis might not be 542 

enough to capture all possible issues. Some issues might arise in timescales beyond those 543 

studied during development or in systems not included in the benchmark test. While some groups 544 

might have made ad hoc modifications to deal with problems in specific systems, these 545 

modifications were not often properly benchmarked and rarely made it back into the main force 546 

field branch. Such trend has dramatically changed in recent years as measured by the number of 547 

force fields as well as involvement of many groups representing these improvements. Despite 548 

this, a general problem is the lack of a golden standard benchmark set for parameter development 549 

(e.g., for proteins, nucleic acids, lipids). The availability of open sharing resources would make 550 

the preparation and dissemination of such a benchmark test an easy endeavor. Community efforts 551 

such as the OpenFF are already on their way for continuous optimization of small molecule force 552 

fields(Qiu et al., 2021). 553 

 554 
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Here, we focus on recent efforts to improve the description of peptides and intrinsically disordered 555 

proteins (IDPs) while maintaining the stable properties for folded proteins (Fig. 2), more extensive 556 

surveys can be found elsewhere(Mu et al., 2021; Rahman et al., 2020). Force field development 557 

follows three main strategies: 1) modifying the dihedral angle parameters against experiments 558 

and/or quantum mechanical calculation; 2) adjusting non-bonded protein-water interactions; and 559 

3) balancing dihedrals with grid-based energy correction maps (CMAP).  560 

 561 

Most effort is concentrated on directly refining the global backbone dihedral parameters including 562 

Amber ff99SB* and ff03*(Best & Hummer, 2009), ff14SB(Maier et al., 2015), ff99SB-563 

ILDN(Lindorff-Larsen et al., 2010), CHARMM22*(Piana et al., 2011), OPLS-AA/M(Robertson et 564 

al., 2015), and OPLS3(Harder et al., 2016), while further improvements also involve refined side-565 

chain dihedral terms. The residue specific force field (RSFF) approach involves residue-specific 566 

dihedral parameter refitting to achieve better agreement with experimental data. RSFF1 force 567 

field(Jiang et al., 2014) is developed based on OPLS/AA(Kaminski et al., 2001), while RSFF2(C.-568 

Y. Zhou et al., 2015) is based on the ff99SB force field(Hornak et al., 2006). Protein-water 569 

interactions are actively involved in peptide-protein binding process, where the ensemble of 570 

peptide conformations in its free form are highly sensitive to the solvation model used (e.g., overall 571 

compactness as defined by the radius of gyration). Not surprisingly, the Amber ff03ws combined 572 

with a refined TIP4P/2005 solvation model(Best et al., 2014) and the CHARMM36m with an 573 

optimized TIP3P model(Huang et al., 2017) have shown improvement in modeling IDPs 574 

ensembles.  While some combinations of solvent force fields are designed to work with specific 575 

protein force fields, others such as the TIP4P-D(Piana et al., 2015) aim to improve general 576 

deficiencies such as underestimation of London interactions by developing larger water dispersion 577 

coefficient, resulting in improved agreement with experimental observables over a broad range of 578 

force fields. The CMAP strategy was first introduced as a grid-based correction to the CHARMM22 579 

force field(MacKerell et al., 1998) to account for coupling of ψ/φ torsion angles 580 
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(CHARMM22/CMAP)(Mackerell et al., 2004). The latest iteration (CHARMM36)(Huang & 581 

MacKerell, 2013) has been the starting point for new CMAP potentials that better balance 582 

between folded proteins and IDPs (CHARMM36m). The CMAP approximation has been adopted 583 

in other families of force fields such as AMBER(Perez et al., 2015; Tian et al., 2019) or 584 

OPLS(Yang et al., 2019). Over recent years, the CMAP strategy has led amino acid specific 585 

potentials, rather than using a few transferable potentials for all (e.g., non-glycine or proline). Thus, 586 

ff99IDPs(W. Wang et al., 2014) and ff14IDPs(Song et al., 2017) develop specific CMAP 587 

parameters for eight disordered-promoting amino acids. More recently, ff14IDPSFF(Song et al., 588 

2017) and CHARMM36IDPSFF(Liu et al., 2018) add a different CMAP correction to each of the 589 

20 amino acids.  590 

 591 

Although such optimizations can better describe the more extended conformation of disordered 592 

peptides, some modified force fields generate unstable structures for folded proteins. Ideally, a 593 

force field that allows accurate descriptions of both folded and unfolded ensembles is preferable 594 

because it would better simulate transitions of peptides between disordered state to ordered state. 595 

The a99SB-disp force field developed by Robustelli et al. modified the ff99SB-ILDN parameters 596 

and adjusted TIP4P-D water model against experimental measurements, the resulting force field 597 

has shown great improvement for modeling disordered ensembles and still maintains the 598 

accuracy for folded proteins(Robustelli et al., 2018). Another environment specific force field 599 

(ESFF1) was recently developed based on CMAP corrections of 71 different sequence 600 

environments(Song et al., 2020). These force fields have demonstrated an improved balance 601 

between modeling IDPs and folded proteins. With the number of choices available, it might be 602 

daunting to choose the right force field for your system. Many MD packages such as 603 

AMBER(Case et al., 2005), CHARMM(Brooks et al., 2009), NAMD(Phillips et al., 2005), 604 

Gromacs(Abraham et al., 2015), Tinker(Lagardère et al., 2017) or OpenMM(Eastman et al., 2017) 605 

provide user a wide selection of force fields, even originating from different force field families 606 
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(e.g., AMBER or CHARMM family of force fields). It is important that for whichever force field is 607 

selected the compatible solvent model and ion parameters tested by benchmark studies should 608 

also be used correspondingly. 609 

 610 

   611 

Characterizing peptide binding poses and affinities by molecular dynamics simulations. 612 

 613 

MD is not high-throughput enough in its own to routinely determine the structures of peptide-614 

protein complexes when the bound state is unknown. The three major applications for MD are: 615 

1) Refinement of docking results; 2) Estimating binding affinities based on known bound 616 

complexes; and 3) use of integrative modeling strategies to determine structures of the complexes.  617 

 618 

Docking approaches described in the previous section favor speed at the expense of accuracy, 619 

while MD approaches are accurate, but inefficient at identifying where and how a peptide binds 620 

from conventional MD simulations. Thus, short MD simulations are often the last step of docking 621 

calculations to eliminate steric overlap, account for local conformational changes and identify 622 

structures based on physico-chemical principles rather than relying on a scoring function. While 623 

this application is standard, it does not leverage the full potential of MD such as calculating binding 624 

affinities. Thus, recent integration of docking and MD based techniques such as the combination 625 

of ClusPro PeptiDock with Gaussian accelerated molecular dynamics (GaMD) goes beyond 626 

refining the structure to provide free energy profiles(J. Wang et al., 2019). In this work, the authors 627 

benchmarked their method on three distinct model peptides achieving 0.6-2.7 Å improvement in 628 

peptide backbone structures. Moreover, the unbiased free energy profiles help identify key 629 

residues involved in significant conformational changes upon binding that can later be used for 630 

peptide sequence optimization and design.  631 

 632 
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When the experimental structure of the complex is known, end-point methods based on MD are 633 

typically used to determine binding affinities.  MM/GBSA and MM/PBSA are among the most 634 

popular methods in this category, introduced by the Kollman group two decades ago, the method 635 

is grounded on robust physico-chemical principles(E. Wang et al., 2019a). The method has been 636 

well received by the community and still favored over empirical and semi-empirical scoring 637 

functions designed for protein–peptide docking (see discussion in docking section). Despite its 638 

robust theoretical framework, its practical implementation results in approximations (such as 639 

flexibility, solvation, and entropy) that limit the accuracy of the results. For example, prediction of 640 

peptide binding affinities for peptide–MHC complexes is highly desirable for vaccine design, but 641 

the flexible nature of the peptides make routine affinity prediction using bioinformatic pipelines 642 

insufficient. The inclusion of structural information is crucial to explore relevant molecular 643 

conformations of the peptide-protein complex, and therefore, key to understand its dynamic 644 

behavior. Wan et al. combined the MM/PBSA and the conformational entropy method to compute 645 

peptide–MHC binding affinities from molecular dynamics simulations where both the bound and 646 

unbound peptide were simulated(Wan et al., 2015). The method achieves highly correlated 647 

binding affinity rankings with experimental estimates after normalizing ΔGMM/PBSA with the 648 

hydrophobicity of peptides. Ochoa et al. generated conformations of the complexes from MD 649 

simulation, then using a scoring function to predict binding affinities in better agreement with 650 

experiments than either sequence-based predictions or single docking scoring methods(Ochoa 651 

et al., 2019). Pathway based free energy calculation methods such as free energy perturbation 652 

(FEP) have achieved unprecedented accuracy in modeling protein binding with small molecule 653 

for a large set of ligands(L. Wang et al., 2015). However, directly transferring such approaches to 654 

estimate protein-peptide binding free energy is challenging due to the flexibility and size of 655 

peptides. Kilburg et al. introduced a single-decoupling alchemical method that successfully 656 

calculated the free energy for HIV1-IN binding with a series of cyclic peptides(Kilburg & Gallicchio, 657 

2018). The calculation convergence is largely affected by the ladder parameters in Hamiltonian 658 
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and temperature replica exchange, specifically, more dense parameters are required to increase 659 

the overlap between phase space of alchemical states in large ligand system. FEP based 660 

simulations have also been applied to estimate the mutation effect in binding specificity change 661 

of PDZ-peptide system(Panel et al., 2018) and help select a potent blocker for Kv1.3 662 

channel(Rashid et al., 2013). 663 

 664 

Integrative approaches combine computational modeling with experimental information to 665 

determine structures of peptide-protein complexes. Methods such as Rosetta and MODELLER, 666 

are examples involving different types of modeling strategies. Other methods such as maximum 667 

entropy(Pitera & Chodera, 2012) or Bayesian inference(MacCallum et al., 2015) aim to identify 668 

distributions that agree with experimental data. Analyzing such distributions yields the number of 669 

states that best represent the data. Our use of the modeling employing limited data (MELD) 670 

approach for peptide binding has been successful for harnessing chemical shift perturbation NMR 671 

(Mondal et al., 2022)and ALA scan mutagenesis data in predicting conformations of the bound 672 

complex(Morrone, Perez, MacCallum, et al., 2017b). Furthermore, its physico-chemical 673 

foundation allows the user to recover relative binding free energies using a competitive binding 674 

protocol. These simulations sample peptides conformations in binding while allowing their full 675 

flexibility and accurately match experimental results for a series of peptides inhibiting the p53-676 

MDM2 and MDMX interaction(Morrone, Perez, Deng, et al., 2017; Morrone, Perez, MacCallum, 677 

et al., 2017a).  678 

 679 

 680 

Unveiling peptide binding/unbinding kinetics through enhanced sampling. 681 

 682 

Accurate prediction of peptide-protein binding/unbinding kinetics from MD simulations requires 683 

extensive sampling of bound/unbound states, the transitions between them, and possible 684 
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intermediate states. However, the structural flexibility of many peptides challenges estimation of 685 

association and dissociation rates, represented by kon and koff respectively, as complicated 686 

binding mechanism arises including folding upon binding of peptides to the receptor, and inherent 687 

structural heterogeneity arises from weak interactions in the binding interface. Recent simulation 688 

studies on peptide-protein interactions employs various advanced sampling methods with critical 689 

thermodynamic and kinetic analysis. Markov state models (MSM) has been widely applied to 690 

estimate kinetic quantities of biomolecular conformational dynamics from a set of short atomistic 691 

MD simulations(Chodera & Noé, 2014). Paul et al. used multi-ensemble Markov models, which 692 

combine conventional MD with Hamiltonian replica exchange enhanced sampling simulations, to 693 

characterize peptide-protein binding mechanism and kinetics beyond the seconds timescale of a 694 

nano-molar peptide inhibitor PMI to the MDM2 receptor(Paul et al., 2017). Zhou et al. studied the 695 

p53 binding with MDM2 by running near 1 ms unbiased simulations on a distributed computing 696 

platform(G. Zhou et al., 2017). Two key intermediate states were identified from a four-state 697 

kinetic model using MSM analysis and kon was predicted in good agreement with experimental 698 

estimation. Zwier et al. generated hundreds of continuous binding pathways from weighted 699 

ensemble (WE) simulations and obtained similar on-rate estimates(Zwier et al., 2016). In addition, 700 

they identified residue F19 from p53 might be a kinetically important residue for binding as the 701 

majority of conformations involve its partial or complete burial.  702 

 703 

Metadynamics employs biasing potential as a function of collective variables (CVs) by which the 704 

system is allowed to cross high-energy barriers that are conventionally difficult to sample(Bussi & 705 

Laio, 2020). Zou et al. investigated the folding and binding process of p53 to MDM2 using two 706 

metadynamics based methods yielding a reasonable estimation for the on/off-rate constants and 707 

the binding free energy profile(Zou et al., 2020). The anchor residues F19 and W23 of p53 were 708 

identified to follow the stepwise binding pattern. This finding helps explain certain mutants can be 709 

regulated by weak non-native interactions near bound state due to the disorder nature of p53. 710 
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The consequence of secondary interactions on the binding mechanism was also addressed by 711 

extensive unbiased simulations combined with umbrella sampling to perform MSM analysis for a 712 

coronavirus-derived peptide, bound to a prevalent MHC receptor in humans(Abella et al., 2020). 713 

The model reaffirms the major role of anchor positions in the peptide for establishing stable 714 

interactions and reveals the underestimated importance of a non-anchor position. The conclusion 715 

was confirmed by simulating the impact of specific peptide mutations and validated these 716 

predictions through competitive binding assays where stark differences in unbinding pathways 717 

were identified by comparing the MSM of the wild-type system with those of the D4A and D4P 718 

mutants. 719 

 720 

 721 

 722 

Machine Learning 723 

The role of machine learning in structural biology was greatly accelerated by the success of 724 

AlphaFold (AF) in the 13th installment of the Critical Assessment for Structure Prediction (CASP) 725 

event(Senior et al., 2020). Two years later, after the field had replicated all the previous successes, 726 

a complete re-design of AF produced even higher accuracy structure predictions that surpassed 727 

any previous expectation(Baek et al., 2021; Jumper et al., 2021b). The accuracy of such ML 728 

predictions is sometimes in better agreement with NMR data than the models generated by 729 

standard NMR pipelines(Tejero et al., 2022). Not surprisingly, the field was soon ready to test the 730 

limits and possibilities of the AF approach. Early on, adding poly-glycine linker successfully tricked 731 

AF into predicting the structures of complexes where the linker remained unstructured. This 732 

strategy has produced a level of accuracy for peptide-protein complex structure prediction that 733 

surpasses state-of-the-art docking programs in a recent benchmark test, especially for complexes 734 

with binding motifs. A retraining of AF for complexes was soon published online (AF-multimer), 735 
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but the weights have not been as extensively refined as the ones for the original AF(Evans et al., 736 

2021).   737 

 738 

The success of such approaches begs the question of why AF is performing well on complexes 739 

such as peptides. One observation points to the structural complementarity between peptides and 740 

proteins, where many peptides adopt well-defined secondary structures upon binding. Indeed, 741 

peptides that bind as coils are not predicted as well, although generally the binding site is still 742 

identified. The field of docking uses scoring functions to rank the different poses and compounds 743 

– a strategy that is very successful for small molecules, but which has not reached the same level 744 

of maturity for peptides (as described above in the docking section). AF’s pLDDT measure also 745 

lacks the possibility of ranking different peptides as different sets of peptides might be predicted 746 

with similar pLDDT scores despite very different binding affinities. Other ML approaches directly 747 

use structural ensembles and a measure of accuracy such as RMSD to assess the quality of the 748 

predicted structures(Townshend et al., 2021).  This begs the question of whether AF or other ML 749 

algorithms can learn something about the biophysical energy function that governs binding (or 750 

folding) and how it can be used towards predicting peptide-protein complex structures. 751 

 752 

AlQuraishi’s group first addressed this question using a bespoke Hierarchical Statistical Modeling 753 

ML approach to learn the biophysical function that scores multiple peptides binding a receptor 754 

motif(Cunningham et al., 2020). Unfortunately, lack of data meant that this approach could only 755 

be used for eight protein families. Could AF capture such as biophysical function from its training? 756 

Recent work from Ovchinnikov’s group suggests that indeed AF has learnt such a function(Roney 757 

& Ovchinnikov, 2022). According to this study, MSAs serve the purpose of global sampling, 758 

focusing the search space in regions of interest, and the biophysical energy learned through the 759 

network is able to identify the best local structure. This is especially interesting for peptide-protein 760 

systems where the problem can be separated in two parts: (1) a template or MSA for the receptor 761 
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and (2) a single sequence for the peptide. In this way the learned function is responsible for finding 762 

where the peptide interacts, its conformation, and any conformational changes required for the 763 

receptor. We put this notion to the test by using competitive binding in AF to determine which 764 

peptides had higher affinity to a series of receptors. Surprisingly, the method was very successful 765 

in ranking the strongest binders. As the differences in binding affinity become small, the method 766 

reflects this uncertainty, and the method is not suitable when both peptides are weak binders. A 767 

caveat of the above developments is the requirement to fit within the original hypothesis of 768 

peptide-protein complementarity – when the structure of the complex is not correctly predicted 769 

then the competitive binding will also not work.  770 

 771 

Turning this argument on its head, the Baker group uses the idealized version of proteins that 772 

neural networks learn to design new proteins. The process of deep neural network hallucination 773 

has already produced several structures that have been confirmed experimentally(Anishchenko 774 

et al., 2021). Adding constraints into the hallucination process can direct the design into areas of 775 

complementarity or desired functionality. As such, the complementary nature of peptides to 776 

receptor binding motifs can lead to the design of peptides or mini-proteins based on constrained 777 

hallucination to the known binding site(J. Wang et al., 2021).  778 

 779 

The advances in ML for structural prediction and accurate scoring, gives rise to the ability to query 780 

increasing large libraries of peptides(Chang & Perez, 2022). Along these lines, peptide-protein 781 

interaction predictors are also starting to emerge to predict which peptides will interact with a 782 

certain protein and give insight into the peptide residues involved in the interaction(Casadio et al., 783 

2022; Lei et al., 2021). Furthermore, ML is also offering ways to identify peptide sequences which 784 

are likely to have high biological activity against a particular pathology(Wu et al., 2019) (e.g., 785 

anticancer(Chen et al., 2021) or antimicrobial(Dee, 2022; E. Y. Lee et al., 2017; Plisson et al., 786 

2020) peptides). Thus, we expect combining ML pipelines that act at the sequence level with 787 
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those at the structural level will be able to create peptide libraries specific to a type of disease that 788 

can then be screened to predict structures and their relative binding affinities.  This is a rapidly 789 

changing field, where ML is already having a big impact, and where many questions regarding 790 

the interpretability and applicability of the current technology need to be answered.  791 

 792 

Conclusions 793 

Our focus in this review has been to identify the different approaches that docking, molecular 794 

simulations and machine learning use to study peptide-protein systems. We expect new synergies 795 

between these three types of technologies will lead to more robust methodologies to capture 796 

peptide-protein systems. For example, docking can reliably identify the binding region and   might 797 

provide good templates for ML to refine, to predict structures and screen peptides for binding free 798 

energies. Meanwhile, the emphasis of new force fields in correctly describing intrinsically 799 

disordered peptides together with enhanced sampling can benefit from initial models to determine 800 

kinetic constants and binding affinities through an orthogonal approach (on a more limited set of 801 

systems to refine). A current limitation in machine learning is the dependence on natural amino 802 

acids. MD on the other hand has transferable potentials and can be used as an end-stage in 803 

peptide optimization for studying the effect of controlling flexibility (e.g., through chemical staples) 804 

or of replacing some residues with non-natural aminoacids such as peptoids. 805 
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Table, Figures and captions. 1360 

Dataset Number of 
complexes 

Length 
of 
peptide 

Special Features  Specific application Availability 

LEADS-
PEP 

53 3-12 
residues 

Diverse sequence of 
peptides, complexes do 
not interact with nucleic 
acids.  

Due to smaller peptide 
size, suitable for 
testing tools adapted 
from small molecule 
docking tools. 

  

www.leads-x.org 

PeptiDB 105 5-15 
residues 

Diverse secondary 
structure of peptides 
including conformational 
change upon binding, 
complexes with diverse 
biological functions. 

 

Suitable for testing 
tools that tackle 
peptide flexibility.  

RCSB code of the 
complexes: 
https://ars.els-
cdn.com/content/im
age/1-s2.0-
S096921260900478
X-mmc1.pdf 

 
PPDbench 133 9-15 

residues 
Diverse in term peptide 
sequences (<40% 
sequence similarity) and 
biological functionalities.  

Suitable for testing 
docking tools on 
different complexes 
categorized with 
different functionalities.  

 

https://webs.iiitd.ed
u.in/raghava/ppdbe
nch/ 

 

PepPro 89 5-30 
residues 

Contains 58 unbound 
receptors structures. 

Useful for testing tools 
whether they can 
predict apo-holo 
conformational 
change. 

 

http://zoulab.dalton.
missouri.edu/PepPr
o_benchmark 

 

Propedia  ~20000 2-50 
residues  

Contains subsets of 
complexes based on 
clustering on different 
features such as 
sequence, interface 
structure or binding site.  

Broader range of 
peptide length allows it 
to test different type of 
docking tools. Also, 
different subset gives 
flexibility to user on 
testing their tools. 

 

https://bioinfo.dcc.uf
mg.br/propedia 

PixelDB 1966    NA Uses machine learning 
to identify protein and 
peptide. This helps to 
overcome the issue of 
incorrectly identifying 
them when peptide is 
larger than the receptor.  

Broader range of 
peptide length allows 
any docking tools to be 
tested on.  

https://github.com/K
eatingLab/PixelDB 

 

Table.1: Summary of the popular protein-peptide complexes datasets that are widely used for testing and benchmarking 1361 
different docking tool. 1362 
(** This is supposed to be after the “Databases” section) 1363 
  1364 
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Tool Input Link to Server/ 
Standalone 
 

Peptide 
Flexibility 

Receptor 
Flexibility 

Specific applications/ 
Best cases to apply on 

Galaxy 
PepDock 

Protein 
structure 
+peptide 
sequence  

Server: 
https://galaxy.seoklab.
org/cgi-
bin/submit.cgi?type=P
EPDOCK 
 

Full Flexibility at 
the refinement 
stage 

Full Flexibility 
at the 
refinement 
stage 

Tested on the PepBind 
dataset. Predictions are 
reliable when templates 
can be found with TM 
score>0.7 
 

PepComposer Binding 
site 
information 

Server: 
http://biocomputing.it/p
epcomposer/webserve
r 

Sidechain 
rotamer and 
small change in 
backbone 
 

Sidechain 
rotamer and 
small change 
in backbone 
 

Suitable for small 
peptides, when tested 
on the LEADS-PEP 
dataset with 50% 
successes. Can also be 
used as inhibitor peptide 
design tool. 
 

InterPep2-
Refined 

Protein 
structure 
+peptide 
sequence  

Standalone: 
http://wallnerlab.org/Int
erPep2 

SC flexibility at 
the refinement 
stage 

Full flexibility 
at the 
refinement 
stage 

Predictions are reliable 
when templates can be 
found with TM 
score>0.7. Overall 
performs slightly better 
than GalaxyPepDock. 

 1365 
Table.2: Summary of highlighted templated based docking tools.  1366 
(**This is supposed to be right after “Template Based Docking” section.) 1367 
 1368 
  1369 
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Tool 
 

Input Link to Server/ 
Standalone 
 

Peptide 
Flexibility 

Receptor 
Flexibility 

Specific applications/ 
Best cases to apply on 
 

HADDOCK Pstr+pconf 
ensemble 
+ 
ambiguous 
information 
of binding 
site 
 

Server: 
https://wenmr.sci
ence.uu.nl/haddo
ck2.4/submit/1 
 

SC are flexible 
but can be 
extended to the 
BB of the 
provided binding 
site residues. 
 

Fully flexible HADDOCK can use 
ambiguous information 
about binding residues 
on protein and/or 
peptide. Reliable when 
there is no significant 
peptide conformational 
change upon binding. 
 

HPEPDOCK 
-local 

Pstr+pconf 
ensemble 
+ 
Information 
of binding 
site 
 

Server: 
http://huanglab.p
hys.hust.edu.cn/
hpepdock/ 
 

Not Flexible Flexibility is 
considered 
generating an 
ensemble of 
peptide 
conformation 

34% success rate on 
PeptiDB database 
compared to 
HADDOCK’s 14.5% but 
needs accurate 
information of binding 
residues. 
 

AutoDock 
Vina 

Pstr+pseq 
+ 
Binding 
site 
coordinate 
 

Standalone: 
https://github.co
m/ccsb-
scripps/AutoDoc
k-Vina 
 

SC flexibility is 
default but can 
be extended to 
the BB  
 

Fully flexible Reliable when binding 
peptide length is less 
than 5 residues.  

DINC 2.0 Pstr+pconf        
+ 
Binding 
site 
coordinate 
 

Server: 
http://dinc.kavrak
ilab.org 
 

No flexibility Fully flexible AutoDock based method 
with fragmentation of 
peptide. This allows it to 
tackle peptides up to 8 
residues. 
 

PepCrawler Initial 
coarse 
protein – 
peptide 
with 
peptide at 
the binding 
site / 
protein - 
 protein 
complex 
 

Server: 
http://bioinfo3d.c
s.tau.ac.il/PepCr
awler/php.php 
 

SC flexibility Fully flexible Can be used as a 
refinement method. 
Predictions are reliable 
when the starting model 
is with 5Å RMSD from 
the experimental 
structure, and peptide is 
shorter than 15 residues. 

Rosetta 
FlexPep 
Dock 

Initial 
coarse 
protein 
peptide 
complex 
with 
peptide at 
the binding 
site 
 

Server: 
https://www.scie
ncedirect.com/sc
ience/article/pii/S
1359644617305
937#bib0165 
 

SC flexibility but 
can be extended 
to the BB 

Full flexible Can be used as a 
refinement method. 
Predictions are reliable 
when the starting model 
is with 5Å RMSD from 
the experimental 
structure, and peptide is 
shorted than 15 
residues. 
 

 1370 
Table.3: Summary of highlighted “local docking” tools. Here, acronyms are used as follow: Pstr- protein structure; pseq- 1371 
peptide sequence; pconf- initial peptide conformation; BB- backbone; SC- sidechain. 1372 
(**This is supposed to be right after “Local Docking” section.) 1373 
 1374 
 1375 
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Tool 
 

Input Link to Server/ 
Standalone 

Peptide 
Flexibility 

Receptor 
Flexibility 

Specific applications/ Best 
cases to apply on 
 

MDockPeP Pstr+pseq 
 

Server: 
https://zougrouptool
kit.missouri.edu/md
ockpep/ 
 
 

Small change 
in 
conformation 
at the 
refinement 
stage 

Full flexibility at 
the refinement 
stage 
 

Performs well on smaller 
peptides with <15 residues 

MDockPeP
2 
 

Pstr+pseq 
 
 

Standalone: 
https://zougrouptool
kit.missouri.edu/md
ockpep2/download.
html 
 

Full flexible Fully flexible 
at the 
refinement 
stage 

Can be applied on peptides 
up to 29 residues but 
success rate decreases 
beyond 15 residues.  

Anchor 
Dock 

Pstr+pconf 
 

Not available Fully flexible Fully flexible Uses expensive molecular 
simulations. Suitable for 
large peptides (>15 residues) 
which show conformational 
changes. 
 

Pep 
ATTRACT 

Pstr+pseq 
 
 

Server: 
https://bioserv.rpbs.
univ-paris-
diderot.fr/services/p
epATTRACT/ 
 

Fully flexible 
in the full 
pepATTRACT 
version but no 
flexibility in 
the web 
server 
 

Fully flexible in 
the full 
pepATTRACT 
version but the 
server just 
uses 3 major 
peptide 
conformations 
to dock. 
 

Full version uses expensive 
molecular simulations. 
Suitable for large peptides 
(>15 residues) which shows 
conformational changes. 
Web version is useful for 
smaller peptides. 
 

CABS-dock Pstr+pseq 
+ 
Bound 
peptide 
secondary 
structure 
(optional) 
 

Server: 
http://biocomp.che
m.uw.edu.pl/CABSd
ock 
 

Fully flexibly 
at the peptide 
conformation 
generation 
stage.  

Fully flexible Suitable when bound peptide 
conformation is known.  

PIPER-
FlexPep 
Dock 

Pstr+pseq 
 
 

Server: 
http://piperfpd.furma
nlab.cs.huji.ac.il 
 

Fully flexible 
at the 
refinement 
stage 

Fully flexible at 
the refinement 
stage 

Uses expensive molecular 
simulations. Suitable for 
large peptides (>15 residues) 
which shows conformational 
changes.  
 

AutoDock 
CrankPep 
 

Pstr+pseq 
 
 

Standalone: 
https://github.com/c
csb-scripps/ADCP 
 

Fully flexible Fully flexible Uses expensive molecular 
simulations. Suitable for 
large peptides (>15 residues) 
which shows conformational 
changes. 
 

patchMAN 
 

Pstr+pseq 
 
 

Server: 
https://furmanlab.cs
.huji.ac.il/patchman/ 
 

Fully flexible 
at the 
refinement 
stage 

Fully flexible at 
the refinement 
stage 
 

Most successful when tested 
on custom made PFPD 
dataset outperforming 
AlphaFold. 

 1376 
Table.4: Summary of highlighted “global docking” tools. Here, acronyms are used as follow: Pstr- protein structure; 1377 
pseq- peptide sequence; BB- backbone; SC- sidechain. 1378 
(**This is supposed to be right after “Global Docking” section.) 1379 
 1380 
  1381 
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 1382 
 1383 
 1384 
Figure 1. Pipeline in popular template free docking methods. (A) Input peptide conformations are generated in 3 1385 
major ways: 1) using peptide builder to generate major 3 conformations (alpha, polyproline II, extended); 2) molecular 1386 
simulations are used to generate an ensemble of peptide conformations; and 3) fragment pickers are used to select 1387 
peptide fragments in the structural databases based on the peptide sequence. (B) If the binding site known, peptides 1388 
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are guided towards the binding site (local docking), else, peptides explore the whole protein surface (global docking). 1389 
(C) Ensemble of docked poses. (D) Top score docked model representing the native structure. 1390 
 1391 
(**This is supposed to be in the Docking section, right after the table**) 1392 

 1393 
Figure 2. Overview of protein force field development after 2000. Each protein force field is classified by the year 1394 
of publication, target systems for optimization (folded, disordered or both), and additional underscores indicating 1395 
whether it is a modification version of previous force fields using strategies including dihedral parameter adjustment 1396 
(blue), CMAP correction (red), or parameter modification for protein-water interaction (gold). 1397 
 1398 
(** This is supposed to be right before “Characterizing peptide binding poses and affinities by molecular dynamics 1399 
simulations.” in the MD section) 1400 
 1401 
 1402 
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