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Abstract: Successfully building complex service robotic systems that robustly oper-
ate in real-world environments gives a lot of insights into what are valuable patterns
in architecting such systems. In this paper, we describe some of our insights with re-
spect to robot control architectures and robotics software systems engineering. The
focus of the paper is not on discussing specific functionalities but to explain some best
practices that evolved out of our experience in building complex software intensive
robotic systems. These behind-the-scenes insights are in particular relevant in moving
forward towards a robotics business ecosystem with separation of roles and based on
model-driven approaches for handling systems of systems.

1 Introduction and Motivation

Robotic systems are complex, software intensive and heterogeneous composite systems.

Robotics as a science of integration depends on structures that guide the overall system

design, the system integration and that even support run-time adaptation according to the

executed task, the current context and the available resources. Such structures called ar-

chitectural principles for robotics do not appear out of nowhere but should reflect and

explicate practices and techniques developed and matured over many years of experience

within all kinds of projects and with involvement of all kinds of stakeholders.

We consider architectural principles good if they provide partitioning schemes that orga-

nize different and various views on a robotics system such that one can effectively and

efficiently cope with the complexity of the whole lifecycle of such a system (design, com-

position, deployment, operation, evolution, adaptation etc.).

There are partitioning schemes that are generally considered a good engineering prac-

tice and that are independent of the robotics domain. For example, separation of con-

cerns [Chr89][Dij76] [Par72][BEH+11][RE96] is one of the most fundamental princi-

ples in software engineering and plays a vital role in robotics software systems as well

[SSL12b][VKB14]. It aims at identifying orthogonal concerns in order to address com-
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plexity by decoupling. It should drive the identification of the right decomposition of a

problem. Separation of roles [SSL12b] is another partitioning scheme that proved to be

a very successful approach for organizing business ecosystems where stakeholders have

mutual benefits in collaborating and competing and where they share efforts and risks.

Nevertheless, there is still the need to identify and to explicate behind-the-scenes insights

related to achieving separation of concerns and of separation of roles in robotics.

The focus of the paper is not on discussing specific functionalities but to explain some best

practices that evolved out of our experience in building complex software intensive robotic

systems [Ulma] [Ulmb] (figure 1).

Figure 1: SMARTSOFT toolchain (left), service robots Kate and Larry (right)

2 Freedom from Choice vs. Freedom of Choice

We consider a generic robotics reference architecture that is refined in a top-down ap-

proach to end up with more and more specific architectures for dedicated robotic systems

as illusive and unrewarding. A specific robotic control architecture always is a trade-off be-

tween various conflicting requirements. Thus, different co-existing architectural principles

and their implementations represent different trade-offs of the interplay between e.g. mod-

ularity, adaptability, performance, dependability, resources etc. For a lawn-mower robot in

a high-volume market, it might make perfect sense to loose extensibility and modularity in

its software in order to save memory and processing power. However, it might also make

sense to preserve some modularity in order to be able to support e.g. customization by

user-downloadable apps.

The interesting question is what kind of architectural patterns form the sweet spot in sup-

porting separation of concerns and separation of roles. That immediately comes along

with the question of how much structure is needed for which aspects and is beneficial in

which settings and how to support conformance to these structures.
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One approach is called freedom of choice. One tries to support as many different schemes

as possible and then leaves it to the user to decide which one best fits his needs. However,

that requires huge expertise and discipline at the user side in order to avoid mixing non-

interoperable schemes. Typically, academia tends towards preferring this approach since it

seems to be as open and flexible as possible. However, the price to pay is high since there

is no guidance with respect to ensuring composability and system level conformance.

Freedom from choice gives clear guidance with respect to selected structures and can en-

sure composability and system level conformance. However, there is a high responsibility

in coming up with the appropriate structures such that they do not block progress and

future designs.

An appropriate sweet spot between freedom of choice and freedom from choice can only

be found by first agreeing on paramount objectives that give guidance. In our view, these

are the need for separation of roles and separation of concerns. In line with the subsidiar-

ity principle, architectural patterns should impose structures only as far as these cannot be

achieved at a more local level. For example, structures and patterns that ensure compos-

ability restrict freedom of choice in order to allow separation of roles between component

developers and system integrators. Typically, industry tends towards freedom from choice

by agreeing on standards that is the minimum set of structures required to establish a busi-

ness ecosystem.

An example for freedom of choice is ROS. One of the main design rules the ROS founders

follow is “We do not wrap your main.” [CGCG10]. What they mean by this is, among oth-

ers, that they do not want to enforce any architectural design decisions for developers using

ROS. As consequence, with ROS every developer can use his own personally preferred ar-

chitecture. It then is very likely that the implemented architecture is in conflict with those

defined by other parties. As also stated in [CGCG10], this can lead to confusions as this

inevitably leads to the need for every ROS user to first understand the architectural deci-

sions of each individual component before being able to reuse them in their own systems.

The proposed solution in [CGCG10] for this problem is just to extensively document each

ROS component on the ROS web portal. However, this does not circumvent the need to

extensively analyse and understand the source code in order to adjust it or to implement

workarounds in order to somehow make components compatible and reusable.

It is obvious that ROS (according to its overall design philosophy) does not yet give enough

structure in an appropriate format in order to better address separation of roles and sepa-

ration of concerns as is needed for a robotics business ecosystem. The minimum needed

structures are a sound component model (in order to separate at least the role of compo-

nent developer and system integrator and still ensure composability). Furthermore, it has

to be formalized for use in model-driven tools in order to support separation of concerns

(e.g. to maintain semantics independent of the OS / middleware mapping) and to as-

sist the different roles in conforming to superordinated structures. The component model

and model-driven toolchains of SMARTSOFT are following the approach of freedom from

choice and explicate those structures[SSL12b].
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3 Best Practices in Designing System Architectures

The design of the overall system architecture is an important part of the development

process. The challenge is to break down the overall system into smaller units that can be

solved by the individual stakeholders / project partners. The goal is to enable them to focus

on their individual parts of the system by providing building blocks (software components)

which can later be composed and integrated to the final application and target system.

Figure 2 illustrates the workflow showing our best practice in developing service-oriented

component based architectures and applications. In a first step, services are defined 1 ,

then they are reused and aggregated to components in order to provide components and

groups of components 2 . The outcome is a set of building blocks out of which applica-

tions can be composed 3 .

Figure 2: Best practices workflow for designing system architectures

The service-oriented component-based approach SMARTSOFT provides structure, infras-

tructure and tool support at all levels and steps (Figure 2, left). Amongst others, it includes:

• SmartMARS MetaModel. It defines the structure for communication objects, a set

of communication patterns, the structure of services and components, the structure

for deployment.

• SMARTSOFT Framework and implementation. In its current state, two exchangeable

implementations (ACE- and CORBA-based middlewares). Execution containers for

several platforms and operating systems.
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• SMARTSOFT MDSD Toolchain. An integrated MDSD toolchain for development

that supports the separation of roles. The toolchain covers the development process

of modelling communication objects, components and systems.

The first level Service Definitions (Figure 2: 1 ) uses the structure provided by SMART-

SOFT to define Services that might be provided (made available) or required (relevant)

in an application. Services are the basic architectural entities. They guarantee that sup-

plied components can be integrated into concrete applications. At the same time, they

keep the architecture and implementation containers flexible due to the service-level and

component-level abstractions. Further, they allow to identify white spots in the architec-

ture as early as possible (required services that no-one provides or provided services that

no-one requires).

Services consist of communication objects [SSL12a] (data structure for communication:

attributes, data types, access methods) and one selected communication pattern [SSL12a]

(how a communication object is being communicated). A communication object together

with one selected communication pattern (out of a set of communication patterns defined

in SMARTSOFT) becomes a service.

For example, at this level the user defines what a ”location” for the robotics system actu-

ally is, i.e. whether it is represented as full 6D cartesian pose or with geographical position

coordinates with or without uncertainty, orientation, etcetera. He can even decide on sep-

arate communication objects for both types of representations if required in the domain. It

is also defined that e.g. a service providing regular location updates every 0.2s (push timed

pattern for location communication object with period 0.2s) is required in the considered

domain.

The second level Component Level focuses on aggregating services to components or

groups of components (Figure 2: 2 ). They provide or require the services from 1 .

There might be competing alternative components providing the same services from dif-

ferent suppliers with different characteristics. Both open source and closed source im-

plementations can be used since one can rely on service descriptions. For example, the

common denominator for the core functionality of localisation could have been defined

in 1 as the communication object ”6DPose” (x, y, z, yaw, pitch, roll) that needs to be

pushed to subscribers. Now there might be alternative components or groups of compo-

nents for different localisation scenarios and accuracy requirements which consist of a

different structure of components and are provided by 3rd party component suppliers in a

market. These alternatives become alternatives only because they provide the same service

(”periodically publish 6D pose”) that makes them exchangeable. Developers can choose

between alternatives in the design phase and alternatives might even be swapped at run-

time. Again, this level conforms to the SMARTSOFT MetaModel which provides structure

in the form of components that can provide and require services from 1 and therefore

provide further structure to realize / implement them.

Finally, there are Concrete Applications in the last step (Figure 2: 3 ). When users de-

velop new applications, these applications can rely on service definitions in order to either

implement these services or reuse 3rd party implementations of these services. Compat-

ibility is given by the definition of services 1 . SMARTSOFT also contributes to this
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level by providing an execution container for components. It maps the component hull

[SSL12b] to the execution environment (operating system and processor architecture).

From our experience, the best practice is to regard services as the most important building

blocks for designing the architecture. Even though components implement functional-

ities and provide/require these services, the granularity of components is arbitrary and

not decisive for the architecture. Component granularity might differ from application to

application, whereas the granularity of services can remain the same. For example, the

services ”localization” and ”navigationCommand” might be provided by two components

from two suppliers or by one single component as long as it provides the defined services.

The service-oriented component model naturally supports competing alternatives as build-

ing blocks for systems while still ensuring composability. Thus, openness with respect to

software service definitions is in no way in conflict with the progress in implementations.

Services as stable entities in the design of systems ensure system level conformance, de-

fine responsibilities and allow to identify white spots that have to be covered in a very

early stage of the workflow. The strength of this structured workflow is that repeating

architectural patterns as well as project or application specific structures can be identified

and defined very early and in parallel to the implementation of functionalities. This de-

coupling from architecture design and implementation has proven successful in the later

integration where the system parts (components) just fit together. To an extend, this de-

sign is also independent from the hardware architecture: SmartSoft provides abstractions

that leave space for integrating hardware by either providing the execution containers to

(computational) hardware platforms or by transforming hardware specific sensor values

into standardized services.

The goal during service discussions is to converge to the least common denominator of

communication objects and services that are relevant in the individual domain. The smaller

this set is, the better is the composability that can be achieved with building blocks (soft-

ware components) that provide and require these services. However, one can at the same

time keep specific communication objects and specific services in order to best exploit

unique abilities and features of the software components. Finally, it is about finding the

right balance between ”too specific” and ”too general” in order to support composability

and reuse while not loosing unique characteristics. The illustrated workflow helps in this

respect at a very early stage.

Decoupling of services and components brings the decisive flexibility that is a must-have

for system composition and establishing a software business ecosystem, for both in-house

building blocks and towards a ”market” of building blocks for robotics. At the same it

time is a structured approach that ensures system level conformance.

Applying this workflow and discussing the services of a system with project stakeholders

at a very early stage also helps each of them: by thinking in detail about what services

they require or what services they provide, stakeholders reported that the workflow is very

helpful for their own components and expectations.
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4 Communication Objects as Self-Contained Entities

Figure 3: Communication Object with its interfaces for user and framework.

Communication objects [SSL12a], as shown in figure 3, define the data structures (figure 3,

grey upper) to be transmitted via a communication pattern between components. Commu-

nication objects are C++-like objects decorated with additional member functions (figure

3, grey lower) for internal use by the framework. Besides attributes for communication,

communication objects can define user access functions (figure 3, bottom).

It is our best practice to define communication objects as self-contained local entities,

communicated by value between components via services. All the information needed

to process communication objects within a component should be contained within that

communication object and should not need additional communication in order to get that

information. Communication objects should not only transport data, but also provide a

locally extensible interface (user member functions: figure 3, white elements) to access

the data, without influencing the overall system.

The self-containment of communication objects avoids fine grained intercomponent com-

munication when processing them, thus helps to achieve one of the most important goals

of service-oriented component based approaches: decoupling the sphere of influence be-

tween the components (separation of concerns). Loosely coupled components enable the

separation of roles, reuse and easy system coordination.

For example a communication object for sensor data is tagged with a position (itself a

communication object) where it was recorded. User member functions of the communica-

tion object perform the transformations from the sensor data into different formats, units,

coordinate systems, etcetera. This is done without the need of further communication and

coordination, keeping the effects limited to the local entity (component), as well as with-

out reimplementing this logic over and over again. Regardless of the point of time when

the communication object (e.g. camera image) is used, the information within the object

(e.g. capture pose) forms a valid snapshot of the relevant system state in relation to the

communicated data.

Communication objects that are not self-contained would require further intercomponent

communication that would add to further system and coordination complexity. Other com-

ponents would have to be activated and configured to get the additional information. Self-
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contained communication objects typically also reduce the total amount of required inter-

component connections, which again reduces system and coordination complexity. From

an architectural point of view this best practice supports an early and expressive design of

the components services, as all the relevant information is explicated and collected in the

design phase of a system.

User member functions of the communication object provide access to data structures in

those data types that are required by the user in the individual components. Commonly

used functionality to access the data (e.g. transformation of their representation) can be

implemented once and are provided with the communication object. Local extensions of

communication objects, extending data types or user member functions, are implemented

in locally inherited communication objects and do not spread across the system.

The user access functions are also used to prevent the communication middleware data

types from polluting the user space. Using the SmartMDSD Toolchain, the interface func-

tions (figure 3, white upper) to those communication middleware data structures are gen-

erated to make the user access function in the communication object independent of the

underlying communication middleware, following the principle of separation of concerns

in the same way as the SMARTSOFT components [SLL+13]. This ensures user code (fig-

ure 3, white lower) that is independent of the underlying communication middleware.

5 System Orchestration

System orchestration deals with coordinating the individual parts (components) of the sys-

tem in such a way that the overall system performs a concrete task. It consists of plenty of

challenges and the following will concentrate on best practices that enable separation of

concerns and roles.

A robot system is separated into multiple layers by distinguishing hierarchical task de-

composition and situation-driven task execution from fast reactive control algorithms on

the skill layer. The sequencer bridges continuous processing and event-driven task execu-

tion. It orchestrates the software components in the system and assigns decision spaces to

components. The components on the skill layer execute all kinds of algorithms, hardware

drivers or control loops needed to perform the task guided by the sequencer. Details of the

multi-layered system architecture can be found in [IRLVCS12] [SLL+13].

5.1 Coordination of Skill Components

Figure 4 shows an excerpt of the coordination within the collaborative robot butler sce-

nario [Ulmb]. Given such a complex real world scenario (44 active components, open

ended environment), the need for systematic coordination, reuse and separation of con-

cerns becomes obvious.

The particularly interesting point is how the interface between sequencer and the skill
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Figure 4: System coordination within the collaborative robot butler scenario. [Ulmb]
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components is organized and how it distinguishes from the interfaces between each of the

skill components. The interfaces within the skill components mostly consist of data (sub-

symbolic) needed for reactive control algorithms such as sensor data, trajectories or sub-

goals to approach, for example. The interface between sequencer, and skill components

is used for coordination and typically includes symbolic data. One reusable pattern that

is stable across all our systems is the orchestration cycle of the skill components driven

by the sequencer: first the configuration of the components, then the execution or trigger

of the actions in the components, events send to the sequencer driving it and fainally and

optionally fetching resulting data from the components.

Given a task and the current context, the sequencer configures skill components according

to the actions to be performed, using the SMARTSOFT parameter communication pattern.

E.g. the object recognition component is configured to search for the object types SUGAR-

DISPENSER and IKEA-CUP-SOLBRAEND (figure 4: 3 ). Once configured, the compo-

nents are activated for continuous unsing state communication patter or single operation

using a trigger (parameter communication pattern). In figure 4: 7 ), the object recognition

component is triggered to perform recognition (once - triggered) given the configuration

done before. The components run independent of further interaction with the sequencer

as long as the skill components are able to operate within the configured decision spaces.

If either the configured goal is achieved or components are not able to achieve the goal,

an event using the corresponding SMARTSOFT event communication patter is send back

from the individual skill component to the sequencer. The object recognition component

fires an event received by the sequencer telling that objects with their corresponding ids

where found (figure 4: 7 ), for example. It is the sequencer’s responsibility to activate

those events from the skill components that are necessary to perform the task given the

current context. Dependent on the event, the sequencer might then fetch the result of

the performed action in symbolic representation from the skill component. The object

recognition component is queried for the recognized object using the beforehand via event

transmitted ids (figure 4: 8 ), for example.

The separation of high-level task coordination and low-level control loops as well as the

above described interface enforces the separation of roles and concerns in the develop-

ment of complex systems. Explicating the configurations of components as well as their

response (events), enables a systematic system orchestration and a hand over from the

component developer to the role of the system integrator.

5.2 Distributed (Local) Knowledge Representation

At the sequencer level, information is stored and processed almost entirely in symbolic

form. The sub-symbolic information and interaction is located at the level of the skill

components. For many algorithms at skill level, reference data, models or configuration

sets, etc. are required. The object recognition component for example needs all kind of

modeled data to feed the different recognition algorithms, while other components such

as the motion planning component again needs other views on the models. The individual

models are best located close by the components using them (separation of concerns).

1304



The coordination of the system however requires a common understanding of objects,

locations, rooms etc. among the system parts.

Therefore, it is our best practice to connect the individual local views on the models and

data with system-wide symbols, without spreading the local sub-symbolic information of

component through the system. Those symbols are defined and linked to the modeled

information at the sequencer level. Object types, for example are modeled at sequencer

level and system wide uniquely identified by symbols (e.g. IKEA-CUP-SOLBRAEND).

The object recognition component needs to get a shape model, whereas for manipulation

planning a grasping model is needed. Both components get the reference to the modeled

object type during the configuration using the unique symbol (figure 4: 4 and 11 ).

This separation reduces the system complexity due to less intercomponent communication

and keeps the responsibility for the local data bound to the role of the component developer

while still being able of system wide coordination in the role of the system integrator.

6 Conclusions

All the described best practices and architectural principles were found and applied dur-

ing many years of robotics software systems engineering. The SMARTSOFT approach has

been used in various areas, by several users for many years. It has been used for education

by students, e.g in the Robocup@Home competition. In our lab, every year a new team

of students, without prior robotics knowledge, continues to work with the system of the

previous team with no overlap. The black-box view of the components is the only way

for the teams to continue and reuse the complex system parts. The SMARTSOFT approach

has been used in several research projects, such as the ZAFH Servicerobotik, FIONA and

iserveU and builds the stable foundation for many project partners in academia and indus-

try. It is further used in intralogistic scenarios (e.g. [Ulmb]) in projects with partners from

industry using the Robotino R©3 robot.

Finding generic best practices in robot control architectures is about finding the sweet spot

between those structures needed and those providing artificial restrictions. Structure is

needed to ensure composability of the system parts which is vital for a robotics business

ecosystem. Following the objectives of separation of roles and separation of concerns

allows to guide which structures are needed. Following those objectives we presented

some insights in those architectural structures and processes that helped us to organize and

build a number of complex real world robotic software systems [Ulmb].

Our next steps are to further exploit model-driven techniques and enhance our model-

driven toolchain in order to provide support to all roles of the development process with

our best practices.
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