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This research brief is one of five that summarize the literature in different topic 

areas1 related to helping struggling students in Grades 6–9 succeed in algebra. The 

research briefs are part of the Promoting Student Success in Algebra I (PSSA) project 

funded by the U.S. Department of Education’s High School Graduation Initiative 

(HSGI). The PSSA project at American Institutes for Research is designed to provide 

actionable information for educational program developers/administrators in three 

ways. First, these research briefs together will summarize research on five strategies 

being implemented by HSGI grantees that help struggling students succeed in 

Algebra I, a critical gateway course for high school graduation and enrollment in 

college. Second, the project includes a forum for practitioners—district curriculum 

developers/administrators and teachers—to make connections between the findings 

from the research briefs and their daily work, with the results of these discussions 

published in a series of perspective briefs. Third, the project includes profiles of 

practices that provide an in-depth look at implementation of these five strategies.

This research brief focuses on instructional practices. Typically, instruction in algebra 

focuses on symbolic manipulation and algebraic procedures, with little attention 

to the connections between these procedures and the underlying mathematical 

concepts (Chazan & Yerushalmy, 2003). When students are expected to memorize 

and operate with a set of rules that are seemingly meaningless, they may become 

frustrated and eventually fail Algebra I. Recommendations for student learning in 

algebra (and mathematics, more generally) address this concern and emphasize 

that proficiency in algebra requires more than skill in the rote application of algebraic 

procedures (National Governors Association Center for Best Practices [NGACBP]  

& Council of Chief State School Officers [CCSSO], 2010; National Mathematics 

1 The five topic areas are Curricular Alignment, Instructional Practices, Supplementary Learning 
Supports, Professional Development, and Instructional Coaching.
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Advisory Panel, 2008; National Council of Teachers of Mathematics, 1989, 2000, 2006). It requires 

what the National Research Council (NRC; 2001) describes as procedural fluency and conceptual 

understanding (for definitions, see Exhibit 1).

Exhibit 1. Procedural Fluency and Conceptual Understanding

Procedural Fluency – skill in carrying out procedures flexibly, accurately, efficiently

Conceptual Understanding – comprehension of mathematical concepts, operations, and relations; an integrated and functional 

grasp of mathematical ideas

—NRC (2001, pp. 5, 118)

With the recent implementation of more rigorous College and Career Readiness Standards in 

mathematics and wide-scale adoption of the Common Core State Standards for Mathematics 

(CCSSM; NGACBP & CCSSO, 2010), more emphasis is being placed on procedural fluency as  

well as conceptual understanding than ever before.

What characteristics of instruction might promote these proficiencies in algebra? To answer 

this question, we reviewed research on instructional practices that support the development of 

procedural fluency and conceptual understanding in algebra. In particular, we were interested 

in studies that demonstrated the impact on these aspects of algebraic proficiency, beyond rote 

application of procedures. The process we used to conduct this review is described in more 

detail in the Appendix.

Although much of the research in this area does not meet the highest level of rigor described 

by the What Works Clearinghouse,2 the research does provide evidence for best practice. Our 

synthesis of the research indicates that (a) a need exists to reconsider traditional approaches 

to algebra instruction, (b) instruction that provides the opportunity to make sense of algebraic 

symbols and procedures promotes procedural fluency and conceptual understanding, and (c) 

implementing instruction focused on sense making throughout an entire course supports, not 

inhibits, understanding and fluency. These findings have implications for instructional design, 

curricular materials, teacher evaluation, and professional development and are described in the 

Implications section of this brief.

2 The What Works Clearinghouse was created in 2002 by the Institute of Education Sciences to be a source of information 
regarding what works in education. See http://ies.ed.gov/ncee/wwc/DocumentSum.aspx?sid=19 for the standards used 
to evaluate studies.



|   3Instructional Practices Research Brief

Synthesis of the Literature

Reconsidering Traditional Approaches  
to Algebra Instruction
Mathematics instruction in the United States looks very similar: students review previously learned 

content, the teacher demonstrates new material, and students practice. Often, as demonstrated 

by the Trends in International Mathematics and Science Study (TIMSS) video studies, the focus of 

these activities is the application of mathematical procedures (Hiebert et al., 2003; Stigler & 

Hiebert, 2004). Now, with the introduction of new standards for learning, such as those outlined in 

the CCSSM (NGACBP & CCSSO, 2010) and the National Council of Teachers of Mathematics 

standards documents (2000, 2006), students are expected not only to develop skill in applying 

mathematical procedures but also to develop fluency in working with those procedures and develop  

an understanding of the underlying mathematics.

This shift in focus represents a major change, 

particularly for algebra education. For decades, the 

heart of algebra education has been learning to 

manipulate algebraic symbols to solve equations. 

Now, students are expected to know and be able  

to do more than solve equations. They are expected  

to demonstrate fluency in working with algebraic procedures, understand the associated mathematical  

concepts behind these procedures, and be able to articulate the connections between and among 

them (Exhibit 2). This presents a challenge for algebra teachers, who must design instruction that 

promotes not only skill development but also procedural fluency and conceptual understanding.

Exhibit 2. New Standards for Student Learning

Not only should students be able to solve an equation such as 3x + 5 = 20 for x by performing one or more steps, but also 

they should be able to articulate the mathematical principles (e.g., order of operations, properties of equality) that support 

the procedure they used and critique a different approach for solving that same equation. In addition, they should understand 

that the solution they find represents the value for x in the function f(x) = 3x + 5 when f(x) is 21. Not only should they be able 

to graph the function f(x) = 3x + 5 but also they should (a) understand why it would look like a line, (b) be able to identify the 

solution to the equation they solved on that line, and (c) know what kind of real-world relationship such a function would model. 

These are all features of procedural fluency and conceptual understanding. 

Research on mathematics teaching suggests that different features of instruction promote the 

development of skills and understanding. Instruction that is fast paced, characterized by teacher 

For decades, the heart of algebra education 
has been learning to manipulate algebraic 
symbols to solve equations. Now, students 
are expected to know and be able to do 
more than solve equations.
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modeling of how to solve problems followed by student practice, and focused solely on getting the 

correct answer (as opposed to the reasoning behind the answer) promotes the development of 

mathematical skill, which is only one component of procedural fluency. It does not include an 

ability to use those skills flexibly and efficiently, which are both components of procedural fluency. In 

contrast, instruction that (a) explicitly and publically attends to mathematics concepts (i.e., involves 

students in discussions/explorations that target the meaning behind mathematics procedures, 

mathematical connections, and the big ideas of mathematics) and (b) provides opportunities for 

students to struggle with the mathematics (i.e., expend energy to make sense of and reason 

about mathematics) promotes conceptual understanding. Instruction that promotes conceptual 

understanding also promotes procedural fluency (Hiebert & Grows, 2007).

These findings suggest that the typical approach  

to algebra instruction (and mathematics instruction, 

more generally) may not support the development of 

the procedural fluency and conceptual understanding 

demanded by new standards for student learning. 

Instead of focusing solely on skill in manipulating 

algebraic symbols, instructional activities should 

provide students with opportunities to struggle with algebraic concepts and make connections 

between algebraic procedures and concepts. The challenge is finding ways to do that. 

Making Sense: Promoting Conceptual 
Understanding and Procedural Fluency  
in Algebra
A review of recent research that explicitly investigates the impact of specific instructional strategies 

on procedural fluency and conceptual understanding in algebra identified several strategies 

that support aspects of both. Common to these practices is an emphasis on sense making. By 

challenging students to make sense of algebraic symbols and procedures, these strategies combine 

features of instruction that promote skills with those that promote conceptual understanding and 

procedural fluency. 

Promoting Meaning for Algebraic Symbols

Too often, algebra students are asked to work with algebraic expressions and equations without 

considering what they might represent. Research indicates that when instruction attaches meaning 

to the associated algebraic symbols, students develop procedural fluency as well as conceptual 

understanding. This can be done in a number of ways, including through the use of technology.

Instead of focusing solely on skill in 
manipulating algebraic symbols, instructional 
activities should provide students with 
opportunities to struggle with algebraic 
concepts and make connections between 
algebraic procedures and concepts. 
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One approach to assigning meaning to algebraic symbols involves algebraic expressions (e.g., 3x 

+ 4). Students are given a list of algebraic expressions and asked to predict whether or not any 

of the algebraic expressions are equivalent. Some expressions are equivalent but look different 

(e.g., 2(x + y) and 2x + 2y) and others look similar but are not equivalent (e.g., 2(x – 3) and 2x 

– 3). After they make their predictions, students are asked to test them by substituting several 

numerical values for the variables in those expressions. This step emphasizes the meaning of 

variable. Once they have their results, students are then asked to provide a justification for what 

they found. Students who experienced this form of instruction on algebraic expressions produced 

higher pretest-posttest gains on measures of symbolic manipulation and understanding of variable 

than did students who received conventional, skills-based instruction (Graham & Thomas, 2000). 

Another approach for promoting meaning involves mathematical modeling. Students are asked 

to reason about and work with algebraic equations as a means to model real-world phenomena. 

This strategy was used with middle-grades students as part of a technology-enhanced unit on 

proportion and rate,3 both of which are important topics for the study of algebra. As students 

moved through the unit on proportion and rate, they used computer-based software to explore and 

manipulate graphical and symbolic representations of motion. Throughout, they made predictions, 

compared their predictions with what happened in the real world, and explained differences 

between their predictions and what they experienced. Students who learned about rate and 

proportion in this environment performed better on items that assessed skills, the ability to  

move flexibly among different representations, and conceptual understanding than those  

who were taught with traditional methods (Roschelle et al., 2007).

Research has also supported the use of prediction and justification within a modeling approach 

during instruction on linear and exponential relationships (Kasmer & Kim, 2011). In this study, 

both treatment and control students learned these concepts through instruction that emphasized 

mathematical modeling and exploration. Instruction for the treatment group, however, was enhanced 

with additional prediction questions. For example, prior to investigating the solution to a linear 

system, students were asked, “Do you predict two companies will ever charge the same amount?” 

(p. 24). Once students made their predictions, they were asked to justify their predictions to others. 

Students then completed the mathematical exploration, and teachers revisited their predictions at 

the end of the lesson. Students who experienced the prediction-enhanced instruction demonstrated 

stronger conceptual understanding and ability to use algebraic symbols to represent relationships 

than did students in the control group. A later study (Kasmer & Kim, 2012) found that by making 

predictions, students were able to connect prior knowledge to new mathematics, ultimately 

supporting them in making sense of and reasoning about algebraic symbols. 

3 The curriculum was developed by the Dana Center at the University of Texas at Austin and the University of 
Massachusetts, Dartmouth and supplemented with the Sim Calc Mathworlds software.
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Reasoning About Algebraic Procedures

As students work with algebraic equations, they are expected to perform symbolic manipulations 

that become increasingly complex, such as solving the equation 3(x – 1) + 2(x + 2) = 5(x – 1) + 3(x 

+ 2) for x. Often, it can seem as if performance on such problems requires merely the memorization 

of seemingly disconnected rules because students typically learn solution methods one at a time. 

Research has indicated that asking students to compare and reason about different solutions 

supports both procedural fluency and aspects of conceptual understanding. 

In particular, research has indicated that students who received instruction requiring them to  

compare and reason about different, correctly worked-out solutions for the same algebraic equation 

demonstrated greater gains on measures of procedural fluency and aspects of conceptual 

understanding than students who received instruction that required them to reason about one 

solution at a time (Rittle-Johnson & Star, 2007). Further, this approach to instruction was found to  

result in greater gains than instruction that required students to compare and reason about the  

same solution method applied to different, but structurally equivalent, problems (i.e., 5(x – 1) = 10  

and 6(x + 2) = 12) and the same solution method applied to different problem types (i.e., 5(x + 1) =  

2(x + 1) + 6 and 5(x + 1) + 2(x + 1) = 14; Rittle-Johnson & Star, 2009).

Asking students to reason about incorrectly worked-out solutions to algebraic equations may 

also support the development of procedural fluency and conceptual understanding. Research 

indicated that students who received instruction that asked them to reason about both correctly 

and incorrectly worked-out solutions to algebraic equations performed as well on measures of 

aspects of procedural fluency and better on measures of aspects of conceptual understanding 

than students who received instruction that asked them to reason only about either correctly  

or incorrectly worked-out solutions to algebraic equations (Booth, Lange, Koedinger, &  

Newton, 2013).
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Whole-Course Instruction Focused on Sense 
Making Supports Fluency and Understanding
Although activities that engage students in making sense of algebraic symbols and procedures 

hold promise for promoting procedural fluency and conceptual understanding, some would argue 

that spending too much time asking students to engage in these activities on a regular basis 

throughout the course will result in lowered levels of procedural fluency. Research on curricula  

that routinely engage students in these activities have indicated that this is not the case.

Perhaps the strongest evidence that whole-course instruction focused on making sense does 

not detract from, and actually supports, procedural fluency can be found in curriculum 

comparison studies. Many of these studies investigated the impact of curricula designed to 

promote instruction aligned with the NCTM (1989, 2000) standards documents. Analyses 

suggested that these standards-based curricula provided students with more opportunities to 

make sense of mathematics than did conventional curricula (Stein, Remillard, & Smith, 2007). 

Syntheses of curricular comparison studies indicated that in mathematics, students taught with 

these curricula performed better on assessments of conceptual understanding but no worse on 

assessments of aspects of procedural fluency (Chappell, 2003; Putnam, 2003; Stein et al., 

2007; Swafford, 2003), including standardized tests (e.g., Post et al., 2008; Harwell et al., 

2007), than students taught with conventional curricula.

Research focused specifically on algebra yielded 

similar results. A recent review of research on 

algebra instruction (Rakes, Valentine, McGatha,  

& Ronau, 2010) found that conceptual approaches  

to algebra instruction demonstrated a greater positive 

impact (larger effects) on student achievement than procedural approaches. These findings were 

consistent with those of curricular studies focusing on algebra-specific student outcomes in 

both middle-grades mathematics (which includes instruction on algebra topics) and high school 

Algebra I.

Conceptual approaches to algebra 
instruction demonstrated a greater 
positive impact (larger effects) on student 
achievement than procedural approaches. 
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Middle Grades: Impact on Understanding  
and Fluency With Algebraic Concepts

Two studies specifically examined the impact of using whole-course, standards-based curricula 

on the algebraic skills and understandings covered in middle-grades mathematics. These studies 

focused on the impact of Middle-Grades MATH Thematics (MT; Billstein & Williamson, 1998) and 

the Connected Mathematics Project (CMP; Lappan, Fey, Fitzgerald, Friel, & Phillips, 1997). Both 

curricula emphasize, among other things, sense making through reasoning, exploration, and 

application to real-world contexts (Billstein & Williamson, 1998; Ridgway, Zawojewksi, Hoover, 

& Lambdin, 2003). One study found that MT students outperformed students in comparison 

classrooms that implemented conventional curricula on measures of conceptual understanding 

and no differently on measures of aspects of procedural fluency in algebra (Billstein & Williamson, 

2003) The other study found that MT and CMP students outperformed students in comparison 

classrooms on the algebra-specific items on the state-mandated mathematics exam, which 

assessed both skills and concepts (Reys, Reys, Lappan, Holliday, & Wasman, 2003).

High School: Impact on Understanding  
and Fluency in Algebra I

At the high school level, two studies investigated the impact of Cognitive Tutor Algebra I (CTAI),4 a 

standards-based curriculum that emphasizes making sense through modeling and connections 

between and among mathematical representations and provides opportunities for individualized 

instruction on algebra-specific student outcomes. One study (Morgan & Ritter, 2002) found that  

students who received instruction through CTAI outperformed students who received the conventional  

curriculum on the algebra end-of-course exam.5 The second study (Pane, Griffin, McCaffrey, & 

Karam, 2013) matched schools on a variety of school-level variables and then randomly assigned 

them to CTAI. In that study, students in the CTAI program outperformed students who received the 

traditional curriculum on the algebra proficiency exam.6 The developers of the exams used in both 

studies claimed to have included items to measure aspects of procedural fluency and conceptual 

understanding, but neither reported separate outcomes for each.

Two studies of high school curricula that reported an impact on separate outcomes for conceptual 

understanding and procedural fluency in algebra involve the Core-Plus Mathematics Project 

4 Developed by Carnegie Learning.
5 Developed by the Educational Testing Service.
6 Part of the Acuity Series developed by CTB/McGraw Hill.
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(CPMP; Coxford et al., 1999), a standards-based curriculum that promotes sense making 

through mathematical explorations in real-world and mathematical contexts, often with the use 

of technology. One study (Schoen & Hirsch, 2003) found that students who completed Courses 

1 and 2 (covering most of the content in Algebra I) demonstrated stronger performance on 

measures of understanding and ability to operate with algebra in context and did no worse on 

measures of algebraic procedures than students who completed a traditional Algebra I course 

and were matched on scores from a pretest. The second study (Huntley, Rasmussen, Villarubi, 

Sangtong, & Fey, 2000) compared the performance of students who completed Courses 1, 2, 

and 3 (covering all the content in Algebra I), with the performance of Algebra II students who 

were matched on scores from a pretest. CPMP students outperformed Algebra II students on 

measures of conceptual understanding and performed better (but not significantly better) on 

procedural items that allowed them to use a calculator (evaluating algebraic expressions, solving 

linear equations, etc.). However, they scored worse on items that measured pencil-and-paper 

symbolic manipulations without the use of a calculator. The authors suggested that “it may be 

that…curricula that commonly embed algebraic ideas in applied problem-solving explorations 

need to do a better job of helping students to abstract and articulate the underlying mathematical 

ideas” (p. 355) in support of pure skill development. The authors of the curriculum made this 

improvement in a later edition.

Taken together, research on the impact of whole-

course conceptual approaches to instruction on 

algebra-specific student outcomes indicated that 

such approaches were more effective at developing 

conceptual understanding and, at worst, equally 

effective (and in some cases more effective) at 

developing procedural fluency than conventional 

approaches to teaching algebra. However, to  

ensure skill development on traditional paper-and-

pencil symbolic manipulations, it might be important to give explicit attention to these skills  

within instruction.

Research on the impact of whole-course 
conceptual approaches to instruction on 
algebra-specific student outcomes indicated 
that such approaches were more effective 
at developing conceptual understanding 
and, at worst, equally effective (and in 
some cases more effective) at developing 
procedural fluency than conventional 
approaches to teaching algebra. 
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Implications for Program 
Developers and Administrators
The research reviewed here has implications for (a) using instruction that promotes procedural 

fluency and conceptual understanding in algebra and (b) supporting the implementation of that 

instruction. These are outlined in Exhibit 3. Note that each of the bullets on the right-hand side is 

an implication of each of the findings listed in the left-hand side.

Exhibit 3. Key Findings and Implications for Program Developers and Administrators

Implementation of instructional practices that promote procedural fluency and conceptual 

understanding will change the nature of algebra education in the United States and, potentially, 

have an impact on Algebra I success rates such that students who complete the course are 

confident and armed with strong skills and understandings of algebraic content.

 � Providing professional development 

to teachers that supports teachers 

in implementing these instructional 

practices

 � Using observation protocols that 

target these aspects of instruction and 

developing ways to provide feedback 

on the observations guided by those 

protocols to teachers

 � Providing teachers with curricular 

materials that emphasize these 

instructional practices

 � Developing pacing guides that support 

the use of these instructional practices

 � Providing teachers with student 

assessments that measure both 

procedural fluency and conceptual 

understanding

Program developers and administrators 
should consider…

 � Engages students in activities that 

emphasize the meaning of algebraic 

symbols

 � Gives students opportunities to reason 

about algebraic procedures by comparing 

solution methods

 � Challenges students to struggle with 

algebraic concepts through prediction, 

investigation, and justification

 � May use technology to support 

mathematical exploration, particularly of 

algebraic functions and modeling

 � Engages students in modeling activities

Algebra instruction that promotes procedural 
fluency and conceptual understanding…
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Appendix
To conduct the literature review, we followed the same process used in other briefs in this series by 

including descriptive, theoretical, and explanatory research on the design of curricular frameworks 

that are vertically aligned to support student preparation for Algebra I that spans a wide range of 

methodological approaches (e.g., high-quality experiments, quasi-experimental studies, descriptive 

studies, case studies), sources (e.g., educational journals, research organizations, national content-

specific organizations), and disciplines. In addition to conducting a rigorous search of existing 

literature, we contacted experts in the field who are conducting research on these educational 

programs to identify research findings not yet published and included them in this review. We used 

a four-part, hierarchical selection process as the basis for including the studies summarized in this 

brief: subject (algebra vs. mathematics vs. other subjects), grade level (Grades 6–9 vs. Grades 1–5), 

year of publication (since 2005 vs. before 2005), and level of evidence (strong vs. moderate vs. 

low, based on standards informed by the What Works Clearinghouse; see http://ies.ed.gov/ncee/

wwc/DocumentSum.aspx?sid=19). We prioritized studies that focused on algebra or mathematics 

in Grades 6–9, that were published since 2005, and that had strong or moderate evidence. A fully 

exhaustive review of the literature is beyond the scope of this brief. Instead, we focus on research 

studies that are most relevant for the design instructional practices that promote procedural fluency 

and conceptual understanding as strategies for promoting student success in Algebra I.
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