Automata on Infinite Words

Automata: Theory and Practice

Paritosh K. Pandya (TIFR, Mumbai, India)

Graduate Course Unversity of Trento 10-24 May 2005

Trento'2005 – p. 1/3

Modelling Infinite Behaviours

Reactive systems

- Control programs, circuits, operating systems, network protocols.
- Infinite computation involving multiple agents
- Nondeterminism and scheduling
- Fairness constraints

Mutual Exclusion Problem

Initialise y := 1

- Asynchronous parallelism
- Guarded assignments.

Properties

- Mutual exclusion: In any execution, the system will not reach a state where both processes are in critical region
- In any execution, process 1 will eventually enter critical region.

Global State: pc1, pc2, y

An Execution:

$$\boxed{\mathsf{N},\mathsf{N},\mathsf{1}} \rightarrow \boxed{\mathsf{N},\mathsf{T},\mathsf{1}} \rightarrow \boxed{\mathsf{N},\mathsf{T},\mathsf{1}} \rightarrow \boxed{\mathsf{T},\mathsf{T},\mathsf{1}} \rightarrow \boxed{\mathsf{T},\mathsf{C},\mathsf{0}} \rightarrow \boxed{\mathsf{T},\mathsf{N},\mathsf{1}} \rightarrow \dots$$

Global transition system

Theory of omega Automata

Topics:

- Buchi Automata: Deterministic and Nondeterministic
- Omega Regular Expressions, Monadic Logic
- Muller Automata
- Rabin and Streett Automata
- Safra's Complementation Theorem (Optional)
- Omega Tree Automata and Rabin's Tree Theorem (Optional)

Infinite Word Languages

Modelling infinite computations of reactive systems.

• An ω -word α over Σ is infinite sequence

 $a_0, a_1, a_2 \dots$ Formally, $\alpha : \aleph \to \Sigma$. The set of all infinite words is denoted by Σ^{ω} .

Infinite Word Languages

Modelling infinite computations of reactive systems.

• An ω -word α over Σ is infinite sequence

 $a_0, a_1, a_2 \dots$ Formally, $\alpha : \aleph \to \Sigma$. The set of all infinite words is denoted by Σ^{ω} .

• A ω -language L is collection of ω -words, i.e. $L \subseteq \Sigma^{\omega}$. Example All words over $\{a, b\}$ with infinitely many a.

Infinite Word Languages

Modelling infinite computations of reactive systems.

• An ω -word α over Σ is infinite sequence

 $a_0, a_1, a_2 \dots$ Formally, $\alpha : \aleph \to \Sigma$. The set of all infinite words is denoted by Σ^{ω} .

• A ω -language L is collection of ω -words, i.e. $L \subseteq \Sigma^{\omega}$. Example All words over $\{a, b\}$ with infinitely many a.

Notation

omega words $\alpha, \beta, \gamma \in \Sigma^{\omega}$. omega-languages $L, L_1 \subseteq \Sigma^{\omega}$ For $u \in \Sigma^+$, let $u^{\omega} = u.u.u..$

Omega Automata

We consider automaton runs over infinite words words.

Let $\alpha = aabbbb \dots$ There are several possible runs. Run $\rho_1 = s_1, s_1, s_1, s_1, s_2, s_2 \dots$ Run $\rho_2 = s_1, s_1, s_1, s_1, s_1, s_1 \dots$

Acceptance Conditions Buchi, Muller, Rabin, Streett. Acceptance is based on infinitely often occuring states

Notation Let $\rho \in S^{\omega}$. Then, $Inf(\rho) = \{s \in S \mid \exists^{\infty} i \in \aleph. \ \rho(i) = s\}.$

Nondeterministic Buchi Automaton $A = (Q, \Sigma, \delta, I, F)$ where $F \subseteq Q$ is the set of accepting states.

Nondeterministic Buchi Automaton $A = (Q, \Sigma, \delta, I, F)$ where $F \subseteq Q$ is the set of accepting states.

• A run ρ of A on omega word α is infinite sequence $\rho = q_0, q_1, q_2, \dots$ s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \leq i$.

Nondeterministic Buchi Automaton $A = (Q, \Sigma, \delta, I, F)$ where $F \subseteq Q$ is the set of accepting states.

- A run ρ of A on omega word α is infinite sequence $\rho = q_o, q_1, q_2, \dots$ s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \leq i$.
- The run ρ is accepting if

 $Inf(\rho) \cap F \neq \emptyset.$

Nondeterministic Buchi Automaton $A = (Q, \Sigma, \delta, I, F)$ where $F \subseteq Q$ is the set of accepting states.

• A run ρ of A on omega word α is infinite sequence

 $\rho = q_o, q_1, q_2, \dots$ s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \leq i$.

• The run ρ is accepting if

 $Inf(\rho) \cap F \neq \emptyset.$

- Language accepted by A $L(A) = \{ \alpha \in \Sigma^* \mid A \text{ has an accepting run on } \alpha \}$
- Langauges accepted by NFA are called ω -regular languages.

Nondeterministic Buchi Automaton $A = (Q, \Sigma, \delta, I, F)$ where $F \subseteq Q$ is the set of accepting states.

• A run ρ of A on omega word α is infinite sequence

 $\rho = q_o, q_1, q_2, \dots$ s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \leq i$.

• The run ρ is accepting if

 $Inf(\rho) \cap F \neq \emptyset.$

- Language accepted by A $L(A) = \{ \alpha \in \Sigma^* \mid A \text{ has an accepting run on } \alpha \}$
- Langauges accepted by NFA are called ω -regular languages.

A Deterministic Buchi Automaton has transition function $\delta: Q \times \Sigma \rightarrow Q$ and unique initial state $I = \{q_0\}$.

Let $\Sigma = \{a, b\}$. Let Deterministic Buchi Automaton(DBA) A_1 be

• With $F = \{s_1\}$ the automaton recognises

Let $\Sigma = \{a, b\}$. Let Deterministic Buchi Automaton(DBA) A_1 be

• With $F = \{s_1\}$ the automaton recognises words with infinitely many a.

Let $\Sigma = \{a, b\}$. Let Deterministic Buchi Automaton(DBA) A_1 be

- With $F = \{s_1\}$ the automaton recognises words with infinitely many a.
- With $F = \{s_2\}$ the automaton recognises words with infinitely many *b*.

Let Nondeterministic Buchi Automaton(NBA) A_2 be

With $F = \{s_2\}$, automaton A_2 recognises

Let Nondeterministic Buchi Automaton(NBA) A_2 be

With $F = \{s_2\}$, automaton A_2 recognises words with finitely many *a*. Thus, $L(A_2) = \overline{L(A_1)}$.

Limit Languages Let $U \subseteq \Sigma^*$. Then, $\lim(U) \stackrel{\text{def}}{=} \{ \alpha \in \Sigma^{\omega} \mid \exists^{\infty} i \in \aleph. \ \alpha[0:i] \in U \}.$ Example: $\lim((ab)^*) = \{(ab)^{\omega}\}.$

Limit Languages Let $U \subseteq \Sigma^*$. Then, $\lim(U) \stackrel{\text{def}}{=} \{ \alpha \in \Sigma^{\omega} \mid \exists^{\infty} i \in \aleph. \ \alpha[0:i] \in U \}.$ Example: $\lim((ab)^*) = \{(ab)^{\omega}\}.$

Theorem $L \subseteq \Sigma^{\omega}$ is DBA recognisable iff L has the form Lim(U) for some regular langauge $U \subseteq \Sigma^*$.

Proof Method Relate the langauges of DFA for U with DBA for L.

Limit Languages Let $U \subseteq \Sigma^*$. Then, $\lim(U) \stackrel{\text{def}}{=} \{ \alpha \in \Sigma^{\omega} \mid \exists^{\infty} i \in \aleph. \ \alpha[0:i] \in U \}.$ Example: $\lim((ab)^*) = \{(ab)^{\omega}\}.$

Theorem $L \subseteq \Sigma^{\omega}$ is DBA recognisable iff L has the form Lim(U) for some regular langauge $U \subseteq \Sigma^*$.

Proof Method Relate the langauges of DFA for U with DBA for L.

Claim Language $L(A_2)$ of words with finitely many a is not of form Lim(U) for any regular U.

Limit Languages Let $U \subseteq \Sigma^*$. Then, $\lim(U) \stackrel{\text{def}}{=} \{ \alpha \in \Sigma^{\omega} \mid \exists^{\infty} i \in \aleph. \ \alpha[0:i] \in U \}.$ Example: $\lim((ab)^*) = \{(ab)^{\omega}\}.$

Theorem $L \subseteq \Sigma^{\omega}$ is DBA recognisable iff L has the form Lim(U) for some regular langauge $U \subseteq \Sigma^*$.

Proof Method Relate the langauges of DFA for U with DBA for L.

Claim Language $L(A_2)$ of words with finitely many a is not of form Lim(U) for any regular U.

Corollary *DBA* are strictly less powerful than *NBA*.

Closure Properties

Theorem (Union) For NBA A_1 , A_2 we can effectively construct an NBA A s.t. $L(A) = L(A_1) \cup L(A_2)$. The size $|A| = |A_1| + |A_2|$

Construction Take disjoint union of A_1 and A_2 .

Theorem (Intersection) For NBA A_1 , A_2 we can effectively construct NBA A s.t. $L(A) = L(A_1) \cap L(A_2)$. The size $|A| = |A_1| \times |A_2| \times 2$.

Proof Method Construct product automaton.

Example: Product of NBA

Consider the run on $\alpha = baa (bbaaa) (bbaaa) (bbaaa) \dots$

Positions of final states of two automata.

 $\alpha = ||baa \ (b|ba|aa)^{\omega}.$

Does not visit final states simultaneously. But belongs to intersection.

Example: Product of NBA

Consider the run on $\alpha = baa (bbaaa) (bbaaa) (bbaaa) \dots$

Positions of final states of two automata.

 $\alpha = |baa \ (b|ba|aa)^{\omega}.$

Does not visit final states simultaneously. But belongs to intersection.

Solution Each component final state must be visited infinitely often, but not necessarily simulataneously.

Synchronous Product of NBA

Let $A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$. Then, $A_1 \times A_2 = (Q, \Sigma, \delta, I, F)$ where

 $Q = Q_1 \times Q_2 \times \{1, 2\}.$ $I = I_1 \times I_2 \times \{1\}.$ $F = F_1 \times Q_2 \times \{1\}.$

 $\langle p,q,1 \rangle \xrightarrow{a} \langle p',q',1 \rangle$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $p \notin F_1$. $\langle p,q,1 \rangle \xrightarrow{a} \langle p',q',2 \rangle$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $p \in F_1$. $\langle p,q,2 \rangle \xrightarrow{a} \langle p',q',2 \rangle$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $q \notin F_2$. $\langle p,q,2 \rangle \xrightarrow{a} \langle p',q',1 \rangle$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $q \in F_2$.

Theorem $L(A_1 \times A_2) = L(A_1) \cap L(A_2)$.

Closure Properties (2)

Theorem (projection) For NBA A_1 over Σ_1 and surjection $h: \Sigma_1 \to \Sigma_2$, we can construct A_2 over Σ_2 s.t. $L(A_2) = h(L(A_1))$.

Construction Substitute label a by h(a) in each transition. This can turn DBA into NBA.

Closure Properties (2)

Theorem (projection) For NBA A_1 over Σ_1 and surjection $h: \Sigma_1 \to \Sigma_2$, we can construct A_2 over Σ_2 s.t. $L(A_2) = h(L(A_1))$.

Construction Substitute label a by h(a) in each transition. This can turn DBA into NBA.

Theorem (complementation) [Safra, MacNaughten] For NBA A_1 we can construct NBA A_2 such that $L(A_2) = \overline{L(A_1)}$. Size $|A_2| = O(2^{n \log n})$ where $|A_1| = n$.

Decision Problems

Emptiness For NBA A, it is decidable whether $L(A) = \emptyset$. Method

- Find maximal strongly connected components (SCC) in graph of A disregarding the edge labels.
- ▲ MSC Component C is called non-trivial if $C \cap F \neq \emptyset$ and C has at least one edge.
- Find all nodes from which there is a path to a non-trivial SCC. Call the set of these nodes as N.
- $L(A) = \emptyset$ iff $N \cap I = \emptyset$.

Time Complexity: $O(|Q| + |\delta|)$.

Decision Problems

Emptiness For NBA A, it is decidable whether $L(A) = \emptyset$. Method

- Find maximal strongly connected components (SCC) in graph of A disregarding the edge labels.
- ▲ MSC Component C is called non-trivial if $C \cap F \neq \emptyset$ and C has at least one edge.
- Find all nodes from which there is a path to a non-trivial SCC. Call the set of these nodes as N.
- $\ \, {\cal S} \ \ \, L(A) = \emptyset \ \, {\rm iff} \ N \cap I \ \, = \ \, \emptyset.$

Time Complexity: $O(|Q| + |\delta|)$.

Study Topic Courcoubetis *et al*, Memory efficient algorithms of verification of temporal properties, Formal Methods in -System Design, 1992.

Omega Regular Expressions

Define $U^{\omega} = \{u_0.u_1... \mid u_i \in U\}.$ Define $U.L = \{u.\alpha \mid u \in U, \alpha \in L\}.$

A language is called ω -regular if it has the form $\bigcup_{i=1}^{n} U_i \cdot (V_i)^{\omega}$ where U_i, V_i are regular languages.

Theorem A language L is ω -regular iff it is NBA recognisable.

Proof (\Rightarrow) Let *A* be NBA for *L*. Then,

$$L = \bigcup_{i \in I, f \in F} (\alpha_{i,f}^Q) \cdot (\alpha_{f,f}^Q)^{\omega}$$

Lemma Let U be regular and L, L_i be NBA recognizable. Then $U \cdot L$ is NBA recognizable. U^{ω} is NBA recognizable. $\bigcup_{0 \le i \le n} L_i$ is NBA recognizable.

Variety of Acceptance Conditions

Consider Automaton Graph $AG = (Q, \Sigma, \delta, I)$. A Buchi automaton is a pair (A, F) where $F \subseteq Q$. Let $FT = \langle F_1, F_2, \dots, F_k \rangle$ with $F_i \subseteq Q$.

A Generalised Buchi Automaton is (A, FT) where FT is as above.

Variety of Acceptance Conditions

Consider Automaton Graph $AG = (Q, \Sigma, \delta, I)$. A Buchi automaton is a pair (A, F) where $F \subseteq Q$. Let $FT = \langle F_1, F_2, \dots, F_k \rangle$ with $F_i \subseteq Q$.

A Generalised Buchi Automaton is (A, FT) where FT is as above.

A run ρ of A is accepting if $Inf(\rho) \cap F_i \neq \emptyset$ for each $1 \leq i \leq k$.

Variety of Acceptance Conditions

Consider Automaton Graph $AG = (Q, \Sigma, \delta, I)$. A Buchi automaton is a pair (A, F) where $F \subseteq Q$. Let $FT = \langle F_1, F_2, \dots, F_k \rangle$ with $F_i \subseteq Q$.

A Generalised Buchi Automaton is (A, FT) where FT is as above.

A run ρ of A is accepting if $Inf(\rho) \cap F_i \neq \emptyset$ for each $1 \leq i \leq k$.

Theorem For every Generalised Buchi Automaton (A, FT) we can construct a language equivalent Buchi Automaton (A', G').

Construction Let $Q' = Q \times \{1, \ldots, k\}$.

Automaton remains in *i* phase till it visits a state in F_i . Then, it moves to i + 1 mode. After phase k it moves to phase 1.
Simulating GBA by BA

Let GBA $A = (Q, \Sigma, \delta, I)$ with $FT = (F_1, \dots, F_k)$. Then we construct the BA $A' = (Q', \Sigma, \delta', I', F')$ where

$$Q' = Q \times \{1, \dots, k\}.$$

$$I' = I \times \{1\}.$$

$$F' = F \times \{1\}.$$

Simulating GBA by BA

Let GBA $A = (Q, \Sigma, \delta, I)$ with $FT = (F_1, \dots, F_k)$. Then we construct the BA $A' = (Q', \Sigma, \delta', I', F')$ where

$$Q' = Q \times \{1, \dots, k\}.$$

$$I' = I \times \{1\}.$$

$$F' = F \times \{1\}.$$

The transition relation is:

•
$$< p, i > \xrightarrow{a} < q, i > \text{iff } p \xrightarrow{a} p' \text{ and } p \notin F_i$$
.
• $< p, i > \xrightarrow{a} < q, j > \text{iff } p \xrightarrow{a} q \text{ and } p \in F_i$
where $j = i + 1$ if $i < k$ and $j = 1$ otherwise.

Simulating GBA by BA

Let GBA $A = (Q, \Sigma, \delta, I)$ with $FT = (F_1, \dots, F_k)$. Then we construct the BA $A' = (Q', \Sigma, \delta', I', F')$ where

$$Q' = Q \times \{1, \dots, k\}.$$

$$I' = I \times \{1\}.$$

$$F' = F \times \{1\}.$$

The transition relation is:

•
$$< p, i > \xrightarrow{a} < q, i > \text{iff } p \xrightarrow{a} p' \text{ and } p \notin F_i$$
.
• $< p, i > \xrightarrow{a} < q, j > \text{iff } p \xrightarrow{a} q \text{ and } p \in F_i$
where $j = i + 1$ if $i < k$ and $j = 1$ otherwise.

Lemma L(A) = L(A'). Size $|A'| = |A| \times k$.

Muller Automata

A Muller automaton is (A, FT). A run ρ of A is Muller-accepting if $Inf(\rho) \in FT$.

Example Deterministic Muller automaton A_1 recognises:

- for
$$FT = \langle \{s_1\}, \{s_1, s_2\} \rangle$$
.
- for $FT = \langle \{s_2\} \rangle$.

a

Muller Automata

A Muller automaton is (A, FT). A run ρ of A is Muller-accepting if $Inf(\rho) \in FT$.

Example Deterministic Muller automaton A_1 recognises: – words with infinitely many a for $FT = \langle \{s_1\}, \{s_1, s_2\} \rangle$.

– words with finitely many a for $FT = \langle \{s_2\} \rangle$.

Muller Automata

A Muller automaton is (A, FT). A run ρ of A is Muller-accepting if $Inf(\rho) \in FT$.

Example Deterministic Muller automaton A_1 recognises: – words with infinitely many a for $FT = \langle \{s_1\}, \{s_1, s_2\} \rangle$.

– words with finitely many a for $FT = \langle \{s_2\} \rangle$.

Exercise Describe $L(A_1)$ of the above Muller Aut. when (a) $FT = \langle \{s_1\} \rangle$, and (b) $FT = \langle \{s_1\}, \{s_2\} \rangle$.

Muller Automata (2)

Theorem For every Buchi automaton A_1 there is a language equivalent Muller automaton A_2 .

Muller Automata (2)

Theorem For every Buchi automaton A_1 there is a language equivalent Muller automaton A_2 .

Construction A_1 and A_2 have same automaton graph. Let F be set of final states of Buchi A_1 . Define Muller aut. final table $FT = \{Y \in 2^Q \mid Y \cap F \neq \emptyset\}.$

Muller Automata (2)

Theorem For every Buchi automaton A_1 there is a language equivalent Muller automaton A_2 .

Construction A_1 and A_2 have same automaton graph. Let F be set of final states of Buchi A_1 . Define Muller aut. final table $FT = \{Y \in 2^Q \mid Y \cap F \neq \emptyset\}.$

Theorem[McNaughten] For every Buchi Automaton A_1 we can construct a language equivalent Deterministic Muller Automaton A_2 .

Muller to Buchi

Theorem For every Muller automaton AM we can construct a langauge equivalent Buchi Automaton AB.

Muller to Buchi

Theorem For every Muller automaton AM we can construct a langauge equivalent Buchi Automaton AB. Construction Let FT be acceptance table of $AM = (A, < F_1, \ldots, F_k >).$

• We construct a Nondeterministic Buchi Automaton A_i s.t. word α is accepted by A_i iff there is an ρ accepting run of AM on α with $Inf(\rho) = F_i$.

• Then, $L(AM) = \bigcup L(A_i)$ which is Buchi recognisable.

Muller to Buchi

Theorem For every Muller automaton AM we can construct a langauge equivalent Buchi Automaton AB. Construction Let FT be acceptance table of $AM = (A, < F_1, \ldots, F_k >).$

- We construct a Nondeterministic Buchi Automaton A_i s.t. word α is accepted by A_i iff there is an ρ accepting run of AM on α with $Inf(\rho) = F_i$.
- Then, $L(AM) = \bigcup L(A_i)$ which is Buchi recognisable.

Construction of A_i Any run of AM has initial finite part followed by infinite part. The finite part follows automaton graph of AM. In infinite part only the F_i states can be visited and each must be visited infinitely often.

Construction of *A_i*

Let $AM = (Q, \Sigma, \delta, I, FT)$ with $F_i = \{f_1, f_2, \dots, f_{m-1}\}$. The NBA $A_i = (Q_i, \Sigma, \delta_i, I_i, G_i)$ where

Construction of *A_i*

Let $AM = (Q, \Sigma, \delta, I, FT)$ with $F_i = \{f_1, f_2, \dots, f_{m-1}\}$. The NBA $A_i = (Q_i, \Sigma, \delta_i, I_i, G_i)$ where

$$Q_{i} = \{(q, fin) \mid q \in Q\} \cup \{(f, inf, j) \mid f \in F_{i} \land j \in \{1, \dots, m\}\}.$$
$$I_{i} = \{(s, fin) \mid s \in I\} \text{ and } G_{i} = \{(f_{m}, inf, m)\}$$

Construction of A_i

Let $AM = (Q, \Sigma, \delta, I, FT)$ with $F_i = \{f_1, f_2, ..., f_{m-1}\}$. The NBA $A_i = (Q_i, \Sigma, \delta_i, I_i, G_i)$ where

$$Q_i = \{(q, fin) \mid q \in Q\} \cup \{(f, inf, j) \mid f \in F_i \land j \in \{1, \dots, m\}\}.$$
$$I_i = \{(s, fin) \mid s \in I\} \text{ and } G_i = \{(f_m, inf, m)\}$$
Transition Relation:

 \mathbf{H}

A be automaton graph (Q, Σ, δ, I) as before. Let $PT = \langle (G_1, R_1), (G_2, R_2), \dots, (G_k, R_k) \rangle$ with $G_i, R_i \subseteq Q$.

A be automaton graph (Q, Σ, δ, I) as before. Let $PT = \langle (G_1, R_1), (G_2, R_2), \dots, (G_k, R_k) \rangle$ with $G_i, R_i \subseteq Q$.

A Rabin automaton is (A, PT). A run ρ of A is Rabin-accepting if for some $i : 0 \le i \le k$ we have $Inf(\rho) \cap G_i \ne \emptyset$ and $Inf(\rho) \cap R_i = \emptyset$.

A be automaton graph (Q, Σ, δ, I) as before. Let $PT = \langle (G_1, R_1), (G_2, R_2), \dots, (G_k, R_k) \rangle$ with $G_i, R_i \subseteq Q$.

A Rabin automaton is (A, PT). A run ρ of A is Rabin-accepting if for some $i: 0 \le i \le k$ we have $Inf(\rho) \cap G_i \ne \emptyset$ and $Inf(\rho) \cap R_i = \emptyset$.

A Streett automaton is (A, PT). A run ρ of A is Streett-accepting if for all $i: 0 \le i \le k$ we have $Inf(\rho) \cap G_i \ne \emptyset$ implies $Inf(\rho) \cap R_i \ne \emptyset$.

A be automaton graph (Q, Σ, δ, I) as before. Let $PT = \langle (G_1, R_1), (G_2, R_2), \dots, (G_k, R_k) \rangle$ with $G_i, R_i \subseteq Q$.

A Rabin automaton is (A, PT). A run ρ of A is Rabin-accepting if for some $i: 0 \le i \le k$ we have $Inf(\rho) \cap G_i \ne \emptyset$ and $Inf(\rho) \cap R_i = \emptyset$.

A Streett automaton is (A, PT). A run ρ of A is Streett-accepting if for all $i: 0 \le i \le k$ we have $Inf(\rho) \cap G_i \ne \emptyset$ implies $Inf(\rho) \cap R_i \ne \emptyset$.

Proposition ρ is Rabin accepting iff ρ is not street accepting.

Examples

a

The Rabin Automaton above

• with $PT = <(\{s_1\}, \emptyset) >$

• with
$$PT = <(\{s_2\}, \{s_1\}) >$$

Examples

The Rabin Automaton above

• with $PT = \langle \{s_1\}, \emptyset \rangle$ > accepts words with infinitely many a.

• with
$$PT = <(\{s_2\}, \{s_1\}) >$$

Examples

The Rabin Automaton above

- with $PT = \langle \{s_1\}, \emptyset \rangle$ > accepts words with infinitely many a.
- with $PT = \langle \{s_2\}, \{s_1\} \rangle \rangle$ accepts words with finitely many a.

Buchi-to-Rabin Let *F* final states of Buchi. Let $PT \stackrel{\text{def}}{=} \langle (F, \emptyset) \rangle$.

Buchi-to-Rabin Let *F* final states of Buchi. Let $PT \stackrel{\text{def}}{=} \langle (F, \emptyset) \rangle$.

Buchi-to-Streett Let $PT \stackrel{\text{def}}{=} \langle (Q, F) \rangle$.

Buchi-to-Rabin Let *F* final states of Buchi. Let $PT \stackrel{\text{def}}{=} \langle (F, \emptyset) \rangle$.

Buchi-to-Streett Let $PT \stackrel{\text{def}}{=} \langle (Q, F) \rangle$.

Rabin-to-Buchi Similar to Muller-to-Buchi. Complexity $|Q| \times k$.

Buchi-to-Rabin Let *F* final states of Buchi. Let $PT \stackrel{\text{def}}{=} \langle (F, \emptyset) \rangle$.

Buchi-to-Streett Let $PT \stackrel{\text{def}}{=} \langle (Q, F) \rangle$.

Rabin-to-Buchi Similar to Muller-to-Buchi. Complexity $|Q| \times k$.

Streett-to-Buchi [Vardi] Complexity $|Q| \times 2^k$.

Rabin-to-Buchi

Classroom.

Exercise Give construction for simulating Rabin Automaton using a Muller Automaton.

Streett-to-Buchi

Given Streett Automataon (A, PT) with $A = (Q, \Sigma, \delta, I)$ and $PT = \langle (G_1, R_1), (G_2, R_2), \dots, (G_k, R_k) \rangle$ we construct NBA (A', G').

Streett-to-Buchi

Given Streett Automataon (A, PT) with $A = (Q, \Sigma, \delta, I)$ and $PT = \langle (G_1, R_1), (G_2, R_2), \dots, (G_k, R_k) \rangle$ we construct NBA (A', G').

Buchi automaton simulates A for initial finite prefix and then nondeterminstically moves to infinite part where it checks that Streett-condition is met.

Streett-to-Buchi

Given Streett Automataon (A, PT) with $A = (Q, \Sigma, \delta, I)$ and $PT = \langle (G_1, R_1), (G_2, R_2), \dots, (G_k, R_k) \rangle$ we construct NBA (A', G').

Buchi automaton simulates A for initial finite prefix and then nondeterministically moves to infinite part where it checks that Streett-condition is met.

- For this it keeps two sets $X_1, X_2 \subseteq \{1, \ldots, k\}$.
- If q is occurs, indices i such $q \in G_i$ are added to X_1 .
- Similarly if q is occurs, indices i such $q \in R_i$ are added to X_2 .
- If $G_i \subseteq R_i$ then all requirements are met. We set $R_i = \emptyset$. This should happen infinitely often.

(Cont)

$Q' = \{(q, fin) \mid q \in Q\} \cup \{(q, X_1, X_2) \mid q \in Q \land X_1, X_2 \subseteq \{1, \dots, k\}\}.$

(Cont)

 $Q' = \{(q, fin) \mid q \in Q\} \cup \{(q, X_1, X_2) \mid q \in Q \land X_1, X_2 \subseteq \{1, \dots, k\}\}.$ $G' = \{(q, X, \emptyset) \mid q \in Q \land X \subseteq \{1, \dots, k\}\}.$

(Cont)

$$\begin{array}{lll} Q' &= \{(q,fin) \mid q \in Q\} \cup \\ &\{(q,X_1,X_2) \mid q \in Q \land X_1, X_2 \subseteq \{1,\ldots,k\}\}. \\ G' &= \{(q,X,\emptyset) \mid q \in Q \land X \subseteq \{1,\ldots,k\}\}. \\ \bullet & (p,fin) \stackrel{a}{\longrightarrow} (q,fin) \mbox{ of } p \stackrel{a}{\longrightarrow} q. \\ \bullet & (p,fin) \stackrel{a}{\longrightarrow} (q,\emptyset,\emptyset) \mbox{ if } p \stackrel{a}{\longrightarrow} q. \\ \bullet & (p,X,Y) \stackrel{a}{\longrightarrow} (q,X \cup A,Y \cup B) \mbox{ if } p \stackrel{a}{\longrightarrow} q \mbox{ and } \\ &X \cup A \not\subseteq Y \cup B \mbox{ and } \\ &A = \{i \mid q \in G_i\} \mbox{ and } B = \{i \mid q \in R_i\}. \\ \bullet & (p,X,Y) \stackrel{a}{\longrightarrow} (q,X \cup A,\emptyset) \mbox{ if } p \stackrel{a}{\longrightarrow} q \mbox{ and } \\ &X \cup A \subseteq Y \cup B. \end{array}$$

Safra's Determinisation

Theorem For every Nondeterministic Buchi Automaton (A, F) we can construct a language equivalent deterministic Rabin automaton (A_F, PT_F) .

Safra's Determinisation

Theorem For every Nondeterministic Buchi Automaton (A, F) we can construct a language equivalent deterministic Rabin automaton (A_F, PT_F) .

Compleixty: A_F has $O(2^{(n \log n)})$ states where *A* has *n* states. There is no construction with $O(2^n)$ states.

Safra's Determinisation

Theorem For every Nondeterministic Buchi Automaton (A, F) we can construct a language equivalent deterministic Rabin automaton (A_F, PT_F) .

Compleixty: A_F has $O(2^{(n \log n)})$ states where *A* has *n* states. There is no construction with $O(2^n)$ states.

Complementation of Buchi Automata:

- (1) Buchi to Deterministic-Rabin.
- (2) Deterministic-Rabin to Deterministic Streett(Complement)
- (3) Determinstic-Streett to Nodeterministic-Buchi