## SCHOOL OF ECONOMICS

AUCKLAND PARK KINGSWAY CAMPUS
SUPPLEMENTARY EXAM 2022

Module Name: Stochastic Processes in Financial Engineering
Date: 2022
Module Code: SPFE9X00

Master of Financial Economics
Duration:
Mark: 70

## Internal Examiner: Prof Franck Adekambi

Internal Moderator: Dr Mathias Manguzvane
External Moderator: Dr Anas Abdallah

## Instructions:

1) The exam contributes 50 percent of the course mark.
2) Answer all questions.
3) This paper consists of 3 pages.
4) Please round off to 2 decimal places.

Initials \& Surname:

Student number:

Telephone number:

| SECTION | TOTAL | MARK | EXTERNAL |
| :--- | :--- | :--- | :--- |
| Q1 | 10 |  |  |
| Q2 | 15 |  |  |
| Q3 | 15 |  |  |
| Q4 | 05 |  |  |
| Q5 | 15 |  |  |
| Q6 | 10 |  |  |
| TOTAL | 70 |  |  |

## Q1) [10 marks]

Three months ago, a 10-years bond was issue with a par value of R1,000. Its annual coupon rate is $10 \%$, and its coupons are paid semi-annually.

A 6-months European call option on the bond has a strike of R1,100, and its premium is R55.05.

The continuously compounded interest rate is $8 \%$.

## Find the value of a 6-months European put option on the bond that has a strike of R1,100.

## Q2) [15 marks]

Assume the Black-Scholes framework. You are given:
(i) For $t \geq 0, S(t)$ denotes the time- $t$ price of a stock.
(ii) $S(0)=1$
(iii) $\frac{d S(t)}{S(t)}=0.08 d t+0.40 d \tilde{Z}(t)$,
where $\{\tilde{Z}(t)\}$ is a standard Brownian motion under the risk-neutral probability measure.
(iv) For $t \geq 0$, the stock pays dividends of amount $0.04 S(t) \mathrm{d} t$ between time $t$ and time $t+\mathrm{d} t$.
(v) For a real number $c$ and a standard normal random variable $Z$,
$E\left[Z^{2} e^{c Z}\right]=\left(1+c^{2}\right) e^{c^{2} / 2}$.
Consider a derivative security that pays
$1+S(1)\{\ln [S(1)]\}^{2}$ at time $t=1$, and nothing at any other time.

## Calculate the time- 0 price of this derivative security.

Q3) [15 marks]
In a simple random walk model of stock prices, the price of a stock is assumed to change by $\$ 0.01$ during each trading day. The probability that the price moves up on a given day is $51 \%$ and the probability that it moves down is $49 \%$. Movements on different days are assumed to be statistically independent.

Stock VAR has a current price of $\$ 5.00$. A trader is concerned about potential losses on the stock over the next year, which consists of 250 trading days. He wishes to determine the smallest value of $L$ such that:

$$
P[S-5.00<-L] \leq 0.01,
$$

where $S$ denotes the stock price at the end of the year.
Use a normal distribution to approximate the value of $L$.

## Q4) [05 marks]

Assume the Black-Scholes framework. Eight months ago, an investor borrowed money at the risk-free interest rate to purchase a one-year 75 -strike European call option on a nondividendpaying stock. At that time, the price of the call option was 8 . Today, the stock price is 85 . The investor decides to close out all positions. You are given:
(i) The continuously compounded risk-free rate interest rate is 5\%.
(ii) (ii) The stock's volatility is $26 \%$.

## Calculate the eight-month holding profit.

Q5) [15 marks]
You use a binomial interest rate model to evaluate a $7.5 \%$ interest rate cap on a $\$ 100$
three-year loan. You are given:
(i) The interest rates for the binomial tree are as follows:
$r 0=6.000 \%$
$r u=7.704 \%$
$r d=4.673 \%$
$r u и=9.892 \%$
$r u d=r d u=6.000 \%$
$r d d=3.639 \%$
(ii) All interest rates are annual effective rates.
(iii) The risk-neutral probability that the annual effective interest rate moves up or down is $1 / 2$.
(iv) The loan interest payments are made annually.

Using the binomial interest rate model, calculate the value of this interest rate cap.

## Q6) [10 marks]

$r(t)$, the continuously compounded interest rate at time is modelled by the diffusion process:

$$
d r(t)=[0.06-r(t)] d t+0.01 d Z(t),
$$

where is Brownian motion.
The theoretical price, $V(t)$, of a derivative whose value is linked to is:

$$
V(t)=\exp [-t * r(t)]
$$

Determine the diffusion model satisfied by $V(t)$.

