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Kurzfassung

Das Hauptziel der vorliegenden Dissertation ist das Studium neuer Algorithmen
zur Bestimmung von polynomialen, rationalen und algebraischen Lösungen von al-
gebraischen gewöhnlichen Differentialgleichungen (AODEs) erster Ordnung. Das
Problem der Bestimmung von Lösungen von AODEs erster Ordnung in geschlossener
Form hat eine lange Geschichte, und spielt nach wie vor in vielen Bereichen der
Mathematik eine Rolle. Es gibt einige Lösungsmethoden für spezielle Klassen solcher
ODEs. Jedoch gibt es noch immer keinen Entscheidungsalgorithmus für allgemeine
AODEs erster Ordnung, selbst wenn man nur nach bestimmten Arten von Lösungen
sucht, z. B. polynomialen, rationalen oder algebraischen Funktionen. Unser In-
teresse gilt algebraischen allgemeinen Lösungen, rationalen allgemeinen Lösungen,
speziellen rationalen Lösungen sowie Polynomlösungen. Verschiedene Algorithmen
zur Bestimmung solcher Arten von Lösungen von AODEs erster Ordnung werden
präsentiert.

Wir nähern uns AODEs erster Ordnung aus verschiedenen Richtungen. Wenn
die Ableitung der gesuchten Lösung als neue Unbekannte behandelt wird, kann die
AODE erster Ordnung als Hyperfläche über dem Grundkörper betrachtet werden.
Hierfür sind Werkzeuge aus der algebraischen Geometrie anwendbar. Insbesondere
nutzen wir birationale Transformationen von algebraischen Hyperflächen, um die
gegebene Differentialgleichung in eine andere zu transformieren, die im Idealfall
einfacher zu lösen ist. Dieser geometrische Ansatz führt uns zu einer Prozedur
zur Bestimmung einer algebraischen allgemeinen Lösung einer parametrisierbaren
AODE erster Ordnung. Eine allgemeine Lösung enthält eine beliebige Konstante.
Für das Problem der Bestimmung einer rationalen allgemeinen Lösung, in welcher
die Konstante rational auftritt, schlagen wir einen Entscheidungsalgorithmus für die
gesamte Klasse von AODEs erster Ordnung vor.

Die geometrische Methode ist nicht anwendbar, um spezielle rationale Lösungen
zu erhalten. Stattdessen studieren wir diese Art von Lösungen unter kombina-
torischen und algebraischen Gesichtspunkten. In der kombinatorischen Betrach-
tung spielen die Pole der Koeffizienten der Differentialgleichung eine wichtige Rolle,
nämlich für die Abschätzung von Kandidaten für Pole der rationalen Lösung und
deren Vielfachheiten. Wir schlagen eine algebraische Methode, basierend auf der
Theorie algebraischer Funktionenkörper, vor, um den Grad einer rationalen Lösung
abzuschätzen. Eine Kombination dieser Methoden führt uns zu einem Algorithmus
zur Bestimmung aller rationalen allgemeinen Lösungen für eine generische Klasse
von AODEs erster Ordnung, die jede AODE erster Ordnung aus der Sammlung
von Kamke einschließt. Für Polynomlösungen funktioniert der Algorithmus in der
gesamten Klasse von AODEs erster Ordnung.

5



6



Abstract

The main aim of this thesis is to study new algorithms for determining polynomial,
rational and algebraic solutions of first-order algebraic ordinary differential equations
(AODEs). The problem of determining closed form solutions of first-order AODEs
has a long history, and it still plays a role in many branches of mathematics. There
is a bunch of solution methods for specific classes of such ODEs. However still no
decision algorithm for general first-order AODEs exists, even for seeking specific
kinds of solutions such as polynomial, rational or algebraic functions. Our interests
are algebraic general solutions, rational general solutions, particular rational solu-
tions and polynomial solutions. Several algorithms for determining these kinds of
solutions for first-order AODEs are presented.

We approach first-order AODEs from several aspects. By considering the deriva-
tive as a new indeterminate, a first-order AODE can be viewed as a hypersurface
over the ground field. Therefore tools from algebraic geometry are applicable. In
particular, we use birational transformations of algebraic hypersurfaces to trans-
form the differential equation to another one for which we hope that it is easier to
solve. This geometric approach leads us to a procedure for determining an algebraic
general solution of a parametrizable first-order AODE. A general solution contains
an arbitrary constant. For the problem of determining a rational general solution
in which the constant appears rationally, we propose a decision algorithm for the
general class of first-order AODEs.

The geometric method is not applicable for studying particular rational solu-
tions. Instead, we study this kind of solutions from combinatorial and algebraic
aspects. In the combinatorial consideration, poles of the coefficients of the differen-
tial equation play an important role in the estimation of candidates for poles of a
rational solution and their multiplicities. An algebraic method based on algebraic
function field theory is proposed to globally estimate the degree of a rational so-
lution. A combination of these methods leads us to an algorithm for determining
all rational solutions for a generic class of first-order AODEs, which covers every
first-order AODEs from Kamke’s collection. For polynomial solutions, the algorithm
works for the general class of first-order AODEs.
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Chapter 1

Introduction

A first-order AODE is a differential equation of the form F (x, y, y′) = 0, where F is a
polynomial in three variables with coefficients in an algebraically closed field, for in-
stance Q, the field of algebraic numbers. Solving the differential equation is the prob-
lem of determining differentiable functions y = y(x) such that F (x, y(x), y′(x)) = 0.
If y(x) is an algebraic (rational, polynomial) functions, then it is called an algebraic
(rational, polynomial, respectively) solution. A solution may contain an arbitrary
constant. Such a solution is called a general solution. For example, y(x) = x2 + c
is a general solution of the differential equation y′ − 2x = 0. Solving first-order
AODEs is a fundamental problem in the theory of (non-linear) algebraic differential
equations.

First-order AODEs have been studied a lot and there are many solution methods
for special classes of such ODEs. The study of these ODEs can be dated back to the
work of Fuchs [14], and later by Poincaré [32]. In [27], Malmquist studied the class
of first-order AODEs having transcendental meromorphic solutions, and Eremenko
revisited later in [11]. In the 1970s, Matsuda classified differential function fields
having no movable critical points up to isomorphism of differential fields [28]. The
theory by Matsuda brings modern wind to the algebraic theory of first-order AODEs.
Following this direction, Eremenko presented a theoretical consideration on a degree
bound for rational solutions [12].

The problem of finding closed form solutions of first-order AODEs has been
considered widely in the literature. Among non-linear first-order AODEs, Riccati
equations can be considered as the simplest ones. In [25], Kovacic solved completely
the problem of computing Liouvilian solutions of a second order linear ODE with
rational function coefficients. In the process, Kovacic also proposed an algorithm for
determining all rational solutions of a Riccati equation. Solving a first-order first-
degree AODE is a much harder problem. The problem of determining an algebraic
general solution for a first-order first-degree AODE is one of an equivalent version
of the Poincaré problem. This problem is still open. In [6], Carnicer investigated
a degree bound for algebraic solutions for first-order first-degree AODEs in non-
dicritical cases. Hubert [21] found implicit solutions by computing Gröbner bases.

The problem of studying symbolic solutions for first-order AODEs from an
algebro-geometric approach has received much attention in the last decade. The
first algorithm for the class of first-order autonomous AODEs has been proposed
by Feng and Gao [13, 1]. The algorithm is based on the fact that by considering
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the derivative as a new indeterminate, the differential equation can be viewed an
algebraic curve. Applying this idea to the general class of first-order AODEs, and
combining it with Fuchs’ theorem on first-order AODEs without movable critical
points, Chen and Ma [9] presented an algorithm for determining a special class
of rational general solutions. However, their algorithm is incomplete due to two
reasons: the necessary condition for the existence of the solution is not proven
to be algorithmically checkable, and a good rational parametrization is required
in advance. Ngô and Winkler [29, 31, 30] applied the algebro-geometric approach
to general non-autonomous first-order AODEs. Using parametrization of algebraic
surfaces, they associate to the given parametrizable AODE an associated system of
algebraic equations in the parameters. This associated system is a planar rational
system. In order to complete the algorithm, a degree bound for irreducible invariant
algebraic curves of the planar rational system is required. The problem of finding a
uniform bound for the degree of invariant algebraic curves for planar rational sys-
tems is known as the Poincaré problem. This difficult problem has been solved by
Carnicer [6], but only generically for the non-dicritical case. So the algorithm of Ngô
and Winkler, although producing general rational solutions in almost all situations
where such a solution exists, is still no complete decision algorithm. Following this
direction, a generalization to the class of higher order AODEs [20], and even to
algebraic partial differential equations [15] is presented. So far no general algorithm
for deciding the existence and, in the positive case, computing an algebraic/rational
general solution, and all particular rational solutions exists.

In this thesis, we present:

1. A procedure for determining an algebraic general solution of a parametrizable
first-order AODE (see Algorithm 2).

2. A full algorithm for determining a rational general solution, in which the
constant appears rationally, for a general first-order AODE (see Algorithm 5).

3. Algorithms for computing all rational solutions for a generic class of first-order
AODEs (see Algorithm 7, 10, 12).

4. An algorithm for computing all polynomial solutions for an arbitrary first-
order AODE (see Algorithm 8).

This generalizes the works by Feng and Gao [13], Chen and Ma [9], Ngô and Winkler
[29, 31, 30], Behloul and Cheng [3].

In Chapter 2, we recall basic notations from differential algebra and algebraic
geometry. In Chapter 3, we approach first-order AODEs from an algebraic geometric
aspect. By considering the derivative as a new indeterminate, a given first-order
AODE can be seen as an algebraic equation. This algebraic equation defines an
algebraic surface over the ground field. An algebraic solution of the differential
equation corresponds to an algebraic curve on the surface which satisfies certain
condition. Therefore tools from algebraic geometry are applicable. In particular,
birational transformation of algebraic surfaces is used to transform the differential
equation to a planar rational system. The key point is that there is a faithful relation
between algebraic general solutions of the given differential equation and algebraic
general solutions of the planar rational system. Solving a general planar rational
system is still a very hard problem. But in many cases, the obtained planar rational
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system is easy to solve. This algebraic geometric approach leads to a procedure for
determining an algebraic general solution for first-order AODEs.

A similar method is presented in Chapter 4. By considering the derivation
as a new indeterminate, we can also view the differential equation as an algebraic
equation which defines an algebraic curve over the field of rational functions over the
ground field. With a similar process, birational transformation of algebraic curves is
used to transform the given differential equation to a first-order first-degree AODE.
We prove that optimal parametrization of algebraic curves over the field of rational
functions can be achieved within the field of rational functions. This guarantees
us to do the process in a controllable way. Consequently, a decision algorithm for
determining a rational general solution for which the constant appears rationally of
a first-order AODE is established.

In Chapter 5, we study particular rational and polynomial solutions. The prob-
lem of computing all rational solutions which are not necessary general solutions
requires more algebraic techniques. Two other methods are introduced. A combi-
natorial approach is given to estimate possible pole positions for a rational solution,
and bound the order of these poles. An algebraic method based on algebraic func-
tion field theory is proposed to globally estimate the degree of a rational solution. A
combination of these methods is applicable for a generic class of first-order AODEs
which covers all parametrizable first-order AODEs. A long the way, a general algo-
rithm for determining all polynomial solutions of first-order AODEs is obtained.
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Chapter 2

Preliminaries

In this chapter, we briefly recall some basic notions in differential algebra and al-
gebraic geometry. This chapter should not be considered as an introduction to
differential algebra and parametrization of hypersurface. For further detail, we refer
the reader to [24, 34] for differential algebra, and to [38, 35] for parametrization of
algebraic curves and surfaces.

2.1 Differential algebra

2.1.1 Ring of differential polynomials

Definition 2.1.1. A differential ring is a ring R equipped with a derivation σ, which
is a map from R to itself, such that:

i. σ is a group homomophism, i.e. ∀a, b ∈ R, σ(a+ b) = σ(a) + σ(b).

ii. σ satisfies Leibniz’s rule: ∀a, b ∈ R, σ(ab) = σ(a)b+ aσ(b).

If furthermore R is a field, it is called a differential field.

Every field K can be seen as a differential field with the trivial derivation which
maps all elements of the field to zero. Let K(x) be the field of rational functions in
x with coefficients in K. The trivial derivation on K can be extended to a derivation
d
dx in such a way that d

dx(x) = 1.
Let K be a differential field with a derivation σ, and let y1, y2, ..., yn be n in-

dependent indeterminates over K. Elements of the differential polynomial ring
R := K{y1, y2, ..., yn} are polynomials in y1, y2, ..., yn and their derivatives with
coefficients in K. The derivation on R is extended naturally from σ. By abuse of
notation, we denote the derivation on R by σ . The j-th derivative of yi will be
also denoted by yij . We shall call yi its own derivative of order zero and shall be
sometimes written by yi0. The first derivative of yi is usually written by y′i instead
of yi1. In the remain of this chapter, if there is no caution, R denotes the polynomial
differential ring with the derivation σ. R is a standard example for a differential
ring.

Definition 2.1.2. An ideal I in R is called a differential ideal if I is closed under
the derivation, i.e. σ(I) ⊆ I. If furthermore I is a radical (resp. prime) ideal of R,
it is called a radical (resp. prime) differential ideal.

19



20

Let Σ be a subset of R. The differential ideal generated by Σ, denoted by [Σ],
is the ideal generated by elements of Σ and their derivatives. It is in fact equal to
the intersection of all differential ideals containing Σ. The radical of [Σ], denoted by
{Σ}, is a differential ideal. It is called the radical ideal generated by Σ. Therefore
{Σ} is the intersection of all radical differential ideals containing Σ.

In commutative algebra, a radical ideal of a ring of polynomials in finitely many
variables over a field can be always factored as the intersection of finitely many prime
ideals. This fact is still true on a polynomial differential ring (or in general a radical
Noetherian differential ring). In [34], Ritt proved that every radical differential ideal
in R is the radical of a finitely generated differential ideal. As a consequence, the
class of radical differential ideals in R satisfies the ascending chain condition. Note
that it is not true for the class of all differential ideals. Therefore every radical
differential ideal in R is the intersection of finitely many prime differential ideals.

Theorem 2.1.3 (see [34]). Let I be a radical differential ideal in R. There exist
uniquely, up to a permutation of indexes, prime differential ideals P1, P2, ..., Pr for
some r ∈ N such that:

i. I = P1 ∩ P2 ∩ ... ∩ Pr and

ii. The intersection is irredundant, i.e. ∀i, Pi 6⊆
⋂
j 6=i

Pj.

Such prime differential ideals are called the essential components of the ideal I.

Definition 2.1.4 (see [34]). Let Σ be a subset of R, and L a differential field
extended from K which respect to which the yis are indeterminates. An element
ξ := (ξ1, ξ2, ..., ξn) ∈ Ln is called a zero of Σ if ξ vanishes all elements of Σ.

It is clear that if ξ vanishes a differential polynomial F , then it also vanishes all
derivatives of F . Therefore Σ, [Σ], and {Σ} agree the set of zeros.

Definition 2.1.5. Let I be a prime differential ideal in R. A zero ξ of I, which lies
in a differential field L extended from K, is called a generic zero if every differential
polynomial in R vanished at ξ must be in I.

In the other words, ξ is a generic zero of the prime differential I if and only if
the set

I(ξ) := {F ∈ R |F (ξ) = 0}

is exactly I. It is well-known that every prime differential ideal has a generic zero.

2.1.2 Ritt’s reduction

Given a prime differential ideal I, and a solution ξ. To check whether ξ is a general
solution of I, we usually face the ideal membership problem. In particular, we need
to know when a given differential polynomial is belong to the ideal I. It can be done
systematically by using Ritt’s reduction.

Definition 2.1.6. Let ∆y := {yij | i = 1, ..., n, j ∈ N} be the set of indeterminates
and their derivatives in R. A ranking ” < ” of y1, ..., yn is a total ordering on ∆y
such that:
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i. ∀i = 1, ...n, ∀j1, j2 ∈ N, j1 < j2 ⇒ yij1 < yij2 , and

ii. ∀u, v ∈ ∆y, u < v ⇒ u′ < v′.

The ranking is called orderly if it furthermore satisfies:

iii. ∀i1, i2 = 1, ..., n, ∀j1, j2 ∈ N, j1 ≤ j2 ⇒ yi1j1 ≤ yi2j2 .

Example 2.1.7. In the ring K{y} of differential polynomials in one variables, there
is only one ranking and it satisfies the order y < y′ < y′′ < . . . < y(n) < . . ..

Example 2.1.8. In the ring K{s, t} of differential polynomials in two variables, the
ranking defined by s(i) < t(j) for every i, j ∈ N is called a lexicographic order.

Now fix a ranking ” < ” on ∆y in the polynomial differential ring R, and F ∈
R −K a differential polynomial. Since the ranking orders totally the set ∆y, there
exists an element in ∆y appearing in the normal expression of F with the highest
ranking. It is called the leader of F , denoted by uF . Rewrite F as a polynomial in
uF :

F = I0 + I1uF + ...+ Idu
d
F

where d is the degree of F with respect to uF , and I0, I1, ..., Id ∈ R. Then Id, the
leading coefficient of F with respect to uF , is called the initial of F , and is denoted
by IF . The derivative of F with respect to uF

∂F

∂uF
= I1 + 2I2uF + ...+ dId−1u

d−1
F

is called the seperant of F , and is denoted by SF . A simple computation gives:

Lemma 2.1.9. For every k ≥ 1, we have

F (k) = SFu
(k)
F +G

where G ∈ R is a polynomial with coefficients in K and variables the elements of
∆y having ranking not exceed u(k−1)

F .

In order to define a reduction on R, we need to extend the ranking ” < ” up to
an order on the whole ring R.

Definition 2.1.10. Let ” < ” be a ranking on ∆y. We define a ranking on R, which
is recalled by ” < ”, as follow: for any F and G differential polynomials in R,

i. If F ∈ K and G ∈ R \K, then F < G.

ii. If F,G ∈ R \K, then

F < G :⇔ (uF < uG) ∨ ((uF = uG) ∧ (deguF F < deguG G))

Otherwise, they have the same rank.
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Now let us fix a ranking on R. Let G be differential polynomials in R such that
G /∈ K. A differential polynomial F is said to be lower than G if deguF F < deguG G.
The polynomial F is said to be reduced with respect to G if F is lower than G and
derivatives of G. If the ranking is orderly, then F is lower than G if and only if F
is reduced with respect to G.

We are going to recall the Ritt’s reduction on polynomial differential rings. Ritt’s
reduction can be seen as a generalization of Euclidean algorithm. It is well-known
that if f and g are two polynomials in one variable whose coefficients lie in a field,
then one can divide f by g by using Euclidean algorithm. It remains a unique pair of
polynomials (q, r) with deg r < deg g such that f = gp+r. This fact is no longer true
for general multivariate differential polynomials, even only for ordinary multivariate
polynomials. However, in polynomial differential rings, we have a so call pseudo-
remainder algorithm to divide a differential polynomial to an auto-reduced set of
differential polynomials.

A subset Σ of R is called an auto-reduced set if Σ ∩K = ∅ and every element of
Σ is reduced with respect to the others.

Definition 2.1.11 (Ritt’s reduction). Let Σ be an auto-reduced set of R with
respect to a given ranking ” < ”, and let F be a differential polynomial in R. A
reduction of F with respect to Σ is a differential polynomial F0 ∈ R such that:

i. F0 is reduced with respect to elements of Σ, and

ii. F0 ≤ F , and

iii. For each G ∈ Σ, there are iG, sG ∈ N such that∏
G∈Σ

IiGG SsGG

F − F0

can be written as a linear combination over R of all derivatives σjG where
G ∈ Σ and σjG ≤ uF .

In this case, F0 is called the differential pseudo remainder of F with respect to
Σ, and denoted by prem(F,Σ).

The following proposition is a criteria to check whether a solution of a prime
differential ideal which is generated by a given auto-reduced set is general. It is
extremely useful in practice. For further details we refer the reader to [34].

Proposition 2.1.12. Let I be a differential prime ideal in R which is generated by
an auto-reduced set Σ. Then a zero ξ of I is a generic zero if and only if

∀F ∈ R, F (ξ) = 0⇒ prem(F,Σ) = 0

2.2 General solutions of AODEs

From now on by K we denote a computational algebraically closed field of charac-
teristic zero with the trivial derivation. In practice, we might choose K = Q the
field of algebraic numbers. All derivatives are understood as the usual ones.
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An algebraic ordinary differential equation is a differential equation of the form

F (x, y, y′, ..., y(n)) = 0 (2.1)

where F ∈ K[x]{y}\K[x][y]. Without lost on generality, we can always assume that
F is an irreducible polynomial in K[x, y, y′, ..., y(n)]. Otherwise F can be factored
as the product of irreducible factors. In this case, the set of solutions of the given
differential equation is equal to the union of the sets of solutions of AODEs which
are defined by the irreducible factors of F .

The notion ”general solution” of an AODEs can be described from differential
algebra context. In general a general solution of an AODE is defined as a generic
zero of a certain associated prime differential ideal. In our situation such ideal much
be established from F . It is well-known that, in a polynomial ring in finitely many
variables over a field, a principle ideal generated by an irreducible polynomial is
prime. It is no longer true in the case of differential polynomial rings. In particular,
neither [F ] nor {F} is a prime differential ideal of K(x){y}, even if F is an irreducible
polynomial. Fortunately, Ritt proved that:

Lemma 2.2.1 (see [34]). Let F ∈ K(x){y} such that F is an irreducible polynomial
in K[x, y, y′, ..., y(n)]. Then the ideal {F} can be factored as:

{F} = ({F} : SF ) ∩ {F, SF }

where ({F} : SF ) := {G ∈ K(x){y} |G.SF ∈ {F}} is a prime differential ideal.

The lemma shows that the ideal ({F} : SF ) is the unique essential component
(among finitely many essential components of {F}) that does not contain the sepa-
rant SF of F . On the other hand the second component {F, SF } is the intersection
of the other essential components of {F}. It leads us to the definition of general
solutions of an AODE.

Definition 2.2.2. Consider the differential equation F (x, y, y′, . . . , y(n)) = 0.

i. A zero of the radical ideal {F} is called a solution of the differential equation.

ii. A generic zero of the differential ideal ({F} : SF ) is called a general solution.

iii. A zero of the ideal {F, SF } is called a singular solution.

Definition 2.2.3. Consider the differential equation F (x, y, y′, . . . , y(n)) = 0, let ξ
be a solution which is contained in a differential field L extended from K(x). We
denote by K the field of constants of L.

i. ξ is called an algebraic solution if there is a non-zero polynomial G ∈ K[x, y]
such that G(x, ξ) = 0.
In this case, G is called an annihilating polynomial of ξ.

ii. If furthermore degy G = 1, then ξ is called a rational solution.

iii. ξ is called an algebraic (resp. rational, polynomial) general solution if it is a
general solution and algebraic (resp. rational, polynomial).
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Given an algebraic solution ξ of the differential equation F (x, y, y′, . . . , y(n)) = 0,
there are infinitely many corresponding annihilating polynomials. If we ask for
irreducible polynomials among them, then there is only one up to multiplying by a
non-zero constant. If G(x, y) is an irreducible annihilating polynomial of ξ, then all
root y = y(x) of the algebraic equation G(x, y) = 0 are solutions of the differential
equation, (see [1], Lemma 2.4). Therefore, by abuse of notation, G is sometimes
called a solution.

The following lemma is concluded from Prposition 2.1.12.

Lemma 2.2.4. A solution ξ of the differential equation

F (x, y, y′, . . . , y(n)) = 0

is a general solution if and only if

∀H ∈ k(x){y}, H(ξ) = 0⇒ prem(H,F ) = 0

Proposition 2.2.5. Let ξ be an algebraic solution of the differential equation

F (x, y, y′, . . . , y(n)) = 0

with the irreducible annihilating polynomial G. If ξ is a general solution, then at
least one of the coefficients of G contain a constant which is transcendental over K.

Proof. By contradiction, if G(x, y) ∈ K[x, y], then G = prem(G,F ) 6= 0. It is
contradiction with the fact that G(x, ξ) = 0. Thus at least one of the coefficients of
G is a constant which is not in K. Since K is algebraically closed, such constant is
transcendental over K.

From the previous proposition, an algebraic general solution can be viewed as a
class of algebraic solutions which is parametrized by a certain number of parameters.
In particular if y(n) is the highest derivation appearing on F , then the number of
independent parameters needed to paramatrized a general solution is exactly n (see
[24, Thm. 6, Sec. 12, Chp. 2]).

2.3 Parametrization of algebraic curves and surfaces

In Chapter 3 and 4, we intrinsically use an algebraic geometric approach for solving
first-order AODEs. Consider a first-order AODE, F (x, y, y′) = 0, for an irreducible
non-constant polynomial F . We view the equation to be an algebraic one by re-
placing the derivative by an independent variable, i. e. F (x, y, z) = 0. Depending
on the ground field the zero set of such an equation defines an algebraic curve or an
algebraic surface.

C =
{

(a1, a2) ∈ A2(K(x)) |F (x, a1, a2) = 0
}
,

S =
{

(a0, a1, a2) ∈ A3(K) |F (a0, a1, a2) = 0
}
.

For higher dimensional spaces such zero sets of single polynomials are called hyper-
surfaces.
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Definition 2.3.1. The algebraic curve C is called the corresponding curve. The
algebraic surface S is called the corresponding surface.

By definition the algebraic curves and surfaces are given implicitly by the defining
equation. Very often it is useful to have a parametric expression for the points on
the curve or surface. Let F be some algebraically closed field.

Definition 2.3.2. A rational parametrization, or briefly, a parametrization of a
curve C over A2(K) is a rational map P : A1(K)→ C ⊆ A2(K) such that the image
of P is dense in C (with respect to the Zariski topology).

Similarly a (rational) parametrization of a surface S over A3(K) is a rational
map P : A2(K)→ S ⊆ A3(K) such that the image of P is dense in S.

If, furthermore, P is a birational equivalence, P is called a proper parametriza-
tion.

A parametrization is called optimal, if the degree of its coefficient field is minimal
(see [38] for further details).

Let PC(t) = (p1(x, t), p2(x, t)) be a parametrization over K(x) of the correspond-
ing curve of an AODE. Then PS(s1, s2) = (s1, p1(s1, s2), p2(s1, s2)) is an algebraic
parametrization of the corresponding surface. If PC is rational in x then PS is a
rational parametrization. However, there are first-order AODEs which admit a ra-
tional parametrization of the corresponding surface but not of the corresponding
curve. Consider for instance the AODE, F (x, y, y′) = y′2 − y3 − x2 = 0. The corre-
sponding curve has genus 1, whereas the corresponding surface can be parametrized
by
(
s(1−s2)

t3 , 1−s2

t2 , 1−s2

t3

)
.

It is well-known that if an algebraic curve or surface admits a rational parametri-
zation, then it admits a proper parametrization. In the affirmative case, for curves
one can compute such a proper parametrization with optimal coefficient field. For
more details on rationality we refer to [38] and [43, 39, 35] for curves and surfaces
respectively.

Theorem 2.3.3 (Rationality Criterion). An algebraic curve admits a rational pa-
rametrization if and only if its genus is equal to zero.

An algebraic surface admits a rational parametrization if and only if both its
arithmetic genus and the second plurigenus are equal to zero.

Furthermore, there is a relation between different proper parametrizations of
curves and surfaces respectively.

Lemma 2.3.4. Let P and Q be two proper parametrizations of some algebraic
hypersurface. Then there exists a rational function R such that Q = P(R).

• In case of curves, R is a Möbius transformation, i. e. a linear rational function
R(s1) = a0+a1s1

b0+b1s1
with a0b1 − a1b0 6= 0.

• In case of surfaces, R is a Cremona transformation, i. e. a birational map of
the plane to itself, and hence by the Theorem of Castelnuovo-Noether a finite
composition of quadratic transformations and projective linear transformations
(c. f. [39, 43]).
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Definition 2.3.5. A point A on the corresponding curve C is called an algebraic
solution point if its coordinates have the form (y(x), y′(x)) for some y(x) ∈ K(x). If
furthermore y(x) ∈ K(x), A is called a rational solution point.

Finding an algebraic/rational general solution of F (x, y, y′) = 0 is reduced to
looking for a class of algebraic/rational solution points (y(x), y′(x)) which depend
on a parameter c.



Chapter 3

Algebraic general solutions of
first-order AODEs

This chapter is based on the author’s works in [41]. In this chapter we present a
procedure for determining an algebraic general solution of a first-order AODE. In
order to use the technique of rational parametrization, we add an additional as-
sumption to the initial differential equation, that the algebraic equation obtained
when we replace the derivation y′ by a new indeterminate defines a rational sur-
face. A first-order AODE satisfying this additional assumption is called surface-
parametrizable. The general schedule for determining an algebraic general solution
of a surface-parametrizable first-order AODE is as follows. We associate for each
surface-parametrizable first-order AODE a planar rational system, which is so called
the associated differential system. The key observation is that algebraic general
solutions of the initial differential equation can be determined faithfully from an al-
gebraic general solution of the associated differential system (see Section 3.1). This
step is inherited from the work by Ngô and Winkler in [29].

The problem of determining an algebraic general solution of a surface parame-
trizable first-order AODE is now reduced to the problem of computing an algebraic
general solution of a planar rational system. The latter problem is hard in general.
But in case a rational first integral is provided, or even only a degree bound for a
rational first integral is given, we propose an algorithm to determine an algebraic
general solution (see Section 3.2). Finally, if a surface-parametrizable first-order
AODE is given together with a degree bound for an algebraic general solution, we
can compute an algebraic general solution explicitly (see Section 3.3).

3.1 Associated Differential System

In this section, we construct for each surface-parametrizable first-order AODE a
planar rational system. Although the construction is as similar as the one described
in Ngô and Winkler [29], it is briefly summarized here for self-containedness. Several
facts relating to their algebraic general solutions are investigated.

Let us first give a formal definition for surface-parametrizable first-order AODE.

Definition 3.1.1. A first-order AODE F (x, y, y′) = 0 is called surface parame-
trizable if its corresponding surface, say S, in A2(K) defined by F (x, y, z) = 0 is
rational.

27
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In the other words, there is a rational map P : A2
K → S ⊂ A3

K defined by
P(s, t) := (χ1(s, t), χ2(s, t), χ3(s, t)) for some rational functions χ1, χ2, χ3 ∈ K(s, t)
such that F (P(s, t)) = 0, and P is invertible. Such P is called a proper parametri-
zation of the surface S. Algorithm for determining a parametrization of a rational
surface is investigated, for instance, there is one in [35]. During this section and so
on, we always assume that a surface parametrizable first-order AODE is equipped
with a proper parametrization P.

Now let us fix an algebraic general solution ξ = ξ(x) of the surface parametrizable
first-order AODE F (x, y, y′) = 0. Then F (x, ξ(x), ξ′(x)) = 0. Denote (s(x), t(x)) :=
P−1(x, ξ(x), ξ′(x)), a representation of the inverse of (x, ξ(x), ξ′(x)) via P. Since
P is proper, (s(x), t(x)) is a pair of algebraic functions satisfying P(s(x), t(x)) =
(x, ξ(x), ξ′(x)). Therefore{

χ1(s(x), t(x)) = x

χ′2(s(x), t(x)) = χ3(s(x), t(x))

Differentiating both sides of the first equation, and expanding the second one gives
us a linear system on s′(x) and t′(x).

s′(x) ∂
∂s
χ1(s(x), t(x)) + t′(x) ∂

∂t
χ1(s(x), t(x)) = 1

s′(x) ∂
∂s
χ2(s(x), t(x)) + t′(x) ∂

∂t
χ2(s(x), t(x)) = χ3(s(x), t(x))

Since P is a birational equivalent, the Jacobian matrix∂χ1
∂s

∂χ2
∂s

∂χ3
∂s

∂χ1
∂t

∂χ2
∂t

∂χ3
∂t


has generic rank 2. Without lost on general, we can always assume that the deter-
minant ∣∣∣∣∣∣∣

∂χ1
∂s

∂χ2
∂s

∂χ1
∂t

∂χ2
∂t

∣∣∣∣∣∣∣
is non-zero. Furthermore, we claim that g(s(x), t(x)) 6= 0. It will be asserted by the
following lemma.

Lemma 3.1.2. With notation as above. Then

∀R ∈ K(s, t), R(s(x), t(x)) = 0⇒ R = 0

Now s′(x) and t′(x) can be solved by Cramer’s rule from the linear system. Thus
(s(x), t(x)) is an algebraic solution of the planar rational system:

s′ =
χ3(s, t) ∂∂tχ1(s, t)− ∂

∂tχ2(s, t)
g(s, t)

t′ =
∂
∂sχ2(s, t)− χ3(s, t) ∂∂sχ1(s, t)

g(s, t)

(3.1)
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Definition 3.1.3. System (3.1) is called the associated differential system of the
differential equation F (x, y, y′) = 0 with respect to the proper parametrization P.

We summary here the result of the construction of the associated system above.

Theorem 3.1.4. Let F (x, y, y′) = 0 be a surface parametrizable first-order AODE
and consider its associated differential system (3.1) with respect to a given proper
parametrization P. If y = y(x) is an algebraic general solution of the differential
equation F (x, y, y′) = 0, then

(s(x), t(x)) := P−1(x, y(x), y′(x))

is an algebraic general solution of the associated system.

Proof. (s(x), t(x)) is an algebraic solution of the associated system as we established.
Lemma 3.1.2 asserts that it is in fact a general solution.

Theorem 3.1.5. Let F (x, y, y′) = 0 be a surface parametrizable first-order AODE
and consider its associated system (3.1) with respect to a given proper parametri-
zation P. If (s(x), t(x)) is an algebraic general solution of the associated system,
then

y(x) := χ2 (s (2x− χ1(s(x), t(x))) , t (2x− χ1(s(x), t(x))))

is an algebraic general solution of the differential equation F (x, y, y′) = 0.

Proof. As in the construction, s(x), t(x) must satisfies the following system:{
χ′1(s(x), t(x)) = 1
χ′2(s(x), t(x)) = χ3(s(x), t(x))

The first relation yields c := χ1(s(x), t(x)) − x is an arbitrary constant. Thus
we have 

χ1(s(x− c), t(x− c)) = x

χ2(s(x− c), t(x− c)) = y(x)
χ3(s(x− c), t(x− c)) = y′(x)

Therefore y(x) is an algebraic general solution of F (x, y, y′) = 0.
It remains to prove that y(x) is a general solution. To this end, let arbitrary

G ∈ K(x){y} such that G(y(x)) = 0. Since F is of order 1, prem(G,F ) ∈ K(x)[y, y′].
Let R ∈ K, y, y′] be the numerator of prem(G,F ). Then R(x, y(x), y′(x)) = 0. It
implies R(P(s(x − c), t(x − c))) = 0. Since c can be chosen arbitrary, we have
R(P(s(x), t(x))) = 0. Now, applying the lemma 3.1.2 yields R(P(s, t)) = 0. So that
R(x, y, z) = R(P(P−1(x, y, z))) = 0. It follows prem(G,F ) = 0. Hence y(x) is a
general solution.

The previous two theorems establish a one-to-one correspondence between alge-
braic general solutions of a paramatrizable first-order AODE and algebraic general
solutions of its associated system which is a planar rational system. Furthermore
the correspondence is formulated explicitly. Once an algebraic general solution of its
associated system is known, the corresponding algebraic general solution of the given
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surface parametrizable first-order AODE can be determined immediately. The prob-
lem of finding an algebraic general solution of paramatrizable first-order AODEs can
be reduced to the problem of determining an algebraic general solution of a planar
rational system.

Is is important to notice that the one-to-one correspondence holds not only for
the class of algebraic general solutions, but also for the general class of general
solutions (which do not necessary satisfy the property of being algebraic functions).
By just repeating the above process without assumption that the general solutions
are algebraic, we obtain:

Theorem 3.1.6. Let F (x, y, y′) = 0 be a surface parametrizable first-order AODE
and consider its associated system (3.1) with respect to a given proper parametriza-
tion P.

i. If y(x) is a general solution of the differential equation F (x, y, y′) = 0, then

(s(x), t(x)) := P−1(x, y(x), y′(x))

is a general solution of the associated system.

ii. If (s(x), t(x)) is a general solution of the associated system, then

y(x) := χ2(s(2x− χ1(s(x), t(x))), t(2x− χ1(s(x), t(x))))

is a general solution of the given differential equation.

3.2 Planar rational system and its algebraic general so-
lutions

This section is devoted to the problem of computing explicitly an algebraic general
solution of the planar rational system. Whereas the problem of finding explicit
algebraic solutions of planar rational systems has received only little attention in
the literature, the problem of finding implicit algebraic solutions, or in the other
words, finding irreducible invariant algebraic curves and rational first integral, has
been heavily studying. Some historical details and recent results which are helpful
for our proofs will be recalled. By combining these results and the idea for finding
algebraic general solutions of autonomous first-order AODEs of Aroca et. al. (see
[1]), we will present an algorithm for determining an algebraic general solution of a
planar rational system with a given rational first integral.

3.2.1 Planar rational system

Definition 3.2.1. A planar rational system is a differential system of order 1 of the
form: {

s′ = M(s, t)
t′ = N(s, t)

(3.2)

where M,N are rational functions on s, t with coefficients in K.
If M,N are polynomials, it is called a planar polynomial system.
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Given a planar rational system, we are interested in its algebraic solutions. The
key objects to investigate information about algebraic solutions of a planar rational
system are invariant algebraic curves and rational first integrals. Our plan is first
using known algorithms to find a rational first integral of the system, and then its
irreducible algebraic curves. Secondly, each irreducible algebraic curve will derive
the system into two autonomous first-order AODEs which can be solved explicitly
by the procedure of Aroca et. al. (see [1]).

Let us now explain why irreducible invariant algebraic curves are good can-
didates for implicit algebraic solutions. Assume that (s(x), t(x)) is an algebraic
solution of planar rational system (3.2), where s(x), t(x) are algebraic functions
whose coefficients lie in a differential field K extended from K by constants. Let
G(s, t) ∈ K[s, t] be an irreducible polynomial such that G(s(x), t(x)) = 0. Then we
also have d

dxG(s(x), t(x)) = 0. Expanding the left hand side gives

s′(x) ∂
∂s
G(s(x), t(x)) + t′(x) ∂

∂t
G(s(x), t(x)) = 0

Since (s(x), t(x)) is a solution of the system (3.2), we imply that

M(s(x), t(x)) ∂
∂s
G(s(x), t(x)) +N(s(x), t(x)) ∂

∂t
G(s(x), t(x)) = 0

Now let us rewrite M,N as reduced rational functions, say M1
M2
, N1
N2

respectively,
where M1,M2, N1, N2 are polynomials in s and t with coefficients in K and such
that gcd(M1,M2) = gcd(N1, N2) = 1. Then we obtain(

M1N2
∂G

∂s
+M2N1

∂G

∂t

)
(s(x), t(x)) = 0

If both s(x) and t(x) are constants, we call (s(x), t(x)) a constant solution. Constant
solutions of the system (3.2) are exact solutions of the algebraic system M1(s, t) =
N1(s, t) = 0. Thus it can be computed easily by solving the algebraic system. It is
clear that the system (3.2) has a constant solution as a general solution if and only
if M = N = 0. From now on, we only consider non-constant solutions, i.e. solution
(s(x), t(x)) such that not both coordinates are constants.

The last equality says that the polynomial function M1N2
∂G
∂s +M2N1

∂G
∂t is van-

ished along the irreducible curve defined by G(s, t) = 0. Therefore, by Hilbert
Nullstellensatz, M1N2

∂G
∂s + M2N1

∂G
∂t must be divisible by G. This fact leads us to

the definition of invariant algebraic curve.

Definition 3.2.2. An algebraic curve defined by G(s, t) = 0 is called an invariant
algebraic curve of the planar rational system{

s′ = M(s, t)
t′ = N(s, t)

(3.3)

where M,N are rational functions on s, t with coefficients in K, if

M1N2
∂G

∂s
+M2N1

∂G

∂t
= GH

for some H ∈ K[s, t]. In this case, H is called the cofactor of G.
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Definition 3.2.3. A differentiable function W (s, t) on two variables s, t with coef-
ficients in K is a first integral of the planar rational system{

s′ = M(s, t)
t′ = N(s, t)

(3.4)

where M,N are rational functions on s, t with coefficients in K, if it is not a constant
function and

M
∂G

∂s
+N

∂G

∂t
= 0

If furthermore W is a rational function, it is called a rational first integral.

It is not hard to see that the set of all first integrals of a planar rational system
together with constant functions has an algebraic structure as a field. The intersec-
tion of such field and K(s, t) is the set of all rational first integrals with constants
in K. If the planar differential system has a rational first integrals, there is a non-
composite reduced rational function, say F , such that every rational first integral
has the form u(F (s, t)) for some univariate rational function u with coefficients in
K (see [4]). In the other words, the set of all rational first integrals of the planar
rational system is either an empty set or K(F )\K, where K(F ) is the field extended
from K by F . Such the F is unique up to a composition with a homography. In
particular, instead of finding all rational first integrals, looking for a non-composite
one is enough.

On the other hand, the set of rational first integrals, and all invariant algebraic
curves of a planar rational system does not change if we multiply the right hand
side of the two differential equations of the system by the same non-zero rational
function in K(s, t). Therefore it is suffices to consider planar polynomial systems
for studying invariant algebraic curves and rational first integrals. Furthermore,
by multiplying the right hand side of the differential equations in the system (3.2)
by M2N2

gcd(M1N2,M2N1) , one can always assume that M,N are polynomials such that
gcd(M,N) = 1.

Problem of finding invariant algebraic curves and rational first integrals of a
planar polynomial system dates back from the work of Darboux in the 1870s and
Poincaré in the 1890s. Darboux showed that if a planar polynomial system has a
large enough number of invariant algebraic curves, then it has a rational first integral
(see [10]). Once a non-composite rational first integral is found, for instance P

Q which
is a reduced rational function, the algebraic curves defined by irreducible factors of
P − cQ are all but finitely many irreducible invariant algebraic curves of the planar
rational system (see [4]). In [32], Poincaré pointed out that in order to find a non-
composite rational first integral, it is sufficient to find an upper bound for the degree
of irreducible invariant algebraic curves. In 1979, Jouanolou proved that such upper
bound exists (see [22]). However there is still no effective way to determine such
bound in general. The problem of determining such a bound is called as Poincaré
problem which is a well-known difficult problem. Although Poincaré problem is still
open, it is already solved in several specific cases. Partial results can be found, for
instance, in [6, 8, 7, 32].

With a given degree bound, there are already some algorithms computing a
rational first integral and invariant algebraic curves whose degree does not exceed
the bound. In [33], Prelle and Singer proposed a procedure, which is usually called
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as Prelle-Singer procedure, for computing invariant algebraic curves and a rational
first integral of a planar polynomial system. They first compute invariant algebraic
curves with a given setting degree by using undeterminate coefficient method. The
degree bound is setting to be increasing one by one up to obtaining large enough
number of invariant algebraic curves. Once enough number of invariant algebraic
curves are found, there is a certain formula to determine a rational first integral.

Recently, Bostan et. al. presented an efficient algorithm for computing a non-
composite rational first integral with a degree bound of a planar polynomial system
(see [4]). The idea is based on the fact that the planar polynomial system (3.2) has
a rational first integral if and only if all power series solutions of the corresponding
differential equation

y′ = M(x, y)
N(x, y)

are algebraic. In this case, the irreducible annihilating polynomials of these power
series solutions lead to rational first integrals. Once a degree bound of the rational
first integral is fixed, only finitely many first coefficients of the power series solutions
are necessary. Also in the paper, the authors proposed an algorithm for computing
all irreducible invariant algebraic curves with a degree bound. The algorithm has
been implementing in Maple package RationalFirstIntegrals. Later, we will use their
package to determine a non-composite rational first integral of the associated system
of a given first-order AODE.

The following theorem is a classical result on relation between irreducible in-
variant algebraic curves and rational first integrals of a planar rational system. We
recall here for technique purpose. For further detail, we prefer to many classical
literatures about rational first integrals, for instance, see [33].

Theorem 3.2.4. There is a natural number N such that a given planar rational
system has a rational first integral if and only if the system has more than N irre-
ducible invariant algebraic curves. Furthermore, if W = P

Q is a reduced rational first
integral then every irreducible invariant algebraic curves is defined by an irreducible
factor of c1P − c2Q, where c1, c2 are arbitrary constants.

3.2.2 Algebraic general solutions of planar rational systems

As a preparation step for the next sections, we present in this section the formal
definition of an algebraic general solution of a planar rational system from differential
algebra context. Some first properties which will be used later are recalled.

Let us recall the planar rational system (3.2){
s′ = M(s, t)
t′ = N(s, t)

where M,N ∈ K(s, t) are rational functions. In order to give a formal definition for
a general solution of a planar rational system, we need to investigate a differential
prime ideal in K(x){s, t} constructed from the two differential equations of the
system.

Let us consider the differential polynomial ring K(x){s, t} equipped with the
order lex ranking ” < ” such that s < t. Rewrite M,N as reduced fractions M1

M2
, N1
N2

respectively and denote:
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M̃ := M2(s, t)s′ −M1(s, t)
Ñ := N2(s, t)t′ −N1(s, t)

Then the leader of M̃ and Ñ are s′ and t′ respectively which are of degree 1.
Their initials, and also the separant, are equal to M2(s, t) and N2(s, t). Therefore
{M,N} is an auto-reduced set of K(x){s, t}. Let denote

Σ := {M i
2N

j
2 | i, j ∈ N}

Then we have:

Proposition 3.2.5. The ideal I :=
(
[M̃, Ñ ] : Σ

)
⊂ K(x){s, t} is a prime differential

ideal.

Proof. Consider the homomorphism φ : K(x){s, t} → K(x)(s, t) defined by φ(s) = s,
φ(t) = t, φ(s′) = M(s, t) and φ(t′) = N(s, t). We claim that I = kerφ.

Since φ(s′ − M(s, t)) = φ(t′ − N(s, t)) = 0, I ⊆ kerφ. Conversely, let any
H ∈ kerφ. By using Ritt’s reduction, there are iM , iN ∈ N such that the differential
polynomial M iM

2 N iN
2 H − prem(H, {M̃, Ñ}) can be written as a linear combination

of M̃, Ñ and their derivatives with coefficients in k(x){s, t}. Therefore,

φ
(
M iM

2 N iN
2 H − prem(H, {M̃, Ñ})

)
= 0

Thus
φ
(
prem(H, {M̃, Ñ})

)
= M iM

2 N iN
2 φ(H) = 0

Moreover, prem(H, {M̃, Ñ}) must lie in K(x)[s, t] since it is reduced by M̃ and Ñ .
So that prem(H, {M̃, Ñ}) = 0. It implies H ∈ I.

We have proved the claim that I = kerφ. Thus the factor ring K(x){s, t}/I
is isomorphic with a subring of K(s, t), which is an integral domain. Hence, I is a
differential prime ideal.

Definition 3.2.6. With notations as above.

i. A zero of the set {s′ −M(s, t), t′ − N(s, t)} is called a solution of the planar
rational system (3.2).

ii. A generic zero of the ideal I is called a general solution of the planar rational
system (3.2).

Definition 3.2.7. Let (ξ1, ξ2) ∈ L2 be a solution of the planar rational system
(3.2), where L is a differential field extended from K(x). Denote by K the field of
constants of L.

i. The solution (ξ1, ξ2) is called an algebraic general solution if there are non-zero
polynomials G1, G2 ∈ K[x, y] such that G1(x, ξ1) = G2(x, ξ2) = 0.

ii. If furthermore degy G1 = degy G2 = 1, then (ξ1, ξ2) is called a rational solution.

iii. (ξ1, ξ2) is called an algebraic (resp. rational) general solution if it is a general
solution and is algebraic (resp. rational).
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The following lemma is an immediate consequence of Proposition 2.1.12.

Lemma 3.2.8. A solution (ξ1, ξ2) of the planar rational system (3.2) is a general
solution if and only if

∀H ∈ k(x){s, t}, H(ξ1, ξ2) = 0⇒ prem
(
H, {M̃, Ñ}

)
= 0

Similar to Proposition 2.2.5, a general solution of a planar rational system must
contain an arbitrary constant. It is stated as the following proposition:

Proposition 3.2.9. Assume (ξ1, ξ2) ∈ L2 is an algebraic general solution of a planar
rational system, where L is a differential field extended from K(x). Denote by K
the field of constants of L. Let G ∈ K[s, t] be an irreducible polynomial such that
G(ξ1, ξ2) = 0. Then at least one of the coefficients of G contains a constant which
is transcendental over K.

Proof. By contradiction, assume that G contains no such constant, then G ∈ K[s, t].
Since G is vanished at the general solution, G = prem

(
G, {M̃, Ñ}

)
= 0. It is a

contradiction.

3.2.3 Algorithm and Examples

Next we will consider the problem of finding an explicit algebraic general solution
of a planar rational system with a given irreducible invariant algebraic curve. The
following property is a motivation.

Proposition 3.2.10. If the parametriazable first-order AODE F (x, y, y′) = 0 has
an algebraic general solution, then its associated differential system with respect to
a proper parametrization has a rational first integral.

Proof. If the differential equation F (x, y, y′) = 0 has an algebraic general solution,
then so is its associated system. By applying proposition 3.2.9, the associated system
must have an irreducible invariant algebraic curve G(s, t) = 0 such that G is monic
and at least one of the coefficients of G contains a constant which is transcendental
over K. In the other words, the associated system has infinitely many irreducible
invariant algebraic curves. Thus it has a rational first integral.

Theorem 3.2.11. Assume that W = P
Q is a reduced rational first integral of the

planar rational system 
s′ = M1(s, t)

M2(s, t)

t′ = N1(s, t)
N2(s, t)

where M1,M2, N1, N2 ∈ K[s, t], and that (s(x), t(x)) is an algebraic solution in
which not both s(x) and t(x) are constants. Then (s(x), t(x)) is an algebraic general
solution if and only if W (s(x), t(x)) is a constant which is transcendental over K.
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Proof. Assume that (s(x), t(x)) is an algebraic general solution of the planar rational
system, then

W ′(s(x), t(x)) = s′(x)∂W
∂s

(s(x), t(x)) + t′(x)∂W
∂t

(s(x), t(x))

=
(
M
∂W

∂s
+N

∂W

∂t

)
(s(x), t(x)) = 0

Therefore W (s(x), t(x)) = c is an arbitrary constant. If c ∈ K, then P −
cQ ∈ K[s, t] has an irreducible factor in K[s, t] vanished at (s(x), t(x)). It can
not happen duo to proposition 3.2.9. Hence c /∈ K. Since K is algebraically closed,
c is transcendental over K.

Conversely, assume that (s(x), t(x)) is a non-constant algebraic solution of the
given planar rational system such that W (s(x), t(x)) = c, where c is a constant being
transcendental over K. Let G be an irreducible polynomial such that G(s(x), t(x)) =
0. Since P−cQ is also vanished a long (s(x), t(x)), G must be an irreducible factor of
P −cQ. As in [36, Ch. 3, Thm. 3.6], G has the form A+αB for some A,B ∈ K[s, t],
B 6= 0, and α ∈ K(c) which is still transcendental over K.

Now let H ∈ K(x){s, t} be a differential polynomial such that H(s(x), t(x)) = 0.
We denote H̃ := prem(H, {M̃, Ñ}) where M̃ := M2s

′−M1 and Ñ := N2t
′−N1. To

finish the proof, we need to show that H̃ = 0. It is clear that H̃ ∈ K(x){s, t} and
satisfies H̃(s(x), t(x)) = 0. Let consider both G = A+αB and H̃ as polynomials in
s, t with coefficient in K(α, x). Then they are both vanished along (s(x), t(x)), and
G is, again, irreducible. Thus H̃ must be divisible by G. It is only possible in the
case H̃ = 0, because α is transcendental not only on K but also on K(x). Hence
(s(x), t(x)) is a general solution.

The following corollary is an immediately consequence of the above theorem. It
help us to split a planar rational system into two autonomous first-order AODEs,
which lead us to the algorithm for determining explicit algebraic general solution of
a planar rational system.

Corollary 3.2.12. Assume that W = P
Q is a reduced rational first integral of the

system 
s′ = M1(s, t)

M2(s, t)

t′ = N1(s, t)
N2(s, t)

where M1,M2, N1, N2 ∈ K[s, t] and that (s(x), t(x)) is an algebraic general solution.
Then

i. s(x) is an algebraic general solution over K(c) of the autonomous first-order
AODE F1(s′, s) = 0, where

F1 := Rest(P − cQ,M2s
′ −M1)

ii. t(x) is an algebraic general solution over K(c) of the autonomous first-order
AODE F2(s′, s) = 0, where

F2 := Ress(P − cQ,N2s
′ −N1)
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Fortunately the problem of finding algebraic general solutions of autonomous
first-order AODEs is investigated. In [1], Aroca et. al. proposed a criteria to decide
whether an autonomous first-order AODE having an algebraic general solution and
compute such solution in affirmative case. Combining the previous theorem and
the corollary, together with the result of Aroca et. al., an algorithm for computing
explicit algebraic general solutions of planar rational systems with a given rational
first integral will be proposed next. For determining a rational first integral, one can
use the package RationalFirstIntegrals which have been implementing by A. Bostan
et. al. [4].

Algorithm 1 Algebraic general solutions of a planar rational system
Require: The planar rational system

s′ = M1(s, t)
M2(s, t)

t′ = N1(s, t)
N2(s, t)

and W = P
Q a reduced rational first integral.

Ensure: An algebraic general solution (s(x), t(x)).
1: If M = 0, then s(x) = c and t(x) is an algebraic general solution of t′ = N(c, t)
2: If N = 0, then t(x) = c and s(x) is an algebraic general solution of s′ = M(s, c1)
3: Compute F1 := Rest(P − c1Q,M2(s, t)s′ −M1(s, t))
4: S := the set of all irreducible factors of F1 in K(c)[s′, s] containing s′
5: for all H ∈ S do
6: If H(s′, s) = 0 has no algebraic solution, then return ”No algebraic general

solution”
7: s(x) := an algebraic solution of H(s′, s) = 0
8: t(x) := a solution of the equation W (s(x), t) = c1
9: If s′(x) − M(s(x), t(x)) = t′(x) − N(s(x), t(x)) = 0, then return ”(s(x +
c2), t(x+ c2))”

10: end for
11: Return ”No algebraic general solution”

Example 3.2.13. Consider the palanar rational system
s′ = t

t′ = t2

2s
(3.5)

By multiplying the right hand sides of the two differential equations of the system
with 2s

t , we obtain a new system which shares the same set of rational first integrals
and invariant algebraic curves: {

s′ = 2s
t′ = t

(3.6)

Using the package RationalFirstIntegrals of A. Bostan et. al. (see [4]), we
can evaluate a non-composite rational first integral of the last system, for instance
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W = −64s
100s−t2 . W is also a non-composite rational first integral of the system (3.5).

Now we can use the algorithm 1 to find an algebraic general solution of the system
(3.5). First we set

F1(s, s′) := Rest(s′ − t,−64s− c1(100s− t2)) = (64 + 100c1)s− c1s
′

which is an irreducible polynomial in k(c1)[s, s′]. Solving the differential equation
F1(s, s′) = 0 (by using Aroca’s et. al. algorithm, or just by integrating) yields an
algebraic solution:

s(x) = 1
c1

(16 + 25c1)x2

Next, we find t(x) by solving the algebraic equation W (s(x), t) = c1. It gives two
candidates 2

c1
(16+25c1)x and − 2

c1
(16+25c1)x. By substituting them to the system

(3.5), we see that

(s(x), t(x)) :=
( 1
c1

(16 + 25c1)x2,
2
c1

(16 + 25c1)x
)

is an algebraic solution. Since the system is autonomous, (s(x+ c2), t(x+ c2)) is an
algebraic general solution.

Example 3.2.14. Consider the planar rational system
s′ = t2

2

t′ = t3

2s2 − 1

(3.7)

A rational first integral, for instance W = s2−1
t4 , can be found by a process similar

to the one in the previous example. Let

F1(s, r) := Rest
(
sr − t2, s2 − 1− ct4

)
=
(
cs2r2 − s2 + 1

)2

By solving the autonomous differential equation F (s, s′) = 0 we obtain an algebraic
solution, for instance,

s(x) = ±

√
x2

c
+ 1

Next we find t(x) by solving the algebraic equation W (s(x), t) = c. Therefore,
t(x) = ±

√
x
c . Finally, ±

√
(x+ d)2

c
+ 1,±

√
x+ d

c


are algebraic general solutions of the given planar rational system, where c and d
are arbitrary constants.
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3.3 Algebraic general solutions with degree bound

In this section, we will combine previous results in this chapter to study further the
problem of finding an algebraic general solution of a surface parametrizable first-
order AODEs. In particular, given a surface parametrizable first-order AODE and
a positive integer n, we will present an algorithm for finding an algebraic general
solution whose irreducible annihilating polynomial has total degree less than or equal
to n.

Consider the surface parametrizable first-order AODE F (x, y, y′) = 0 with a
given proper parametrization

P(s, t) := (χ1(s, t), χ2(s, t), χ3(s, t))

for some χ1, χ2, χ3 ∈ K(s, t). Assume that y = y(x) ∈ K(x) is an algebraic general
solution of the differential equation F (x, y, y′) = 0, where the field K is extended
from K by transcendence constants. Let Y (x, y) ∈ K[x, y] be an irreducible anni-
hilating polynomial of y(x). We sometimes call Y (x, y) = 0 an algebraic general
solution instead of y(x).

We denote deg Y, degx Y as the total degree of Y (x, y) and the degree of x in Y ,
respectively.

Theorem 3.3.1. With notation as above, let (σ1(x, y, z), σ2(x, y, z)) := P−1(x, y, z)
be the inverse map of P. If the differential equation F (x, y, y′) = 0 has an algebraic
general solution Y (x, y) = 0 with deg Y ≤ n, then the associated system has a
rational first integral whose total degree is less than or equal to

m := n3
(
degx σ1 + degy σ1 + degx σ2 + degy σ2

)
+ 2n2 (degz σ1 + degz σ2) .

Proof. Denote s(x) := σ1(x, y(x), y′(x)) and t(x) := σ2(x, y(x), y′(x)), then the pair
(s(x), t(x)) is an algebraic general solution of the associated system. Let G(s, t) ∈
K[s, t] be an irreducible polynomial such that G(s(x), t(x)) = 0. G(s, t) = 0 is in fact
an irreducible invariant algebraic curve of the associated system with coefficients in
K. We will first claim that degG ≤ m.

Denote
Q1(x, y) := σ1

(
x, y,−

∂
∂xY (x, y)
∂
∂yY (x, y)

)
and

Q2(x, y) := σ2

(
x, y,−

∂
∂xY (x, y)
∂
∂yY (x, y)

)
which are rational functions in K(x, y). Then s(x) = Q1(x, y(x)) and t(x) =
Q2(x, y(x)). The degree of x and y on Q1 and Q2 can be estimated in terms of
σ1, σ2 and Y as follow:

degxQ1 ≤ n.degx σ1 + degz σ1 (3.8)

degy Q1 ≤ n.degy σ1 + degz σ1 (3.9)

degxQ2 ≤ n.degx σ2 + degz σ2 (3.10)

degy Q2 ≤ n.degy σ2 + degz σ2 (3.11)
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Now in order to get annihilating polynomials of s(x), t(x), using the resultant is a
fast way. In particular, the polynomials

R1(s, x) := Resy(numer(Q1)− s.denom(Q1), Y (x, y))
R2(s, x) := Resy(numer(Q2)− t.denom(Q2), Y (x, y))

are annihilating polynomials of s(x) and t(x) respectively, where numer(Q1) is
the numerator of Q1 and denom(Q1) the denominator one. Therefore H(s, t) :=
Resx(R1(s, x), R2(t, x)) is a polynomial in K[s, t] satisfying H(s(x), t(x)) = 0. It
implies that G must be divide H. From the definition of the resultant, one can
determine immediately an upper bound for the total degree of H, and thus of G. In
fact,

degsH ≤ degsR1. degxR2 ≤ N2(degxQ2 + degy Q2)
Equivalently, we also have

degtH ≤ N2(degxQ1 + degy Q1)

Combining with (3.8), (3.9),(3.10) and (3.11) yields degG ≤ m.
Moreover, since (s(x), t(x)) is an algebraic general solution, G(s, t = 0) can be

seen as the class of all irreducible invariant algebraic curves of the associated system.
Therefore its degree bound is also a degree bound for the non-composite rational
first integral.

As an immediate consequence, the theorem leads us to the following algorithm for
finding an algebraic general solution Y (x, y) = 0 with deg Y ≤ n of the differential
equation F (x, y, y′) = 0.
Example 3.3.2. Consider the differential equation

y′3 − 4xyy′ + 8y2 = 0 (3.12)

The solution surface is rational, because it admits the proper parametrization

P(s, t) :=
(
t3 + 8s2

4st , s, t

)
The inverse map of the parametrization is (σ1(x, y, z), σ2(x, y, z)) := (y, z). The
associated system of the given differential equation with respect to P is

s′ = t

t′ = t2

2s
If we look for an algebraic general solution Y (x, y) = 0 with deg Y ≤ 2, then

we need to find a rational first integral of total degree at most 16 of the associ-
ated system. As we have seen in previous example, the associated system has the
rational first integral W = 64s

100s−t2 of total degree 2, and the algebraic general so-
lution (s(x), t(x)) :=

(
1
c1

(16 + 25c1)(x+ c2)2, 2
c1

(16 + 25c1)(x+ c2)
)
. By apply the

theorem 3.1.5, we have

y(x) = 1
c3

1
(c1x− 25c1 − 16)(16c1x+ 25c2

1x− 625c2
1 − 800c1 − 256)

is an algebraic general solution of the given differential equation.
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Algorithm 2 Algebraic general solutions of a first-order AODE with degree bound
Require: Differential equation F (x, y, y′) = 0 with a proper parametrization P,

and a positive integer n.
Ensure: An algebraic general solution Y (x, y) = 0 such that deg Y ≤ n.

1: (σ1, σ2) := P−1

2: Determine a degree bound for a rational first integral for the associated differ-
ential system

m := n3
(
degx σ1 + degy σ1 + degx σ2 + degy σ2

)
+ 2n2 (degz σ1 + degz σ2)

3: Determine the associated differential system {s′ = M, t′ = N}, where

M(s, t) :=
χ3(s, t) ∂∂tχ1(s, t)− ∂

∂tχ2(s, t)
∂
∂sχ1(s, t) ∂∂tχ21(s, t)− ∂

∂tχ1(s, t) ∂∂sχ2(s, t)

N(s, t) :=
∂
∂sχ2(s, t)− χ3(s, t) ∂∂sχ1(s, t)

∂
∂sχ1(s, t) ∂∂tχ21(s, t)− ∂

∂tχ1(s, t) ∂∂sχ2(s, t)

4: If the associated differential system has no rational first integral of total degree
at most m, then return ”No algebraic general solution of total degree at most
n”. Otherwise, go to next step.

5: W := a rational first integral of degree at most m of the system, and solving
the system by using the algorithm 1

6: If the system has no algebraic general solution, then return ”No algebraic general
solution of total degree at most n”

7: (s(x), t(x)) := an algebraic general solution of the system
8: Compute y(x) := χ2 (s(2x− χ1(s(x), t(x))), t(2x− χ1(s(x), t(x))))
9: Y (x, y) := an irreducible annihilating polynomial of y(x)

10: If deg Y > n, then return ”No algebraic general solution of total order at most
n”

11: Return ”Y (x, y) = 0”.
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Chapter 4

Rational general solutions of
first-order AODEs

This chapter is devoted for studying rational general solutions of first-order AODEs.
A general solution contains an arbitrary constant. A rational general solution in
which the constant appears rationally is called strong. In this chapter, we present
a full algorithm for determining a strong rational general solution for a first-order
AODE.

In order to obtain the algorithm, we also approach the differential equation from
a geometric point of view. However, different from the previous chapter, we are going
to view first-order AODEs as algebraic curves over the field of algebraic functions.
We intrinsically use parametrization of algebraic curves to transform the differential
equation to a first-order first-degree AODE (see Section 4.3). Parametrizations to be
used must be ”good” enough to make sure that every coefficient appears during the
transformation is a rational function. In order to do that, we study some properties
of optimal parametrizations for rational curves over the field of rational functions
(see Section 4.2). Among first-order first-degree AODEs, only Riccati and linear
differential equations potentially admit a rational general solution. This leads us to
a decision algorithm for determining a strong rational general solution of a first-order
AODE (see Section 4.5). Further detail can be found in [42, 16].

4.1 Strong rational general solution

In this section, we give a necessary condition for a first-order AODE to admit a ratio-
nal general solution of the form y(x, c) ∈ K(x, c) \K(x), where c is a transcendental
constant. Consider a first-order AODE, F (x, y, y′) = 0, for an irreducible polyno-
mial F . We view the equation to be an algebraic one by replacing the derivative by
an independent variable, i. e. F (x, y, z) = 0.

Definition 4.1.1. The algebraic curve CF over K(x) defined by F (x, y, z) = 0 is
called the corresponding curve of the differential equation F (x, y, y′) = 0.

The following theorem is a slightly different version of Theorem 2.4 in [9]. Note,
that we assume irreducibility in K[x, y, z].

Theorem 4.1.2. Let F be an irreducible polynomial in K[x, y, z] \ K[x, y]. If the
differential equation F (x, y, y′) = 0 has a rational solution of the form y(x, c) ∈

43
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K(x, c) \K(x) for an arbitrary constant c, then its corresponding curve in A2(K(x))
is rational, and admits a parametrization with coefficients in K(x).

Proof. First, we need to prove that F is still irreducible as a polynomial in K(x)[y, z].
In order to do that, let us consider the ideal

I := {H ∈ K(x)[y, z] |H(x, y(x, c), y′(x, c)) = 0}

in the polynomial ring K(x)[y, z]. We claim that I is a principle prime ideal.
Consider the ring homomorphism φ : K(x)[y, z] → K(x)(c), defined by φ(H) :=
H(x, y(x, c), y′(x, c)) for H ∈ K(x)[y, z]. The kernel of φ is exactly I. There-
fore φ induces an embedding from the quotient ring K(x)[y, z]/I to K(x)(c). Thus
K(x)[y, z]/I is a domain, and then I is a prime ideal. Since K(x)[y, z] is a noetherian
unique factorization domain, we know from [18, Prop. 1.12A, p. 7] that every prime
ideal of height one is principle. Hence, I is principle.

Next we prove that I can be generated by an irreducible polynomial G in
K[x, y, z]. We construct such a generator by the method of Gröbner bases. Let
y(x, c) = P1(x,c)

P2(x,c) and y′(x, c) = Q1(x,c)
Q2(x,c) be in reduced form, i. e. P1, P2, Q1, Q2 ∈ K[x, c]

such that gcd(P1, P2) = gcd(Q1, Q2) = 1. From the definition of the ideal I, we know
by implizitation that

I = 〈yP2 − P1, zQ2 −Q1, 1− P2t1, 1−Q2t2〉 ∩K(x)[y, z] .

In which the first component of the right hand side is an ideal in K(x)[c, t1, t2, y, z]
generated by the polynomials yP2 − P1, zQ2 − Q1, 1 − P2t2 and 1 − Q2t2. We
fix the lexicographic ordering on K(x)[c, t1, t2, y, z] with c > t1 > t2 > y > z.
Using this ordering we compute a reduced Gröbner basis of I by first computing
a reduced Gröbner basis for the first component of the right hand side, and then
eliminating all elements containing c, t1, t2. Buchberger’s algorithm and reduction
of the obtained basis yields a list of polynomials in the variables c, t1, t2, y, z with
coefficients in K(x). Therefore, after eliminating polynomials containing c, t1, t2, we
obtain a reduced Gröbner basis of I which contains only polynomials in K(x)[y, z].
Since I is principle, the reduced Gröbner basis of I contains only one element, say
G1 ∈ K(x)[y, z]. Moreover, since I is a prime ideal, G1 must be irreducible over
K(x)[y, z] and hence also in K(x)[y, z]. Let G ∈ K[x, y, z] such that G1 = a(x)

b(x)G for
some a(x), b(x) ∈ K[x] and G is primitive over K[x]. Hence, G is irreducible over
K(x)[y, z] (since G1 is irreducible). Then we have I = 〈G1〉 = 〈G〉 over K(x)[y, z].
Therefore, G is irreducible over K(x)[y, z].

Since F is an irreducible element in the ideal I, F differs from G by multiplication
with a non-zero constant factor in K. Therefore, F is also irreducible over K(x)[y, z].

By now, the corresponding curve CF is irreducible. Since F (x, y(x, c), y′(x, c)) =
0, CF can be parametrized by a pair of rational functions P(t) := (y(x, t), ∂∂xy(x, t)).
Hence C is rational.

Theorem 4.1.2 motivates the following definitions.

Definition 4.1.3. The first-order AODE, F (x, y, y′) = 0, is called parametrizable
if its corresponding curve is rational.
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A parametrizable first-order AODE is surface parametrizable. But the converse
direction is not always true. In fact, we will see in Section 4.2 that if a first-order
AODE is parametrizable, then its corresponding curve can be parametrized by a pair
(p1(x, t), p2(x, t)) of rational functions in x and t. In this case, (x, p1(x, t), p2(x, t))
is a rational parametrization for the corresponding surface. However, it is easy to
check that the differential equation

y′2 − y3 − x = 0

is surface parametrizable but not parametrizable.
All differential equations of the form y′F1(x, y) = F0(x, y), where F0, F1 ∈

K[x, y], are parametrizable. As a consequence, we might also say that all quasi-
linear differential equations of the form y′ = F0(x,y)

F1(x,y) are parametrizable.
Note, that almost all of the first-order AODEs listed in the collection of Kamke

[23] are parametrizable. In fact 89 percent are parametrizable AODEs. The re-
maining ones consist of two classes. One part contains the reducible AODEs, hence,
parametrizability of the factors can be considered. Around one half of the reducible
AODEs have parametrizable factors. The other part consists of AODEs or which
the corresponding curve has genus greater than 0.

The class of first-order AODEs covers around 64 percent of the entire collection
of first-order ODEs in Kamke. Some of the remaining ODEs contain arbitrary
functions. For certain choices of these functions, the ODEs might be algebraic. For
further details on statistical investigations of Kamke’s list we refer to [16].

A rational general solution of a first-order AODE is not necessary of the form
y(x, c) ∈ K(x, c) \ K(x) for some transcendental constant c. However, if the y(x, c)
is a solution of a first-order AODE, then it is a general solution in the sense of Ritt.
In fact, let assume that H ∈ K(x){y} be an arbitrary differential polynomial such
that H(y(x, c)) = 0, and that G := prem(H,F ). Then G ∈ K(x)[y, y′]. From the
definition of pseudo differential remainder, we know that there are natural numbers
m,n such that SmF InFG − H is a linear combination of F and its derivatives with
coefficients in K(x){y}, where SF and IF are separant and initial of F respectively.
SF and IF are not vanished at y = y(x, c). Otherwise, as we have seen in the proof
of Theorem 4.1.2, that SF and IF are different from F by multiplying a rational
function in K(x), which is not possible. Therefore G is vanished at y = y(x, c). It
implies that G is different from F by multiplying a rational function in K(x). This
implies G = 0. Hence y(x, c) is a general solution.

Definition 4.1.4. A solution y of the differential equation F (x, y, y′) = 0 is called
a strong rational general solution if y = y(x, c) ∈ K(x, c) \ K(x), where c is a
transcendental constant over K(x).

Theorem 4.1.2 is not true if the given rational general solution is not strong. For
instance, the differential equation

x3y′3 − (3x2y − 1)y′2 + 3xy2y′ − y3 + 1 = 0

has a rational general solution

y(x) = cx+ (c2 + 1)
1
3 ,
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which is not strong. The corresponding curve has genus 1. Therefore, the differential
equation has no strong rational general solution. However, as we will see later, if
a parametrizable first-order AODE has a rational general solution, then it has a
strong rational general solution.

4.2 Optimal parametrization of rational curves

We have seen that the corresponding curve of a first-order AODE having a strong
rational general solution is rational. Moreover, by Theorem 4.1.2 the correspond-
ing curve admits a parametrization with coefficients in K(x). In case we have a
parametrization with coefficients in K(x) we can decide the existence of a strong
rational general solution and compute it. Indeed, as we show in this section, such a
parametrizations always exists.

Optimal parametrization is a key notion to answer the question. Several algo-
rithms for determining an optimal parametrization of a rational curve were provided.
In [38], Sendra, Winkler and Pérez-Dı́az proposed an algorithm for computing an
optimal parametrization of a rational curve over the field Q of rational numbers.
Similar result for the class of rational curves over the field Q(x) of rational functions
is presented in [19]. From a different method, Beck and Schicho studied the optimal
parametrization problem for rational curves over perfect fields [2]. Since K(x) is a
perfect field, the algorithm of Beck and Schicho is applicable over K(x). Below, we
follows the idea by Hilgarter and Winkler [19] to describe the field of an optimal
parametrization of a rational curve over K(x).

Let us fix a rational curve C in A2(K(x)) defined by G(x, y, z) = 0 for some
irreducible polynomial G ∈ K(x)[y, z]. As a consequence of Hilbert-Hurwitz theorem
[38, Ch. 5, p. 152], C can be rationally transformed down to a line or a conic over
K(x), depending on whether the total degree of G is odd or even, respectively. The
transformation was described in [38] by using the notion of adjoint curves. The
line is always parametrizable over K(x). To parametrize the conic, it is sufficient to
search for a K(x)-rational point on it.

In the following we show, along the lines of [19, 38], that indeed there always
exists such a K(x)-rational point. Let us consider the projective conic E ∈ P2(K(x))
defined by G(y, z, w) = 0, where

G(y, z, w) := A1y
2 +A2yz +A3z

2 +A4yw +A5zw +A6w
2

is a polynomial in K[x][y, z, w] such that (A1, A2, A3) 6= (0, 0, 0). Our next goal is
to determine a K(x)−rational point of E .

Without loss of generality, we may assume that A1 6= 0. Otherwise, we just swap
y with z or w. Then G can be written as

G(y, z, w) = A1

(
y + A2

2A1
z + A4

2A1
w

)2
+
(

4A1A3 −A2
2

4A1

)
z2+

+
(2A1A5 −A2A4

2A1

)
zw +

(
4A1A6 −A2

4
4A1

)
w2



4.2. OPTIMAL PARAMETRIZATION OF RATIONAL CURVES 47

If 4A1A3 − A2
2 = 0, we see immediately that G

(
A2
2A1

,−1, 0
)

= 0. Therefore(
A2
2A1

,−1, 0
)
∈ P2(K(x)) is a K(x)−rational point of E . In general, if 4A1A3−A2

2 = 0
or 4A1A6 − A2

4 = 0 or 4A3A6 − A2
5 = 0, the conic E is called a parabola. However,

the condition for a conic to be a parabola does not invariant under linear projective
transformations. In other words, a parabola can be transformed to a conic which is
not a parabola by using a suitable linear projective map.

Let us assume that 4A1A3 −A2
2 6= 0. We rewrite G as follow:

G(y, z, w) = A1

(
y + A2

2A1
z + A4

2A1
w

)2
+A2

(
z + 2A1A5 −A2A4

4A1A3 −A2
2
· w
)2

+A3w
2

where

A1 = A1

A2 = 4A1A3 −A2
2

4A1

A3 = 4A1A6 −A2
4

4A1
− (2A1A5 −A2A4)2

4A1
(
4A1A3 −A2

2
)

Therefore, by using the linear transformationyz
w

 =

1 A2
A1

A4
A1

0 1 2A1A5−A2A4
4A1A3−A2

2
0 0 1

 ·
yz
w


the conic E can be transformed to a projective conic which is defined by

A1y
2 +A2z

2 +A3w
2 = 0

Moreover, by multiplying both side of the equation by the common denominator,
we may assume that A1, A2, A3 are polynomials.

Next, let A1A3 = AP 2 and A2A3 = BQ2 for some A,B, P,Q ∈ K[x] such that
A and B are square-free polynomials. We transform the previous conic one more
time by using the following linear transformation:YZ

W

 =

P 0 0
0 Q 0
0 0 A3

√
−1

 ·
yz
w


The obtained conic is the one defined by AY 2+BZ2−W 2 = 0. By abuse of notation,
we rename this conic by E . Note that, the above transformations are bijective if
A3 6= 0 and easy to computer the inverse maps. (The case when A3 = 0 is trivial.)

Proposition 4.2.1. For every square-free polynomials A,B ∈ K[x], the projective
conic defined by AY 2 +BZ2 −W 2 = 0 always has a K(x)−rational point.

Before giving a proof for this proposition, we need the following lemma.

Lemma 4.2.2. Let A,B be polynomials in K[x] such that A is square-free and
degA ≥ degB ≥ 1. Then there exists a, b,m ∈ K[x] such that a is square-free,
deg a < degA, and b2 −B = am2A.
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Proof. Denote by n the degree of A and let x1, . . . , xn ∈ K be roots of A. There exists
a polynomial b ∈ K[x] of degree at most n − 1 such that b(xi) =

√
B(xi) for every

i = 1, . . . , n, where
√
B(xi) is a square root of B(xi). We see that B(x) ≡ b(x)2

mod (x − xi) for every i = 1, . . . , n. Since A is square-free, Chinese Remainder
Theorem yields B(x) ≡ b(x)2 mod A(x).

Now let a,m ∈ K[x] such that a is square-free and b2−B
A = a.m2. Note that such

a pair (a,m) is always exist. It remains to prove that deg a < degA. Indeed, we
have

deg a = deg(b2 −B)− deg(Am2)
≤ deg(b2 −B)− degA
≤ max{2(degA− 1), degB} − degA
< degA .

From the proof, we see that deg b ≤ degA−1. This fact leads us to an algorithmic
way to determine the triple (a, b,m) by using indeterminate coefficient method. In
particular, we first set b a polynomial of degree degA − 1 in x with indeterminate
coefficients. The remainder of the division b2 − B by A can be computed by using
Euclidean algorithm. Since A divides b2 −B, the remainder must be equal to zero.
This yields an algebraic system on the indeterminate coefficients. By solving the
obtained algebraic system, we can find all possible choices for b, and hence for a and
m.

Proof of Proposition 4.2.1. This proof follows the lines of [19].
Let A,B ∈ K[x] be square-free polynomials, and consider the projective conic

E defined by AY 2 + BZ2 −W 2 = 0. Denote d(E) := min(degA,degB). We prove
the existence of a K(x)−rational point on E by induction on d(E). In the induction
base case, i. e. d(E) = 0, for instance degA = 0, then (1 : 0 :

√
A) ∈ P2(K(x)) is a

K(x)−rational point of the conic.
Let m ≥ 1 be an arbitrary natural number, and assume that for every projective

conic Ẽ defined by ÃY 2 + B̃Z2 −W 2 = 0 for some square-free polynomials Ã, B̃ ∈
K[x], if d(Ẽ) < m then Ẽ admits a K(x)−rational point. We need to prove that if
d(E) = m, then E also admits a K(x)−rational point.

In case d(E) = m, we process as follows. We may assume further that degA ≥
degB = m, otherwise we just swap Y and Z. By Lemma 4.2.2, there exists
A1, b,m ∈ K[x] such that A1 is square-free, degA1 < degA, and b2 − B = A1m

2A.
We transform the coordinate system (Y,Z,W ) to the new one (Y , Z,W ) by the
linear transformation YZ

W

 =

Am 0 0
0 b 1
0 B b


YZ
W

 .
Then we see that

A1Y
2 +BZ

2 −W 2 = (b2 −B)(AY 2 +BZ2 −W 2) .
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Since B is square-free, b2−B 6= 0. Thus the conic E has a K(x)−rational point if and
only if the projective conic E1 defined by A1Y

2 +BZ2−W 2 = 0 has a K(x)−rational
point.

If degA1 < degB, then d(E1) = degA1 < degB = m. Therefore E1 satisfies the
induction hypothesis. This show that E1 admits a K(x)−rational point. Then so is
E .

In case degA1 ≥ degB, we can repeat the above process recursively until we
get a projective conic Ek defined by AkY

2 + BZ2 −W 2 = 0, where Ak is square-
free and degAk < degB. Note that, the polynomial B does not change via these
transformations. At this step we have d(Ek) = degAk < degB = m. In other words,
Ek satisfies the induction hypothesis. Therefore Ek contains a K(x)−rational point.
Then so is E .

The proof is constructive. We now conclude the above discussion by the following
theorem.

Theorem 4.2.3. A rational curve defined over K(x), i. e. a curve which can be
parametrized over K(x), can actually be parametrized over K(x). Therefore optimal
parametrizations of a rational curve over K(x) always have coefficients in K(x).

Furthermore, an algorithm for determining such an optimal parametrization can
be provided by following the process of Hillgarter and Winkler [19]. We summarize
the discussion by a short description for the algorithm.

Algorithm 3 OptimalPara (Optimal Parametrization)
Require: A rational curve C over K(x)
Ensure: An optimal parametrization for C

1: Determine a birational transformation, say G, to transform the curve down to a
conic, say E , or a line by algorithm derived from the theorem of Hilbert-Hurwitz
(see Theorem 5.8 and Algorithm HLBERT-HURWITZ in [38]). If it is a line, go
to step 2. Otherwise, go to step 3.

2: Determine an optimal parametrization for the line, say P(t), and then return
G−1(P(t)).

3: Linearly transform the conic E to a projective conic of the form AY 2 +BZ2 −
W 2 = 0 for some A,B ∈ K[x] square-free polynomials.

4: Construct a K(x)−rational point for the latter conic as the method described
in this section.

5: Determine the corresponding K(x)−rational point point in E , say M .
6: Determine a parametrization, say P(t), for E by using the point M (see Algo-

rithm CONIC-PARAMETRIZATION [38]).
7: Return G−1(P(t))

4.3 Associated differential equation

In this section, we only work with the class of parametrizable first-order AODEs.
Based on optimal parametrizations of the corresponding curves, we construct for
each parametrizable first-order AODE an associated differential equation, which is a
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quasi-linear ordinary differential equation. Several facts about connections between
rational general solutions of a parametrizable first-order AODE and its associated
differential equation will be presented. The problem which remains is looking for
rational general solutions of quasi-linear differential equations. This problem is
discussed at the end of this section.

Consider a parametrizable first-order AODE F (x, y, y′) = 0 and assume that an
optimal parametrization P = p1, p2 ∈ (K(x)(t))2 of the corresponding curve is given,
where we write pi(t) = pi(x, t) to indicate the dependence on x. Let y(x) ∈ K(x) be
an algebraic solution. Then the pair of two algebraic functions (y(x), y′(x)) can be
seen as an algebraic solution point on the corresponding curve C. Two cases arise.

(i) (y(x), y′(x)) /∈ im(P), where im(P) is the image of P. Then (y(x), y′(x)) can
be determined from the finite set C \ im(P).

(ii) (y(x), y′(x)) = P(ω(x)) for some ω(x) ∈ K(x). In this case we identify the
algebraic function ω(x) with a point on the affine line A1(K(x)).

Let us take a look at the algebraic function ω(x). It satisfies the system{
p1(x, ω(x)) = y(x) ,
p2(x, ω(x)) = y′(x) .

Therefore,
d

dx
p1(x, ω(x)) = p2(x, ω(x)) .

By expanding the left hand side, we have

ω′(x) · ∂p1
∂t

(x, ω(x)) + ∂p1
∂x

(x, ω(x)) = p2(x, ω(x))

Thus ω(x) either satisfies the algebraic relation
∂p1
∂t

(x, ω(x)) = 0 ,

∂p1
∂x

(x, ω(x)) = p2(x, ω(x)) ,

or it is an algebraic solution of the quasi-linear differential equation

ω′ =
p2(x, ω)− ∂p1

∂x (x, ω)
∂p1
∂t (x, ω)

. (4.1)

The ODE in (4.1) will be of further importance.

Definition 4.3.1. Let F (x, y, y′) = 0 be an AODE and let P(t) = (pq(x, t), p2(x, t))
be a proper rational parametrization of the corresponding curve. Then the ODE
(4.1) is called the associated differential equation.

In the above, we have proven the following lemma.

Lemma 4.3.2. With notations as above, if y = y(x) ∈ K(x) is an algebraic solution
of the differential equation F (x, y, y′) = 0, then one of the following holds:
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(i) The algebraic solution point (y(x), y′(x)) lies in the finite set C \ im(P).

(ii) y(x) = p1(x, ω(x)) for some algebraic solution ω(x) of the algebraic system:
∂p1
∂t

(x, ω) = 0 ,

∂p1
∂x

(x, ω) = p2(x, ω) .

(iii) y(x) = p1(x, ω(x)) for some algebraic solution ω(x) of the associated quasi-
linear differential equation (4.1).

Theorem 4.3.3. We use the notation from above and assume that the parametriza-
tion P is proper. Then there is a one-to-one correspondence between rational general
solutions of the differential equation F (x, y, y′) = 0 and rational general solutions of
its associated differential equation (4.1).

In particular, if ω(x) is a rational general solution of the associated equation
(4.1), then y(x) = p1(x, ω(x)) is a rational general solution of given differential
equation.

Conversely, if y(x) is a rational general solution of the given differential equation,
then ω(x) = P−1(y(x), y′(x)) is a rational general solution of the associated equation
(4.1), where P−1 is a rational representation of the inverse of P.

Proof. Assume that ω(x) is a rational general solution of the associated differential
equation (4.1), and denote y(x) := p1(x, ω(x)). From the construction above, it is
clear that y(x) is a rational solution of the differential equation F (x, y, y′) = 0.

It remains to show that y(x) is a general solution. Let G ∈ K(x){y} be a
differential polynomial such that G(y(x)) = 0, and let H := prem(G,F ). We need
to show that H = 0. Since y′ is the highest derivative occurring in F , we know
that H ∈ K(x)[y, y′]. Both G and F vanish at y(x), hence so does H regarded as
a differential polynomial. Therefore, H(P(ω(x))) = H(y(x), y′(x)) = 0 regarding
H as a polynomial. Note, that (H ◦ P)(ω) = H(f1(x, ω), f2(x, ω)) ∈ k(x, ω). In
order to fulfill (H ◦P)(ω) = 0, ω has to be in K(x). Since ω(x) is a general solution
of the associated differential equation, it contains an arbitrary constant and hence,
H ◦ P = 0. Therefore, H = (H ◦ P) ◦ P−1 = 0.

Equivalently, if y(x) is a rational general solution of the given differential equa-
tion, then, by the construction of the associated equation, ω(x) := P−1(y(x), y′(x))
is a rational solution of (4.1). By a similar argument as above ω is a rational general
solution of the associated differential equation (4.1).

Lemma 4.3.2 tells us that for finding rational solutions of a parametrizable first-
order AODE, working with the class of quasi-linear first-order ODEs is essentially
enough. If we look for rational general solutions, the situation is even much stricter.
In fact, in [3], Behloul and Cheng proved that if a quasi-linear differential equation
has infinitely many rational solutions, then it must be either a linear differential
equation or a Riccati equation. The following theorem is a combination of Theorem
4.3.3 and the result of Behloul and Cheng.

Theorem 4.3.4. Let F (x, y, y′) = 0 be a first-order AODE.
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(i) If F = 0 has a strong rational general solution, then it is parametrizable and
its associated differential equation is of the form

ω′ = a0(x) + a1(x)ω + a2(x)ω2 , (4.2)

for some a0, a1, a2 ∈ K(x).

(ii) If F = 0 is parametrizable and has a rational general solution, then its asso-
ciated quasi-linear differential equation is of the form (4.2).

Proof. If a parametrizable first-order AODE has a rational general solution, then
so does its associated differential equation. In this case the associated differential
equation has infinitely many rational solutions. Then (ii) follows from the result of
Behloul and Cheng in [3]. Finally, (i) follows immediately from Theorem 4.1.2 and
(ii).

Corollary 4.3.5. If a parametrizable first-order AODE has a rational general so-
lution, then it has a strong rational general solution.

Proof. It is a consequence of the previous theorem and [37, Cor. 2.1, p. 18]

We are looking for rational general solutions of first-order AODEs. The problem
remained now is computing a rational general solution of the differential equation
(4.2). In the case a2 = 0, it is a linear differential equation of degree 1 which can be
easily solved by integrating. In the case a2 6= 0, it is a classical Riccati equation.

For the problem of computing rational general solution, or even all rational
solutions, of a Riccati equation, readers can refer [25] for a completed algorithm. In
[25], Kovacic proposes an algorithm for computing Liouvilian solutions of a linear
second order ODE. As a special case, Section 3.1 in that paper leads to a full
algorithm for determining all rational solutions of a Riccati equation. Note that
for a Riccati equation, the notion of rational general solutions and strong rational
general solutions are coincide. In [9], Chen and Ma do a slight modification of
the algorithm by Kovacic to seek for only strong rational general solution. We will
discuss about rational solutions of Riccati equations further in Section 4.4 and 5.3.3.

4.4 Rational general solutions of Riccati equations

We now restrict our work to the class of Riccati equations over the field K = C. A
Riccati equation is a differential equation of the form

ω′ = a0(x) + a1(x)ω + a2(x)ω2 , (4.3)

where a0, a1, a2 ∈ K(x), a2 6= 0. In this section we provide an algorithm for deciding
and finding a rational general solution of (4.3). The problem of finding rational
solutions of a Riccati equation has been intensively studied. Algorithms for finding
all rational solutions of a Riccati equation can be found for instance in [5, 40] or
[37, Alg. 2.2, p. 21] or [25]. We adapt ideas of Bronstein [5], Yuan [44], and Kovacic
[25] and propose an algorithm for specifically determining rational general solutions
of a Riccati equation if there is any.
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We know that by the transformation

ω = y

a2(x) −
a1(x)
2a2(x) −

a′2(x)
2a2(x)2

the differential equation (4.3) can be transformed into the form

y′ − y2 = a(x) , (4.4)

where

a = a0a2 −
a2

1
4 + a′1

2 −
3a′22
4a2

2
− a1a

′
2

2a2
+ a′′2

2a2

is again a rational function over K.

Definition 4.4.1. The differential equation (4.4) is called the normal form of the
Riccati equation (4.3).

If a is a constant, then the differential equation (4.4) has a rational general
solution if and only if a = 0. This follows from the algorithm of Feng and Gao [1].
In this case, the rational general solution is given by y(x) = 1

x−c for an arbitrary
constant c. From now on, we assume that a is a non-constant rational function over
k.

Definition 4.4.2. We say that the AODE (4.4) has suitable poles if the following
conditions on a = P

Q , with P,Q ∈ K[x] and gcd(P,Q) = 1, hold:

(i) a(x) has only double poles.

(ii) degP ≤ degQ− 2. Consequently, a(x) has no pole at infinity.

(iii) If x0 ∈ C is a pole of a(x), then a(x)(x−x0)2|x=x0 is of the form 1
4(1−n2) for

some positive integer n ≥ 2.

By abuse of notation we also say, that a(x) has suitable poles.

Due to [44], having suitable poles is a necessary condition for the existence of a
rational general solution for a normal Riccati equation (4.4) with a 6= 0.

Proposition 4.4.3 (Yuan [44]). If the differential equation (4.4), with a 6= 0, has
a rational general solution, then the equation has suitable poles.

Proposition 4.4.4. Assume that the normal Riccati equation (4.4) has suitable
poles, and y(x) = S(x)

T (x) ∈ K(x) is a rational solution, where S, T ∈ K[x]. Then

(i) degS < deg T , and

(ii) y(x) has only simple poles.

Proof. We assume w. l. o. g. that gcd(S, T ) = 1.
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(i) If otherwise degS ≥ deg T , then y(x) can be expanded as a formal series

y(x) =
N∑

n=−∞
cnx

n ,

where N = degS − deg T ≥ 0, cn ∈ K for all n, cN 6= 0. By substituting in
(4.4), we have (

. . .+NcNx
N−1

)
+
(
. . .+ c2

Nx
2N
)

= a(x) .

Since N − 1 < 2N , the term c2
Nx

2N on the left hand side must be killed by a
term on the series expansion of a(x) at infinity. This contradicts the property
(ii) in Definition 4.4.2.

(ii) Now let x0 ∈ C be a pole of y(x) of order M ≥ 1. The formal Laurent series
expansion of y(x) around the pole x0 is

y(x) = c−M
(x− x0)M + c−M+1

(x− x0)M−1 + . . . ,

where c−M , c−M+1, . . . ∈ K, c−M 6= 0. Substituting to (4.4) yields:( −Mc−M
(x− x0)M+1 + . . .

)
+
(

c2
−M

(x− x0)2M + . . .

)
= a(x) .

Since a(x) has only double poles, M + 1 ≤ 2 and 2M ≤ 2. Hence M = 1.

Proposition 4.4.4 tells us that if y(x) is a rational solution of the normal Riccati
equation (4.4), then y(x) must have the form

y(x) =
n∑
i=1

ri
x− xi

,

where n ∈ N is the number of poles of y(x), x1, . . . , xn ∈ C are n distinct poles of
y(x), and ri ∈ C is the residue of y(x) at x = xi. Poles of y(x) do not necessarily
occur at poles of a(x). This motivates the following definition.

Definition 4.4.5. Assume that y(x) is a rational solution of the normal Riccati
equation (4.4). A pole of y(x) is called a movable pole if it is not a pole of a(x).
Otherwise, it is called a non-movable pole.

Theorem 4.4.6. Assume that y(x) is a rational solution of the normal Riccati
equation (4.4) having suitable poles, and x0 ∈ C is a pole of y(x). Let x1, . . . , xn be
all poles of a(x) in C. For each i ∈ {1, . . . , n}, denote si := a(x)(x− xi)2|x=xi, and
s∞ := a

(
1
x

)
1
x2 |x=0.

(i) If x0 is a non-movable pole, i. e. x0 = xi for some i ∈ {1, . . . , n}, then the
residue of y(x) at x = x0 is a root of the quadratic equation

t2 + t+ si = 0 .

(ii) If x0 is a movable pole, then the residue of y(x) at x = x0 is equal to −1.
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(iii) The number of movable poles of y(x) does not exceed

1 +
√

1− 4s∞
2 +

n∑
i=1

−1 +
√

1− 4si
2 .

Proof. Let r be the residue of y(x) at x = x0. The Taylor expansion of y(x) around
x0 is

y(x) = r

x− x0
+
∞∑
i=0

ci(x− x0)i ,

where ci ∈ C. By substituting in (4.4), we have( −r
(x− x0)2 + . . .

)
−
(

r2

(x− x0)2 + . . .

)
= a(x) .

If x0 is a movable pole, then the term of negative order on the left hand side must
be killed. Therefore r + r2 = 0, hence r = −1. In case x0 is also a pole of a(x),
we have that x0 = xi for some i. In this case, the term of order −2 on the left
hand side must be killed by the lowest term on the Taylor expansion of a(x). Thus
−r − r2 = si. And then (i) and (ii) have been proven.

To prove (iii), we use the Residue Theorem to estimate the possible number of
movable poles. The residue theorem says that the total sum of residues of y(x) over
the Riemann sphere C ∪ {∞} is equal to zero. Since the residue of y(x) at movable
poles is equal to −1, the number of movable poles is exactly the sum of residues of
y(x) at non-movable poles and at infinity.

It remains to determine the residue of y(x) at infinity, say r∞. In order to do
so, let us consider the transformation

y = − 1
x2 z

(1
x

)
.

The residue of y(x) at infinity is equal to the residue of z(x) at 0. By this transfor-
mation the differential equation (4.4) can be transformed in terms of z to

z′ − z2 + 2
x
z = 1

x4a

(1
x

)
.

By using the same technique as before, this implies that the residue of z(x) at 0,
which is r∞, satisfies the quadratic relation r2

∞ − r∞ + s∞ = 0.
Finally, the number of movable poles is equal to the sum of residues of y(x)

at infinity and at non-movable poles, which are roots of the quadratic equations
r2
∞ − r∞ + s∞ = 0 and r2 + r + si respectively. Hence (iii) is proved.

Theorem 4.4.6 provides a clear insight into a form of a rational solution of the nor-
mal Riccati equation (4.4). First we compute the set of poles of a(x), say x1, . . . , xn.
Then a rational solution y(x) of (4.4) has the form

y(x) =
n∑
i=1

ri
x− xi

−
m∑
j=1

1
x− cj

, (4.5)

where
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• ri is a root of the quadratic equation r2 + r + a(x)(x− xi)2|x−x0=0.

• m is a positive integer which is not larger than the sum in Theorem 4.4.6 (iii).

• c1, . . . , cm are movable poles.

Note, that if furthermore y(x) is a rational general solution, then the cj are
transcendental over K. Therefore we can always rewrite y(x) in the form

y(x) =
n∑
i=1

ri
x− xi

− rn+1 + 2rn+2x+ . . .+mrn+mx
m−1

1 + rn+1x+ rn+2x2 + . . .+ rn+mxm
,

where 1 + rn+1x+ rn+2x
2 + . . .+ rn+mx

m = (−1)m
c1c2...cm

(x− c1) · . . . · (x− cm).
As a consequence, we propose an algorithm for determining a rational general

solution of a classical Riccati equation. Algorithm 4 (page 59) computes for a given
Riccati equation a rational general solution or decides that such a solution cannot
exist.

Theorem 4.4.7. Algorithm 4 is correct, i. e. it returns a rational general solution
of the given Riccati equation if there is any, and otherwise, it returns ”No rational
general solution exists”.

Proof. Follows form the discussion above.

Example 4.4.8. Consider the Riccati equation

ω = −3x2 + 2x− 2
x(x− 1)2 − 6x2 − x+ 3

x(x− 1) ω − 3x2 + 1
x

ω2 . (4.6)

We normalize the Riccati equation by taking the linear transformation

ω = − xy

3x2 + 1 −
9x4 − 3x3 + 9x2 + 1

(x− 1)(3x2 + 1)2 .

The obtained normal Riccati equation is

y′ − y2 = −3(6x2 − 1)
(3x2 + 1)2 . (4.7)

The rational function on the right hand side has double poles at x1 = i
√

3
3 and

x2 = − i
√

3
3 . Assume that y(x) is a rational general solution of (4.6), then its non-

movable poles are also x1 and x2. The residues of y(x) at non-movable poles are the
same and they are the roots of the quadratic equation t2 + t− 3

4 = 0. The residue of
y(x) at infinity is a root of t2 − t− 2 = 0. Therefore, the number of movable poles
of y(x) which is equal to the sum of the residues at x1, x2 and infinity is at most 3.

Next, we make an ansatz with

y(x) = r1

x− i
√

3
3

+ r2

x+ i
√

3
3

− r3 + 2r4x+ 3r5x
2

1 + r3x+ r4x2 + r5x3 ,
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where r2
1 +r1− 3

4 = r2
2 +r2− 3

4 = 0, and y(x) satisfies the differential equation (4.7).
Solving the obtained algebraic system on r1, . . . , r5 yields a rational solution

y(x) = 1
2
(
x− i

√
3

3

) + 1
2
(
x+ i

√
3

3

) − c+ 3cx2

1 + cx+ cx3 ,

where c is a transcendental constant over C. Hence,

ω(x) = − 1 + 2cx− cx2 + cx3

(x− 1)(1 + cx+ cx3)

is a rational general solution of the Riccati equation (4.6).

4.5 Algorithm and Examples

This section is devoted to an algorithm for finding strong rational general solutions
of first-order AODEs. As we have seen before, if a first-order AODE has a strong
rational general solution, then it is parametrizable, i. e. its corresponding curve is
rational. Whenever a first-order AODE is parametrizable, the notions of rational
general solution and strong rational general solution coincide. Moreover, in the case
of having a strong rational general solution, the associated ODE is either a linear
differential equation or a Riccati equation.

In Algorithm 5 we present a full algorithm which computes for a given first-order
AODE a strong rational general solution, if it exists. Otherwise it decides that such
a solution cannot exist.

Theorem 4.5.1. Algorithm 5 returns a strong rational general solution of the given
first-order AODE, F (x, y, y′) = 0, if there is any, and it returns ”No strong rational
general solution exists” if the differential equation has no strong rational general
solution.

Hence, Algorithm 5 decides the existence of strong rational general solutions of
the whole class of first-order AODEs. Furthermore, due to Corollary 4.3.5, Algo-
rithm 5 can also be used for determining the existence of rational general solutions
of parametrizable first-order AODEs. In the affirmative case it always computes
such a solution.

Example 4.5.2 (Example 1.537 in Kamke [23]). Consider the differential equation

F (x, y, y′) = x3y′3 − 3x2yy′2 + (x6 + 3xy2)y′ − y3 − 2x5y

= (xy′ − y)3 + x6y′ − 2x5y = 0 .

The associated curve defined by F (x, y, z) = 0 can be parametrized by

P(t) =
(
− t

3x5 − t2x6 + (t− x)3

t3x5 ,−2t3x5 − 2t2x6 + (t− x)3

t3x6

)
.

Therefore, the associated differential equation with respect to P is

ω′ = 1
x2 · ω · (2ω − x) ,
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which is a Riccati equation. By applying the algorithm by Kovacic, we can determine
a rational general solution of the last differential equation, such as ω(x) = x

1+cx2 .
Hence, the differential equation F (x, y, y′) = 0 has the rational general solution
y(x) = cx(x+ c2).

Observe, that this is just an arbitrary example from the collection of Kamke
[23]. In total around 64 percent of the listed ODEs there are AODEs and almost all
of them are parametrizable and hence suitable for Algorithm 5. For further detail
see [16].
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Algorithm 4 Rational general solutions of Riccati equations
Require: The Riccati equation ω′ = a0 + a1ω + a2ω

2 with a0, a1, a2 ∈ K(x) and
a2 6= 0.

Ensure: A rational general solution y(x), or ”No rational general solution exists”.
1: Compute a := a0a2 −

a2
1
4 + a′1

2 −
3a′22
4a2

2
− a1a′2

2a2
+ a′′2

2a2
.

2: if a = 0 then
3: return ω(x) = − 1

(x−c)a2(x) −
a1(x)
2a2(x) −

a′2(x)
2a2(x)2 .

4: end if
5: if a ∈ K \ {0} then
6: return ”No rational general solution exists”.
7: end if
8: Check whether a(x) has suitable poles. If yes, go to the next step. Otherwise,

return ”No rational general solution exists”.
9: Compute the set of poles of a(x), say {x1, . . . , xn}.

10: For each pole xi, compute si := a(x)(x− xi)2|x=xi .
11: Compute s∞ := 1

x2a
(

1
x

)
|x=0.

12: Find the integer part m of

1 +
√

1− 4s∞
2 +

n∑
i=1

−1 +
√

1− 4si
2 .

13: Let

y(x) = r1
x− x1

+ . . .+ rn
x− xn

− rn+1 + 2rn+2x+ . . .+mrn+mx
m−1

1 + rn+1x+ . . .+ rn+mxm

and set up an algebraic system for r1, . . . , rn+m by substitution to the normal
Riccati equation (4.4) and coefficient comparison. The obtained algebraic sys-
tem additionally contains the equations of r2

i + ri + si = 0 for all i ∈ {1, . . . , n}.
14: Solve the algebraic system from the previous step. Construct for each obtained

solution the corresponding rational function y(x). If any of these y(x) contains
an arbitrary constant, then go to next step. Otherwise, return ”No rational
general solution exists”.

15: return ω(x) = y(x)
a2(x) −

a1(x)
2a2(x) −

a′2(x)
2a2(x)2 .
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Algorithm 5 Strong rational general solutions of first-order AODEs
Require: A first-order AODE, F (x, y, y′) = 0, where F ∈ K[x, y, z] \ K[x, y] is

irreducible.
Ensure: A strong rational general solution y(x), or ”No strong rational general

solution exists”.
1: if genus of the corresponding curve is zero then
2: Use Algorithm 3 to compute an optimal parametrization of the corresponding

curve, say (p1(x, t), p2(x, t)) ∈ (K(x)(t))2.
3: Compute

f(x, t) :=
p2(x, t)− ∂

∂xp1(x, t)
∂
∂tp1(x, t)

.

4: if f(x, t) has the form a0(x) + a1(x)t + a2(x)t2 for some a0, a1, a2 ∈ K(x)
then

5: Computing a rational general solution of the linear or Riccati equation
ω′ = f(x, ω).

6: if ω = ω(x) is a rational general solution then
7: return y(x) = p1(x, ω(x))
8: end if
9: end if

10: end if
11: return ”No strong rational general solution exists”.



Chapter 5

Rational and polynomial
solutions of first-order AODEs

The methods we used to study rational general solutions cannot be applied directly
to the problem of studying particular solutions, such as rational and polynomial
solutions. The reason is that a first-order AODE having a rational general solution
usually has a nice geometric property, in the sense that its corresponding curve
can be parametrized by rational points. A first-order AODE having no such ”nice
geometric property” might still have several rational and polynomial solutions.

In this problem, we consider F (x, y, z) as a polynomial in K(x)[y, z] and study a
degree bound for rational, polynomial solutions from combinatorial, algebraic and
geometric approaches. Whenever a degree bound is found, all rational, polynomial
solutions can be computed by the method of using undeterminate coefficient. We
first study combinatorial properties of the support of F , i.e. the set of power tuples
of monomials having non-zero coefficient in F . In many cases, the set of possible
poles, and an upper bound for the order of these poles of a rational solution can be
obtained from combinatorial consideration. Secondly, we modified the techniques
employed by Eremenko in [12] in order to take an algebraic approach. In partic-
ular, some surprising tricks from valuation theory for the algebraic function field
Quot

(
K(x)[y, z]/ 〈F 〉

)
can help us bound the degree of rational solutions for first-

order first-degree AODEs. Finally, by combining this with the geometric approach
described before, we proposed an algorithm for determining all rational solutions
of a large subclass of first-order AODEs which covers all first-order AODEs listed
in Kamke’s collection [23]. Moreover, for polynomial solutions, we obtained a full
decision algorithm. Further details can be found in [17].

5.1 Algebraic function fields

To study global properties of rational solutions, we sometimes pass through algebraic
function fields. We recall in this section basic notations and properties in algebraic
function field theory for further use.

Let K be an algebraic function field over K of transcendence degree one. A
K−valuation ring in K, or briefly, if the ground field is clear, a valuation ring, is
a ring O ( K such that K ⊂ O and for every x ∈ K, either x ∈ O or x−1 ∈ O.
The valuation ring O admits a unique maximal ideal, say P , which is the set of
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all non-invertible elements. Moreover, P is principle, and every ideal of O forms a
power of P . A generator of P , say t, is called a local uniformizer. For every x ∈ K∗,
there exists a unique pair (u, n) ∈ (O∗,Z) such that x = u ·tn, where O∗ is the group
of units. Notice that the power n does not depend on how the local parameter t
is chosen. We call n the valuation of x at P . We define the map νP : K∗ → Z by
νP (x) = n.

As a convention, we can extend νP to K by setting νP (0) := ∞. It is easy to
check that νP satisfies the following properties for all x, y ∈ K:

(i) νP (xy) = νP (x) + νP (y)

(ii) min{νP (x), νP (y)} ≤ νP (x+ y) ≤ max{νP (x), νP (y)}

The map νP is called a valuation of K (with respect to P ).
By PK/K, or briefly PK if the ground field K is clear, we denote the set of all

ideals which are maximal in some valuation ring of K over K. Elements of PK
are called prime divisors of K. For each prime divisor P , we denote by νP the
corresponding valuation. Let x ∈ K. If νP (x) > 0, we say x has a zero of order
νP (x) at P . In case νP (x) < 0, we say x has a pole of order −νP (x) at P .

Let P ∈ PK be a prime divisor, OP and νP the corresponding valuation ring
and valuation respectively. Since K is algebraically closed, the residue field OP /P
is isomorphic to K. Therefore, there is a natural ring projection O → O/P ≡ K.
We usually denote the image of x ∈ O in K by x(P ).

We want to collect sufficient information such that an element of K is uniquely
determined (up to multiplication by a non-zero constant). The object which gathers
all such information about poles and zeroes is called a divisor. Formally, a divisor of
K is an element of the free abelian group

⊕
P∈PK

ZP . For divisors δ, δ′, we say δ ≥ δ′

if all coefficients of δ − δ′ are non-negative. The relation ≥ defines a partial order
on the set of divisors of K. For a divisor δ = n1P1 + n2P2 + . . . + nrPr, we define
deg δ := n1 + . . . + nr as the degree of δ. We also denote, by suppPK (δ) the set of
prime divisors having non-zero coefficient in δ.

Among divisors, principle divisors are natural examples. For each x ∈ K∗, the
principle divisor of x in K is denoted by [x] :=

∑
P∈PK

νP (x)P . Notice that, the sum

is always finite. For some technical purposes, we sometimes split the negative and
positive part of [x], denoted by

[x]− = −
∑
P∈PK
νP (x)<0

νP (x)P , [x]+ =
∑
P∈PK
νP (x)>0

νP (x)P ,

respectively. Therefore [x] = [x]+ − [x]−, and deg[x]+ = deg[x]−.
The simplest algebraic function field over K is the field K(x) of rational functions

in x. In this case, there is a one-to-one correspondence between prime divisors of
K(x) and the set K ∪ {∞}. Therefore, we might identify PK(x) with K ∪ {∞}. By
abuse of notation we denote by νx0 , for x0 ∈ K ∪ {∞} the valuation of the prime
divisor corresponding to x0, and call it the valuation at x = x0. A local uniformizer
at x0 ∈ K is x − x0, and at ∞ it is 1

x . The corresponding valuation rings are the
localization K[x](x−x0) and K[ 1

x ]( 1
x) respectively.
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Let u(x) =
∏r
i=1(x− xi)ni ∈ K(x) be a rational function, where n1, . . . , nr ∈ Z.

The valuation of u at x = x0 ∈ K is equal to ni if x0 = xi for some i = 1, . . . , r
or is equal to 0 otherwise. The valuation of u at infinity is equal to −

r∑
i=1

ni, which
is also equal to the difference of the degree of the denominator and the degree of
the numerator. Therefore the principle divisor of u in K(x) is [u] :=

r∑
i=1

niqxi −(
r∑
i=1

ni

)
q∞, where qxi denote the prime divisor corresponding with xi in K(x). In

this particular case we have seen that the degree of a principle divisor is always zero,
and we also know that every divisor of degree zero is principle. The first property
also holds for a general algebraic function field, while the latter is a particularity of
purely transcendental fields of degree one over K.

We also denote by ordx0(u) := −νx0(u) and call it the order of u at x0 ∈ K∪{∞}.
The order satisfies the following properties for all u, v ∈ K(x):

(i) ordx0(uv) = ordx0(u) + ordx0(v)

(ii) min{ordx0(u), ordx0(v)} ≤ ordx0(u+ v) ≤ max{ordx0(u), ordx0(v)}

(iii) If ordx0(u) 6= 0, then the order of the derivative is

ordx0(u′) =
{

ordx0(u) + 1 , if x0 ∈ K ,

ordx0(u)− 1 , if x0 =∞ .

We might extend the domain and the values of a rational function to the affine
line K ∪ {∞}. Let u(x) ∈ K(x) be a rational function. Then the value u(x0) is
defined for all x0 in K but roots of the denominator. We may extend the domain of
u to the whole affine line K ∪ {∞} as follows.

• If x0 is a root of the denominator, we define u(x0) :=∞.

• If x0 =∞ and u(x) = anxn+...+a0
bmxm+...+b0

, with anbm 6= 0, then

u(x0) :=


0 , if n < m ,

∞ , if n > m ,
an
bm
, if n = m.

If r := ordx0(y(x)) > 0, we say that y(x) has a pole of order r at x = x0. In case
r < 0, x0 is called a zero of order r of y(x). Poles of a rational function are roots of
the denominator, and probably at infinity. The degree of a rational function (which
is the maximum of the degrees of the numerator and the denominator) is equal to
the number of poles in K ∪ {∞} counting multiplicities. We recall partial fraction
representation of y(x).

Proposition 5.1.1. Every rational function y(x) ∈ K(x) can be represented in the
form

y(x) =
n∑
i=1

ri∑
j=1

cij
(x− xi)j

+
N∑
k=0

cix
i . (5.1)

In this formula we use the following notation.
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n number of poles of y(x) in K,
x1, . . . , xn poles of y(x) in K,
r1, . . . , rn orders of y(x) at x1, . . . , xn respectively,
N order of y(x) at infinity, and
cij , ck coefficients in K

5.2 Combinatorial approach

In this section we locally study rational solutions of first-order AODEs. We describe
how partial fraction decomposition and a bound on the order of a rational solution
can be used to define a class of first-order AODEs which can be proven to be without
movable poles. For this class the ideas also yield an algorithm for finding all rational
solution by coefficient comparison. Moreover we also proposed an algorithm for
determining all polynomial solutions for an arbitrary first-order AODEs if there is
any.

5.2.1 Bound for the order of the p-adic part

In this subsection, we determine for each x0 ∈ K∪{∞} an upper bound for the order
at x = x0 of a rational solution of a first-order differential equation. An algorithm
for finding such a bound is then presented.

Theorem 5.2.1. Let F (x, y, z) =
∑
i,j fij(x)yizj ∈ K[x][y, z] \ K[x][y]. Assume

further that F is not homogeneous as a polynomial in y and z with coefficients in
K[x]. Then for each x0 ∈ K ∪ {∞}, there is a non-negative integer ρ = ρ(x0, F ),
depending only on x0 and F , such that the order of every rational solution of the
differential equation F (x, y, y′) = 0 at x = x0 does not exceed ρ.

Proof. We are going to determine the order bound ρ(x0, F ) in an algorithmic way.
Let us fix an x0 in K. A bound ρ(∞, F ) for the order at infinity is constructed simi-
larly. Assume that y(x) is a rational solution of the differential equation F (x, y, y′) =
0, and that y(x) has a pole of order r > 0 at x = x0. Then y′(x) has a pole of order
r + 1 at x = x0. For each (i, j) ∈ N2, we denote αij = ordx0(fij), i. e. the order at
x = x0 for fij . Note, that αij is non-positive. Let

E :=
{
(i, j) ∈ N2 | fij 6= 0

}
n := max {i+ j | (i, j) ∈ E}
A := {(i, j) ∈ E | i+ j = n}
d := max {j + αij | (i, j) ∈ A}
D := {(i, j) ∈ A | j + αij = d}

Note, that d is different for the case x0 = ∞. Since F is not homogeneous, E \ A
is a non-empty set. It is clear that D is also non-empty, and is contained in A. For
each (i, j) ∈ D, we rewrite fij(x) as

fij(x) = aij(x− x0)−αij + hij(x) ,

where aij ∈ K, hij(x) ∈ K[x] such that ordx0(hij(x)) < αij . Since y = y(x) is a
solution the differential equation, we have that F (x, y(x), y′(x)) = 0. We gather
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terms of F (x, y(x), y′(x)) into different groups as follow:∑
(i,j)∈D

fij(x)y(x)iy′(x)j +
∑

(i,j)∈A\D
fij(x)y(x)iy′(x)j +

∑
(i,j)∈E\A

fij(x)y(x)iy′(x)j = 0 .

Therefore,∑
(i,j)∈D

aij(x− x0)−αijy(x)iy′(x)j +
∑

(i,j)∈D
hij(x)y(x)iy′(x)j+

+
∑

(i,j)∈A\D
fij(x)y(x)iy′(x)j = −

∑
(i,j)∈E\A

fij(x)y(x)iy′(x)j . (5.2)

The orders at x = x0 of terms in the first sum are equal to nr + d, which is always
larger than the order of terms in the second and the third sum. It does not mean
that the order of the left hand side is equal to nr + d. Two cases arise.

Case 1: The order at x = x0 of the first sum in (5.2) is equal to nr + d:
Then the order of the left hand side of (5.2) is exactly nr + d. By comparing
with the order of terms on the right hand side, we obtain

nr + d ≤ max {(i+ j)r + j + αij | (i, j) ∈ E \A} .

Therefore,
r ≤ max

{
j + αij − d
n− i− j

| (i, j) ∈ E \A
}
.

Case 2: The order at x = x0 of the first sum in (5.2) is smaller than nr + d:
Let

g(x) := (x− x0)nr+d
∑

(i,j)∈D
aij(x− x0)−αijy(x)iy′(x)j .

Then g(x0) = 0. This property of g leads to an upper bound for r. In order
to do that, let z(x) := (x− x0)ry(x). Then z(x0) is neither 0 nor ∞, and

y′(x) = z′(x)(x− x0)− rz(x)
(x− x0)r+1 .

Rewriting g(x) in terms of z(x) and then simplifying the result yields

g(x) =
∑

(i,j)∈D
aijz(x)i(z′(x)(x− x0)− rz(x))j .

By substituting x = x0 and dividing by z(x0)n, we see that r must be a positive
integer root of the algebraic equation∑

(i,j)∈D
aij(−1)jtj = 0 . (5.3)

Hence, in any case, r must be smaller than either

max
{
j + αij − d
n− i− j

| (i, j) ∈ E \A
}
,

or the largest positive integer root of the algebraic equation (5.3).

Theorem 5.2.1 itself is not interesting. What is useful for us is the proof. There,
the bound for the order at x = x0 of rational solutions of the differential equation
is constructed in an algorithmic way. We summarize this result in Algorithm 6.
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Algorithm 6 Order bound for the p-adic part
Require: x0 ∈ K ∪ {∞}; F =

∑
fij(x)yizj ∈ K[x, y, z] \ K[x, y] non-homogeneous

in y and z.
Ensure: An upper bound ρ(x0, F ) for the order at x = x0 of all rational solutions

of the ODE, F (x, y, y′) = 0.
1: E =

{
(i, j) ∈ N2 | fij 6= 0

}
2: n = max {i+ j | (i, j) ∈ E}
3: A = {(i, j) ∈ E | i+ j = n}
4: αij = ordx0(fij(x)), for (i, j) ∈ E
5: if x0 ∈ K then
6: d = max {j + αij | (i, j) ∈ A}
7: D = {(i, j) ∈ A | j + aij = d}

8: aij = fij(x)
(x−x0)−αij

∣∣∣∣
x=x0

for (i, j) ∈ D

9: R = the set of positive integer roots of the equation
∑

(i,j)∈D
aij(−t)j = 0

10: ρ̄ =
⌊
max

{
j+αij−d
n−i−j | (i, j) ∈ E \A

}⌋
11: else if x0 =∞ then
12: d = max {αij − j | (i, j) ∈ A}
13: D = {(i, j) ∈ A |αij − j = d}
14: aij = the leading coefficient of fij(x), for (i, j) ∈ D
15: R = the set of positive integer roots of the algebraic equation

∑
(i,j)∈D

aijt
j = 0

16: ρ̄ =
⌊
max

{
αij−j−d
n−i−j | (i, j) ∈ E \A

}⌋
17: end if
18: return ρ = max (R ∪ {ρ̄, 0}).

5.2.2 First-order AODEs without movable poles

As we have seen in the previous subsection, once a pole is given, one can compute
an upper bound for the order of rational solutions of a given first-order AODE.
Unfortunately it is not always easy to find possible candidates for the positions of
poles. For a linear ODE, poles of a (rational) solution can be easily determined from
the coefficients of the differential equation itself. In general, it is no longer true when
we pass to the class of non-linear first-order AODEs. In fact, poles of a rational
solution of a first-order AODE may occur at an arbitrary point. For example, for
every c ∈ K, the function y(x) = 1

x−c is a rational solution of the Riccati equation
y′ + y2 = 0.

The task of this section is to collect first-order AODEs for which no unexpected
poles occur in their rational solutions. The core of the idea is that we equip the
support of F with a certain partial order. The existence of the greatest element
decides whether the differential equation is in the class of AODEs we are interested
in.

Definition 5.2.2. On N2 we define a relation� as follows. For (i1, j1), (i2, j2) ∈ N2,
we say (i1, j1)� (i2, j2) iff either i1+j1 = i2+j2 and j1 > j2, or (i1+j1)−(i2+j2) >
max{0, j2 − j1}.

It is easy to check that � is a strict partial ordering on N2, i. e. the following
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properties hold for all u, v, w ∈ N2:

(i) irreflexivity: u 6� u

(ii) transitivity: if u� v and v � w then u� w

(iii) asymmetry: if u� v then v 6� u.

For u, v ∈ N2, we say u and v are comparable if either u� v or v � u. Otherwise,
they are called incomparable. Not every pair of elements from N2 is comparable. In
other words, the order � is not a total order on N2. For example, (2, 0) and (0, 1)
are incomparable.

In Figure 5.1 we consider a given point (in black) and show all the compara-
ble and incomparable points in some surrounding. All smaller points in that eary
are highlighted in green (with green background), the greater points are in blue.
The symbol at the respective points ilustrates the class of points according to the
inequalities in the definiton. The points with symbol are incomparable to the
given one. All such incomparable points except the given one are drawn in red. Let
(i1, j1) be our given point, and (i2, j2) a smaller point. Then one of the following
cases has to be fulfilled.

i1 + j1 = i2 + j2 and j1 > j2,

or (i1 + j1)− (i2 + j2) > max{0, j2 − j1} and furthermore

j2 < j1, or
j2 = j1, or
j2 > j1.

Note, that this shows, that for a given point, the number of points which are incom-
parable to this one, is finite.

Figure 5.1: Comparable and incomparable points for a given point

Let S be a subset of N2. An element u ∈ S is called a greatest element of S if
u� v for every v ∈ S \ {u}. The set S has at most one greatest element. Since �
is not a total order, a subset of N2 may have no greatest element. This motivates
the following definition.
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Definition 5.2.3. Let F =
∑
i,j fij(x)yizj be a polynomial in K[x][y, z]. Let E(F ) ⊆

N2 be the support of F , i. e.

E(F ) :=
{

(i, j) ∈ N2 | fij 6= 0
}
.

A polynomial F for which the set E admits a greatest element is called maximally
comparable. We also call the corresponding differential equation maximally compa-
rable.

Theorem 5.2.4. Let F =
∑
i,j fij(x)yizj ∈ K[x][y, z] \ K[x][y] be a polynomial,

which is non-homogeneous in y and z. We assume that F is maximally comparable
and the greatest element of E = E(F ) is (i0, j0). Then poles in K of a rational
solution of the differential equation F (x, y, y′) = 0 only occur at the zeros of fi0j0(x).

Proof. We prove the theorem by contradiction. Assume that y(x) ∈ K(x) is a
rational solution of the differential equation F (x, y, y′) = 0, that x0 ∈ K is a pole of
order r ≥ 1 of y(x), and that fi0j0(x0) 6= 0. Let A := {(i, j) ∈ E | i+ j = i0 + j0}.
It is clear that (i0, j0) ∈ A and A ( E . Let us substitute y(x) to the differential
equation F (x, y, y′) = 0 and group terms on the left hand side as follows.

fi0j0(x)y(x)i0y′(x)j0 +
∑

(i,j)∈A\{(i0,j0)}
fi,j(x)y(x)iy′(x)j =

= −
∑

(i,j)∈E\A
fi,j(x)y(x)iy′(x)j (5.4)

where the sum on the left hand side is just zero if A \ {(i0, j0)} is the empty set.
The order at x = x0 of the first term in (5.4) is equal to (i0 + j0)r + j0, while
the orders of terms in the sum on the left hand side are (i + j)r + j − νx0(fij) =
(i0 + j0)r + j − νx0(fij). Since (i0, j0) is the greatest element in A, the order of
the left hand side is always equal to the order of the first term, (i0 + j0)r + j0. By
comparing with the order of terms on the right hand side, we have

(i0 + j0)r + j0 ≤ max {(i+ j)r + j − νx0(fij) | (i, j) ∈ E \A} .

Therefore,
r ≤ max

{
j − j0 − νx0(fij)

(i0 + j0)− (i+ j) | (i, j) ∈ E \A
}
. (5.5)

For each (i, j) ∈ E \A, we have (i0, j0)� (i, j) and i0 + j0 6= i+ j. Thus (i0 + j0)−
(i + j) > max{0, j − j0} ≥ j − j0 − νx0(fij). Combination with (5.5) yields r < 1.
This contradicts with the assumption.

The theorem gives us a necessary condition for a first-order AODE having no
”unexpected” poles. Once the condition is fulfilled, candidates for poles will be
easily determined. Note, that by Theorem 5.2.4 maximally comparable AODEs
cannot have movable poles. It is not clear whether the inverse direction also holds,
but it is not important to us. The previous subsection provides a bound for the
order of these pole candidates. Thus we have enough ingredients to determine the
form of a rational solution in a certain finite number of indeterminate coefficients.
By an ansatz we find all possible rational solutions.

Before we give an algorithm for finding all rational solutions of first-order AODEs
without movable poles, we analyze different features of Theorem 5.2.4 by discussing
the following questions.
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1. What if F is homogeneous as a polynomial in y and z with coefficients in K[x]?

2. How can we check the existence of the greatest element of E effectively, and
find it in the affirmative case?

3. How likely is an E which admits a greatest element?

To answer Question 1, let us consider a homogeneous polynomial of degree n ≥ 1
as a polynomial in y and z,

F (x, y, z) := fn,0(x)yn + fn−1,1(x)yn−1z + . . .+ f0,n(x)zn ,

where fi,j(x) ∈ K[x]. We assume F to be irreducible as a polynomial in K[x, y, z],
and consider the differential equation F (x, y, y′) = 0. The differential equation
always has the solution 0. Assume that the differential equation admits a non-zero
rational solution y(x), then y′(x)

y(x) is a rational solution of the algebraic equation

fn,0(x) + fn−1,1(x)t+ . . .+ f0,n(x)tn = 0 .

Since F is irreducible, this is only possible if n = 1. In case n = 1, the differential
equation is linear, therefore it can be solved easily by known methods.

For the Question 2, the naive way would be to check the existence of the greatest
element of E by comparing all pairs of its elements.

However, there is a much simpler and intuitive way. Figure 5.2 shows how to
proceed. We first take the set of points which have the greatest total degree. Within
these we take the element, say p = (p1, p2) which has the smallest first component.
Now we check for each remaining point (x, y) whether or not it satisfies y ≥ 2p2+p1−x

2 .
If one point does, it is incomparable to the point p and hence, there is no greatest
element. Otherwise p is the greatest element.

Figure 5.2: Check the existence of a greatest element

We are going to answer Question 3. We rewrite the differential equation in the
form F0(x, y)+F1(x, y)y′+ . . .+Fn(x, y)y′n = 0, where n is the degree of F in z and
F0, . . . , Fn ∈ K[x, y]. Then E admits a greatest element if and only if the smaller set

{(degy F0, 0), (degy F1, 1), . . . , (degy Fn, n)}
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does. Note, that if Fi = 0 for some i < n, the point (degy Fi, i) is smaller
than (degy Fn, n). Therefore, we can state Question 3 in a different way: Given
n ∈ N, and let m0,m1, . . . ,mn be arbitrary natural numbers, how likely has the
set {(m0, 0), (m1, 1), . . . , (mn, n)} a greatest element? In order to answer the last
question, we denote

Aijk :=
{

(m0,m1, ...,mn) ∈ Nn+1 |mi −mj = j − i+ k
}

Aij :=
j−i⋃
k=1

Aijk

A :=
⋃

0≤i<j≤n
Aij

It follows immediately from the definition of � that for 0 ≤ i < j ≤ n, the pairs
(mi, i) and (mj , j) are incomparable if and only if j− i < mi−mj ≤ 2(j− i). There-
fore, a point (m0,m1, . . . ,mn) ∈ Nn+1 is in Aij if and only if (mi, i) and (mj , j)
are incomparable. Hence, for every point (m0,m1, . . . ,mn) ∈ Nn+1 \ A, the set
S := {(m0, 0), (m1, 1), . . . , (mn, n)} has no incomparable points, or consequently, S
admits a greatest element. We might consider each Aijk as a hyperplane in Nn+1.
The set A is a union of

∑
0≤i<j≤n j − i = 1

6n(n+1)(n+2) such hyperplanes. There-
fore, almost all first-order AODEs for a given degree n are maximally comparable.

For instance, let us consider m,n ∈ N, the pairs (n, 0) and (m, 1) are comparable
iff n − m 6= 2. In other words, the quasi-linear ODE, F (x, y, y′) = F0(x, y) +
F1(x, y)y′ = 0, with F0, F1 ∈ K[x, y], is out of the scope of Theorem 5.2.4 iff degy F0−
degy F1 = 2. In the next section, we introduce another approach which covers such
a differential equation.

Algorithm 7 results from the above discussion. It finds all rational solutions of
first-order maximally comparable AODEs. Example 5.2.5 illustrates Algorithm 7.

Example 5.2.5. We consider the differential equation

F (x, y, y′) = 3x8yy′2 − 2x9y′ − x6y3 + 4x4(x3 + 2)y + 52x3 + 152 = 0 . (5.6)

Among the terms of F as a polynomial in y and y′, the term 3x8yy′2 has the largest
power (which is (1, 2)) with respect to �. Therefore, poles of a rational solution
of the differential equation (5.6) occur only at x = 0 and probably at infinity. By
applying Algorithm 6, the orders of a rational solution at x = 0 and infinity are at
most 2 and 1 respectively. Making an ansatz with y(x) = c1

x2 + c1
x + c3 + c4x, and

then solving the obtained algebraic system in c1, c2, c3, c4, we see that the differential
equation (5.6) has only a rational solution y(x) = −2

x2 − x.

5.2.3 Polynomial solutions of first-order AODEs

Another interesting result of the combinatorial aspect is that it provides an algorithm
for determining all polynomial solutions of an arbitrary first-order AODE. It is
based on the fact that a non-constant polynomial has only a pole at infinity, and
the order of this pole is exactly the degree of the polynomial. Assume that we are
looking for all polynomial solutions of the differential equation F (x, y, y′) = 0. If
F is homogeneous as a polynomial in y and y′ then either the differential equation
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Algorithm 7 Rational solutions of maximally comparable first-order AODEs
Require: F =

∑
fij(x)yizj ∈ K[x, y, z]\K[x, y] maximally comparable, and (i0, j0)

the greatest element of the set E(F ) = {(i, j) | fij 6= 0}
Ensure: All rational solutions of the ODE, F (x, y, y′) = 0.

1: Sol = ∅
2: if F is homogeneous of order n as polynomial in y and z then
3: if n > 1 then
4: Sol = {0}
5: else if n = 1 then
6: Solve the linear ODE, F (x, y, y′) = 0, and

append all rational solutions to Sol.
7: end if
8: else
9: Pol = {x0 ∈ K | fi0j0(x0) = 0}

10: Use Algorithm 6 to compute ρ(x0, F ) for all x0 ∈ Pol
11: Use Algorithm 6 to compute ρ(∞, F ), a bound for the degree of the

polynomial part.
12: Make an ansatz for

y(x) =
∑

x0∈Pol

ρ(x0,F )∑
j=1

cx0,j

(x− x0)j +
ρ(∞,F )∑
k=0

ckx
k ,

with indeterminate coefficients cx0,j , ck
13: Solve the obtained algebraic system in cx0,j and ck, and

append the results to Sol
14: end if
15: return Sol

has only a zero polynomial solution or it is a linear first-order ODE which can be
easily solved by known methods. Otherwise Algorithm 6 provides a bound for the
degree of a polynomial solution. All polynomial solutions can be computed by the
undeterminate coefficient method.

The question of finding all polynomial solutions of first-order AODEs was already
addressed and solved in [26]. In fact this paper considers also higher order AODEs,
but for higher order there is no full decision. The methods and results are rather
similar to those presented here both restricted to polynomial solutions of first-order
AODEs. We leave here the algorithm for further use.

5.3 Algebraic approach

A quasi-linear first-order ODE is a differential equation of the form y′ = f(x, y) for
some f ∈ K(x, y). By multiplying both sides of the differential equation with the
denominator of f , we also view it as a first-order AODE of degree 1 in y′. Although
Algorithm 7 works on a generic class of first-order AODEs, its scope does not cover
the class of quasi-linear first-order ODEs. In particular if the subtraction of the
degree of the numerator of f by the degree of the denominator is equal to 2, then



72

Algorithm 8 Polynomial solutions of first-order AODEs
Require: F =

∑
fij(x)yizj ∈ K[x, y, z] \K[x, y].

Ensure: All polynomial solutions of the ODE, F (x, y, y′) = 0.
1: Sol = ∅
2: if F is homogeneous of order n as polynomial in y and z then
3: if n > 1 then
4: Sol = {0}
5: else if n = 1 then
6: Solve the linear ODE, F (x, y, y′) = 0, and

append all rational solutions to Sol.
7: end if
8: else
9: Use Algorithm 6 to compute ρ(∞, F ), a bound for the degree of a polynomial

solution.
10: Make an ansatz for

y(x) =
ρ(∞,F )∑
k=0

ckx
k ,

with indeterminate coefficients ck
11: Solve the obtained algebraic system in ck, and

append the results to Sol
12: end if
13: return Sol

Algorithm 7 is invalid. In this section we approach rational solutions of first-order
AODEs in the global meaning by using tools from algebraic function field theory.
Together with Algorithm 7, the new approach provides another puzzle piece for an
algorithm covering the whole class of quasi-linear first-order ODEs.

The following idea is derived from [12]. In order to find all rational solutions of a
quasi-linear first-order ODE, we first study a degree bound for all rational solutions.
Once a degree bound is determined, we can make an ansatz for rational solutions
with undeterminate coefficients. In [12], Eremenko studies a degree bound for ratio-
nal solutions of first-order AODEs. He corresponds each first-order AODE with an
algebraic function field over K(x). The function field is moreover a differential field
with the derivation extended from the usual derivation of K(x). In case the differ-
ential function field satisfies the Fuchs condition (without movable critical points),
it can be classified up to an isomorphism of differential fields by using the theory of
Matsuda [28]. Hence, Eremenko reduces the differential equation to several simpler
ones according to the classification, and then estimates a degree bound for rational
solutions of such particular cases.

Eremenko [12] theoretically investigates the determination of a degree bound
of rational solutions of first-order AODEs. Based on some of his ideas we give
a different and more explicit algorithm for actually computing this bound. In the
scope of this paper, we study such an algorithm for the class of quasi-linear first-order
ODEs. Although our idea is based on Eremenko’s results, we study the problem
without the theory of Matsuda on classification of differential function fields. Our
algorithm is therefore much simpler.
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5.3.1 Preparation

We start the discussion by giving an important class of algebraic function fields over
the field K(x) of algebraic functions. Let H ∈ K[x, Y, Z] be a trivariate polynomial
such that H is irreducible as an element in K(x)[Y, Z]. The algebraic equation
H(x, Y, Z) = 0 defines an irreducible algebraic curve in the affine plane A2(K(x)).
The set of all rational functions over the curve is a field and it is isomorphic to the
fraction field of the coordinate ring, i. e. K := Frac

(
K(x)[Y,Z]/(H)

)
. The field K

is an algebraic function field of degree one over K(x). The set P
K/K(x) of all prime

divisors of K over K(x) is in general not easy to determine.

Lemma 5.3.1 (Eremenko [12]). Let K be an algebraic function field over K(x)
of transcendence degree one, and y, z ∈ K such that [y]− ≤ [z]−. Let m :=∣∣∣K(x)(y, z) : K(x)(z)

∣∣∣ be the degree of the field extension. Then there exists a unique
irreducible polynomial G ∈ K(x)[Y,Z] of the form

G(Y,Z) = Y m −
∑

i+j≤m
0≤i≤m−1

0≤j≤m

gij(x)Y iZj ,

with gij ∈ K(x), such that G(y, z) = 0 in K.

The result of the following lemma is used in the proof of Lemma 1 in [12] without
giving a detailed proof.

Lemma 5.3.2. Let K be an algebraic function field over K(x) of transcendence
degree one, and y, z ∈ K such that [y]− ≤ [z]−. Since Lemma 5.3.1 is applicable
we let G ∈ K(x)[Y,Z] be a polynomial with this property. Denote by L ⊂ K(x)
an algebraic function field over K containing x and all coefficients gij of G. Let
P ∈ P

K/K(x) be a prime divisor. If y(P ), z(P ) belong to L, then

suppPL/K ([y(P )]−) ⊆ suppPL/K ([z(P )]−)
⋃⋃

i,j

suppPL/K ([gij ]−)

 .

Proof. We prove the lemma by contradiction. Assume that the conclusion does not
hold. Then there is a prime divisor q ∈ PL/K not in

suppPL/K ([z(P )]−)
⋃⋃

i,j

suppPL/K ([gij ]−)


but in suppPL/K ([y(P )]−). This implies that νq(y(P )) < 0, and furthermore, we
have νq(z(P )) ≥ 0 and νq(gij) ≥ 0 for all i, j. From Lemma 5.3.1 we have

ym =
∑

i+j≤m
0≤i≤m−1

0≤j≤m

gij(x)yizj .



74

Therefore,

m · νq(y(P )) ≥ min
i,j
{i · νq(y(P )) + j · νq(z(P )) + νq(gij)}

≥ (m− 1) · νq(y(P )) + min
i,j
{j · νq(z(P )) + νq(gij)} .

It implies that
νq(y(P )) ≥ min

i,j
{j · νq(z(P )) + νq(gij)} .

Because the right hand side is a non-negative integer, the last inequality can not
happen.

The next theorem reads similar to Lemma 1 in [12]. However, it yields more
information on the poles and their order and it explicitly describes the constant. In
fact Theorem 5.3.3 implies Lemma 1 in [12].

Theorem 5.3.3. With notations as above. Let A :=
⋃
i,j

suppPL/K ([gij ]−) ⊆ PL/K,

and for each q ∈ A, let σq =
⌊
max
i,j

{
−νq(gij)
m−i

}⌋
. Then, σ :=

∑
q∈A

σq · q is an effective

divisor in L, i. e. σ ≥ 0. Let P ∈ P
K/K(x) be a prime divisor. If y(P ), z(P ) belong

to L, then
[y(P )]− ≤ [z(P )]− + σ

as divisors in PL/K.

Proof. Let q be an arbitrary prime divisor of L such that q ∈ suppPL/K ([y(P )]−).
Then νq(y(P )) < 0. We need to prove that:

−νq(y(P )) ≤ max
i,j
{0,−νq(z(P ))}+ max

i,j

{−νq(gij)
m− i

}
.

Due to Lemma 5.3.1, we have

m · νq(y(P )) ≥ min
i,j
{i · νq(y(P )) + j · νq(z(P )) + νq(gij)} .

Hence,

νq(y(P )) ≥ min
i,j

{
j

m− i
νq(z(P )) + νq(gij)

m− i

}
≥ min

i,j
{0, νq(z(P ))}+ min

i,j

{
νq(gij)
m− i

}
.

The last inequality concludes the theorem.

Theorem 5.3.3 works for algebraic functions. In fact, we need the result only for
rational functions. Application of Theorem 5.3.3 to rational functions can be seen
in Corollary 5.3.4. We get a result comparable to Lemma 1 in [12] for the case of
rational functions but we are able to explicitly determine the constant C.

Corollary 5.3.4. Let y = y1
y2
, z = z1

z2
∈ K(x, t), where y1, y2, z1, z2 ∈ K[x, t] such

that gcd(y1, y2) = gcd(z1, z2) = 1. Assume that y2 divides z2 and degt y1−degt y2 ≤
max{0, degt z1 − degt z2}. Then there exists a constant C = C(y, z) depending
only on y and z such that: for every t(x) ∈ K(x), with z2(x, t(x)) 6= 0, we have
deg y(x, t(x)) ≤ deg z(x, t(x)) + C.
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Proof. We consider y, z as elements of the algebraic function field K := K(x)(t) over
K(x). From this point of view, the condition [y]− ≤ [z]− as divisors inK is equivalent
to the assumption that y2 divides z2 and degt y1−degt y2 ≤ max{0, degt z1−degt z2}.

We apply Theorem 5.3.3 with K as above and L := K(x). The sets P
K/K(x) and

PL/K of prime divisors are exactly K(x) ∪ {∞} and K ∪ {∞} respectively. For each
t(x) ∈ K(x), the image of y in L is y(x, t(x)). Since the assumptions of Lemma 5.3.1
are fulfilled, we know that there exists G ∈ K(x)[Y, Z], determined by coefficients
gij , such that G(y, z) = 0. By Remark 5.3.5 we even know that G ∈ K(x)[Y,Z].
Note, that A, as defined in Theorem 5.3.3, is the set of poles of gij in K ∪ {∞}.
Theorem 5.3.3 yields

[y(x, t(x))]− ≤ [z(x, t(x))]− +
∑
x0∈A

σx0qx0 ,

for all t(x) ∈ K(x) such that z2(x, t(x)) 6= 0, where σx0 is the largest integer which
does not exceed max

i,j

{−νx0 (gij)
m−i

}
, and qx0 the prime divisor corresponding with x0

in L. By taking the degree of divisors on both sides, we obtain

deg y(x, t(x)) ≤ deg z(x, t(x)) +
∑
x0∈A

σx0 .

The constant C :=
∑
x0∈A

σx0 depends only on y and z and it is independent of

t(x).

Remark 5.3.5. The polynomial G defined in the last proof can be constructed
by using Gröbner bases. We first compute a reduced Gröbner basis of the ideal
〈y2Y − y1, z2Z − z1〉 in K[x, t, Y, Z] with respect to lexicographic order such that
t > Y > Z > x. Let H be an element in the basis with the smallest leading term.
Then H must be in K[x, Y, Z]. Finally we consider H as a polynomial in K[x][Y, Z]
and divide H by the leading coefficient (with respect to lexicographic order such
that Y > Z). The result, which is an irreducible polynomial in K(x)[Y,Z], is the
polynomial G we are looking for.

We summarize the discussion on Corollary 5.3.4 and Remark 5.3.5 as the follow-
ing algorithm for further use.

5.3.2 Rational solutions of first-order first-degree AODEs

As a nice application of Corollary 5.3.4, we present here an algorithm for determining
all rational solutions of a first-order first-degree AODEs.

In what follows we will need the following technical lemma.

Lemma 5.3.6. Let f(x, y) ∈ K(x, y) \ K(x) be a rational function of degree d in
y. Then there exists C = C(f) > 0, depending only on f , such that for every
y(x) ∈ K(x) with f(x, y(x)) 6= 0, ∞, we have

d · deg y(x) ≤ deg f(x, y(x)) + C

Proof. We will construct such an C by using Corollary 5.3.4. We rewrite f = P
Q

in the reduced form, i.e. P,Q ∈ K[x, y] and gcd(P,Q) = 1. Since degy f = degy 1
f ,
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Algorithm 9 Degree of rational functions
Require: y = y1

y2
, z = z1

z2
∈ K(x, t) such that y2 divides z2 and degt y1 − degt y2 ≤

max{0,degt z1 − degt z2}
Ensure: C = C(y, z) > 0 such that deg y(x, t(x)) ≤ deg z(x, t(x)) + C for every

t(x) ∈ K(x) with z2(x, t(x)) 6= 0.
1: Compute a reduced Gröner basis, say G, for the ideal

〈y2(x, t)Y − y1(x, t), z2(x, t)Z − z1(x, t)〉 ⊂ K[t, Y, Z, x]

with respect to the lexicographic order such that t > Y > Z > x.
2: Let H(x, Y, Z) be an element in G ∩K[x, Y, Z] with the smallest leading term.
3: h(x) := leading term of H(x, Y, Z) considered as an element in K(x)[Y, Z] with
Y > Z.

4: Let G(x, Y, Z) := H(x,Y,Z)
h(x) , and rewrite G as the form G = Y m −

∑
i,j≤m

gi,jY
iZj ,

where Y m is the leading term of G and gi,j ∈ K(x).
5: A := the set of poles of gi,j in K ∪ {∞}.
6: For each x0 ∈ A, compute σx0 := max

i,j

−νx0 (gi,j)
m−i .

7: Return C :=
∑
x0∈A

σx0 .

we might assume that d = degy P ≥ degy Q. Consider yd and P (x, y) as elements
in K(x, y), they meets the requirement of Corollary 5.3.4. Therefore, there exists a
constant C1 = C(yd, P ) such that for every y(x) ∈ K(x), we have

d · deg f(x, y(x)) ≤ degP (x, y(x)) + C1 (5.7)

Similarly, the rational functions 1
P and Q

P satisfy the requirement of Corollary 5.3.4.
There exists a constant C2 = C( 1

P ,
Q
P ) such that

deg 1
P (x, y(x)) ≤ deg Q(x, y(x))

P (x, y(x)) + C2 (5.8)

for every y(x) ∈ K(x) with P (x, y(x)) 6= 0. The constants C1 and C2 can be
computed by using Algorithm 9. By combining (5.7) and (5.8), we obtain

d · deg y(x) ≤ deg f(x, y(x)) + C1 + C2

for every y(x) ∈ K(x) such that f(x, y(x)) 6= 0, ∞.

Let us return to the problem of determining all rational solutions of a first-order
first-degree AODE. Assume that y(x) ∈ K(x) is a non-constant rational solution
of the differential equation y′ = f(x, y). By applying the above lemma, one can
determine a constant C depending only on f such that

degy f · deg y(x) ≤ deg f(x, y(x)) + C

Since deg f(x, y(x)) = deg y′(x) ≤ 2 deg y(x), we imply that

(degy f − 2) deg y(x) ≤ C
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Hence if degy f ≥ 3, the degree of every rational solution of the differential equation
y′ = f(x, y) does not exceed C

degy f−2 . This bound can be used for making an ansatz
and then computing all rational solutions.

Most of such quasi-linear ODEs are also in the scope of Algorithm 7. Note, that
in these cases the constants C1 and C2 from Corollary 5.3.4 might be rather high
and hence Algorithm 7 is recommended.

Now let us gather the two approaches to propose an algorithm for computing
rational solutions of the first-order first-degree AODE y′ = f(x, y). Let n and m
be the degree of the numerator and the denominator of f , respectively. As we have
seen, Algorithm 7 can rationally solve such an ODE in all cases but n −m = 2. If
n−m = 2 and n ≥ 3, the above discussion gives an upper bound for the degree of
a rational solution, and then gives a chance to find all of them. The only remaining
case is (n,m) = (2, 0). In this case, the differential equation is a rational Riccati
equation. Fortunately algorithms for finding rational solutions of a rational Riccati
equation are well established in literature. In the next section, we recall such an
algorithm.

We conclude this section by summarizing an algorithm for finding all rational
solutions of a given quasi-linear first-order ODE (see Algorithm 10) and giving an
example thereof.

Algorithm 10 Rational solutions of first-order first-degree AODEs
Require: A quasi-linear ODE, y′ = f(x, y), where f = P

Q ∈ K(x, y).
Ensure: All rational solutions.

1: n = degy P and m = degy Q
2: if n−m 6= 2 then
3: return the result of Algorithm 7
4: else if (n,m) = (2, 0) then
5: return the result of Algorithm 11
6: else
7: Using Algorithm 9 to determine C1 := C(yn, P ) and C2 := C( 1

P ,
Q
P ).

8: r =
⌊
C1+C2
n−2

⌋
9: Make an ansatz

y(x) = a0 + a1x+ . . .+ arx
r

b0 + b1x+ . . .+ brxr

with indeterminate coefficients ai, bj , and solve the obtained algebraic system.
10: return all solutions y(x)
11: end if

Example 5.3.7. We consider the differential equation

y′ = f(x, y) = x3y4 − 5xy − x3 + 5x2 − 3
x3(y2 + x) . (5.9)

Let P and Q be the numerator and the denominator of f , respectively. Since
degy P − degy Q = 2, the differential equation (5.9) is out of the scope of Algo-
rithm 7. We use the algebraic method described in this section to compute a degree
bound for a rational solution. Keeping the notations as in Algorithm 10, we first



78

using Algorithm 9 to compute C1 = C(y4, P ). In order to do that, let us de-
termine a polynomial G1 ∈ K(x)[Y,Z] such that G1

(
y4, P (x, y)

)
= 0. It can be

done by Gröbner bases. In fact, we compute a reduced Gröbner basis of the ideal〈
Y − y4, Z − P

〉
in K[y, Y, Z, x] with the lexicographic order y > Y > Z > x. The

polynomial in the basis with the smallest leading term, say G, is the unique one
containing only x, Y, Z, and it has the form

G = x12Y 4 + terms of smaller lex order

Therefore, G1 = G
x12 . Poles of coefficients of G1 occur only at x = 0. The constant

C1, as defined above, is equal to 1. Similarly, G2 is a polynomial in K(x)[Y,Z] such
that G2

(
1

P (x,y) ,
Q(x,y)
P (x,y)

)
= 0 and thus C2 := C( 1

P ,
Q
P ) = 11. Then the degree of a

rational solution of the differential equation (5.9) does not exceed C1+C2
degy f−2 = 6. By

using the indeterminate coefficient method, we see that y(x) = −1+x
x is the only

rational solution of the differential equation (5.9).

5.3.3 Riccati equations

In this subsection, we restrict our work to the class of Riccati equations. A Riccati
equation is a differential equation of the form (4.3)

ω′ = b0(x) + b1(x)ω + b2(x)ω2 , (5.10)

where b0, b1, b2 ∈ K(x), b2 6= 0. We normalize (4.3) by transforming with y =
−b2(x)ω − b′2(x)

2b2(x) −
b1(x)

2 . The obtained differential equation is

y′ + y2 = a(x) , (5.11)

where a = 1
4

(
b′2
b2

+ b1
)2
− 1

2

(
b′2
b2

+ b1
)′
− b0b2. A differential equation of the form

(5.11) is called a rational normal Riccati equation. Since this is always possible we
only consider Riccati equations in normal form and study their rational solutions.

The problem of finding rational solutions of Riccati equations has been inten-
sively studied. An algorithm for finding rational solutions of a Riccati equation can
be found for instance in [37, Alg. 2.2,p. 21]. In [25, Case 1] Kovacic also considers
rational solutions of Riccati equations, as a step in the computation of Liouvillian
solutions of second-order ODEs. Here we summarize the most important aspects of
Kovacic’s algorithm for Riccati equations.

First we collect necessary conditions for a rational normal Riccati equation hav-
ing a rational solution. To avoid triviality we always assume that a is not a constant,
or equivalently, a(x) has at least one pole in K ∪ {∞}.

Proposition 5.3.8 (Kovacic [25]). If the rational normal Riccati equation (5.11)
has a rational solution, then

(i) every pole of a(x) on K must be either a simple pole or a multiple pole of even
order,

(ii) the valuation of a(x) at infinity ν∞(a(x)) must be even or be greater than or
equal to 2.
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Assume that y(x) ∈ K(x) is a rational solution of the differential equation (5.11).
A pole of y(x) which is also a pole of a(x) is called a non-movable pole. Otherwise,
it is called a movable pole. According to Kovacic’s algorithm (see [25]), y(x) must
have the form

y(x) =
n∑
i=1

ri∑
j=1

cij
(x− xi)j

+
m∑
i=1

1
x− χi

+
N∑
i=0

dix
i , (5.12)

where x1, . . . , xn ∈ K are poles of a(x), χ1, . . . , χm ∈ K are movable poles of y(x),
the indices N,n, r1, . . . , rn can be determinded from a(x), and each of the vectors
(d0, d1, . . . , dN ), (ci1, . . . , ciri) over K is determined up to at most 2 choices. Every
such choice determines the potential number m of movable poles.

For details on the possible choices, we separate into several cases depending on
the property of a(x) at the pole x0 ∈ K∪ {∞}. The first sum in (5.12) corresponds
to the property of a(x) at finite poles x1, . . . , xn, while the last sum is defined by
the property of a(x) at infinity. In all cases the coefficents can be obtained from
Laurent series expansion of a and y. Then we substitute into the ODE and compare
coefficients.

Case 1: x0 = xi ∈ K is a double pole of a(x).
In this case, y(x) has a simple pole at x = xi. The Laurent series expansion
of a(x) and y(x) at x = x0 are

a(x) = ai2
(x− xi)2 + ai1

(x− xi)
+
∞∑
k=0

ai,−k(x− xi)k ,

y(x) = ci1
(x− xi)

+
∞∑
k=0

ci,−k(x− xi)k .

By substituting these Laurent series to (5.11) and comparing coefficients of
(x− xi)−2 both sides, we see that the ci1 has two options

ci1 = 1±
√

1 + 4ai2
2 . (5.13)

Notice that ci1 is also the residue of y(x) at x = xi.

Case 2: x0 = xi ∈ K is a multiple pole of degree 2ri of a(x), (ri ≥ 2).
In this case, y(x) has a pole of degree ri at x = xi. The Laurent series
expansion of a(x) and y(x) at x = x0 are

a(x) = ai,2ri
(x− xi)2ri

+ ai,2ri−1
(x− xi)2ri−1 +

∞∑
k=2

ai,2ri−k
(x− xi)2ri−k

,

y(x) = ci,ri
(x− xi)ri

+ . . .+ ci,1
(x− xi)

+
∞∑
k=0

ci,−k(x− xi)k .

Again, we substitute these Laurent series to the differential equation (5.11)
and then identify the coefficients of (x− xi)j on both sides with j = 2ri, 2ri−
1, . . . , ri+1. We see that ci,ri has two possibilities, and once a choices is fixed,
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ci,ri−1, . . . , ci1 are determined uniquely. In particular, the vector (ci,ri , . . . , ci1)
is determined by

ci,ri = ±√ai,2ri ,

ci,s = 1
2ci,ri

ai,ri+s − ri−1∑
j=s+1

ci,jci,ri+s−j

 , s ∈ {2, . . . , ri − 1} ,

ci,1 = 1
2ci,ri

ai,ri+1 −
ri−1∑
j=2

ci,jci,ri+1−j − rici,ri

 .

(5.14)
The residue of y(x) at x = xi in this case is ci1.

Case 3: x0 = xi is either a simple pole of a(x) or a movable pole.
Then y(x) has a simple pole at x = xi with the residue 1. The Laurent series
expansion of y(x) at xi is y(x) = 1

x−xi +
∑∞
k=0 ci,−k(x− xi)k.

Case 4: x0 =∞ satisfying ν∞(a(x)) = −2N < 0 for some N ∈ N.
Then the valuation of y(x) at infinity is −N . The Laurent series expansion of
a(x) and y(x) at infinity, respectively, are

a(x) = a2Nx
2N + a2N−1x

2N−1 +
∞∑
k=2

a2N−kx
2N−k ,

y(x) = dNx
N + dN−1x

N−1 +
∞∑
k=2

dN−kx
N−k .

With the same technique as above, by substituting these Laurent series to the
differential equation (5.11) and comparing corresponding coefficients on both
sides, we obtain the following two possibilities for the vector (d0, d1, . . . , dN ):

dN = ±
√
a2N ,

ds = 1
2dN

aN+s −
N−1∑
j=s+1

djdN+s−j

 , s ∈ {0, . . . , N − 1} .
(5.15)

Notice that the residue of y(x) at infinity in this case is

−d−1 = −1
2dN

aN−1 − dN −
N−1∑
j=0

djdN−1−j

 .

Case 5: x0 =∞ satisfying ν∞(a(x)) = 0.
We take N = 0. Then the valuation of y(x) at infinity is 0. The Laurent series
expansion of a(x) and y(x) at infinity, respectively, are

a(x) = a0 + a−1
x

+
∞∑
k=2

a−k
xk

,

y(x) = d0 + d−1
x

+
∞∑
k=2

d−k
xk

.
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These Laurent series must satisfy the differential equation (5.11). Therefore
d0 = ±√a0 and d−1 = a−1

2d0
. The residue of y(x) at infinity in this case is

−d−1 = −a−1
2d0

Case 6: x0 =∞ satisfying ν∞(a(x)) ≥ 2.
In this case, the valuation of y(x) at infinity is positive. Therefore, we just
simply replace the last sum in (5.12) by zero, i. e. N = −1. The Laurent series
of a(x) and y(x) at infinity are of the form

a(x) =
a−ν∞(a(x))

xν∞(a(x)) +
∞∑
k=1

a−ν∞(a(x))−k

xν∞(a(x))+k ,

y(x) = d−1
x

+
∞∑
k=2

d−k
xk

,

respectively. The possible residue at infinity of y(x) in this case is −d−1 =
−1±

√
1+4s∞
2 , where s∞ = lim

x→0
1
x2a

(
1
x

)
.

Once vectors (d−1, d0, . . . , dN ) and (ci1, . . . , ci,ri) for i = 1, . . . , n are chosen, the
number of non-movable poles can be estimated. By the residue theorem, the sum of
all residues of y(x) over K∪{∞} is equal to zero. Since the residue of y(x) at movable
poles is always equal to 1, the number of movable poles is m = d−1 −

∑n
i=1 ci1.

After determining the number m of movable poles, we can make an ansatz. Let
y(x) := y(x)−

m∑
i=1

1
x−χi , and let P (x) := (x− χ1) · . . . · (x− χm). Then y(x) can be

written in the form y(x) + P ′(x)
P (x) . By substituting to the differential equation (5.11),

P must be a polynomial solution of degree m of the following linear second-order
ODE:

P ′′(x) + 2y(x)P ′(x) + (y′(x) + y(x)2 − a(x))P (x) = 0 . (5.16)

Finding all polynomial P of degree m of the differential equation (5.16) can be done
by linear algebra.

Summarize this discussion we can recall Kovacic’s algorithm for rationally solving
Riccati equations.
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Algorithm 11 Rational Solutions of Riccati equations
Require: The Riccati equation ω′ = b0(x) + b1(x)ω + b2(x)ω2, with bi ∈ K(x) and

b2 6= 0
Ensure: The set Sol of all rational solutions.

1: Set y = −b2ω−
b′2
2b2
− b1

2 and transform to the rational normal Riccati equation:

y′ + y2 = a(x), where a = 1
4

(
b′2
b2

+ b1
)2
− 1

2

(
b′2
b2

+ b1
)′
− b0b2

2: Sol = ∅, preSol = ∅
3: If a = 0, then preSol = preSol ∪

{
1
x−c

}
.

4: If a ∈ K \ {0}, then preSol := preSol ∪ {±
√
a}.

5: Determine poles of a(x) in K, say x1, . . . , xn, and their orders. Compute
ν∞(a(x)).

6: Based on the results of the previous step, determine all possible vectors
(d−1, d0, . . . , dN ), and (ci1, . . . , ciri) for i ∈ {1, . . . , n} as discussed above.

7: for all possible combinations of these vectors do
8: Compute m = d−1 −

n∑
i=1

ci1.

9: Denote y(x) =
n∑
i=1

ri∑
j=1

cij
(x−xi)j +

N∑
i=0

dix
i.

10: if m is a non-negative integer then
11: Find polynomial solutions of degree m, say P (x), of the differential equa-

tion

P ′′ + 2y(x)P ′ + (y′(x) + y(x)2 − a(x))P = 0 .

12: For each P , append y(x) + P ′(x)
P (x) to preSol

13: end if
14: end for
15: For each y(x) ∈ preSol, append ω := −1

b2

(
y + b′2

2b2
+ b1

2

)
to Sol

16: Return Sol.

5.4 Geometric approach

This section is devoted to studying an algorithm for determining all rational so-
lutions for a parametrizable first-order AODE. In Section 4.3, we demonstrated
a transformation of a parametrizble first-order AODE to a first-order first-degree
AODE by using optimal parametrization of rational curves over the field of ratio-
nal functions. General solutions are invariant under these transformations. But for
specific rational solutions, information might be lost. However, the following lemma
shows that lost rational solutions can be recovered.

Lemma 5.4.1 (see Lemma 4.3.2). Let F (x, y, y′) = 0 be a parametrizable first-order
AODE, and P := (p1(x, t), p2(x, t)) ∈ K(x)(t)2 an optimal parametrization of the
corresponding algebraic curve C. Then y = y(x) ∈ K(x) is a rational solution of the
differential equation F (x, y, y′) = 0 if and only if one of the following holds:

i. The rational point (y(x), y′(x)) lies in the finite set C \ im(P).
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ii. y(x) = p1(x, ω(x)) for some algebraic solution ω(x) of the algebraic system:
∂p1
∂t

(x, ω) = 0 ,

∂p1
∂x

(x, ω) = p2(x, ω) .

iii. y(x) = p1(x, ω(x)) for some algebraic solution ω(x) of the associated differen-
tial equation.

For the class of autonomous first-order AODEs, the following proposition shows
that being parametrizable is a necessary condition for such a differential equation
having a rational solution.

Proposition 5.4.2. If an autonomous AODE, F (y, y′) = 0, has a rational solution
then it is parametrizable.

Proof. Let y(x) be a rational solution of the AODE, then y(x+ c) is also a solution
of the AODE (see [13]) and hence, (y(x+ c), y′(x+ c)) is a parametrization.

As a consequence of Lemma 4.3.2, the problem of determining all rational so-
lutions of a parametrizable first-order AODE reduced to three smaller ones: deter-
mining the complement of imP in C, finding rational solutions of a system of two
algebraic equations, and finding rational solutions of a quasilinear first-order ODE.
The first two problems are well-known, and therefore, quite easy. The last one has
been investigated in the previous section. Thus Lemma 4.3.2 yields the following al-
gorithm for determining all rational solutions of a parametrizable first-order AODE
(see Algorithm 12).

Example 5.4.3. Consider the differential equation:

F (x, y, y′) = −y5 − xy4y′ + y′3 = 0 .

The corresponding curve, say C, has an optimal parametrization

P(t) :=
(

t3

x3(t2 − x3) ,
−t5

x4(t2 − x3)2

)
.

The rational map P−1 : C → A1(K(x)) given by P−1(y, z) = −x2y2

z is an inverse of
P. Therefore, C \ im(P) = ∅. The associated algebraic system and the associated
differential equation with respect to P are

−ω4(ω2−5x3)
x4(ω2−x3)3 = 0 ,

−3ω3(ω2−2x3)
x4(ω2−x3)2 = − ω5

x4(ω2−x3)2 ,

and
ω′ = 2ω

x
,

respectively. This algebraic system and the differential equation are quite easy
to solve. The algebraic system has only the zero solution, while the differential
equation has a one-parameter class of rational solution, ω(x) = cx2. Hence, the set
of all rational solutions of the given differential equation is the one-parameter class
of functions y(x) = c3

c2x−1 .
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Algorithm 12 Rational Solutions of parametrizable first-order AODEs
Require: A parametrizable first-order AODE, F (x, y, y′) = 0, with an optimal

parametrization P = (p1, p2) of the associated curve.
Ensure: All rational solutions.

1: Sol = ∅
2: Determine the finite set C \ P
3: for all y(x) ∈ C \ P with y(x) ∈ K(x) and F (x, y(x), y′(x)) = 0 do
4: append y(x) to Sol
5: end for
6: Find all rational solutions ω = ω(x) of the associated algebraic system{

∂p1
∂x (x, ω) = 0 ,
∂p1
∂t (x, ω) = p2(x, ω) ,

append p1(x, ω(x)) to Sol
7: Use Algorithm 10 to rationally solve the associated differential equation

ω′ =
p2(x, ω)− ∂p1

∂x (x, ω)
∂p1
∂t (x, ω)

.

For each of the rational solution ω = ω(x), append p1(x, ω(x)) to Sol
8: return Sol.



Chapter 6

Conclusion and Future work

We have considered the class of first-order AODEs and studied their specific so-
lutions, such as: algebraic general solutions, rational general solutions, particular
rational and polynomial solutions. Several method have been proposed to attack
the problem of determining these kinds of solutions for a first-order AODE.

In order to determine an algebraic/rational general solution for a first-oder
AODE, we view the differential equation as an algebraic surface/curve over a suit-
able ground field. By using birational transformation of algebraic surfaces/curves,
we transform the differential equation to a new one which we hope that it is easier to
solve. Following this geometric approach, we proposed a full algorithm for deciding
the existence of a strong rational general solution of a first-order AODE, and actu-
ally compute it in affirmative case (see Algorithm 5). The problem of determining
an algebraic general solution is much harder. We proved that this problem is equiv-
alent to the Poincaré problem. Beside, we presented a procedure for determining
an algebraic general solution.

For the problem of determining all particular rational and polynomial solutions,
we combine combinatorial, algebraic and geometric methods. A combinatorial con-
sideration leads us to an algorithm for determining all rational solutions for a maxi-
mally comparable first-order AODE. An approach based on algebraic function field
theory has been presented to study rational solutions of a first-order first-degree
AODE. By combining all above approaches, we provided an algorithm for deter-
mining all rational solutions for a first-order AODE which is maximally comparable
or parametrizable. This class covers all first-order AODEs from the collection by
Kamke [23]. For computing polynomial solutions, we proposed a full algorithm.

The following is a short description of our ongoing and future research.

1. Computing a rational general solution or all particular rational so-
lutions of a first-order AODE. Our previous algorithms already solve the
problem for the class of first-order AODEs whose corresponding curves are of
genus zero. To attack the positive genus cases, we are working on a computa-
tional modification of results by Eremenko in [12] and in related papers.

2. An application: Effective Zolotarev Polynomial. By using our al-
gorithm, we expect to obtain an efficient algorithm to determine effective
Zolotarev polynomials.
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3. Studying algebraic general solutions of first-order first-degree AODEs.
The problem of determining an algebraic general solution of a first-order
AODE and the Poincaré problem are well known difficult problems (see [41]).
We are studying different aspects of a generalized version of the Poincaré
problem.

4. Higher order AODEs and other kinds of symbolic solutions. Devel-
oping algorithms for first-order AODEs is a natural first step before crafting
algorithms for solving higher order AODEs. Key concepts needed to pass
from first-order to higher order are those of differential divisors and Differ-
ential Nullstallensatz. Since the definition of differential divisors is based on
the inclusion of general solution sets, Differential Nullstellensatz is naturaly
relevant in investigating them. On the other hand, we also intend to investi-
gate other types of symbolic solutions in the future, such as radical solutions,
closed from solutions.
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