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Properties of Equidiagonal Quadrilaterals

Martin Josefsson

Abstract. We prove eight necessary and sufficient conditions for a convex quadri-
lateral to have congruent diagonals, and one dual connection between equidiag-
onal and orthodiagonal quadrilaterals. Quadrilaterals with both congruent and
perpendicular diagonals are also discussed, including a proposal for what they
may be called and how to calculate their area in several ways. Finally we derive
a cubic equation for calculating the lengths of the congruent diagonals.

1. Introduction

One class of quadrilaterals that have received little interest in the geometrical
literature are the equidiagonal quadrilaterals. They are defined to be quadrilat-
erals with congruent diagonals. Three well known special cases of them are the
isosceles trapezoid, the rectangle and the square, but there are other as well. Fur-
thermore, there exists many equidiagonal quadrilaterals that besides congruent di-
agonals have no special properties. Take any convex quadrilateral ABC'D and
move the vertex D along the line BD into a position D’ such that AC = BD'.
Then ABC D’ is an equidiagonal quadrilateral (see Figure 1).

Dl

Figure 1. An equidiagonal quadrilateral ABC D’

Before we begin to study equidiagonal quadrilaterals, let us define our notations.
In a convex quadrilateral ABC D, the sides are labeled a = AB,b = BC,c= CD
and d = DA, and the diagonals are p = AC and ¢ = BD. We use 6 for the angle
between the diagonals. The line segments connecting the midpoints of opposite
sides of a quadrilateral are called the bimedians and are denoted m and n, where
m connects the midpoints of the sides a and c.
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2. Characterizations of equidiagonal quadrilaterals

Of the seven characterizations for equidiagonal quadrilaterals that we will prove
in this section, three have already appeared in our previous papers [11] and [12].
We include them here anyway for the sake of completeness. One of them is proved
in a new way.

It is well known that the midpoints of the sides in any quadrilateral are the
vertices of a parallelogram, called Varignon’s parallelogram. The diagonals in this
parallelogram are the bimedians of the original quadrilateral and the sides in the
Varignon parallelogram are half as long as the diagonal in the original quadrilateral
that they are parallel to. When studying equidiagonal quadrilaterals, properties of
the Varignon parallelogram proves to be useful.

Figure 2. The Varignon parallelogram

Using the parallelogram law in the Varignon parallelogram yields (see Figure 2)
9 2 P 2 q 2
metn _2<<2> * (2) )

p2 + q2 _ 2(m2 + n2)' (1)
This equality is valid in all convex quadrilaterals.
For the product of the diagonals we have a necessary and sufficient condition of
equidiagonal quadrilaterals in terms of the bimedians.

which is equivalent to

Proposition 1. The product of the diagonals p and ¢ in a convex quadrilateral with
bimedians m and n satisfies
pg <m?+n?
where equality holdsif and only if it is an equidiagonal quadrilateral.
Proof. By adding and subtracting 2pq to the left hand side of (1), we get
2pq < (p— q)* + 2pg = 2(m* +n?).
The inequality follows, with equality if and only if p = ¢. O

The first part in the following theorem was proved by us as Theorem 7 (ii) in
[11], but we repeat the short argument here.
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Theorem 2. A convex quadrilateral isequidiagonal if and only if
(i) the bimedians are perpendicular, or
(i) the midpoints of its sides are the vertices of a rhombus.

Proof. (i) It is well known that a quadrilateral has perpendicular diagonals if and
only if the sum of the squares of two opposite sides is equal to the sum of the
squares of the other two sides (see Theorem 1 in [11]). Hence we get

R R RO

since opposite sides in a parallelogram are congruent.

(ii) A parallelogram is a rhombus if and only if its diagonals are perpendicular.
Since the diagonals in the Varignon parallelogram are the bimedians of the original
quadrilateral (see Figure 2), (ii) is equivalent to (i). O

The next characterization is about the area of the quadrilateral. To prove it in
a new way compared to what we did in [12, p.19], we need the following area
formula for convex quadrilaterals. We cannot find a reference for this formula, but
it is similar to one we derived in [10].

Theorem 3. A convex quadrilateral with diagonals p, ¢ and bimedians m, n has

the area
2
K= \/m2n2 — <p2 _ q2> )
4

Proof. Rewriting (1), we have in all convex quadrilaterals

2 2\2

(m? —n?)? +4m*n? = (p —2i-q > . 2

Theorem 7 in [10] states that a convex quadrilateral has the area
K = 3V/p?¢® — (m? —n?)2.
Inserting (2) yields for the area
Ap2g2 2 2\2 2 2\2
aR? = L g2 (EEE) g2 (P20
4 2 2

and the formula follows. O

Corollary 4. The area of a convex quadrilateral is equal to the product of the
bimediansif and only if it is an equidiagonal quadrilateral.

Proof. In Theorem 3, we have that p = ¢ if and only if K = mn. O
A direct consequence is another area formula, that also appeared in [12, p.19].

Corollary 5. A convex quadrilateral with consecutive sides a, b, ¢, d is equidiag-
onal if and only if it hasthe area

K = 1/(2(a? + ¢2) — 4v2)(2(b% + d2) — 40?)
where v is the distance between the midpoints of the diagonals.
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Proof. The length of the bimedians in a convex quadrilateral are
m = 3/2(0% + d2) — 402 and  n=1y2(a2+c2) 4?2 (3)

according to [10, p.162]. Using these expressions in Corollary 4 directly yields this
formula. O

The next characterization is perhaps not so elegant in itself, but it will be used
to derive a more symmetric one later on.

Proposition 6. A convex quadrilateral ABC D with consecutive sides a, b, ¢, d is
equidiagonal if and only if

abcos B + cdcos D = adcos A + becos C.

Proof. The quadrilateral is equidiagonal if and only if 2p? = 2¢2, which, according
to the law of cosines, is equivalent to (see Figure 2)

a’+b%>—2abcos B+c2+d>—2cd cos D = a’+d*>—2ad cos A+b>+c?—2be cos C.

Eliminating common terms and factors on both sides, this is equivalent to the equa-
tion in the proposition. O

This lemma, which can be thought of as a law of sines for quadrilaterals and is
very similar to the previous proposition, will be used in the next proof.

Lemma 7. Ina convex quadrilateral ABC' D with consecutive sides a, b, ¢, d,
absin B + cdsin D = adsin A + besin C.

Proof. By dividing the quadrilateral into two triangles using a diagonal, which can
be done in two different ways, we have for its area that (see Figure 2)

K = %absinB + %cdsinD = %adsinA + %bcsinC’.

The equation in the lemma follows at once by doubling both sides of the second
equality. O

Now we come to our main characterization of equidiagonal quadrilaterals.

Theorem 8. A convex quadrilateral ABC D with consecutive sides a, b, ¢, d is
equidiagonal if and only if

(a2 — 02)(172 — d2) = 2abcd(cos (A—C) —cos (B — D))
Proof. Squaring both sides of the equation in Lemma 7 yields
a’b? sin? B + 2d? sin® D + 2abed sin B sin D
= a%d?sin® A + b*c? sin® C' + 2abed sin Asin C 4)
which is true in all convex quadrilaterals. Squaring the equation in Proposition 6,
we have that a convex quadrilateral is equidiagonal if and only if
a’b? cos® B + c2d? cos® D + 2abed cos B cos D

= a%d? cos® A + b*c? cos® C' + 2abed cos A cos C. (5)
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By adding equations (4) and (5) and applying the identity sin? ¢ + cos® ¢ = 1 four
times, we get the following equality that is equivalent to the one in Proposition 6
(due to the property that z = y ifand only if z + 2z = y + z for any z2)

a®b? + ¢*d* + 2abed(sin B sin D + cos B cos D)
= a?d® 4+ b?c* + 2abed(sin Asin C + cos A cos C).
Using the subtraction formula for cosine, this is equivalent to
a®b? — a’d® — b*c* 4 *d* = 2abed cos (A — C) — 2abed cos (B — D)
which is factored into the equation in the theorem. O

Corollary 9. Two opposite sides of an equidiagonal quadrilateral are congruent
if and only if it is an isoscel es trapezoid.

Proof. Applying the trigonometric formula cos ¢ — cos = —2sin 25¥ sin 25
and the sum of angles in a quadrilateral, we have that the equation in Theorem 8 is
equivalent to

(a+c)(a—c)(b+d)(b—d) = —4abedsin (A + B)sin (A + D).

Hence a = cor b = disequivalentto A + B = mw or A+ D = 7, which are well
known characterizations of a trapezoid (see [13, p.24]). O

3. A new duality regar ding congruent and perpendicular diagonals

Theorem 7 in [11] can be reformulated to say that a convex quadrilateral is
equidiagonal if and only if its Varignon parallelogram is orthodiagonal, and the
quadrilateral is orthodiagonal if and only if its Varignon parallelogramis equidi-
agonal. Thus it gives a sort of dual connection between a quadrilateral and its
Varignon parallelogram. Here we shall prove another duality between a quadrilat-
eral and one quadrilateral associated with it. First let us remind the reader that if
squares are erected outwards on the sides of a quadrilateral, then their centers are
the vertices of a quadrilateral that is both equidiagonal and orthodiagonal.® This
result is called van Aubel’s theorem. It can be proved using elementary triangle
geometry (see the animated proof at [7]) or basic properties of complex numbers
asin [2, pp.62-64].

What happens if we exchange the squares for equilateral triangles? Problem
5 on the shortlist for the International Mathematical Olympiad in 1992 asked for
a proof that the two line segments connecting opposite centroids of those trian-
gles are perpendicular if the quadrilateral has congruent diagonals [6, p.269]. That
problem covered only a quarter of the following theorem, since the converse state-
ment as well as a dual one and its converse are also true. Essentially the same proof
of part (i) was given at [15]. We have found no reference to neither the proof nor
the statement of part (ii).

1An orthodiagonal quadrilateral is a quadrilateral with perpendicular diagonals.
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Theorem 10. Suppose equilateral triangles are erected outwards on the sides of a
convex quadrilateral ABC'D. Then the following characterizations hold:

(i) ABCD is an equidiagonal quadrilateral if and only if the triangle centroids
are the vertices of an orthodiagonal quadrilateral.

(i) ABCD isan orthodiagonal quadrilateral if and only if the triangle centroids
are the vertices of an equidiagonal quadrilateral.

Proof. (i) Let the triangle centroids be G1, G2, G5 and G4. In an equilateral trian-
gle with side x, the distance from the centroid to a vertex (equal to the circumradius
R)isSR = % Applying the law of cosines in triangle G AG yields (see Figure 3)

(G1G4)? = (\%)2 + <\;%>2 _ % , \% o8 (A N g)

2 d? ad 1
:C;+3—C;<2008A—\é§sinz4>.

In the same way we have

2 2
(G2G3)? = b—+c— _be <1COSC— ?sinC’) ,

3 3 3\2
2 2
9 @ b ab (1 _
T2 D sB- Y snB
(G1G2) 3 3 3 <2cos 5 sin ),
2 2
9 C d cd (1 .
C LS P s Y26inD
(G3Gy) 373 3 (2cos 5 Sin )

Thus, simplifying and collecting similar terms yields that
(G1G2)? + (G3G4)? — (G2Gs)? — (G1Gy)?
= ¢(adcos A + becos C — abceos B — cd cos D)
+ %(absinB + cdsin D — adsin A — besin C).

The last parenthesis is equal to zero in all convex quadrilaterals (Lemma 7). Hence
we have

(G1G2)? + (G3G4)? = (G2G3)* + (G1G4)?
< abcos B+ cedcos D = adcos A+ becos C,

where the first equality is a well known characterization for G1G3s 1. GoG4 (see
Theorem 1 in [11]) and the second equality is true if and only if ABC'D is equidi-
agonal according to Proposition 6.

(ii) This statement is trickier to prove with trigonometry, so instead we will
use complex numbers. Let the vertices A, B, C and D of a convex quadrilateral
be represented by the complex numbers z1, 29, z3 and z4 respectively. Also, let
the centroids G1, G2, G3 and G4 of the equilateral triangles be represented by the
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Figure 3. Four equilateral triangles and their centroids

complex numbers g1, g2, g3 and g4 respectively. The latter are related to the former
according to

21— 22 20 — 23 23 — 24 24— 21
1 261% 2 362% 3 461% 4 1 el%

g1 = \/§ ) g2 = \/g ) g3 = \/3 ’ 94 = \/3
The proof will be in two parts.

(=) If ABCD is orthodiagonal, then z3 — 21 = i%(z4 — z2) for some real
number & # 0. Using the expressions for the centroids, we get

gs — g1
g4 — g2

(23 —21) — (21 — 29)
(23 — 21) + (24 — 29)

z}%’—l'_\/lJﬁ%’? _

23— 24 — (21 — 22)
z4 — 21 — (22 — 23)
L@(ZAL - 22) - (Z4 — 2’2)
i (24 — 22) + (24 — 22)

12+ 1 _\/14_%2 o

where the exponential functions and the /3 were canceled out in the first equality.
This proves that the line segments connecting opposite centroids are congruent, so
G1G2G3GYy is an equidiagonal quadrilateral.

(<) If G1G2G3Gy is equidiagonal, then according to the rewrite in the first part,

(23 — 21) — (24 — 22)| = [(23 — 21) + (22 — 22)|.

We shall prove that this implies that z3 — 21 and z4 — 2 are perpendicular. Let us
define the two new complex numbers w; and ws according to wy = z3 — 27 and
wy = 24 — z2. Thus we are to prove that if |w; — ws| = w1 + ws], then wq and wo
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are perpendicular. This is quite obvious from a geometrical perspective considering
the vector nature of complex numbers, but we give an algebraic proof anyway. To
this end we use the polar form. Thus we have w; = r1(cos 1 + isin;) and
wg = r2(cos pa + isin p2). We square the two equal absolute values and rewrite
|wy — wa|? = |wy + we|? to get

(r1 cos g1 — rg cos o) + (risinp; — rosin gpg)Q

= (r1cos ¢y + rg cos <p2)2 + (r1sinp; + rosin @2)2.
Expanding these expressions and canceling equal terms, this is equivalent to
4rira(cos g1 cos g +singsings) =0 < cos(p; — p2) =0.

The last equation has the valid solutions 1 — 2 = 47, which proves that the
angle between w; and wy is a right angle. Hence ABC'D is orthodiagonal. (]

Other generalizations of van Aubel’s theorem concerning rectangles, rhombi
and parallelograms can be found in [5] and [17].

4. Quadrilateralsthat are both equidiagonal and orthodiagonal

Consider Table 1, where three well known properties of the diagonals in seven of
the most basic quadrilaterals are shown. The answer “no” refers to the general case
for each quadrilateral. One thing is obvious, there is something missing here. No
quadrilateral with just the two properties of perpendicular and congruent diagonals
is included. This is because no name seems to have been given to this class of
quadrilaterals.?

Quadrilateral Bisecting Perpendicular Congruent
diagonals diagonals diagonals
Trapezoid No No No
Isosceles trapezoid No No Yes
Kite No Yes No
Parallelogram Yes No No
Rhombus Yes Yes No
Rectangle Yes No Yes
Square Yes Yes Yes

Table 1. Diagonal properties in basic quadrilaterals

Before we proceed, we quote in Table 2 in a somewhat expanded form a the-
orem we proved in [11, p.19]. The four properties on each line in this table are
equivalent. The Varignon parallelogram properties follows directly from the fact

2In [14, p.50] Gerry Leversha claims that such a quadrilateral is sometimes called a pseudo-
square. We can however not find any other reference for that use of the name (neither on the web nor
in any geometry books or papers we know of). Instead a Google search indicates that a pseudo-square
is a squares with four cut off vertices.
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that a parallelogram is a rhombus if and only if its diagonals are perpendicular, and
it is a rectangle if and only if its diagonals are congruent [4, p.53].

Original Diagonal Bimedian Varignon
quadrilateral property property parallelogram
Equidiagonal p=q mln Rhombus
Orthodiagonal plq m=n Rectangle

Table 2. Special cases of the Varignon parallelogram

The bimedians of a convex quadrilateral are the diagonals of its Varignon paral-
lelogram, so the original quadrilateral has congruent and perpendicular diagonals if
and only if the Varignon parallelogram has perpendicular and congruent diagonals
(see Table 2). For such quadrilaterals, the Varignon parallelogram is a square, and
this is a characterization of those quadrilaterals with congruent and perpendicular
diagonals since a parallelogram is a square if and only if it is both a rhombus and a
rectangle. Thus we have the following two necessary and sufficient conditions.

Theorem 11. A convex quadrilateral has congruent and perpendicular diagonals
if and only if

(i) the bimedians are perpendicular and congruent, or

(i) the midpoints of its sides are the vertices of a square.

So what shall we call these quadrilaterals? They are both equidiagonal and
orthodiagonal, but trying to combine the two words yields no good name. The in-
dividual words describe the defining properties of these quadrilaterals. With that
and Theorem 11 in mind, we propose that a quadrilateral with congruent and per-
pendicular diagonals is called a midsguare quadrilateral (see Figure 4).

Figure 4. A midsquare quadrilateral and its Varignon square

Three special cases of midsquare quadrilaterals are orthodiagonal isosceles trape-
zoids, equidiagonal kites and squares.
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Proposition 12. A midsquare quadrilateral is a squareif and only if its diagonals
bisect each other.

Proof. If the diagonals of a midsquare quadrilateral bisect each other, it is obvious
that it is a square since the diagonals divide it into four congruent right triangles
with equal legs.

Conversely it is a well known property that in a square, the diagonals bisect each
other. O

After having given a name for this neglected type of quadrilateral, we now con-
sider its area. The first formula in the following proposition has been known at
least since 1962 according to [3, p.132].

Proposition 13. A convex quadrilateral with diagonals p, ¢ and bimedians m, n
isa midsquare quadrilateral if and only if its area is given by

K=1p*+¢% or K =i(m*+n?).
Proof. Using the identity (p—q)? = p*>+q¢*—2pq, the area of a convex quadrilateral
satisfies (see [8])
K =1pgsing = (p* +¢° — (p—¢)*) sind < 1(p* + ¢*)
where equality holds if and only if p = gand p L q.
The second formula follows at once from the first by using equality (1). O

Since the two diagonals and the two bimedians are individually congruent in a
midsquare quadrilateral, its area can be calculated with the four simple formulas

K=1p"=1%¢=m*>=n’ (6)
The next proposition gives more area formulas for midsquare quadrilaterals.

Proposition 14. A convex quadrilateral with consecutive sidesa, b, ¢, d isa mid-
square quadrilateral if and only if its area is given by

K =1(2(a® + %) — 4v®) = 1(2(b* + d°) — 40?)
where v is the distance between the midpoints of the diagonals.

Proof. A convex quadrilateral has congruent diagonals if and only if its area is
the product of the bimedians according to Corollary 4. Since the diagonals are
perpendicular if and only if the bimedians are congruent (Table 2), the two area
formulas follows at once using (3). O

Corollary 15. A convex quadrilateral with consecutive sides a, b, ¢, d isa square
if and only if itsareais
K = 1(a®+ ) = 3(0* + d°).

Proof. These formulas are a direct consequence of the last proposition since a con-
vex quadrilateral is a square if and only if it is a midsquare quadrilateral with
bisecting diagonals (v = 0) according to Proposition 12. (]
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Now we come to an interesting question. Can we calculate the area of a mid-
square quadrilateral knowing only its four sides? The answer is yes. The origin for
the next theorem is a solved problem we found in the pleasant book [9, pp.179-
180]. There Heilbron states that this area is given by

1
K=7 (a2 + 2+ v/2(a2e® + bzd2)> :

He starts his derivation thoroughly, but at the end, when he obtains a quadratic
equation, he merely claims that solving it will provide the formula he was supposed
to derive. When we started to analyze the solutions to this equation in more detail,
we began to smell a rat, and eventually realized that Heilbrons formula is in fact
incorrect. We will motivate this after our proof of the correct formula.

Theorem 16. A midsguare quadrilateral with consecutive sides a, b, ¢, d has the
area

1
K = Z(a2 + 2 + /4(a2c + b2d?) — (a2 + 02)2> .

Figure 5. The diagonal parts in a midsquare quadrilateral

Proof. We use notations on the sides and the diagonal parts as in Figure 5, where
w+ x = y+ z = p since the diagonals are congruent. The area is given by
K = %pQ, so we need to express a diagonal p in terms of the sides. Using the
Pythagorean theorem, we get

2 R =w?—2?= (wtz)(w—2z)=p2w - p)

a
and similar b — ¢ = p(2y — p). Thus we have

a? —b? 4+ p? = 2pw and b2 — 2+ p? = 2py.
Squaring and adding these yields

(a2 _p2 +11)2)2 + (b2 _ 2 +11)2)2 _ 4p2(w2 + yz) = 4p2a>
where we used the Pythagorean theorem again in the last equality. Expanding and
simplifying results in a quadratic equation in p?:
2t = 2(a® + A)p? + (a® = b*) 2 4+ (b — )2 =0.
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This has the solutions
9 a2+ 2 +vV—at — c* + 2022 — 4b* + 4a2b2 + 422
— 5 .

The radicand can be simplified to
—at — ¢t + 2a%P 4 42 d? = 4(a*P 4 VP d?) — (a® + 2)?
where we used a? — b? + ¢? = d? (see Theorem 1 in [11]). Thus

1
P’ = 3 (a2 + 2 + \/4(a2c + b2d?) — (a2 + 02)2) : (7
To decide the correct sign we study the special case when the quadrilateral is a
square. Using a = b = ¢ = d in (7) yields

p? = %(2&2 + 2a2)
where we see that the solution with the negative sign is obviously false. The area
formula now follows when inserting (7) into K = %pQ. O

Note that it is easy to get formulas for the lengths of the diagonals and the
bimedians in a midsquare quadrilateral in terms of the sides. We simply have to
combine (6) and Theorem 16.

Remark. Let us comment on the formula suggested by Heilbron. It gives the correct
area for a square, so we need to do a more thorough investigation. If his formula
were correct, it would mean that 2(a?c? + b%d?) = (a® + ¢?)?. But then his
formula could be simplified to K = 1(a® + ¢?). According to Corollary 15,
this is a characterization for a square. Hence his formula must be incorrect, since
the quadrilateral has perpendicular and congruent diagonals, but need not to be
a square. Another way to dispute it is by considering a right kite with a = d
and ¢ = b. It has the area K = ac, but Heilbrons formula gives K = 1(a + ¢)?.
Equating these expressions yields (a —c)? = 0 which again imply the quadrilateral
must be a square, which it is not.

5. When are certain quadrilaterals equidiagonal ?

So far we have several ways of determining when a convex quadrilateral is
equidiagonal. An isosceles trapezoid, a rectangle and a square are always equidi-
agonal, but how can we know when the diagonals are congruent in other basic
quadrilaterals, such as a parallelogram or a cyclic quadrilateral?

Theorem 17. The following characterizations hold:

(i) Aparallelogramisequidiagonal if and only if it is a rectangle.

(i) Arhombusisequidiagonal if and only if it isa square.

(iii) Atrapezoid isequidiagonal if and only if it is an isoscel es trapezoid.

(iv) Acyclicquadrilateral isequidiagonal if and only if it isan isoscelestrapezoid.

Proof. (i) In a parallelogram ABC' D with the two different side lengths a and b,
the law of cosines yields that

1?22q2 & a?+b%>—2abcosB=a’+b> —2abcosA < A=B.
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Two adjacent angles in a parallelogram are equal if and only if it is a rectangle.
(ii) The first part of the proof is the same as in (i) except that a = b, which does
not effect the outcome. Two adjacent angles in a rhombus are equal if and only if
it is a square.
(iii) The lengths of the diagonals in a trapezoid with consecutive sides a, b, ¢, d
are given by (see [13, p.31])

_ 2 _ o2 _ 2 o2
p:\/ac(a ¢) + ad? — cb and q:\/ac(a ¢) + ab? — cd

a—cC a—cC

where a || cand a # ¢. Thus we get
P=¢ o ad’-c?=ab’—-cd® < (a—c)(d®-b*)=0.

Since a # ¢, the only valid solution is b = d, so we have an isosceles trapezoid.
(iv) In a cyclic quadrilateral we can apply Ptolemy’s second theorem, according
to which (see [1, p.65])
p ad+ be

g ab+cd

Hence
p=q <& ab+cd=ad+bc & (a—c)(b—d)=0

where the last equality has the two possible solutions a = c and b = d. Any cyclic

quadrilateral with a pair of opposite congruent sides is an isosceles trapezoid. One

way of realizing this is by connecting the vertices to the circumcenter and thus
conclude that this cyclic quadrilateral has a line of symmetry (see Figure 6).

Conversely it is well known that an isosceles trapezoid has congruent diagonals.

O

Figure 6. This is an isosceles trapezoid

In the previous section we concluded that an orthodiagonal quadrilateral is also
equidiagonal if and only if the midpoints of the sides are the vertices of a square.
There don’t seem to be any similar easy ways of determining when a Kite or a
tangential quadrilateral are equidiagonal.
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6. Thediagonal length in equidiagonal quadrilaterals

We conclude this paper by discussing how the equal length of the diagonals in a
general equidiagonal quadrilateral can be calculated given only the four sides, and
also how this is related to finding the area of the quadrilateral. Thus this will lead
up to a generalization of Theorem 16.

There is a formula relating the four sides and the two diagonals of a convex
quadrilateral, sometimes known as Euler’s four point relation. It is quite rare to
find this relation in geometry books and even rarer to find a proof of it that does
not involve determinants, so we start by deriving it here. For this purpose we need
the following trigonometric formula.

Lemma 18. For any two angles o and 3 we have the identity
cos® a + cos® B+ cos?® (a + ) — 2 cos arcos B cos (a + 3) = 1.
Proof. The addition formula for cosines can be rewritten in the form
cos acos 8 — cos (a+ ) = sinasin f.
Squaring both sides, we have
(cos acos B — cos (o + 3))* = (1 — cos® a)(1 — cos® B).
Now the identity follows after expansion and simplification. O

The following relation has been derived independently by several mathemati-
cians. It cannot be factored, but there are several ways to collect the terms. The
version we present with only four terms is definitely one of the most compact, and
except for some basic algebra we only use the law of cosines in the short proof.

Theorem 19 (Euler’s four point relation). In all convex quadrilaterals with con-
secutive sides a, b, ¢, d and diagonals p, ¢, it holds that

p2q2(a2 +b2 +02 +d2 _p2 _ q2) _ <a2 _ b2 +C2 . dz)(QQCQ _ b2d2)
—p*(a® = ) (0 = &) + ¢*(a® = b°) (¢ — d?) = 0.
Proof. Let « = Z/ZBAC and 8 = ZDAC in quadrilateral ABCD. The law of

cosines applied in triangles BAC, DAC and ABD yields respectively (see Fig-

ure 7)
cosa—a2+p2_b2 cosﬁ—d2+p2_62 a2+
n 2ap ’ N 2dp ’ 2ad ’

Inserting these into the identity in Lemma 18 and multiplying both sides of the
equation by the least common multiple 4ad?p?, we get after simplification

dz(a2 —|—p2 . b2)2 +a2(d2 +p2 . 02)2 —|—p2(a2 +d?— q2)2
— (a® +p* = V*)(d® +p* — )(a® + d&* — ¢*) = 4a*d*p*.

Now expanding these expressions and collecting similar terms results in Euler’s

four point relation. a

cos (a+ f3) =

3The history of this six variable polynomial dates back to the 15th century, and it is closely
related to the volume of a tetrahedron. The Italian painter Piero della Francesca was also interested in
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Figure 7. Using the law of cosines in three subtriangles

Returning to the initial goal of calculating the length of the equal diagonals, we
set p = ¢ in Theorem 19. This results in the following cubic equation in p?:

20° — (a® + 02 + & + d)pt + ((0® + ) (0 + &%) - 2(a*¢ + 0*d°))p?
+ (a® = bV? + & — d®)(a®? — v?d?) = 0.

Cubic equations have been solved for five centuries and there are several different
solution methods known. However they all have one thing in common as anyone
who has used one of them has noticed: the expressions for the roots they produce
are very complicated and in most of the times completely useless. In fact, solving a
cubic equation with coefficients like the one above with a computer algebra system
can produce several pages of output formulas. Should it be necessary in a practi-
cal situation, a numerical solution (on a calculator or computer) is almost always
preferable.

After having solved the cubic equation numerically, the area of the equidiagonal
guadrilateral (with p = ¢) is given by the formula of Staudt (see [16, p.35])

K= 1/4p* — (a2 — b2 + 2 — d?)2.

So it may come as a little disappointment that we did not get a nice formula for
the diagonals and the area like in the case when the diagonals are also perpendicu-
lar. There are however lots of cubic equations arising when solving problems in the
geometry of triangles and quadrilaterals, so this is quite a common occurrence. On

geometry and derived a formula for the volume V' of a tetrahedron expressed in terms of its six edges.
The formula states that the left hand side of the equation in Theorem 19 is equal to 144V2. The
formula was rediscovered in the 16th century by the Italian mathematician Niccold Fontana Tartaglia,
who was also involved in the first solution of the cubic equation. In the 18th century the famous Swiss
mathematician Leonhard Euler solved the same problem. The invention of determinants made it
possible for the 19th century British mathematician Arthur Cayley to express the tetrahedron volume
in a very compact form using the so called Cayley-Menger determinant. We do not know which one
of these gentlemen was the first to conclude that setting the tetrahedron volume equal to zero would
result in an interesting identity for quadrilaterals. A trigonometric derivation that did not involve the
tetrahedron has surely been known at least since the 19th century when several mathematicians made
thorough trigonometric studies of the geometry of quadrilaterals.
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the other hand, we can now get a second derivation of Theorem 16. If the diago-
nals are both congruent and perpendicular, the constant term of the cubic equation
vanishes (since a? + ¢ = b% + d?), so after simplifying the equation and dividing
it by the positive number p? we get

2p* — 2(a* + A)p? + (a® + 2)? — 2(a*c* + b*d?) = 0.
This directly yields the solution

1
P’ = 5 <a2 + 4 /4(a2e? + b2d?) — (a® + 02)2>

which we recognize from (7).
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