Systems of Ordinary Differential Equations > Nonlinear Systems of Three and More Equations
6. $x_{t}^{\prime}=x\left(c F_{2}-b F_{3}\right), \quad y_{t}^{\prime}=y\left(a F_{3}-c F_{1}\right), \quad z_{t}^{\prime}=z\left(b F_{1}-a F_{2}\right)$, where $\quad F_{n}=F_{n}(x, y, z, t)$.

Here, $F_{n}=F_{n}(x, y, z, t)$ are arbitrary functions.
First integral:

$$
|x|^{a}|y|^{b}|z|^{c}=C_{1},
$$

where C is an arbitrary constant. If the function F_{n} is independent of t, then, by eliminating t and z from the first two equations of the system (with the above integral), one arrives at a first-order equation.

