Automata on Infinite Words

Automata: Theory and Practice

Paritosh K. Pandya
(TIFR, Mumbai, India)

Graduate Course Unversity of Trento
10-24 May 2005

Modelling Infinite Behaviours

Reactive systems

- Control programs, circuits, operating systems, network protocols.
- Infinite computation involving multiple agents
- Nondeterminism and scheduling
- Fairness constraints

Mutual Exclusion Problem

Initialise $y:=1$

- Asynchronous parallelism
- Guarded assignments.

Properties

- Mutual exclusion: In any execution, the system will not reach a state where both processes are in critical region
- In any execution, process 1 will eventually enter critical region.

Global State: $p c 1, p c 2, y$
An Execution:

$$
\mathrm{N}, \mathrm{~N}, 1 \rightarrow \mathrm{~N}, \mathrm{~T}, 1 \rightarrow \mathrm{~N}, \mathrm{~T}, 1 \rightarrow \mathrm{~T}, \mathrm{~T}, 1 \rightarrow \mathrm{~T}, \mathrm{C}, 0 \rightarrow \mathrm{~T}, \mathrm{~N}, 1 \rightarrow \ldots
$$

Global transition system

Global State: $p c 1, p c 2, y$

Theory of omega Automata

Topics:

- Buchi Automata: Deterministic and Nondeterministic
- Omega Regular Expressions, Monadic Logic
- Muller Automata
- Rabin and Streett Automata
- Safra's Complementation Theorem (Optional)
- Omega Tree Automata and Rabin's Tree Theorem (Optional)

Infinite Word Languages

Modelling infinite computations of reactive systems.

- An ω-word α over Σ is infinite sequence

$$
a_{0}, a_{1}, a_{2} \ldots
$$

Formally, $\alpha: \aleph \rightarrow \Sigma$. The set of all infinite words is denoted by Σ^{ω}.

Infinite Word Languages

Modelling infinite computations of reactive systems.

- An ω-word α over Σ is infinite sequence

$$
a_{0}, a_{1}, a_{2} \ldots
$$

Formally, $\alpha: \aleph \rightarrow \Sigma$. The set of all infinite words is denoted by Σ^{ω}.

- A ω-language L is collection of ω-words, i.e. $L \subseteq \Sigma^{\omega}$.

Example All words over $\{a, b\}$ with infinitely many a.

Infinite Word Languages

Modelling infinite computations of reactive systems.

- An ω-word α over Σ is infinite sequence

$$
a_{0}, a_{1}, a_{2} \ldots
$$

Formally, $\alpha: \aleph \rightarrow \Sigma$. The set of all infinite words is denoted by Σ^{ω}.

- A ω-language L is collection of ω-words, i.e. $L \subseteq \Sigma^{\omega}$. Example All words over $\{a, b\}$ with infinitely many a.

Notation

omega words $\alpha, \beta, \gamma \in \Sigma^{\omega}$.
omega-languages $L, L_{1} \subseteq \Sigma^{\omega}$
For $u \in \Sigma^{+}$, let $u^{\omega}=u . u . u \ldots$

Omega Automata

We consider automaton runs over infinite words words.

Let $\alpha=a a b b b b \ldots$. There are several possible runs.
Run $\rho_{1}=s_{1}, s_{1}, s_{1}, s_{1}, s_{2}, s_{2} \ldots$
Run $\rho_{2}=s_{1}, s_{1}, s_{1}, s_{1}, s_{1}, s_{1} \ldots$
Acceptance Conditions Buchi, Muller, Rabin, Streett. Acceptance is based on infinitely often occuring states
Notation Let $\rho \in S^{\omega}$. Then,

$$
\operatorname{Inf}(\rho)=\left\{s \in S \mid \exists \exists_{i \in \aleph} . \rho(i)=s\right\} .
$$

Buchi Automata

Nondeterministic Buchi Automaton $A=(Q, \Sigma, \delta, I, F)$ where $F \subseteq Q$ is the set of accepting states.

Buchi Automata

Nondeterministic Buchi Automaton $A=(Q, \Sigma, \delta, I, F)$ where $F \subseteq Q$ is the set of accepting states.

- A run ρ of A on omega word α is infinite sequence

$$
\rho=q_{o}, q_{1}, q_{2}, \ldots \text { s.t. } q_{0} \in I \text { and } q_{i} \xrightarrow{a_{i}} q_{i+1} \text { for } 0 \leq i \text {. }
$$

Buchi Automata

Nondeterministic Buchi Automaton $A=(Q, \Sigma, \delta, I, F)$ where $F \subseteq Q$ is the set of accepting states.

- A run ρ of A on omega word α is infinite sequence

$$
\rho=q_{o}, q_{1}, q_{2}, \ldots \text { s.t. } q_{0} \in I \text { and } q_{i} \xrightarrow{a_{i}} q_{i+1} \text { for } 0 \leq i \text {. }
$$

- The run ρ is accepting if

$$
\operatorname{Inf}(\rho) \cap F \neq \emptyset .
$$

Buchi Automata

Nondeterministic Buchi Automaton $A=(Q, \Sigma, \delta, I, F)$ where $F \subseteq Q$ is the set of accepting states.

- A run ρ of A on omega word α is infinite sequence

$$
\rho=q_{o}, q_{1}, q_{2}, \ldots \text { s.t. } q_{0} \in I \text { and } q_{i} \xrightarrow{a_{i}} q_{i+1} \text { for } 0 \leq i \text {. }
$$

- The run ρ is accepting if

$$
\operatorname{Inf}(\rho) \cap F \neq \emptyset .
$$

- Language accepted by A $L(A)=\left\{\alpha \in \Sigma^{*} \mid A\right.$ has an accepting run on $\left.\alpha\right\}$
- Langauges accepted by NFA are called ω-regular languages.

Buchi Automata

Nondeterministic Buchi Automaton $A=(Q, \Sigma, \delta, I, F)$ where $F \subseteq Q$ is the set of accepting states.

- A run ρ of A on omega word α is infinite sequence

$$
\rho=q_{o}, q_{1}, q_{2}, \ldots \text { s.t. } q_{0} \in I \text { and } q_{i} \xrightarrow{a_{i}} q_{i+1} \text { for } 0 \leq i \text {. }
$$

- The run ρ is accepting if

$$
\operatorname{Inf}(\rho) \cap F \neq \emptyset .
$$

- Language accepted by A $L(A)=\left\{\alpha \in \Sigma^{*} \mid A\right.$ has an accepting run on $\left.\alpha\right\}$
- Langauges accepted by NFA are called ω-regular languages.
A Deterministic Buchi Automaton has transition function $\delta: Q \times \Sigma \rightarrow Q$ and unique initial state $I=\left\{q_{0}\right\}$.

Buchi Automaton Example

Let $\Sigma=\{a, b\}$.
Let Deterministic Buchi Automaton(DBA) A_{1} be

- With $F=\left\{s_{1}\right\}$ the automaton recognises

Buchi Automaton Example

Let $\Sigma=\{a, b\}$.
Let Deterministic Buchi Automaton(DBA) A_{1} be

- With $F=\left\{s_{1}\right\}$ the automaton recognises words with infinitely many a.

Buchi Automaton Example

Let $\Sigma=\{a, b\}$.
Let Deterministic Buchi Automaton(DBA) A_{1} be

- With $F=\left\{s_{1}\right\}$ the automaton recognises words with infinitely many a.
- With $F=\left\{s_{2}\right\}$ the automaton recognises words with infinitely many b.

Buchi Automaton Example 2

Let Nondeterministic Buchi Automaton(NBA) A_{2} be

With $F=\left\{s_{2}\right\}$, automaton A_{2} recognises

Buchi Automaton Example 2

Let Nondeterministic Buchi Automaton(NBA) A_{2} be

With $F=\left\{s_{2}\right\}$, automaton A_{2} recognises words with finitely many a.Thus, $L\left(A_{2}\right)=\overline{L\left(A_{1}\right)}$.

Deterministic Buchi Automata

Limit Languages Let $U \subseteq \Sigma^{*}$. Then,

$$
\lim (U) \stackrel{\text { def }}{=}\left\{\alpha \in \Sigma^{\omega} \mid \exists^{\infty} i \in \aleph . \alpha[0: i] \in U\right\}
$$

Example: $\lim \left((a b)^{*}\right)=\left\{(a b)^{\omega}\right\}$.

Deterministic Buchi Automata

Limit Languages Let $U \subseteq \Sigma^{*}$. Then, $\lim (U) \stackrel{\text { def }}{=}\left\{\alpha \in \Sigma^{\omega} \mid \exists{ }^{\infty} i \in \mathcal{\aleph} . \alpha[0: i] \in U\right\}$.
Example: $\lim \left((a b)^{*}\right)=\left\{(a b)^{\omega}\right\}$.
Theorem $L \subseteq \Sigma^{\omega}$ is DBA recognisable iff L has the form $\operatorname{Lim}(U)$ for some regular langauge $U \subseteq \Sigma^{*}$.
Proof Method Relate the langauges of DFA for U with DBA for L.

Deterministic Buchi Automata

Limit Languages Let $U \subseteq \Sigma^{*}$. Then,

$$
\lim (U) \stackrel{\text { def }}{=}\left\{\alpha \in \Sigma^{\omega} \mid \exists \exists^{\infty} i \in \aleph . \alpha[0: i] \in U\right\} .
$$

Example: $\lim \left((a b)^{*}\right)=\left\{(a b)^{\omega}\right\}$.
Theorem $L \subseteq \Sigma^{\omega}$ is DBA recognisable iff L has the form $\operatorname{Lim}(U)$ for some regular langauge $U \subseteq \Sigma^{*}$.
Proof Method Relate the langauges of DFA for U with DBA for L.

Claim Language $L\left(A_{2}\right)$ of words with finitely many a is not of form $\operatorname{Lim}(U)$ for any regular U.

Deterministic Buchi Automata

Limit Languages Let $U \subseteq \Sigma^{*}$. Then,

$$
\lim (U) \stackrel{\text { def }}{=}\left\{\alpha \in \Sigma^{\omega} \mid \exists \exists^{\infty} i \in \aleph . \alpha[0: i] \in U\right\} .
$$

Example: $\lim \left((a b)^{*}\right)=\left\{(a b)^{\omega}\right\}$.
Theorem $L \subseteq \Sigma^{\omega}$ is DBA recognisable iff L has the form $\operatorname{Lim}(U)$ for some regular langauge $U \subseteq \Sigma^{*}$.
Proof Method Relate the langauges of DFA for U with DBA for L.

Claim Language $L\left(A_{2}\right)$ of words with finitely many a is not of form $\operatorname{Lim}(U)$ for any regular U.

Corollary $D B A$ are strictly less powerful than $N B A$.

Closure Properties

Theorem (Union) For NBA A_{1}, A_{2} we can effectively construct an NBA A s.t. $L(A)=L\left(A_{1}\right) \cup L\left(A_{2}\right)$. The size $|A|=\left|A_{1}\right|+\left|A_{2}\right|$
Construction Take disjoint union of A_{1} and A_{2}.
Theorem (Intersection) For NBA A_{1}, A_{2} we can effectively construct NBA A s.t. $L(A)=L\left(A_{1}\right) \cap L\left(A_{2}\right)$. The size $|A|=\left|A_{1}\right| \times\left|A_{2}\right| \times 2$.
Proof Method Construct product automaton.

Example: Product of NBA

Consider the run on $\alpha=$ baa (bbaaa) (bbaaa) (bbaaa) \ldots.. Positions of final states of two automata.

$$
\alpha=\| b a a(b|b a| a a)^{\omega} .
$$

Does not visit final states simultaneously. But belongs to intersection.

Example: Product of NBA

Consider the run on $\alpha=$ baa (bbaaa) (bbaaa) (bbaaa) \ldots... Positions of final states of two automata.

$$
\alpha=\| b a a(b|b a| a a)^{\omega} .
$$

Does not visit final states simultaneously. But belongs to intersection.
Solution Each component final state must be visited infinitely often, but not necessarily simulataneously.

Synchronous Product of NBA

Let $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, I_{1}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, I_{2}, F_{2}\right)$.
Then, $A_{1} \times A_{2}=(Q, \Sigma, \delta, I, F)$ where

$$
\begin{aligned}
& Q=Q_{1} \times Q_{2} \times\{1,2\} . \quad I=I_{1} \times I_{2} \times\{1\} . \\
& F=F_{1} \times Q_{2} \times\{1\} .
\end{aligned}
$$

$<p, q, 1>\xrightarrow{a}<p^{\prime}, q^{\prime}, 1>$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $p \notin F_{1}$.
$<p, q, 1>\xrightarrow{a}<p^{\prime}, q^{\prime}, 2>$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $p \in F_{1}$.
$<p, q, 2>\xrightarrow{a}<p^{\prime}, q^{\prime}, 2>$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $q \notin F_{2}$.
$<p, q, 2>\xrightarrow{a}<p^{\prime}, q^{\prime}, 1>$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $q \in F_{2}$.
Theorem $L\left(A_{1} \times A_{2}\right)=L\left(A_{1}\right) \cap L\left(A_{2}\right)$.

Closure Properties (2)

Theorem (projection) For NBA A_{1} over Σ_{1} and surjection $h: \Sigma_{1} \rightarrow \Sigma_{2}$, we can construct A_{2} over Σ_{2} s.t.
$L\left(A_{2}\right)=h\left(L\left(A_{1}\right)\right)$.
Construction Substitute label a by $h(a)$ in each transition. This can turn DBA into NBA.

Closure Properties (2)

Theorem (projection) For NBA A_{1} over Σ_{1} and surjection $h: \Sigma_{1} \rightarrow \Sigma_{2}$, we can construct A_{2} over Σ_{2} s.t.
$L\left(A_{2}\right)=h\left(L\left(A_{1}\right)\right)$.
Construction Substitute label a by $h(a)$ in each transition. This can turn DBA into NBA.

Theorem (complementation) [Safra, MacNaughten] For NBA A_{1} we can construct NBA A_{2} such that $L\left(A_{2}\right)=\overline{L\left(A_{1}\right)}$. Size $\left|A_{2}\right|=O\left(2^{n \log n}\right)$ where $\left|A_{1}\right|=n$.

Decision Problems

Emptiness For NBA A, it is decidable whether $L(A)=\emptyset$. Method

- Find maximal strongly connected components (SCC) in graph of A disregarding the edge labels.
- A MSC Component C is called non-trivial if $C \cap F \neq \emptyset$ and C has at least one edge.
- Find all nodes from which there is a path to a non-trivial SCC. Call the set of these nodes as N.
- $L(A)=\emptyset$ iff $N \cap I=\emptyset$.

Time Complexity: $O(|Q|+|\delta|)$.

Decision Problems

Emptiness For NBA A, it is decidable whether $L(A)=\emptyset$. Method

- Find maximal strongly connected components (SCC) in graph of A disregarding the edge labels.
- A MSC Component C is called non-trivial if $C \cap F \neq \emptyset$ and C has at least one edge.
- Find all nodes from which there is a path to a non-trivial SCC. Call the set of these nodes as N.
- $L(A)=\emptyset$ iff $N \cap I=\emptyset$.

Time Complexity: $O(|Q|+|\delta|)$.
Study Topic Courcoubetis et al, Memory efficient algorithms of verification of temporal properties, Formal Methods in System Design, 1992.

Omega Regular Expressions

Define $U^{\omega}=\left\{u_{0} . u_{1} \ldots \mid u_{i} \in U\right\}$.
Define $U . L=\{u . \alpha \mid u \in U, \alpha \in L\}$.
A language is called ω-regular if it has the form $\bigcup_{i=1}^{n} U_{i} .\left(V_{i}\right)^{\omega}$ where U_{i}, V_{i} are regular languages.

Theorem A language L is ω-regular iff it is NBA recognisable.
Proof (\Rightarrow) Let A be NBA for L. Then,

$$
L=\bigcup_{i \in I, f \in F}\left(\alpha_{i, f}^{Q}\right) \cdot\left(\alpha_{f, f}^{Q}\right)^{\omega} .
$$

Lemma Let U be regular and L, L_{i} be NBA recognizable.
Then $U \cdot L$ is NBA recognizable.
U^{ω} is NBA recognizable.
$\bigcup_{0 \leq i \leq n} L_{i}$ is NBA recognizable.

Variety of Acceptance Conditions

Consider Automaton Graph $A G=(Q, \Sigma, \delta, I)$. A Buchi automaton is a pair (A, F) where $F \subseteq Q$.
Let $F T=<F_{1}, F_{2}, \ldots, F_{k}>$ with $F_{i} \subseteq Q$.
A Generalised Buchi Automaton is $(A, F T)$ where $F T$ is as above.

Variety of Acceptance Conditions

Consider Automaton Graph $A G=(Q, \Sigma, \delta, I)$. A Buchi automaton is a pair (A, F) where $F \subseteq Q$.
Let $F T=<F_{1}, F_{2}, \ldots, F_{k}>$ with $F_{i} \subseteq Q$.
A Generalised Buchi Automaton is $(A, F T)$ where $F T$ is as above.
A run ρ of A is accepting if $\operatorname{Inf}(\rho) \cap F_{i} \neq \emptyset$ for each
$1 \leq i \leq k$.

Variety of Acceptance Conditions

Consider Automaton Graph $A G=(Q, \Sigma, \delta, I)$. A Buchi automaton is a pair (A, F) where $F \subseteq Q$.
Let $\left.F T=<F_{1}, F_{2}, \ldots, F_{k}\right\rangle$ with $F_{i} \subseteq Q$.
A Generalised Buchi Automaton is $(A, F T)$ where $F T$ is as above.
A run ρ of A is accepting if $\operatorname{Inf}(\rho) \cap F_{i} \neq \emptyset$ for each
$1 \leq i \leq k$.
Theorem For every Generalised Buchi Automaton ($A, F T$) we can construct a language equivalent Buchi Automaton $\left(A^{\prime}, G^{\prime}\right)$.
Construction Let $Q^{\prime}=Q \times\{1, \ldots, k\}$.
Automaton remains in i phase till it visits a state in F_{i}. Then, it moves to $i+1$ mode. After phase k it moves to phase 1.

Simulating GBA by BA

Let GBA $A=(Q, \Sigma, \delta, I)$ with $F T=\left(F_{1}, \ldots, F_{k}\right)$. Then we construct the BA $A^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, I^{\prime}, F^{\prime}\right)$ where

$$
\begin{aligned}
& Q^{\prime}=Q \times\{1, \ldots, k\} \\
& I^{\prime}=I \times\{1\} \\
& F^{\prime}=F \times\{1\}
\end{aligned}
$$

Simulating GBA by BA

Let GBA $A=(Q, \Sigma, \delta, I)$ with $F T=\left(F_{1}, \ldots, F_{k}\right)$. Then we construct the BA $A^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, I^{\prime}, F^{\prime}\right)$ where

$$
\begin{aligned}
& Q^{\prime}=Q \times\{1, \ldots, k\} \\
& I^{\prime}=I \times\{1\} \\
& F^{\prime}=F \times\{1\}
\end{aligned}
$$

The transition relation is:

- $<p, i>\xrightarrow{a}<q, i>$ iff $p \xrightarrow{a} p^{\prime}$ and $p \notin F_{i}$.
- $<p, i>\xrightarrow{a}<q, j>$ iff $p \xrightarrow{a} q$ and $p \in F_{i}$ where $j=i+1$ if $i<k$ and $j=1$ otherwise.

Simulating GBA by BA

Let GBA $A=(Q, \Sigma, \delta, I)$ with $F T=\left(F_{1}, \ldots, F_{k}\right)$. Then we construct the BA $A^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, I^{\prime}, F^{\prime}\right)$ where

$$
\begin{aligned}
& Q^{\prime}=Q \times\{1, \ldots, k\} \\
& I^{\prime}=I \times\{1\} \\
& F^{\prime}=F \times\{1\}
\end{aligned}
$$

The transition relation is:

- $<p, i>\xrightarrow{a}<q, i>$ iff $p \xrightarrow{a} p^{\prime}$ and $p \notin F_{i}$.
- $<p, i>\xrightarrow{a}<q, j>$ iff $p \xrightarrow{a} q$ and $p \in F_{i}$ where $j=i+1$ if $i<k$ and $j=1$ otherwise.

Lemma $\mathrm{L}(\mathrm{A})=\mathrm{L}\left(\mathrm{A}^{\prime}\right)$. Size $\left|A^{\prime}\right|=|A| \times k$.

Muller Automata

A Muller automaton is $(A, F T)$. A run ρ of A is Muller-accepting if $\operatorname{Inf}(\rho) \in F T$.
Example Deterministic Muller automaton A_{1} recognises:

- for $F T=\left\langle\left\{s_{1}\right\},\left\{s_{1}, s_{2}\right\}\right\rangle$.
- for $F T=\left\langle\left\{s_{2}\right\}\right\rangle$.

Muller Automata

A Muller automaton is $(A, F T)$. A run ρ of A is Muller-accepting if $\operatorname{Inf}(\rho) \in F T$.
Example Deterministic Muller automaton A_{1} recognises:

- words with infinitely many a for $F T=\left\langle\left\{s_{1}\right\},\left\{s_{1}, s_{2}\right\}\right\rangle$.
- words with finitely many a for $F T=\left\langle\left\{s_{2}\right\}\right\rangle$.

Muller Automata

A Muller automaton is $(A, F T)$. A run ρ of A is Muller-accepting if $\operatorname{Inf}(\rho) \in F T$.

Example Deterministic Muller automaton A_{1} recognises:

- words with infinitely many a for $F T=\left\langle\left\{s_{1}\right\},\left\{s_{1}, s_{2}\right\}\right\rangle$.
- words with finitely many a for $F T=\left\langle\left\{s_{2}\right\}\right\rangle$.

Exercise Describe $L\left(A_{1}\right)$ of the above Muller Aut. when (a) $F T=\left\langle\left\{s_{1}\right\}\right\rangle$, and (b) $F T=\left\langle\left\{s_{1}\right\},\left\{s_{2}\right\}\right\rangle$.

Muller Automata (2)

Theorem For every Buchi automaton A_{1} there is a language equivalent Muller automaton A_{2}.

Muller Automata (2)

Theorem For every Buchi automaton A_{1} there is a language equivalent Muller automaton A_{2}.
Construction A_{1} and A_{2} have same automaton graph. Let F be set of final states of Buchi A_{1}. Define Muller aut. final table $F T=\left\{Y \in 2^{Q} \mid Y \cap F \neq \emptyset\right\}$.

Muller Automata (2)

Theorem For every Buchi automaton A_{1} there is a language equivalent Muller automaton A_{2}.
Construction A_{1} and A_{2} have same automaton graph. Let F be set of final states of Buchi A_{1}. Define Muller aut. final table $F T=\left\{Y \in 2^{Q} \mid Y \cap F \neq \emptyset\right\}$.

Theorem[McNaughten] For every Buchi Automaton A_{1} we can construct a language equivalent Deterministic Muller Automaton A_{2}.

Muller to Buchi

Theorem For every Muller automaton $A M$ we can construct a langauge equivalent Buchi Automaton $A B$.

Muller to Buchi

Theorem For every Muller automaton $A M$ we can construct a langauge equivalent Buchi Automaton $A B$.
Construction Let $F T$ be acceptance table of
$A M=\left(A,<F_{1}, \ldots, F_{k}>\right)$.

- We construct a Nondeterministic Buchi Automaton A_{i} s.t. word α is accepted by A_{i} iff there is an ρ accepting run of $A M$ on α with $\operatorname{Inf}(\rho)=F_{i}$.
- Then, $L(A M)=\cup L\left(A_{i}\right)$ which is Buchi recognisable.

Muller to Buchi

Theorem For every Muller automaton $A M$ we can construct a langauge equivalent Buchi Automaton $A B$.
Construction Let $F T$ be acceptance table of
$A M=\left(A,<F_{1}, \ldots, F_{k}>\right)$.

- We construct a Nondeterministic Buchi Automaton A_{i} s.t. word α is accepted by A_{i} iff there is an ρ accepting run of $A M$ on α with $\operatorname{Inf}(\rho)=F_{i}$.
- Then, $L(A M)=\cup L\left(A_{i}\right)$ which is Buchi recognisable.

Construction of A_{i} Any run of $A M$ has initial finite part followed by infinite part. The finite part follows automaton graph of $A M$. In infinite part only the F_{i} states can be visited and each must be visited infinitely often.

Construction of A_{i}

Let $A M=(Q, \Sigma, \delta, I, F T)$ with $F_{i}=\left\{f_{1}, f_{2}, \ldots, f_{m-1}\right\}$. The NBA $A_{i}=\left(Q_{i}, \Sigma, \delta_{i}, I_{i}, G_{i}\right)$ where

Construction of A_{i}

Let $A M=(Q, \Sigma, \delta, I, F T)$ with $F_{i}=\left\{f_{1}, f_{2}, \ldots, f_{m-1}\right\}$. The NBA $A_{i}=\left(Q_{i}, \Sigma, \delta_{i}, I_{i}, G_{i}\right)$ where
$Q_{i}=\{(q$, fin $) \mid q \in Q\} \cup$
$\left\{(f\right.$, inf $\left.f, j) \mid f \in F_{i} \wedge j \in\{1, \ldots, m\}\right\}$.
$I_{i}=\{(s$, fin $) \mid s \in I\}$ and $G_{i}=\left\{\left(f_{m}\right.\right.$, inf,$\left.\left.m\right)\right\}$

Construction of A_{i}

Let $A M=(Q, \Sigma, \delta, I, F T)$ with $F_{i}=\left\{f_{1}, f_{2}, \ldots, f_{m-1}\right\}$. The NBA $A_{i}=\left(Q_{i}, \Sigma, \delta_{i}, I_{i}, G_{i}\right)$ where
$Q_{i}=\{(q$, fin $) \mid q \in Q\} \cup$

$$
\left\{(f, i n f, j) \mid f \in F_{i} \wedge j \in\{1, \ldots, m\}\right\}
$$

$I_{i}=\{(s, f i n) \mid s \in I\}$ and $G_{i}=\left\{\left(f_{m}, i n f, m\right)\right\}$
Transition Relation:

Rabin and Streett Automata

A be automaton graph (Q, Σ, δ, I) as before.
Let $P T=<\left(G_{1}, R_{1}\right),\left(G_{2}, R_{2}\right), \ldots,\left(G_{k}, R_{k}\right)>$ with $G_{i}, R_{i} \subseteq Q$.

Rabin and Streett Automata

A be automaton graph (Q, Σ, δ, I) as before.
Let $P T=<\left(G_{1}, R_{1}\right),\left(G_{2}, R_{2}\right), \ldots,\left(G_{k}, R_{k}\right)>$ with $G_{i}, R_{i} \subseteq Q$.

A Rabin automaton is $(A, P T)$. A run ρ of A is Rabin-accepting if for some $i: 0 \leq i \leq k$ we have $\operatorname{Inf}(\rho) \cap G_{i} \neq \emptyset$ and $\operatorname{Inf}(\rho) \cap R_{i}=\emptyset$.

Rabin and Streett Automata

A be automaton graph (Q, Σ, δ, I) as before.
Let $P T=<\left(G_{1}, R_{1}\right),\left(G_{2}, R_{2}\right), \ldots,\left(G_{k}, R_{k}\right)>$ with
$G_{i}, R_{i} \subseteq Q$.
A Rabin automaton is $(A, P T)$. A run ρ of A is Rabin-accepting if for some $i: 0 \leq i \leq k$ we have $\operatorname{Inf}(\rho) \cap G_{i} \neq \emptyset$ and $\operatorname{Inf}(\rho) \cap R_{i}=\emptyset$.

A Streett automaton is $(A, P T)$. A run ρ of A is Streett-accepting if for all $i: 0 \leq i \leq k$ we have $\operatorname{Inf}(\rho) \cap G_{i} \neq \emptyset$ implies $\operatorname{Inf}(\rho) \cap R_{i} \neq \emptyset$.

Rabin and Streett Automata

A be automaton graph (Q, Σ, δ, I) as before.
Let $P T=<\left(G_{1}, R_{1}\right),\left(G_{2}, R_{2}\right), \ldots,\left(G_{k}, R_{k}\right)>$ with
$G_{i}, R_{i} \subseteq Q$.
A Rabin automaton is $(A, P T)$. A run ρ of A is
Rabin-accepting if for some $i: 0 \leq i \leq k$ we have $\operatorname{Inf}(\rho) \cap G_{i} \neq \emptyset$ and $\operatorname{Inf}(\rho) \cap R_{i}=\emptyset$.

A Streett automaton is $(A, P T)$. A run ρ of A is Streett-accepting if for all $i: 0 \leq i \leq k$ we have $\operatorname{Inf}(\rho) \cap G_{i} \neq \emptyset$ implies $\operatorname{Inf}(\rho) \cap R_{i} \neq \emptyset$.

Proposition ρ is Rabin accepting iff ρ is not street accepting.

Examples

The Rabin Automaton above

- with $P T=<\left(\left\{s_{1}\right\}, \emptyset\right)>$
- with $P T=<\left(\left\{s_{2}\right\},\left\{s_{1}\right\}\right)>$

Examples

The Rabin Automaton above

- with $P T=<\left(\left\{s_{1}\right\}, \emptyset\right)>$ accepts words with infinitely many a.
- with $P T=<\left(\left\{s_{2}\right\},\left\{s_{1}\right\}\right)>$

Examples

The Rabin Automaton above

- with $P T=<\left(\left\{s_{1}\right\}, \emptyset\right)>$ accepts words with infinitely many a.
- with $P T=<\left(\left\{s_{2}\right\},\left\{s_{1}\right\}\right)>$ accepts words with finitely many a.

Simulations

Buchi-to-Rabin Let F final states of Buchi. Let
$P T \stackrel{\text { def }}{=}\langle(F, \emptyset)\rangle$.

Simulations

Buchi-to-Rabin Let F final states of Buchi. Let $P T \stackrel{\text { def }}{=}\langle(F, \emptyset)\rangle$.
Buchi-to-Streett Let $P T \stackrel{\text { def }}{=}\langle(Q, F)\rangle$.

Simulations

Buchi-to-Rabin Let F final states of Buchi. Let $P T \stackrel{\text { def }}{=}\langle(F, \emptyset)\rangle$.
Buchi-to-Streett Let $P T \stackrel{\text { def }}{=}\langle(Q, F)\rangle$.
Rabin-to-Buchi Similar to Muller-to-Buchi.
Complexity $|Q| \times k$.

Simulations

Buchi-to-Rabin Let F final states of Buchi. Let $P T \stackrel{\text { def }}{=}\langle(F, \emptyset)\rangle$.
Buchi-to-Streett Let $P T \stackrel{\text { def }}{=}\langle(Q, F)\rangle$.
Rabin-to-Buchi Similar to Muller-to-Buchi.
Complexity $|Q| \times k$.
Streett-to-Buchi [Vardi] Complexity $|Q| \times 2^{k}$.

Rabin-to-Buchi

Classroom.

Exercise Give construction for simulating Rabin Automaton using a Muller Automaton.

Streett-to-Buchi

Given Streett Automataon $(A, P T)$ with $A=(Q, \Sigma, \delta, I)$ and $P T=<\left(G_{1}, R_{1}\right),\left(G_{2}, R_{2}\right), \ldots,\left(G_{k}, R_{k}\right)>$ we construct NBA $\left(A^{\prime}, G^{\prime}\right)$.

Streett-to-Buchi

Given Streett Automataon $(A, P T)$ with $A=(Q, \Sigma, \delta, I)$ and $P T=<\left(G_{1}, R_{1}\right),\left(G_{2}, R_{2}\right), \ldots,\left(G_{k}, R_{k}\right)>$ we construct NBA $\left(A^{\prime}, G^{\prime}\right)$.
Buchi automaton simulates A for initial finite prefix and then nondeterminstically moves to infinite part where it checks that Streett-condition is met.

Streett-to-Buchi

Given Streett Automataon $(A, P T)$ with $A=(Q, \Sigma, \delta, I)$ and $P T=<\left(G_{1}, R_{1}\right),\left(G_{2}, R_{2}\right), \ldots,\left(G_{k}, R_{k}\right)>$ we construct NBA $\left(A^{\prime}, G^{\prime}\right)$.
Buchi automaton simulates A for initial finite prefix and then nondeterminstically moves to infinite part where it checks that Streett-condition is met.

- For this it keeps two sets $X_{1}, X_{2} \subseteq\{1, \ldots, k\}$.
- If q is occurs, indices i such $q \in G_{i}$ are added to X_{1}.
- Similarly if q is occurs, indices i such $q \in R_{i}$ are added to X_{2}.
- If $G_{i} \subseteq R_{i}$ then all requirements are met. We set $R_{i}=\emptyset$. This should happen infinitely often.

(Cont)

$$
\begin{aligned}
Q^{\prime}= & \{(q, \text { fin } \mid q \in Q\} \cup \\
& \left\{\left(q, X_{1}, X_{2}\right) \mid q \in Q \wedge X_{1}, X_{2} \subseteq\{1, \ldots, k\}\right\} .
\end{aligned}
$$

(Cont)

$$
\begin{aligned}
Q^{\prime}= & \{(q, \text { fin }) \mid q \in Q\} \cup \\
& \quad\left\{\left(q, X_{1}, X_{2}\right) \mid q \in Q \wedge X_{1}, X_{2} \subseteq\{1, \ldots, k\}\right\} . \\
G^{\prime}= & \{(q, X, \emptyset) \mid q \in Q \wedge X \subseteq\{1, \ldots, k\}\} .
\end{aligned}
$$

(Cont)

$$
\begin{aligned}
Q^{\prime}= & \{(q, \text { fin }) \mid q \in Q\} \cup \\
& \quad\left\{\left(q, X_{1}, X_{2}\right) \mid q \in Q \wedge X_{1}, X_{2} \subseteq\{1, \ldots, k\}\right\} . \\
G^{\prime}= & \{(q, X, \emptyset) \mid q \in Q \wedge X \subseteq\{1, \ldots, k\}\} .
\end{aligned}
$$

- $(p, f i n) \xrightarrow{a}(q, f i n)$ of $p \xrightarrow{a} q$.
- $(p$, fin $) \xrightarrow{a}(q, \emptyset, \emptyset)$ if $p \xrightarrow{a} q$.
- $(p, X, Y) \xrightarrow{a}(q, X \cup A, Y \cup B)$ if $p \xrightarrow{a} q$ and $X \cup A \nsubseteq Y \cup B$ and $A=\left\{i \mid q \in G_{i}\right\}$ and $B=\left\{i \mid q \in R_{i}\right\}$.
- $(p, X, Y) \xrightarrow{a}(q, X \cup A, \emptyset)$ if $p \xrightarrow{a} q$ and $X \cup A \subseteq Y \cup B$.

Safra's Determinisation

Theorem For every Nondeterministic Buchi Automaton (A, F) we can construct a language equivalent deterministic Rabin automaton ($A_{F}, P T_{F}$).

Safra's Determinisation

Theorem For every Nondeterministic Buchi Automaton (A, F) we can construct a language equivalent deterministic Rabin automaton ($A_{F}, P T_{F}$).
Compleixty: A_{F} has $O\left(2^{(n \log n)}\right)$ states where A has n states. There is no construction with $O\left(2^{n}\right)$ states.

Safra's Determinisation

Theorem For every Nondeterministic Buchi Automaton
(A, F) we can construct a language equivalent deterministic
Rabin automaton ($A_{F}, P T_{F}$).
Compleixty: A_{F} has $O\left(2^{(n \log n)}\right)$ states where A has n states. There is no construction with $O\left(2^{n}\right)$ states.

Complementation of Buchi Automata:
(1) Buchi to Deterministic-Rabin.
(2) Deterministic-Rabin to Determinstic Streett
(Complement)
(3) Determinstic-Streett to Nodeterministic-Buchi

