Systems of Ordinary Differential Equations > Nonlinear Systems of Three and More Equations
2. $\quad a x_{t}^{\prime}=(b-c) y z f(x, y, z, t), \quad b y_{t}^{\prime}=(c-a) z x f(x, y, z, t), \quad c z_{t}^{\prime}=(a-b) x y f(x, y, z, t)$.

First integrals:

$$
\begin{aligned}
a x^{2}+b y^{2}+c z^{2} & =C_{1}, \\
a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2} & =C_{2},
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants. On solving the integrals for y and z and on substituting the resulting expressions into the first equation of the system, one arrives at a first-order equation (if the function F is independent of t, this equation is separable).

