Systems of Ordinary Differential Equations > Nonlinear Systems of Three and More Equations
5. $x_{t}^{\prime}=c z F_{2}-b y F_{3}, \quad y_{t}^{\prime}=a x F_{3}-c z F_{1}, \quad z_{t}^{\prime}=b y F_{1}-a x F_{2}$, where $\quad F_{n}=F_{n}(x, y, z, t)$.
1°. First integral:

$$
a x^{2}+b y^{2}+c z^{2}=C_{1},
$$

where C is an arbitrary constant.
2°. Suppose the function F_{n} is independent of $t: F_{n}=F_{n}(x, y, z)$. Then, on eliminating t and z from the first two equations of the system (with the above integral), one arrives at the first-order equation

$$
\frac{d y}{d x}=\frac{a x F_{3}(x, y, z)-c z F_{1}(x, y, z)}{c z F_{2}(x, y, z)-b y F_{3}(x, y, z)}, \quad \text { where } \quad z= \pm \sqrt{\frac{1}{c}\left(C_{1}-a x^{2}-b y^{2}\right)} .
$$

