
Master thesis on Sound and Music Computing
Universitat Pompeu Fabra

Heterogeneous Graph Neural Network
Music Recommendation

Dean Cochran

Supervisor: Lorenzo Porcaro

Co-Supervisor: Emilia Gómez

August 2022

Master thesis on Sound and Music Computing
Universitat Pompeu Fabra

Heterogeneous Graph Neural Network
Music Recommendation

Dean Cochran

Supervisor: Lorenzo Porcaro

Co-Supervisor: Emilia Gómez

August 2022

Contents

1 Introduction 1

1.1 Contributions . 2

1.1.1 A LFM-1b data set loader . 4

1.1.2 Graph Based Deep Learning Link Prediction 4

1.2 Structure of Report . 5

1.2.1 State of the Art . 5

1.2.2 Methodology . 6

1.2.3 Results . 6

1.2.4 Conclusion . 6

2 State of the Art 7

2.1 Music Recommendation Systems (Music RS) 8

2.1.1 Machine Learning Music Recommendation 8

2.2 Graph Neural Networks (GNN) . 10

2.2.1 Graph Based Machine Learning Tasks 11

2.2.2 Understanding GNNs . 12

3 Methods 16

3.1 DGL LFM-1b Data set loader . 16

3.2 Frameworks for GNNs . 17

3.2.1 Data Loading . 17

3.2.2 Compiling DGL Graph Data . 18

3.2.3 Compiling DGL Node Data . 19

3.2.4 Compiling DGL Edge Data . 22

3.3 Models . 23

3.3.1 Relational Graph Convolutional Network (RGCN) 23

3.3.2 Heterogeneous Graph Representation Learning with Relation Aware-

ness (RHGNN) . 24

3.4 Training Graph Based Models . 25

3.4.1 The Link Prediction Training Process 25

3.5 Evaluation . 27

3.5.1 Evaluation of the LFM-1b Data loader 27

3.5.2 Evaluation of Link Prediction Models 27

4 Results 30

4.1 LFM-1b Data Loader . 30

4.2 LFM-1b Link Prediction . 32

5 Conclusions 34

5.1 Discussion . 35

List of Figures 37

List of Tables 38

Bibliography 39

Dedication

I would like to dedicate this work to my family for their endless support for me while

I participated in this program abroad.

Acknowledgement

During my experience as a member of the Music Technology Group at the Univer-

sidad de Pompeu Fabra, I would like to emphasize my sincerest gratitude to my

advisor Lorenzo Porcaro, and co-advisor Emilia Gómez for steering my thesis into

a cohesive manuscript, spending countless hours providing intelligent feedback, and

allowing me to develop as a student. I plan to use all the advice provided to me

throughout the next phase of my life and wish you both all the best.

Additionally, I acknowledge the rest of the Music Technology Group for their gener-

ously provided resources and education. As well as Filip Korzeniowski and Fabien

Gouyon from Pandora for their time spent discussing Graph Based learning with me.

Francesco Fabbri for his time discussing technical aspects of Graph-Based learning

applied to my project. Markus Schedl and the rest of the team of researchers at

JKU for their conducted research on the LFM-1b data set. Finally, the communi-

ties of Pytorch Geometric, Deep Graph Library, and OpenHGNN for the numerous

answered forum questions that were so helpful for the implementation of this project.

Abstract

While personalized music recommendation has changed the way many users listen to

music. Graph Neural Networks have also become a state-of-the-art machine learning

practice for predicting recommendations. The LFM-1b is a data set contains a high

density of information to address the sparsity issues of similar data sets like the The

Million Song Data set. Additionally, as the provided information of the data set

can be represented as a heterogeneous graph, their is a lot of available opportunities

to evaluate the important connections that users have with their favorite tracks,

albums, artists, and even genres. However, as the music recommendation system

research community has witnessed the promising capabilities of graph neural net-

works, and as the limitations of a not having a publicly available, large scale, high in

density data set as been alleviated, the LFM-1b data set is underutilized amidst the

Music Information Retrieval community for graph based machine learning research.

This thesis will dive deep into the specifics required to utilize the LFM-1b data set for

heterogeneous graph neural network research. With a primary focus on providing

an machine learning recommendation system implementation, an analysis on the

models’ capabilities to provide recommendations to users whilst understanding user

listening preferences is to be evaluated. The contributions of this thesis will include

a LFM-1b data set loading class for the Deep Graph Library framework in Pytorch,

as well as an implementation of several link prediction graph neural network models,

to validate the LFM-1b data set’s applicability for music recommendation system

machine learning research.

Keywords: Graph Neural Networks; Link Prediction; Music Recommendation; Last.fm;

Chapter 1

Introduction

As technology continues to advance, there has been a dramatic explosion of dig-

ital content that is now accessible online. Due to the sheer volume of accessible

information, it is often overwhelming for users to find the specific information they

search for. To alleviate the tedious act of filtering through online digital multimedia

content, algorithms have been created to match, score and rank the relevance of the

content concerning the searching user, creating Recommendation Systems (RS) [1].

Though task-specific, the relevance score for a single piece of content, measured by

a RS, is based on the scenario the RS is used for. Recommendation systems are

powerful algorithms that must be monitored and structured properly. For cases

like the YouTube[2], Netflix[3], and Pinterest [4], the recommendation algorithm, is

actually the service the company provides.

These companies also utilize RS to advertise or tailor suggestions for their products,

to increase user retention and engagement, hence increasing company revenue [5].

Therefore, a result of the billions of user interactions, recommend by a RS model, RS

are seen as potentially dangerous as they can influence users poorly. This idea that

RS can mislead users has led the academic community to research different ways to

mitigate bias, promote fairness, and improve the privacy in RS [6]. The goal is to

produce not only fair and unbiased music recommendations, but to provide users

with relevant and interesting content. The main objective of RS services in fact, is

1

2 Chapter 1. Introduction

to retain the loyalty of their users [7] by offering users a service that is more engaging

than the RS services provided by the other companies.

The research field of Music RS is largely supported by the academic community of

Music information retrieval (MIR), as well as the larger Recommendation System

community. These communities have common interests, which have often produced

useful research that modern-day music streaming services utilize to form better music

recommendations. Notably, Music RS services utilize a barrage of different methods

to collect explicit and implicit data from user interactions. Explicit feedback includes

information on when users like, rate, or save a piece of content. Since explicit

feedback often is tedious to collect, implicit feedback, or data collected on user

listening events, clicks, and skips are collected. As the user interacts with the

platform more frequently, the preferences elicited from the listening behaviors of the

user can be inferred.

Often this inferred information is stored in a database where a user will be then

labeled as having a connection to a piece of content. This information does not

indicate an explicit opinion from the user, rather as the user interacts with the

platform more frequently, implicit preferences from a user can be used to predict

their behavioral habits, interactions, and even emotions over time.

1.1 Contributions

The way music streaming services utilize explicit and implicit information also comes

in a variety of forms, most commonly found are the content (CB) and or collaborative

(CF) based filtering methods. These have been utilized for decades and have been

proven to be effective for finding content that is relevant for a given user.

As RS have improved significantly in the last decade, users are often given personal-

ized recommendations based on more than just their implicit feedback. Modern day

RS often use newer methodologies, complex mathematics, and machine learning to

alleviate the pitfalls of traditional content and collaborative filtering methods such

as user interaction modeling, the cold-start problem, robustness, and the ability to

1.1. Contributions 3

explain why recommendations are made [8].

Most notably for this thesis, the state of the art recommendation system approach

involves using graph-based deep learning. This unique approach utilizes methods

such as nonlinear transformations, representation learning, and sequence modeling

which are widely accepted by the scientific community. Though these method are

highly effective, there are some limitations when implementing these methods due to

the “black-box” phenomenon and the lack of mathematical transparency in complex

computations made by deep learning algorithms [8]. Uniquely however, graph-based

deep learning holds the natural capability to represent implicit user interactions, in

a way that has recently been able to show major performance improvements for

RS. Continuous studies on have allowed graph-based machine learning models to

be widely used for their promised capabilities [9]. In fact, graph-based learning has

been capable of influencing many other fields of research; from traffic prediction [10],

to prediction a molecular structures [11]. Additionally, there have been numerous

graph-based recommendation methods that have demonstrated their applicability

in the music industry [12][13][14].

A multimedia specialist and professor at Johannes Kepler University, Markus Shedl,

offers a modern perspective on Music RS by mentioning, “even though the number

of the respective publications are increasing, neural network architectures are still

surprisingly sparsely adopted for Music RS" [15]. Furthermore, discussions of the

lack of established multi-modal data sets like the Million Song data set (MSD), and

the lack of diversity within available data sets, makes the ability to reproduce pub-

lished experiments, or even compare models quite challenging [16]. This high-level

overview and structural breakdown of some modern Music RS limitations, identifies

the fundamental need to understand how new graph neural network algorithms can

improve the performance of Music RS. For this reason, the objectives of the thesis

are outlined in the following sections.

4 Chapter 1. Introduction

1.1.1 A LFM-1b data set loader

The MIR community has several available research data sets, however many of the

collections are not suitable for music recommendation research [17]. This leaves

MIR researchers with a small collection of data sets [18] [19] [20]. Due to the lack

of variety and diversity from within the limited amount publicly available data sets,

many researchers are not willing to utilize these collections for scientific research.

Rather than using an ’off the shelf’ collection, much of the published Music RS

research generates their own data set collections. This is particularly troublesome

and as mentioned before, limiting the reproducible research available in the field.

For this reason, there is need to draw attention to the LFM-1b data set, a particular

interesting collection of user listening histories gathered from the last.fm API [21].

The LFM-1b is a collection of more than one billion listening events, intended to

be used for various music retrieval and recommendation tasks. Specifically, LFM-1b

provides more types of user listening behavior information that many other data sets

do not provide. Music RS research utilizing a large collection like LFM-1b would en-

courage other researchers understand the importance of such a data set for studying

graph-based Music RS, as well as increase the amount of reproducible research in

the field. Notably, there is not much research using the LFM-1b data set in pairing

with Graph Neural Networks. Therefore, this thesis implements customizable data

loading class to ease the process of reproducing graph neural network experiments

on the LFM-1b data set.

1.1.2 Graph Based Deep Learning Link Prediction

As the development of deep learning in recommendation has seen a massive increase

in novel graph-based algorithms, there has not been ample support by the MIR

community to challenge, discuss or implement these deep learning algorithms for

Music RS [15] [9]. As mentioned, there is not much support for Music RS deep

learning research, so utilizing deep learning to contribute to the slowing research

should be seen as necessary to maintain the topic’s relevancy in the coming years.

1.2. Structure of Report 5

Among the novel recommendation algorithms, specifically within the field of deep

learning, graph-based machine learning methods have been shown to perform com-

petitively against more traditional recommendation system methods [22]. Therefore,

with the knowledge of deep learning in Music RS slowing [15], and the success of

graph-based machine learning, this thesis will aim to deploy state-of-the-art Graph

Neural Network models to recommend undiscovered music to users in the LFM-1b

data set.

Hence this thesis concludes by implementing a recommendation algorithm utilizing

graph-based link prediction machine learning models and evaluates the performance

of the novel algorithms. These conclusions will offer further insight into not just the

LFM-1b data set but will help researchers understand how implicit user preferences

can be learned to create interesting recommendations. Additionally, there will be

a discussion on evaluations of the proposed recommendation system. This paired

with some of the results provide additional insights into measurements like diversity,

novelty, and the coverage of the recommendation model.

1.2 Structure of Report

Throughout this body of work, the objectives of the thesis will be addressed in a

sequential structure offering insight and understanding into the world of graph-based

learning for Music RS.

1.2.1 State of the Art

The state of the art will provide readers with the relevant and necessary information

to understand the research presented throughout the thesis. Emphasizing recent RS

research findings, a discussion outlining Music RS data sets and limitations of the

Music RS field will be shared. As the state of the art continues, the introduction to

graph-based deep learning will allow this thesis to introduce the fundamental theory

to achieve the objectives. Particularly outlined in this section, readers will be able

to interpret not only how graph algorithms work, but how they are mathematically

computed. This syntax is necessary for the reader to understand deep learning

6 Chapter 1. Introduction

algorithms in the context of Music RS, which will be utilized throughout the thesis.

1.2.2 Methodology

With the understanding of the previous sections, the methodology section will begin

by framing the objectives into individual studies. The data set utilized for the thesis

will be discussed much more in detail, including the advantages, and limitations.

The methodology then will outline the techniques utilized to implement state-of-

the-art graph-based machine learning models. This will be elaborated on as the

implementation begins to discuss the technical specifics of each topic, and by the

end of the methodology, the reader will understand the formal actions taken to

provide tested results.

1.2.3 Results

As the requirements to understand the results section of the thesis should be made

clear. The results section will able the discussed topics and models presented through

the thesis as they pertain to the analysis of link prediction within the LFM-1b data

set. The best-performing models will be selected to compute recommendations for

all users within the LFM-1b data set. Once the recommendations have been ac-

quired, this analysis should be able to provide a more comprehensive review of the

performance capabilities of using graph-based deep learning algorithms to recom-

mend music content to users in the data set.

1.2.4 Conclusion

To provide insights into what the results of the evaluations offer, and to interpret

them for meaningful information, the conclusion will analyze the findings of the

thesis. Upon analyzing, a discussion on the findings will be presented in hopes to

clarify the results which may not be so intuitive to comprehend. Finally, within the

discussion, the limitations as well as the successes of the thesis will be addressed to

support the proceedings and motivation of the thesis.

Chapter 2

State of the Art

Implementing RS to simplify choice amidst billions of possible decisions that a user’s

face is no new problem. These technologies to filter overwhelming amounts of infor-

mation or forecast a user interactions with a particular piece content have existed

long before digital recommendation. Traditionally, RS have utilized Content-Based

(CB) and Collaborative-Based (CF) filtering methods to recommend items to users

by utilizing past user interactions. However, these traditional RS methods have

been discovered to be constrained by the scientific community. These common rec-

ommendation constraints include the cold start problem (when a system wants to

recommend items to a user with no profile information) and data sparsity (when

a system has many users and many items, but little information to compute rele-

vant recommendations). While these constraints are fundamental to understanding

RS limitations, the scientific community have developed machine learning techniques

that can alleviate these constraints while providing accurate and relevant recommen-

dations. In the following section an observational analysis of the modern approaches

for Music RS and Graph Neural Networks will be presented. Afterwards a in deep

dive into the architecture of Graph Neural Networks is necessary to comprehend the

methodology of this thesis.

7

8 Chapter 2. State of the Art

2.1 Music Recommendation Systems (Music RS)

Particularly, due to increased user consumption on musical streaming platforms,

giving users an immersive personalized experience is a necessity [23]. When consid-

ering the various industries that utilize RS, it is important to observe how the scope

of Music RS is different from other multimedia RS. In comparison to other industry

domains like movie streaming or e-commerce, music has a short consumption dura-

tion, with billions of ways for users to listen to music. The time it takes for a user

to interact with a track, album, or artist, paired with the abundance of available

content, implies that recommending a piece content that is not perfectly relevant the

user’s preference, will not affect the user experience detrimentally. Even repeated

recommendations can be appreciated by the user [24].

These unique characteristics of Music RS stand out from other industry-specific

RS and have encouraged research in the fields like sequence-based recommendation,

which leverages the time a user listens to content as a primary indicator of what the

user would like to be recommended [25]. Another encouraged topic called session-

based recommendation, leverages the style of each listening period as a primary

indicator of what the user would like to be recommended [26].

2.1.1 Machine Learning Music Recommendation

To address the modern approaches using Machine Learning in the context of Music

RS, this section will highlight past machine learning research relevant to the thesis

and the relevant data sets that are available for research. What is particularly useful

to understand in context of the available data sets, is that due to many user privacy

restrictions, a lot of the industrial RS data sets are not able to be made public. As

a result of this, there is a lot of advocacy for publicly available Music RS data sets.

One of the older and more popular public Music RS data sets, The Million Song

Data set, offers researchers a large collection of user interaction information [16].

However, much of the user interaction information is limited as the MSD has sparsity

issues. From within the MIR community in 2017, the LFM-1b data set was published

2.1. Music Recommendation Systems (Music RS) 9

for public usage [21]. What was notably different about this data set was that the

LFM-1b collection offers over one billion timestamped user listening events, well over

twenty times the amount that MSD offers. Specifically, the data set was properly

tailored for deep learning models which requires massive volumes of data for training.

In short, the LFM-1b enables large scale experimentation in Music RS research.

Whilst deep learning is surely not a new topic in Music RS, a significant increase in

graph-based machine learning papers has shown their relevancy within their selec-

tive topic of choice. Topics like modeling expressive piano performance, measuring

similarity between artists, and many others have made great leaps into a new col-

lection of machine learning studies as General Neural Networks have become more

popular [27] [28].

Figure 1: A visual comparison of Convolutional Neural Networks (Left) and Graph
Convolutional Neural Networks (Right)

With the rise of the popular Graph Convolutional Networks (GCN) in 2017 (De-

picted in Figure 1), there are a lot of new research findings on the topic of music

recommendation with graph-based machine learning [29] [30]. These newer meth-

ods focus on representation learning, a method to compute vector representations

10 Chapter 2. State of the Art

of nodes that can be measured in an embedding space [22].

Utilizing node representations for the input data of Music RS has been established

as a common practice [31]. Practices for Graph Neural Networks are constantly

evolving, Galvan’s "Contributions to Representation Learning with Graph Auto

encoders and Applications to Music Recommendation" have shed more light on

this specific matter [32]. As discussed in his work too, there have been major

improvements in learning the node representations to assist downstream tasks like

link prediction and recommendation [33] [34].

2.2 Graph Neural Networks (GNN)

Due to the relevancy of GNNs within the field of recommendation, this thesis will

utilize graph neural networks to compute predictions using complex mathematics.

Therefore, is worth devoting some time discussing the fundamentals of GNNs in the

context of music recommendation.

Figure 2: Different ways to represent a graph. A undirected, unweighted graph
(Left). A undirected and weighted graph (Center). A directed and weighted graph
(Right)

Using Figure 2 as a reference, a graph can be represented as a set of edges as nodes.

Graphs can also be undirected or directed. In an undirected graph, nodes that

are connected share a relationship, represented as an edge. In a directed graph,

connected nodes do not share the same edge, rather if two nodes are connected

in a directed graph, there is one source node connected to one destination node.

Another way of identifying graphs is by whether they are unweighted or weighted.

2.2. Graph Neural Networks (GNN) 11

In an unweighted graph, all edges have the same label. In a weighted graph, each

edge is associated with a label value representing its weight. This fundamental graph

structure can model a variety of real-world scenarios quite easily. However, in the

homogeneous graph description we have discussed so far, all nodes have the same

type, as do all the edges. In a heterogeneous graph, nodes can be of a different type,

and there can be different types of edges existing between them.

Figure 3: Different ways to represent a heterogeneous graph. A undirected, un-
weighted heterogeneous graph (Left). A undirected and weighted heterogeneous
graph (Center). A directed and weighted heterogeneous graph (Right)

Many real-world problems can be represented as a heterogeneous graph, in fact this

thesis and its methodological approach use a heterogeneous graph. In heterogeneous

graphs, shown in Figure 3, edges are represented as triples with a source node,

relation type, and a destination node. To relate this to the thesis, users have a edge

connection with their favorite tracks, albums, and artists. Utilizing heterogeneous

graphs instead of homogeneous graphs has led to a subdivision of graph-based deep

learning research. Where this subdivision studies how the additional information

provided in heterogeneous graphs can be used to improve the performance of GNNs

[35]. The research field of statistical relational learning (SLR) applies directly to

this subdivision [36].

2.2.1 Graph Based Machine Learning Tasks

With the understanding of the requirements to create a graph, we can utilize the

existence of node, edge, full graph, and the graph’s structural information to form

inputs for a graph-based neural network. A common way to solve these problems is

12 Chapter 2. State of the Art

to embed the graph nodes into a high-dimensional embedding space. Once in this

"embedding" or latent space, the nodes representation must capture task-specific

information such that the neural network may predict some outcome.

Once a graph and its components have been formed with their embedding represen-

tations, the information in the nodes, edges, as well as structural information of the

full graph can be utilized for a variety of different prediction tasks.

"Node-level" prediction tasks have the objective to predict the classification of a

particular unseen node in the graph (ex. predicting a user’s height/weight). To

accomplish this, a classifier or regression model can be used to determine each of

the labels of the nodes, given the labels of other nodes and their interconnected

edges.

"Edge-level" prediction tasks have the goal of predicting interactions between two

given nodes in the graph (like recommending undiscovered tracks to users). To

accomplish this, you can utilize the two nodes and the edge connecting them as

inputs into a prediction function to provide the likelihood of the existence of the

edge occurring between the two nodes (aka link prediction).

For "graph-level" tasks, the goal is to predict the property of an entire unseen

graph (ex. predicting a molecules toxicity based on its structure). To accomplish

this, the embedding from each of the resulting nodes, edges, and their structural

representations are used in an aggregation to determine a label of a full graph

representation [37].

2.2.2 Understanding GNNs

To dive into the specifics of a GNN model, we will look at the basic form of GNNs.

Assuming there exists an unweighted and undirected graph such that the adjacency

matrix is binary and symmetric with cells of ones and zeros according to the con-

nectivity of the nodes.

With the information formed by the adjacency matrix (example shown in Figure 4),

2.2. Graph Neural Networks (GNN) 13

Figure 4: An example adjacency matrix representing the edges between nodes in a
graph (Left). The resulting graph representation of the provided Adjacency Matrix
(Right)

the next step is to use the matrix to update the node representations by applying

an operation, for each layer in the neural network.

H
′
= σ(AHW) (2.1)

As seen in above equation 2.1, H
′ is the updated node representations, H is the

previous node representations, A is the adjacency matrix, A is a learn able weight

matrix, and σ(◦) is a nonlinear activation function. Notably, in this high-level

overview, the information of each node is not retained in the transformation that

occurs with this operation. Therefore, to adjust for this we can utilize a simple

matrix summation to add what is commonly referred to as self-loops.

H
′
= σ(A

′
HW) (2.2)

As seen in equation 2.2, A′ is the adjacency matrix with added self-loops such that

A
′
= A + I (example shown in Figure 5), where I is the identity matrix. There

do exist some known limitations for this operation as well. When multiplying the

14 Chapter 2. State of the Art

Figure 5: An adjacency matrix and graphical representation with self-loops added.

adjacency matrix for each hidden layer in the neural network, the scale of the features

increases rapidly. Therefore, normalization of the features can be applied through

the multiplication of the degree matrix [37].

H
′
= σ(D

′−1A
′
HW) (2.3)

As seen in equation 2.3, D
′ is the degree matrix of A

′ . There are other ways

to normalize the adjacency matrix in more expressive ways. One example is the

approach provided by Kipf and Welling in their research on the Graph Convolutional

Networks; known as symmetric normalization [29].

H
′
= σ(D

′−1/2A
′
D

′−1/2HW) (2.4)

Upon each layer in the neural network, the update operation (Equation 2.4) will

be called on all nodes in the graph. This is similar in concept to a traditional

neural network, as the output from the first layer is the input to the second layer.

The difference is that there is an additional processing steps, where each target

node updates its feature representations, by aggregating the representations of its

2.2. Graph Neural Networks (GNN) 15

neighbors.

Figure 6: A target node’s expanding neighborhood size of a graph neural network
with K layers

This leads to some very expressive node embedding representations as the number

of GCN layers corresponds to how far the information of a node can travel between

neighbors. A GNN with multiple layers as seen in Figure 6, has a target node,

who’s features can only be incorporated into the features of all nodes that are k

hops away from the target node, where k is the number of layers in the GNN model.

Some limitations of this model include the assumption of the adjacency matrix

being binary and symmetric, limiting the GCN model as it only indirectly supports

edge features. This means that GCNs are not suitable for propagating information

between nodes of different types, or pairs of nodes whose edge connections are of

different types. Heterogeneous GNNs (HGNNs) are the solution to this limitation

and will be more formally introduced in the later sections.

Chapter 3

Methods

From the understanding of modern graph-based deep learning Music RS, as well as

the known limitations that are associated with these approaches as they relate to

Music RS, this chapter will address the technical details to form the methodology

of the thesis. Firstly, this methodology section outlines the data set that is utilized

for the thesis. Recalling the state-of-the-art chapter, this methodology discusses

the HGNN models selected to be used. Additionally, since the training process for

link prediction is unique for graph-based machine learning, the chapter continues

discussing how the selected models are to be trained. In doing so, the chapter

addresses how recommendation is achieved with the implementation of different link

prediction models, and how it can be utilized in the context of track, album, or artist

recommendation for users in the LFM-1b data set. Finally, since these approaches

need to be justified, the chapter provides insights on the evaluation metrics used

interpret the performance of the thesis objectives.

3.1 DGL LFM-1b Data set loader

Uniquely, at such a large volume the LFM-1b data set provides more information

that can be utilized in a deep learning scenario than most Music RS data sets.

The LFM-1b data set incorporates user listening behaviors for tracks, albums, and

artists. The significance of incorporating this information in large deep learning

16

3.2. Frameworks for GNNs 17

graphs to discern the impact of incorporating listening behaviors for tracks, albums,

and artists for Music RS in graph neural networks is not well studied [38] [21].

Implementing a custom data loader, that can be utilized by graph-based deep learn-

ing communities, increase the necessary exposure the Music RS community needs

to stay relevant in the field of graph-based deep learning, and encourage the mu-

sic recommendation research community to understand the impact of utilizing the

information that is collected in the LFM-1b data set.

3.2 Frameworks for GNNs

The familiar machine learning frameworks of Pytorch and TensorFlow only opti-

mize for workflows with fixed-size graphs. These assumptions do not hold for GNN

training. Additionally, for neighbor sampling, the neighbors used for each epoch of

batch training processes are going to be different (more on this later). Therefore,

there are specialized frameworks for deep learning with GNNs.

Specifically open-source frameworks like PyTorch Geometric, Deep Graph Library,

Networkx, and many others have been in development in the last decade [39] [40] [41].

The frameworks facilitate the steep learning requirements for implementing deep

learning GNN functionalities like message passing, aggregation, update operation,

sampling, and data management. These libraries are constantly being updated as

well as utilized by the world’s most renowned GNN researchers. For the given

objective, a custom in-memory Deep Graph Library (DGL) data set loader would

properly expose the MIR community to one of the most popular graph-based deep

learning frameworks. Of the available data sets in the GNN frameworks, none utilize

the LFM-1b data set.

3.2.1 Data Loading

Before outlining the implementation concerning the DGL framework, it is important

to understand the demographics and structure of the LFM-1b data set which can

be downloaded at the publishing website’s location [21]. Inside the downloadable

18 Chapter 3. Methods

zip folder there are text files corresponding to the following information: users,

artists, albums, tracks, and the one billion listening events. Additionally, the data

set can be downloaded with the accompaniment of the LFM-1b UGP data set which

provides genres of the artists, and users. The authors of the data set have published

a distributional analysis on the website which is useful for those interested in the

specific features and structure of the physical data set.

As discussed in the state of the art, the Deep Graph Library (DGL) provides a

framework for computing graph-based machine learning tasks on large heteroge-

neous graphs. As the documentation for DGL describes, there are customizable

classes made for custom in-memory data sets. These classes include functions like

load(), save(), and a process() to load the data into memory. The save() and

load() functions simply work by reading and writing the final representations of the

compiled heterogeneous graph to and from memory.

When the process() function is called a large number of operations are required

to read through the LFM-1b data set and compile one singular HeteroGraph data

object (depicted in Figure 7). Specifically, these processes can be divided into three

parts: compiling graph, node, and edge data.

3.2.2 Compiling DGL Graph Data

To load a heterogeneous graph using the DGL framework, it is required to collect

a dictionary of every edge index that exists in the graph. This information is not

structured like a typical adjacency matrix due to the large storage space that it

requires to compile an adjacency matrix of billions of edges. An adjacency list rather

is utilized because it is not so harsh on memory (see Figure 8).As a technical note on

the structural representation of the graph, there is not an edge connection provided

for connecting tracks to albums. The justification for this resides in the structure of

the LFM-1b files. This is particularly not computed since the information of track

and album occurrences can only be evaluated through filtering of the listen events

file.

3.2. Frameworks for GNNs 19

Figure 7: The schema of the resulting heterogeneous graph

Once this step is finished, the DGL native HeteroGraph object should hold all

the necessary information to form a heterogeneous LFM-1b graph with the user,

genre, artist, album, and track nodes. However, due to the nature of this thesis, the

capability to select a subset of node types is included in the final DGL data loading

class.

3.2.3 Compiling DGL Node Data

Once the graph data has been loaded into memory, the next task before the pro-

cessing function finishes is to add features to the nodes and edges of the graph. This

step can be done in a variety of different ways. Notably, the LFM-1b only pro-

20 Chapter 3. Methods

Figure 8: An example adjacency list representation, of a adjacency matrix

vides the names of artists, tracks, and albums, but not audio or input embedding

representations. As the information that is provided in the LFM-1b is not partic-

ularly expressive for the artists, albums, or tracks, utilizing the limited features as

input for our models is optimal. Instead, utilizing pre-established methodologies

irrespective of node features, but respective of the graph structure would provide

more expressive representations of the nodes.

metapath2vec

The metapath2vec method was published in 2017 to propose a solution to finding a

resourceful way create node embedding representations in heterogeneous networks

by utilizing the structure of the graph, instead of the explicit node features [42].

The published work offered a solution to the issue of heterogeneous graphs hav-

ing irregular, or sparse collections of explicit features. The preserved node context

in the final embedding representations was observed to improve downstream graph

3.2. Frameworks for GNNs 21

Figure 9: Examples of metpath2vec random walk meta-paths for the LFM-1b het-
erogeneous graph

learning tasks like node classification, link prediction, clustering, and graph classifi-

cation. The metapath2vec method can capture semantic and structural relationships

between different types of nodes by performing random walk operations over a spec-

ified heterogeneous "meta-paths". As a result, many different heterogeneous graph

models utilize the final embedding representations of the nodes generated by the

metapath2vec model as inputs into a deep learning model for different prediction

tasks [42].

As a note on metapath2vec, user and item interactions should be emphasized more

than other types of interactions in the graph. For our recommendation task, the ob-

jective is to provide a recommendation of undiscovered artists, albums, and tracks

to users. Therefore, only user item meta-paths are selected for the random walk

sequence, which has been shown to improve downstream node embedding represen-

tations [38] (see Figure 9). The metapath2vec algorithm is applied to the LFM-1b

graph object to compute high-quality node embedding representations as inputs into

the selected HGNN models discussed later. As the data loader should be flexible

for future use, the hyper-parameters of the metapath2vec method are customizable

inside the DGL LFM-1b data loading class provided in this thesis.

22 Chapter 3. Methods

Figure 10: A weighted edge data representation (Left), a default edge data repre-
sentation, where each edge is denoted with a timestamp (Right)

3.2.4 Compiling DGL Edge Data

As one of the main objectives of the thesis is to provide a reusable resource to the

MIR community and enable researchers to use all the contextual information that

is available in the LFM-1b data set. Incorporating edge data into the final rep-

resentation of the DGL LFM-1b graph is needed. Specifically, there two different

approaches that can be optionally enabled to add edge data to our graph repre-

sentation (see Figure 10). By default, edge data in a graph can be represented as

interactions between nodes in a graph (a user listening to a track, album, or artist

is represented a single edge between the corresponding pair of nodes, each denoted

with a timestamp). Alternatively, since users often listen to the same track, album,

or artist more than once, the edges from a particular user can be denoted as one

edge with a weighted value (a "listen count" value), corresponding to the number of

interactions made with a particular track, album, or artist. Additionally, this value

can be normalized as it is possible that some users will listen to specific artists,

albums, or tracks in an unbalanced manner, more than other users. For both the

different representations of the edge data, the affected edges in the LFM-1b data

set are only interactions that exist between users and tracks, albums, or artists.

Therefore, this implementation of the DGL LFM-1b data loader offers flexibility

when producing a HeteroGraph object.

3.3. Models 23

3.3 Models

The LFM-1b data set contains information on listening behaviors for its users and

their interacted tracks, albums, or artists. Representing this information in a ho-

mogeneous graph cannot be done without sacrificing contextual and semantic infor-

mation loss. Additionally, this limitation prevents the objectives of the thesis to be

computed using a traditional Graph Convolutional Neural Network (GCN). As men-

tioned before, the original GCN model can only operate on homogeneous graphs.

Therefore, to apply a neural network to a heterogeneous graph representation of the

LFM-1b data set. A Heterogeneous Graph Neural Network (HGNN) will need to be

utilized. HGNN RS leverage statistical relational learning inside the deep learning

algorithms. This is particularly why GCNs were introduced in the state of the art.

Specifically in this thesis, two algorithms will be utilized to perform link prediction

on the LFM-1b data set.

3.3.1 Relational Graph Convolutional Network (RGCN)

Relational Graph Convolutional Networks is an extension of the GCN model that

can traverse over a graph with multiple edge types. Notably, in the GCN paper, it

can be observed that the weight matrix while being trainable, is shared amongst all

the nodes in the graph. Specifically, for RGCN, there are unique trainable weight

matrices for each edge type. This is an important factor during the propagation

phase of the RGCN layer specified by the relation type [30]. RGCNs will have

more parameters than GCNs due to the increase of relation weight matrices. This

inevitably provides us with the need to regularize the rapidly increasing parame-

ters with each new edge type that exists in the given graph. The RGCN paper

provides two solutions to regularize the weights, Block Decomposition and Basis

Decomposition. Both produce adequate regularization of the weights, with Basis

Decomposition being the more commonly utilized method. More information can

be found on the authors paper [30].

Notably, within this example, it was not expressed that the algorithm could traverse

24 Chapter 3. Methods

a graph of multiple node types as well as multiple edge types. In this thesis, the

LFM-1b data set is represented as a heterogeneous graph, RGCN can still be applied

by using a heterogeneous operation wrapper (a structure which enables graph-based

machine learning models to be implemented on heterogeneous graphs). This is

simply an operation that allows models to be able to handle multiple node types

by applying multiple instances of the model. The OpenHGNN framework provides

an implementation of the RGCN algorithm with such a heterogeneous wrapper.

This implementation can be utilized later to validate other performance findings

presented in this thesis.

3.3.2 Heterogeneous Graph Representation Learning with Re-

lation Awareness (RHGNN)

Of the constantly improving HGNN models, there are very few which aim to corpo-

rate the factor of edge representations into the downstream node embedding repre-

sentations. This concept was challenged by the researchers studying Heterogeneous

Graph Representation Learning with Relation Awareness in 2021 [43].

The authors determined that it is substantially important to not just learn the

embedding representations of edge relations, but also node representations concern-

ing different relational interconnections. This builds upon the fundamental HGNN

model by incorporating multiple RGCN models, utilizing a cross-relation operation

to improve node representations, and proposing a fusing operation to aggregate

relation-aware node representations into a single low dimensional embedding [43].

From the author’s findings and their results of the RHGNN performance amongst

other models, they observed a noteworthy performance increase over the standard

baseline models including RGCN.

3.4. Training Graph Based Models 25

3.4 Training Graph Based Models

There exist some noteworthy differences in training graph-based models on a large

heterogeneous graph provided by the DGL LFM-1b data loader. These general dif-

ferences in training will be briefly outlined in the following sections, with additional

task-specific information to be outlined after. Common limitations of these graph-

based models reside in the number of computations required for training. This can

severely limit the ability to train a graph-based model. For instance, as the LFM-1b

graph for instance has millions of nodes and billions of edges a standard approach

would load the full graph in memory, compute new embedding representations for

every node, and for every layer in the model. Since this is so highly inefficient,

mini-batch training is often utilized to efficiently increase the computation speed,

and minimize the load placed on graph-based while training.

In training, a series of operations for every node in the given graph needs to be

met. Therefore, for each target node, the neighbors of the node are used in the

update operation as discussed. The objective is to fit the necessary computations

for all the target nodes into a particular batch of training data. When utilizing

mini-batch training however, mini batches still may suffer from large computation

graphs (a target node, and the neighbors of the node) due individual nodes being

highly interconnected. For this reason, graph-based models often employ a neigh-

bor sampling function, such that a subset of the target node’s computation graph

neighbors is used to approximate a node’s full computation graph. This allows the

approximated computation graph to be bounded in size such that it can be utilized

for large network training.

3.4.1 The Link Prediction Training Process

As mentioned earlier, it is also important to outline the unique operations required to

train a model for the task of link prediction. This is an important factor in training,

as link prediction is unlike most other graph-based tasks. Notice that randomly

splitting edges of a full heterogeneous graph into training, validation, and tests sets

26 Chapter 3. Methods

may create unbalanced node or edge data. Therefore, ensuring a splitting mechanism

to balance the node and edge types in a particular split of the graph is necessary.

Additionally, for graph-based link prediction, there must be four splits made for

training a model for link prediction: training, validation, test, and supervision edge

sets (see Figure 11) [44].

Figure 11: An example of splitting data into training, validation, test, and supervi-
sion edges for link prediction

For every training supervision edge in the provided heterogeneous graph, we need

to use the training edges to predict the likelihood of the given supervision edge.

To compute the predictions with the training edges, we also must identify negative

edges in amidst the training edges, to perturb the supervision edges (the negative

edges should not belong to the training or supervision edges) [44]. With the training,

supervision, and negative edges, a predicted score can be assigned to the training

supervision edge and the negative edges. Specifically, each score represents the like-

lihood that the given negative or training supervision edge existing for a particular

source node.

Upon completion, we can formulate a loss function that maximizes the training

supervision edge score (a true edge) and minimize the negative edge score (a false

edge). With the necessary information to compute the training stage of the model, at

validation time, the use of all the training, and training supervision edges are utilized

to predict the validation supervision edges. Since the goal is to evaluate how each

model can predict the existence of an edge of a specified type, we must compute

the validation supervision edge and negative edge scores [44]. All the validation

negative edges do not exist in the set of training or training supervision edges.

3.5. Evaluation 27

Upon completion, the testing phase begins where the training, training supervision,

and validation supervision edges are used to predict test supervision edges against

the negative test edges, not in the set of training or training supervision edges.

3.5 Evaluation

To validate the proposed methods chosen for this thesis, evaluations of the LFM-1b

data loader and the LFM-1b link prediction models are presented with the chosen

evaluation metrics.

3.5.1 Evaluation of the LFM-1b Data loader

The LFM-1b data loader implemented in the DGL framework provides many cus-

tomizable features. The data loader also provides the capability of specifying sub-

sets of the full LFM-1b heterogeneous graph. These complementary features are

resourceful for researchers, as compiling the full LFM-1b heterogeneous graph in

memory can take quite a long time to compute and require significant storage space.

To evaluate the data loader and its flexible class structure, the values of the final

node count and edge count, for all types will be measured for all possible subsets of

the graph.

3.5.2 Evaluation of Link Prediction Models

Evaluating the link prediction models trained on the LFM-1b data set is not only

important to validate the model, but rather it is also too important validate the

significance of the LFM-1b data loaders’ applicability to modern GNN research in

the DGL framework. Since objective drives the primary focus of evaluating link

prediction on the LFM-1b data set, for each user interaction edge type (user-to-

album, user-to-track, and user-to-artist), each model’s accuracy (ACC), precision

(PR), loss, mean absolute error (MAE), and root mean squared error (RMSE) will

be measured.

To additionally evaluate each link prediction model’s capability to perform recom-

28 Chapter 3. Methods

mendations. For each link prediction model, the top-K most likely unconnected

edges will be provided as recommendations for all users, such that recommendation

evaluation metrics can be utilized to validate each model’s performance. For the

top-K recommendations, the different models can be evaluated for their recommen-

dation accuracy (HIT@K), diversity (DIV@K), and the coverage (COV@K) of their

recommendations.

HIT@K = 1/K ∗
∑

(ŷk == y) (3.1)

where ŷk is the kth recommended item and y is the true items

DIV@K = 1/K ∗
∑

(sim(ŷk)) (3.2)

where ŷk is the kth recommended item and sim(ŷk) this the average similarity of all

other recommendations

COV@K = Is/I (3.3)

where Is is total amount of unique items recommended and I this total number of

items in the given data

These measurements are specific to RS and provide insights that classical machine

learning model evaluations would fall short at measuring. To be more precise, Equa-

tion 3.1 HIT@K measures the K (where k is a real integer) most likely songs, albums,

or artists recommended to a particular user. The metric is equivalent to the percent-

age of correct songs, albums, or artists in the top K recommendations. This metric

provides in depth insights in the accuracy of a model over a extended usage period.

Equation 3.2 DIV@K is another percentage metric that measures the diversity of

the top K recommendations by finding the average difference between each song,

album, or artist in the top K recommendations. This metric enables researchers to

understand how unique the recommendations are from each other. Lastly, Equation

3.3 COV@K is a percentage metric that measures the coverage of the top K recom-

3.5. Evaluation 29

mendations by finding the percentage of possible songs, albums, and artists that can

be recommended by the model evaluated. This allows the evaluators of a model to

visually interpret how much content a model can or cannot be provided to a user.

Chapter 4

Results

The results will offer further technical insights into the findings from the approaches

used to evaluate the objectives. Specifically, this section will provide the metrics

calculated by using the DGL data loader class for the LFM-1b data set, performing

link prediction, and recommendations.

4.1 LFM-1b Data Loader

Table 1: The number of nodes the full LFM1b data loader can capture
Node Type Number of Nodes

User 120K

Artist 3M

Album 15M

Track 32M

Genre 21

The DGL LFM-1b data loader was created and utilized for the evaluation of the

thesis objectives. The data loader, as mentioned, has a significant number of com-

plexities that can be analyzed and customized for Music RS research. To achieve

the thesis objectives, the data loader was tasked with compiling a full heterogeneous

graph containing all combination variations of the set of node types in Table 1.

30

4.1. LFM-1b Data Loader 31

Computing the in-memory LFM-1b heterogeneous graph takes a long time. Due to

the longevity of the computation time, saving the raw, pre-processed, and processed

files for model training is particularly necessary. This, however, does limit the speed

of the initial compile time, but prevents the later requirements of creating an entirely

new heterogeneous graph, every time a slightly different variation of the graph is

compiled.

Table 2: The number of edges the full LFM1b data loader can capture
Edge Type Number of Edges

User -> Artist 61.4M

User -> Album -

User -> Track -

Artist -> Genre 400K

Album -> Artist 14.1M

Track -> Artist 27.2M

Due to the significant size of the LFM-1b data set, the full LFM-1b heterogeneous

graph in the DGL did not fit into the available computer storage space provided

for the analysis of the thesis. As it is apparent in Table 2, the count measurements

for the number of edges between users’ albums and tracks cannot be analyzed.

As this is a particularly limiting result of the data loader such that adding the

flexibility to create subsets of the full LFM-1b data set was necessary. While the

limitation of storage space is a problematic issue for analyzing the rest of the thesis

objectives. The flexibility of the subset features allows for the creation of data sets of

a specified user size, that maintains the original demographic and listening behavior

distributions of the original LFM-1b data set.

From the resulting complications with loading a full LFM-1b heterogeneous graph,

for every combination variation of the node types, a generated subset of 25 users

was utilized to predict the most likely edges to be connected for any given user

instance. Only by keeping the user nodes below 50, as well as removing non-popular

artists, albums, and tracks in the full LFM-1b heterogeneous graph, was the data

loader able to successfully compile input data with the available computer storage

32 Chapter 4. Results

space provided for the analysis of the thesis. Results from the subset features of the

data loader are not displayed as the count measurements of node and edge types are

inconsistent between different iterations of subsets.

4.2 LFM-1b Link Prediction

With the understanding of the provided limitations of the LFM-1b data loading

class, and the knowledge of the methods utilized to alleviate and provide alternative

inputs to the link prediction models, this section will address the discovered results

of the prediction models used to identify the likelihood score of a user interacting

with an undiscovered artist, album, or track.

Table 3: Evaluation of User to Artist LFM1b Link Prediction
Subset Model RMSE MAE ACC PRE HIT@10 DIV@10 COV@10

Al, Tr RHGNN 0.29 0.15 0.97 0.97 0.97 0.38 0.18

Tr RHGNN 0.59 0.44 0.86 0.81 0.68 0.22 0.13

Al RHGNN 0.54 0.37 0.88 0.85 0.77 0.59 0.12

all RHGNN 0.57 0.43 0.85 0.79 0.62 0.39 0.12

Within Table 3, the subset column indicates which node types were not included

in the graph variation (all indicates that all node types were included), the model

column indicates what model was used, the RMSE is the root mean squared error,

the MAE is the mean absolute error, the ACC is the accuracy, the PRE is the

precision of the model, HIT@K is the recommendation accuracy with k=10, DIV@K

is the recommendation diversity with k=10, and COV@K is the recommendation

coverage with k=10. As displayed, the ACC score decreased as more node types

were included, and the RMSE score increased as more node types were included.

Overall, the best test in terms of metric performance was the graph which included

the fewest amount of node types and used RGHNN.

Differently displayed in Table 4, the ACC score however did not decrease as more

node types were included, and the RMSE score did in fact decrease as more node

types were included. Overall, the best test in terms of metric performance was the

4.2. LFM-1b Link Prediction 33

Table 4: Evaluation of User to Album LFM1b Link Prediction
Subset Model RMSE MAE ACC PRE HIT@10 DIV@10 COV@10

Ar, Tr RHGNN 0.29 0.44 0.95 0.97 0.96 0.35 0.13

Tr RHGNN 0.11 0.01 0.98 0.99 1.00 0.05 0.14

all RHGNN 0.11 0.01 0.99 0.99 1.00 0.03 0.14

graph which included the most amount of node types.

Table 5: Evaluation of User to Track LFM1b Link Prediction
Subset Model RMSE MAE ACC PRE HIT@10 DIV@10 COV@10

Ar, Al RHGNN 0.23 0.09 0.95 0.96 1.00 0.02 0.11

Al RHGNN 0.29 0.09 0.94 0.95 1.00 0.02 0.11

all RHGNN 0.29 0.089 0.94 0.95 1.00 0.02 0.10

Lastly displayed in Table 5, the ACC score did not vary as more node types were

included, and the RMSE score increased as more node types were included. Overall,

the best test in terms of metric performance was the graph which included the least

amount of node types.

Chapter 5

Conclusions

From the findings, some key observations can be made from each of the results

sections. Specifically, the data loader provides optimal flexibility as well as trans-

parency into the architecture of the class structure. The final compiled graph from

the data loader is fully functional and can represent the entire LFM-1b data set

for large-scale machine learning tasks. Additionally, once compiled the graph can

run multiple post-processing operations. As seen, the data loader had a significant

number of adjustments to account for. The promised information that can be ac-

quired from the DGL LFM-1b data loading class can in fact be compiled. It in

fact is merely not able to be utilized on the device the data loader was built with.

Therefore, as mentioned, many of the subsets that were capable of being compiled

could be fit into memory to be validated through model testing.

The link prediction models, and recommendation results were directly affected by

this limiting result of the data loader. The limitation as mentioned was the rea-

soning for adding subset functionality to the data loading class. Utilizing subsets

to compute link prediction models, was the only way possible to perform the neces-

sary link prediction and single target recommendation. Not displayed in the results,

an outsourced RGCN model, implemented through the OpenHGNN framework was

used to validate the performance of the RHGNN model [38]. Both models shared

overly optimistic, accurate, and precise capabilities in predicting undiscovered edge

34

5.1. Discussion 35

connections in the LFM-1b graph. The recommendation performance was also con-

siderably overly optimistic as the HIT@K (recommendation accuracy) would even

reach a perfect accuracy score.

It is challenging to conclude upon the direct results of this thesis for two distinct

reasons. The first is that the models’ performance whilst effective and notably

optimistic, some significant over fitting factors need to be validated before supporting

such a high-performing result. Secondly, the prediction tasks, whilst working, do not

utilize graphs with a higher density of users, effectively reducing the training data

of the model to a significantly small value (this can be visualized as the COV@K for

these models rarely reached above .15). This could explain the high accuracy and

HIT@K scores being so high, but it is challenging to compute results with higher

user densities as the computation time to acquire these results rapidly expands with

every new user.

5.1 Discussion

To briefly discuss the work that was presented throughout this thesis, it is first ap-

propriate to address the purpose one last time. Music RS is a complex field of study.

Due to the lack of explicitly rated interactions that users provide with their songs,

albums, and artists, modeling implicit user behaviors in a graph allows the resulting

structure to elicit the user preferences. As GNNs have become a state-of-the-art

approach for modeling such complex recommendation scenarios. Music Recommen-

dation has benefited significantly from the findings of the new and relevant GNN

methodologies.

As described earlier, there is not much research conducted on the LFM-1b data

set for music recommendation. With the limited findings of this thesis, it is quite

challenging to conclude on the data sets usefulness as there were numerous preven-

tative limitations. However, modeling the LFM-1b data set has brought myself to

address that smaller data sets, with similar information may be more optimal for

reproducible experiments amidst the scientific communities researching Music RS,

36 Chapter 5. Conclusions

utilizing GNNs in a Deep Graph Library or PyTorch Geometric framework.

Though this thesis successfully implemented complex GNN models and utilized them

to perform numerous link prediction tasks within the provided graph representation

of the LFM-1b data set. There was a significant number of limitations that pre-

vented this thesis from decisively determining the performance changes of utilizing

heterogeneous data as input graph for RS models. Being limited solely by allocation

and memory requirements, the implementation, when given the necessary space can

compute all results and achieve all the predefined objectives of this thesis.

All the necessary code can be found in the two repositories created for this thesis.

The first is the repository for the LFM-1b Deep Graph Library customized in-

memory data loader 1. Secondly, the implementation of the data loader and HGNN

models for link prediction 2.

1https://github.com/deancochran/DGL_LFM1b
2https://github.com/deancochran/upf-masters-thesis

List of Figures

1 A visual comparison of Convolutional Neural Networks (Left) and

Graph Convolutional Neural Networks (Right) 9

2 Different ways to represent a graph. A undirected, unweighted graph

(Left). A undirected and weighted graph (Center). A directed and

weighted graph (Right) . 10

3 Different ways to represent a heterogeneous graph. A undirected,

unweighted heterogeneous graph (Left). A undirected and weighted

heterogeneous graph (Center). A directed and weighted heteroge-

neous graph (Right) . 11

4 An example adjacency matrix representing the edges between nodes

in a graph (Left). The resulting graph representation of the provided

Adjacency Matrix (Right) . 13

5 An adjacency matrix and graphical representation with self-loops added. 14

6 A target node’s expanding neighborhood size of a graph neural net-

work with K layers . 15

7 The schema of the resulting heterogeneous graph 19

8 An example adjacency list representation, of a adjacency matrix . . . 20

9 Examples of metpath2vec random walk meta-paths for the LFM-1b

heterogeneous graph . 21

10 A weighted edge data representation (Left), a default edge data rep-

resentation, where each edge is denoted with a timestamp (Right) . . 22

11 An example of splitting data into training, validation, test, and su-

pervision edges for link prediction . 26

37

List of Tables

1 The number of nodes the full LFM1b data loader can capture 30

2 The number of edges the full LFM1b data loader can capture 31

3 Evaluation of User to Artist LFM1b Link Prediction 32

4 Evaluation of User to Album LFM1b Link Prediction 33

5 Evaluation of User to Track LFM1b Link Prediction 33

38

Bibliography

[1] Jannach, D. & Zanker, M. Value and impact of recommender systems. Rec-

ommender Systems Handbook 519–546 (2022). URL https://link.springer.

com/chapter/10.1007/978-1-0716-2197-4_14.

[2] Davidson, J. et al. The youtube video recommendation system (2010).

[3] Gomez-Uribe, C. A. & Hunt, N. The netflix recommender system: Algorithms,

business value, and innovation. ACM Transactions on Management Informa-

tion Systems (TMIS) 6, 1–19 (2015).

[4] Ying, R. et al. Graph convolutional neural networks for web-scale recommender

systems 974–983 (2018).

[5] Lu, L. et al. Recommender systems. Physics reports 519, 1–49 (2012).

[6] Milano, S., Taddeo, M. & Floridi, L. Recommender systems and their ethical

challenges. Ai & Society 35, 957–967 (2020).

[7] Jacobson, K., Murali, V., Newett, E., Whitman, B. & Yon, R. Music personal-

ization at spotify 373–373 (2016).

[8] Zhang, S., Tay, Y., Yao, L., Sun, A. & Zhang, C. Deep learning for recommender

systems. Recommender Systems Handbook 173–210 (2022). URL https://

link.springer.com/chapter/10.1007/978-1-0716-2197-4_5.

[9] Gao, C., Wang, X., He, X. & Li, Y. Graph neural networks for recommender sys-

tem 1623–1625 (2022). URL https://doi.org/10.1145/3488560.3501396.

39

https://link.springer.com/chapter/10.1007/978-1-0716-2197-4_14
https://link.springer.com/chapter/10.1007/978-1-0716-2197-4_14
https://link.springer.com/chapter/10.1007/978-1-0716-2197-4_5
https://link.springer.com/chapter/10.1007/978-1-0716-2197-4_5
https://doi.org/10.1145/3488560.3501396

40 BIBLIOGRAPHY

[10] Derrow-Pinion, A. et al. Eta prediction with graph neural networks in google

maps 3767–3776 (2021).

[11] Li, B. et al. Automated inference of molecular mechanisms of disease from

amino acid substitutions. Bioinformatics 25, 2744–2750 (2009).

[12] Li, Z., Xu, Q., Jiang, Y., Cao, X. & Huang, Q. Quaternion-based knowledge

graph network for recommendation 880–888 (2020).

[13] Fan, Y., Zhang, L. & Wang, P. Relation-enhanced multi-graph attention net-

work for recommendation 11–17 (2020).

[14] He, G., Li, J., Zhao, W. X., Liu, P. & Wen, J.-R. Mining implicit entity

preference from user-item interaction data for knowledge graph completion via

adversarial learning 740–751 (2020).

[15] Schedl, M., Knees, P., McFee, B. & Bogdanov, D. Music recommendation

systems: Techniques, use cases, and challenges. Recommender Systems Hand-

book 927–971 (2022). URL https://link.springer.com/chapter/10.1007/

978-1-0716-2197-4_24.

[16] Bertin-Mahieux, T., Ellis, D. P., Whitman, B. & Lamere, P. The million song

dataset (2011).

[17] Bittner, R. M. et al. mirdata: Software for reproducible usage of datasets

(2019).

[18] Lv, Q. et al. Are we really making much progress? revisiting, benchmarking and

refining heterogeneous graph neural networks 1150–1160 (2021). URL https:

//doi.org/10.1145/3447548.3467350.

[19] Fu, X., Zhang, J., Meng, Z. & King, I. Magnn: Metapath aggregated graph

neural network for heterogeneous graph embedding (2020). URL https://doi.

org/10.1145/3366423.3380297.

https://link.springer.com/chapter/10.1007/978-1-0716-2197-4_24
https://link.springer.com/chapter/10.1007/978-1-0716-2197-4_24
https://doi.org/10.1145/3447548.3467350
https://doi.org/10.1145/3447548.3467350
https://doi.org/10.1145/3366423.3380297
https://doi.org/10.1145/3366423.3380297

BIBLIOGRAPHY 41

[20] Pang, Y. et al. Heterogeneous global graph neural networks for personalized

session-based recommendation. WSDM 2022 - Proceedings of the 15th ACM In-

ternational Conference on Web Search and Data Mining 775–783 (2022). URL

https://doi.org/10.1145/3488560.3498505.

[21] Schedl, M. The lfm-1b dataset for music retrieval and recommendation. Pro-

ceedings of the 2016 ACM on International Conference on Multimedia Retrieval

103–110 (2016). URL https://doi.org/10.1145/2911996.2912004.

[22] Gao, C. et al. Graph neural networks for recommender systems: Challenges,

methods, and directions (2021). URL http://arxiv.org/abs/2109.12843.

[23] Aguiar, L. Let the music play? free streaming and its effects on digital music

consumption. Information Economics and Policy 41, 1–14 (2017). URL https:

//www.sciencedirect.com/science/article/pii/S016762451630110X.

[24] Riegler, M. A., Wang, J., Su, L. & Schedl, M. Deep learning in music

recommendation systems. Frontiers in Applied Mathematics and Statistics |

www.frontiersin.org 1, 44 (2019). URL https://dblp.uni-trier.de.

[25] Fang, H., Zhang, D., Shu, Y. & Guo, G. Deep learning for sequential recom-

mendation: Algorithms, influential factors, and evaluations. ACM Trans. Inf.

Syst. 39 (2020). URL https://doi.org/10.1145/3426723.

[26] Ren, P. et al. Repeatnet: A repeat aware neural recommendation machine

for session-based recommendation. Proceedings of the AAAI Conference on

Artificial Intelligence 33, 4806–4813 (2019). URL https://ojs.aaai.org/

index.php/AAAI/article/view/4408.

[27] Jeong, D., Kwon, T., Kim, Y. & Nam, J. Graph neural network for music score

data and modeling expressive piano performance 3060–3070 (2019).

[28] Korzeniowski, F., Oramas, S. & Gouyon, F. Artist similarity with graph neural

networks. arXiv preprint arXiv:2107.14541 (2021).

[29] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolu-

tional networks .

https://doi.org/10.1145/3488560.3498505
https://doi.org/10.1145/2911996.2912004
http://arxiv.org/abs/2109.12843
https://www.sciencedirect.com/science/article/pii/S016762451630110X
https://www.sciencedirect.com/science/article/pii/S016762451630110X
https://dblp.uni-trier.de
https://doi.org/10.1145/3426723
https://ojs.aaai.org/index.php/AAAI/article/view/4408
https://ojs.aaai.org/index.php/AAAI/article/view/4408

42 BIBLIOGRAPHY

[30] Thanapalasingam, T., Berkel, L. V., Bloem, P. & Groth, P. Relational graph

convolutional networks: A closer look URL https://github.com/thiviyanT/

torch-rgcn.

[31] Raimond, Y., Abdallah, S. A., Sandler, M. B. & Giasson, F. The music ontology.

2007, 8th (2007).

[32] Salha-Galvan, G. Contributions to representation learning with graph au-

toencoders and applications to music recommendation (2022). URL https:

//arxiv.org/abs/2205.14651.

[33] Hamilton, W. L. Graph representation learning. Synthesis Lectures on Artificial

Intelligence and Machine Learning 14, 1–159 (2020).

[34] Kipf, T. N. Deep learning with graph-structured representations (2020).

[35] Wang, X., He, X., Cao, Y., Liu, M. & Chua, T.-S. Kgat: Knowledge graph

attention network for recommendation 950–958 (2019).

[36] Koller, D. et al. Introduction to statistical relational learning (2007).

[37] Sanchez-Lengeling, B., Reif, E., Pearce, A. & Wiltschko, A. B. A gentle intro-

duction to graph neural networks. Distill 6, e33 (2021).

[38] Chua Shi, P. S. Y., Xiao Wang. Heterogeneous graph representation learn-

ing and applications (2022). URL http://gen.lib.rus.ec/book/index.php?

md5=39DC96A5068CB2837EEEC234FA6DEC0B.

[39] Fey, M. & Lenssen, J. E. Fast graph representation learning with pytorch

geometric. arXiv preprint arXiv:1903.02428 (2019).

[40] Wang, M. Y. Deep graph library: Towards efficient and scalable deep learning

on graphs (2019).

[41] Hagberg, A., Swart, P. & S Chult, D. Exploring network structure, dynamics,

and function using networkx (2008).

https://github.com/thiviyanT/torch-rgcn.
https://github.com/thiviyanT/torch-rgcn.
https://arxiv.org/abs/2205.14651
https://arxiv.org/abs/2205.14651
http://gen.lib.rus.ec/book/index.php?md5=39DC96A5068CB2837EEEC234FA6DEC0B
http://gen.lib.rus.ec/book/index.php?md5=39DC96A5068CB2837EEEC234FA6DEC0B

BIBLIOGRAPHY 43

[42] Dong, Y., Chawla, N. V. & Swami, A. metapath2vec: Scalable representation

learning for heterogeneous networks 135–144 (2017).

[43] Yu, L. et al. Heterogeneous graph representation learning with relation aware-

ness (2021). URL http://arxiv.org/abs/2105.11122http://dx.doi.org/

10.1109/TKDE.2022.3160208.

[44] Leskovec, J. Cs224w: Machine learning with graphs (2021). URL http://web.

stanford.edu/class/cs224w/.

http://arxiv.org/abs/2105.11122 http://dx.doi.org/10.1109/TKDE.2022.3160208
http://arxiv.org/abs/2105.11122 http://dx.doi.org/10.1109/TKDE.2022.3160208
http://web.stanford.edu/class/cs224w/
http://web.stanford.edu/class/cs224w/

	Introduction
	Contributions
	A LFM-1b data set loader
	Graph Based Deep Learning Link Prediction

	Structure of Report
	State of the Art
	Methodology
	Results
	Conclusion

	State of the Art
	Music Recommendation Systems (Music RS)
	Machine Learning Music Recommendation

	Graph Neural Networks (GNN)
	Graph Based Machine Learning Tasks
	Understanding GNNs

	Methods
	DGL LFM-1b Data set loader
	Frameworks for GNNs
	Data Loading
	Compiling DGL Graph Data
	Compiling DGL Node Data
	Compiling DGL Edge Data

	Models
	Relational Graph Convolutional Network (RGCN)
	Heterogeneous Graph Representation Learning with Relation Awareness (RHGNN)

	Training Graph Based Models
	The Link Prediction Training Process

	Evaluation
	Evaluation of the LFM-1b Data loader
	Evaluation of Link Prediction Models

	Results
	LFM-1b Data Loader
	LFM-1b Link Prediction

	Conclusions
	Discussion

	List of Figures
	List of Tables
	Bibliography

