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A Additional details on methods
A.1 Details on network components
Algorithms A.1-A.9 show the details of each component. In Algorithm A.10, we show how the different components
are connected together for training the neural network in AlphaTensor. In Algorithm A.11, we show how AlphaTensor’s
neural network is used at inference time.

A.1.1 Torso

Algorithm A.1 Basic attention function.
def Attention

(
x ∈ RNx×c1 ,y ∈ RNy×c2 , causal_mask = False, Nheads = 16, d = 32, w = 4

)
1: xnorm = LayerNorm (x)
2: ynorm = LayerNorm (y)
3: qh

i = Linear (xnorm, d) qh
i ∈ Rd, h ∈ {1, . . . , Nheads}, i ∈ {1, . . . , Nx}

4: kh
j = Linear (ynorm, d) kh

j ∈ Rd, h ∈ {1, . . . , Nheads}, j ∈ {1, . . . , Ny}
5: vh

j = Linear (ynorm, d) vh
j ∈ Rd, h ∈ {1, . . . , Nheads}, j ∈ {1, . . . , Ny}

6: ahij = softmaxk

(
1√
d
qh
i
⊤
kh
j

)
7: if causal_mask then
8: oh

i =
∑

j>i a
h
ijv

h
j oh

i ∈ Rd, h ∈ {1, . . . , Nheads}, i ∈ {1, . . . , Nx}
9: else

10: oh
i =

∑
j a

h
ijv

h
j oh

i ∈ Rd, h ∈ {1, . . . , Nheads}, i ∈ {1, . . . , Nx}
11: x = x+ Linear

(
concath(o

h
i ), c1

)
# Dense block:

12: x = x+ Linear (GeLU (Linear (LayerNorm (x) , c1w)) , c1)
13: return x

Algorithm A.2 Attentive modes.
def AttentiveModes

(
x1 ∈ RS×S×c,x2 ∈ RS×S×c,x3 ∈ RS×S×c

)
1: g = [x1,x2,x3]
2: for [m1,m2] = {[0, 1] , [2, 0] , [1, 2]} do
3: a = Concatenate

([
g [m1] , g [m2]

⊤
]
, axis = 1

)
a ∈ RS×2S×c

# Parallel loop
4: for i = {0, . . . , S − 1} do
5: c = Attention (a[i, :, :],a[i, :, :]) c ∈ R2S×c

6: g [m1] [i, :, :] = c [: S, :]

7: g [m2] [i, :, :] = c [S :, :]
⊤

8: return g
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Algorithm A.3 Torso.
def Torso

(
x ∈ RT×S×S×S , s ∈ Rs, c ∈ N

)
1: x1 = Reshape (Transpose (x, (1, 2, 3, 0)) , (S × S × ST )) x1 ∈ RS×S×ST

2: x2 = Reshape (Transpose (x, (3, 1, 2, 0)) , (S × S × ST )) x2 ∈ RS×S×ST

3: x3 = Reshape (Transpose (x, (2, 3, 1, 0)) , (S × S × ST )) x3 ∈ RS×S×ST

4: g = [x1,x2,x3]
5: for i = {0, . . . , 2} do
6: p = Reshape

(
Linear

(
s, S2

)
, (S, S, 1)

)
p ∈ RS×S×1

7: g [i] = Concatenate ([g [i] ,p] ,−1) g [i] ∈ RS×S×ST+1

8: g [i] = Linear (g [i] , c) g [i] ∈ RS×S×c

9: [x1,x2,x3] = g
10: for i = {1, . . . , 8} do
11: [x1,x2,x3] = AttentiveModes (x1,x2,x3) x1,x2,x3 ∈ RS×S×c

12: e = Reshape
(
Stack ([x1,x2,x3] , axis = 1) ,

(
3S2, c

))
e ∈ R3S2×c

13: return e

A.1.2 Policy head

Algorithm A.4 Function used in the policy head to map from the learned embedding obtained from the torso, e, and
the piece of action produced so far (or ground truth if training), a, to the logits of the remainder of the action.
def predict_action_logits

(
a ∈ RNsteps×Nlogits , e ∈ Rm×c, Nfeatures = 64, Nheads = 32, Nlayers = 2

)
1: x = Linear (a, Nfeatures ×Nheads) x ∈ RNsteps×NfeaturesNheads

2: x = x+ LearnablePositionEncoding (x)
3: for i ∈ {1 . . . Nlayers} do
4: x = LayerNorm(x)

# Causal self attention:
5: c = Attention(x,x, Nheads, causal_mask = True) c ∈ RNsteps×NfeaturesNheads

6: if is training then
7: c = Dropout(c)

8: x = x+ c
9: x = LayerNorm(x)

# Cross attention:
10: c = Attention(x, e, Nheads, causal_mask = False)
11: if is training then
12: c = Dropout(c)

13: x = x+ c

14: o = Linear(ReLU(x), Nlogits) o ∈ RNsteps×Nlogits

15: return o,x

Algorithm A.5 Policy head behaviour at training time. It returns the logits (and the embeddings of the first step).
def PolicyHead_training

(
e ∈ Rm×c, g ∈ {1, . . . , Nlogits}Nsteps

)
# Training by teacher-forcing:
1: o, z = predict_action_logits(onehot(shifted(g), Nlogits), e)

# Returns only z1 because it is the only one not conditioned on ground truth.
2: return o, z1
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Algorithm A.6 Policy head behaviour at inference time. It returns the sampled action, and its estimated probability
(and the embeddings of the first step).
def PolicyHead_inference (e ∈ Rm×c, Nsamples = 32, Nsteps, Nlogits)

1: asi = 0 s ∈ {1, . . . , Nsamples}, i ∈ {1, . . . , Nsteps}
2: ps = 1 s ∈ {1, . . . , Nsamples}
3: for s ∈ {1, . . . , Nsamples} do
4: for i ∈ {1, . . . , Nsteps} do
5: os, zs = predict_action_logits(onehot(as, Nlogits), e) os ∈ RNsteps×Nlogits , zs ∈ RNsteps×2048

6: asi , pi = sample_from_logits(os
i )

7: ps = ps ⊙ pi

# Returns only z1 because it is the only one not conditioned on any sampled action.
8: return a,p, z1 a ∈ {1, . . . , Nlogits}Nsamples×Nsteps ,p ∈ [0, 1]

Nsamples , z1 ∈ R2048

A.1.3 Value head

Algorithm A.7 Value head network.
def ValueHead (x ∈ Rc, n = 8)

1: for i ∈ {1, 2, 3} do
2: x = ReLU (Linear (x, 512))

3: q = Linear (x, n) q ∈ Rn

4: return q

Algorithm A.8 Quantile loss used in the value head. q are the predicted values of the quantiles at equally spaced
intervals, g is the ground truth.
def Quantile_loss (q ∈ Rn, g ∈ Rn, δ = 1)

# Getting the n quantiles, τ .
1: τ = ([0 . . . n] + 0.5) /n τ ∈ [0, 1]

n

2: d = g − q d ∈ Rn

3: h = Huber_loss (d, δ) h ∈ Rn

4: k = abs (τ − float (d < 0)) k ∈ Rn

5: return mean (k ⊙ h)

Algorithm A.9 Obtaining the predicted value at inference.
def ValueRiskManagement (q ∈ Rn, uq = 0.75)

1: j = ⌈uqn⌉ j ∈ [1, . . . , n]
2: return mean (q [j] , q [j + 1] , . . . q [n])
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A.1.4 Training and inference with AlphaTensor

Algorithm A.10 Training AlphaTensor’s neural network.
def AlphaTensor_Net_training

(
x ∈ RT×S×S×S , s ∈ Rs, gaction ∈ {1, . . . , Nlogits}Nsteps , gvalue ∈ Rn, c ∈ N

)
1: e = Torso (x, s, c) e ∈ R3S2×c

2: o, z1 = PolicyHead_training (e, gaction, Nlogits) o ∈ RNsteps×Nlogits , z1 ∈ R2048

3: lpolicy = Sum(CrossEntropy(o, gaction))
4: q = ValueHead (z1) q, τ ∈ RNquantile_samples

5: lvalue = Quantile_loss (q, gvalue)
6: return lpolicy, lvalue

Algorithm A.11 Using AlphaTensor’s neural network for inference.
def AlphaTensor_Net_inference

(
x ∈ RT×S×S×S , s ∈ Rs, c ∈ N, Nsamples ∈ N, Nsteps ∈ N, Nlogits ∈ N

)
1: e = Torso (x, s, c) e ∈ R3S2×c

2: a,p, z1 = PolicyHead_inference (e, Nsamples, Nsteps, Nlogits) a ∈ {1, . . . , Nlogits}Nsamples×Nsteps ,p ∈ [0, 1]
Nsamples ,

3: z1 ∈ R2048

4: q = ValueHead (z1) q ∈ Rn

5: q = ValueRiskManagement (q) q ∈ R
6: return a,p, q

A.2 Algorithm for generating synthetic demonstrations

Algorithm A.12: Generation of synthetic demonstrations
Input: Tensor size S, maximum rank Rlimit, factor entry probability distribution pentry, desired number of demonstra-

tions N , random seed.
Output: N pairs (T, {u(r),v(r),w(r)}Rr=1) such that in each T =

∑R
r=1 u

(r) ⊗ v(r) ⊗w(r).
1: for n = 1 to N do
2: R ∼ Uniform({1, 2, . . . , Rlimit}) ▷ Sample the rank of the synthetic demonstration.
3: for r = 1 to R do
4: repeat
5: for s = 1 to S do
6: u

(r)
s ∼ pentry

7: v
(r)
s ∼ pentry

8: w
(r)
s ∼ pentry

9: until u(r) ⊗ v(r) ⊗w(r) ̸= 0

10: T ←
∑R

r=1 u
(r) ⊗ v(r) ⊗w(r) ▷ Reconstruct tensor corresponding to the random factors.

11: yield (T, {u(r),v(r),w(r)}Rr=1)

Algorithm A.12 shows the procedure we used for generating the synthetic demonstrations. The N data points are
sampled i.i.d., corresponding to the outer loop on Line 1. When generating demonstrations in a ring E , factor entries
are sampled from the set E and the arithmetic (multiplications and additions in Line 10) is performed in this ring, e.g.,
in Z2 this corresponds to applying an additional modulo operation.

Hyper-parameters. In all experiments we used N = 5,000,000 synthetic demonstrations. We use the factor entry
probability distribution pentry(−2) = 0.001, pentry(−1) = 0.099, pentry(0) = 0.8, pentry(1) = 0.099, pentry(2) = 0.001
for standard arithmetic, and pentry(0) = pentry(1) = 0.5 for modular arithmetic in Z2.
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A.3 Algorithm for generating changes of basis

Algorithm A.13: Generation of basis change matrices
Input: Tensor size S, matrix entry distribution pcob-entry, desired number of basis changes Ncob, random seed.
Output: Ncob i.i.d. invertible unimodular S × S matrices.

1: for n = 1 to Ncob do
2: P← zero S × S matrix ▷ Will be upper-triangular.
3: L← zero S × S matrix ▷ Will be lower-triangular.
4: for i = 1 to S do
5: Pii ∼ Uniform({−1,+1})
6: Lii ∼ Uniform({−1,+1})
7: for i = 1 to S do
8: for j = 1 to i− 1 do
9: Lij ∼ pcob-entry

10: for j = i+ 1 to S do
11: Pij ∼ pcob-entry

12: yield PL

Algorithm A.13 shows the procedure for generating basis change matrices. We chose to generate unimodular change
of bases for numerical stability of the obtained factorizations after converting them back into the canonical basis. The
matrices generated by Algorithm A.13 are unimodular because the determinant of a triangular matrix equals the product
of its diagonal elements (−1 or +1 in this case), and so det(PL) = detPdetL ∈ {−1,+1} by construction. In our
experiments we used pcob-entry(0) = 0.985 and pcob-entry(−1) = pcob-entry(1) = 0.0075.

In acting, an actor is given a basis in which it should try to decompose the tensor (see Figure 2 in the main paper).
With probability pcanonical the basis given is the original (canonical) basis (i.e., no basis change is applied), and with
probability 1 − pcanonical one of the Ncob generated basis changes is chosen uniformly at random. In our experiments
Ncob = 100,000 and pcanonical =

250
100,000 ≈ 0.0017.

A.4 Converting modular arithmetic algorithms into general ones
As for the targets T4 and T5 AlphaTensor discovered algorithms of lower rank in modular arithmetic Z2 than in stan-
dard arithmetic, we attempted to convert these modular arithmetic algorithms into general ones using a SAT solver.
Specifically, given a factorization with entries F = {0, 1} valid in the ring E = Z2, we set up the problem of finding
a factorization with entries F = {−1, 0, 1} valid in the standard arithmetic E = Z such that it has the same sparsity
pattern but each 1 entry in the Z2 factorization is turned into either a −1 or +1 entry in the Z factorization. This fol-
lows the approach of [1]. Unfortunately, the SAT solver was able to prove that it is not possible to convert our rank-47
algorithms for T4 nor the rank-96 algorithms for T5 from Z2 into standard arithmetic in this way. This of course does
not preclude that other algorithms of this rank may exist for these targets.

B Symmetries in matrix multiplication algorithms
In Section B.1, we define the equivalence relation between matrix multiplication algorithms. Section B.2 details the
algorithm used for determining whether two algorithms are equivalent. Section B.3 provides details on the different
non-equivalent factorizations found using AlphaTensor.

Notation. Recall that ⊗ defines the tensor product operation. That is, if T1 and T2 are two tensors with n and m
dimensions, respectively, then T1 ⊗T2 is the tensor with n+m dimensions where

(T1 ⊗T2)[i1, i2, . . . , in, j1, . . . , jm] = T1[i1, . . . , in]T2[j1, . . . , jm].
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A slight variation of the tensor product is the Kronecker product ⊗K , which we define between two tensors with the
same number of dimensions: if T1 and T2 have sizes [s1, . . . , sn] and [t1, . . . , tn], respectively,

(T1 ⊗K T2)[t1i1 + j1, . . . , tnin + jn] = T1[i1, . . . , in]T2[j1, . . . , jn].

For convenience, in Sections B.1-B.3 we will see factor vectors of Tn as n× n matrices, rather than vectors of length
n2, and hence denote them with capital letters U,V,W. If {(Up,Vp,Wp)}Rp=1 and {(U′

q,V
′
q,W

′
q)}Rq=1 are factor-

izations of T then the following provides a rank R2 factorization of T⊗2 = T ⊗K T:

{(Up ⊗K U′
q,Vp ⊗K V′

q,Wp ⊗K W′
q)}Rp,q=1. (1)

Finally, we denote as Sn the group of permutations of n elements.

B.1 Equivalence of factorizations
Since the matrix multiplication tensors have a product structure (that is, T4 = T⊗2

2 = T2⊗K T2), one can obtain using
Eq. 1 a rank 49 factorization of T4 from a rank 7 factorization (Strassen) of T2. Such product-structure factorizations
are the only known schemes to decompose T4 into 49 factors, and are referred to in the main paper as Strassen2.1

Our goal here is to show that the factorizations obtained using AlphaTensor are not equivalent to the known fac-
torization of product structure, and that these factorizations are pairwise nonequivalent. To do so, we first define the
notion of equivalence.

When seen as a trilinear map, the (transposed) matrix multiplication operation is (X1,X2,X3)→ Trace(X1X2X3).
Using the invariance of trace to cyclic permutations, Trace(X1X2X3) = Trace(X2X3X1) = Trace(X3X1X2). Since
transposition does not change the trace either, we also have

Trace(X1X2X3) = Trace(XT
3 X

T
2 X

T
1 ) = Trace(XT

2 X
T
1 X

T
3 ) = Trace(XT

1 X
T
3 X

T
2 ).

Similarly, for any invertible matrices A,B,C,

Trace(X1X2X3) = Trace((AX1B
−1)(BX2C

−1)(CX3A
−1)).

These invariances imply that, given a factorization {(Ur,Vr,Wr)}Rr=1 of Tn, we can generate many equivalent fac-
torizations of Tn. Such symmetries have been heavily studied for n = 2 and n = 3 [3, 4, 5, 6, 7, 1]. We use the group
of symmetries introduced in [3], which proved that Strassen’s algorithm for multiplying 2× 2 matrices is unique up to
the actions of this symmetry group.

A permutation π ∈ S3 acts on a rank one tensor U⊗V⊗W by permuting the factors U,V,W with an additional
transposition when the signature of π is −1. For example, for the cyclic permutation (1, 2, 3), we have (1, 2, 3) · (U⊗
V ⊗W) = V ⊗W ⊗U, and for the transposition (1, 2), we have (1, 2) · (U ⊗V ⊗W) = (VT ⊗UT ⊗WT ).
Given three invertible matrices (A,B,C), their action on a rank one tensor is given by (A,B,C) · (U⊗V⊗W) =
(AUB−1 ⊗ BVC−1 ⊗ CWA−1). The two actions are combined as follows: given (A,B,C, π), the permutation
π is applied followed by the (A,B,C) action. For example, if π = (1, 2, 3), then (A,B,C, π) · (U ⊗V ⊗W) =
(AVB−1 ⊗BWC−1 ⊗CUA−1).

Two factorizations {(Ur,Vr,Wr)}Rr=1 and {(U′
r,V

′
r,W

′
r)}Rr=1 are said to be equivalent if there exists (A,B,C, π)

that maps the two sets of factors through the action described above: that is, there exists a permutation σ ∈ SR such
that for all r ∈ [R], we have

Ur ⊗Vr ⊗Wr = (A,B,C, π) · (U′
σ(r) ⊗V′

σ(r) ⊗W′
σ(r)).

We denote the equivalence as follows: {(Ur ⊗Vr ⊗Wr)}Rr=1
A,B,C,π∼ {(U′

r ⊗V′
r ⊗W′

r)}Rr=1. For more details on
symmetries of factorizations, see e.g., [5].

Using this notion of equivalence, [3] showed that all rank 7 factorizations of T2 are equivalent. We show that this
is not the case for T4, and we exhibit thousands of nonequivalent rank 49 factorizations of T4.

Theorem B.1. There exist at least 14,235 non-equivalent rank-49 decompositions of the matrix multiplication tensor
T4. These decompositions are not of product structure, i.e., they are not equivalent to Strassen2.

The procedure for certifying non-equivalence of factorizations is provided in Section B.2.
1Note that Winograd’s algorithm [2] involves 48 multiplications, but it only applies to commutative rings and does not give bounds on the tensor

rank. Winograd’s algorithm cannot be applied recursively on larger matrices.
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B.2 Algorithm for certifying nonequivalence
We now explain the procedure we used to certify the nonequivalence of factorizations, and prove the result in Theo-
rem B.1. To determine whether two factorizations are equivalent, we define invariants under the transformation intro-
duced in Section B.1. The first invariant we use is the matrix rank invariant, given by

R({Ur,Vr,Wr}Rr=1) = {{rank(Ur), rank(Vr), rank(Wr)}}Rr=1 , (2)

where {·} denotes an unordered tuple. R clearly satisfies the invariance under transformations in Section B.1. Using this
invariant, we obtained 38 distinct factorizations with different invariants R (amongst more than 50,000 factorizations
found by AlphaTensor). This invariant has been used extensively in prior work to check for equivalent factorizations
(see e.g., [5]).

To further distinguish between non-equivalent factorizations, we developed a new invariant. This invariant is only
applicable to a specific subset of factorizations, but on this subset it is much more granular than R. More specifically,
the new invariant is applicable to those factorizations that have exactly one factor such that the product of matrices is
identity; i.e. without loss of generality U1V1W1 = I . (Note that this property is itself invariant under the transfor-
mations in Section B.1.) This property was satisfied by many but not all factorizations found by AlphaTensor. For
factorizations satisfying this property we then define the invariant as follows:

K({Ur,Vr,Wr}Rr=1) = {CharPoly (Φ(Ur ⊗K Vr ⊗K Wr))}Rr=1 ,

where Φ(Ur⊗Vr⊗Wr) = (I ⊗K W−1
1 V−1

1 ⊗K W−1
1 )(Ur⊗K Vr⊗K Wr)(V1W1⊗K W1⊗ I), and CharPoly

denotes the characteristic polynomial CharPoly(A)(x) = det(xI −A). Intuitively, Φ is a canonicalization operator
that applies the (A,B,C) = (I,W−1

1 V−1
1 ,W−1

1 ) action to each rank one tensor in the factorization, so that the first
factor becomes Ũ1 ⊗ Ṽ1 ⊗ W̃1 := Φ(U1 ⊗ V1 ⊗W1) = I ⊗ I ⊗ I . The following theorem states that K is an
invariant:

Theorem B.2. If {Ur,Vr,Wr}Rr=1 and {U′
r,V

′
r,W

′
r}Rr=1 are equivalent and U1V1W1 = U′

1V
′
1W

′
1 = I , then

K
(
{Ur,Vr,Wr}Rr=1

)
= K

(
{U′

r,V
′
r,W

′
r}Rr=1

)
.

See Section I.1 for the proof. Amongst all the factorizations obtained from AlphaTensor where this invariant is ap-
plicable, there are 14,207 factorizations that have a different value of K. Together with 28 nonequivalent factorizations
where this invariant is not applicable, these form a set of 14,235 non-equivalent rank-49 factorizations of T4. See the
Python notebook in the supplementary material for the actual computation.

We further check that the factorizations obtained using AlphaTensor are not of product structure. To do so, we
rely on the following result, which shows that it is sufficient to check that {(Ur,Vr,Wr)}49r=1 is nonequivalent to one
factorization of product form to infer that it is nonequivalent to all factorizations of product form.

Theorem B.3. Let {(Ur,Vr,Wr)}49r=1 be a rank 49 factorization of T4. Let {(S1
p,S

2
p,S

3
p)}7p=1 be a rank 7 factor-

ization of T2 (i.e., a Strassen scheme for multiplying 2× 2 matrices). The following two statements are equivalent:

1. {(Ur,Vr,Wr)}49r=1 is equivalent to a factorization of product form {(Xp⊗KX′
q,Yp⊗KY′

q,Zp⊗KZ′
q)}7p,q=1.

2. There exist permutations π, π′ ∈ S3 such that {(Ur,Vr,Wr)}49r=1 is equivalent to{(
Tπ(S

π(1)
p )⊗K Tπ′(Sπ′(1)

q ), Tπ(S
π(2)
p )⊗K Tπ′(Sπ′(2)

q ), Tπ(S
π(3)
p )⊗K Tπ′(Sπ′(3)

q )
)}7

p,q=1
.

where Tπ is the transpose operator when the signature of π is −1, and identity otherwise.

See Section I.2 for the proof.

B.3 Diversity of factorizations
The multitude of nonequivalent factorizations discovered by AlphaTensor demonstrates that this space is richer than
previously thought. Without further manipulations or optimizing for different objectives, the rank-49 factorizations of
T4 discovered by AlphaTensor have the following properties:
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• Entries in {−4,−3,−2,−1, 0, 1, 2}. The reason we were able to discover factorizations with entries outside
of the set F = {−2,−1, 0, 1, 2} that the network can predict is that after converting an F -valued factorization
obtained in a different basis back into the canonical basis, its entries can end up outside of F . The entries are
still integral because we use unimodular basis change matrices.

• Matrix ranks of the factor vectors (when seen as 4×4 matrices) in the factorizations form 38 different types [8,
5, 1, 9]. Represented as a three-variable polynomial, the type of Strassen2 is p(x, y, z) = x4y4z4 +12x2y2z2 +
36xyz (there is 1 factor with all three vectors of matrix rank 4, 12 factors with all three vectors of matrix rank
2, and 36 factors with all three vectors of matrix rank 1), and AlphaTensor also discovers many factorizations of
this type. However, AlphaTensor also discovers factorizations with 37 new types.

• Sparsity. The number of nonzeros in our discovered factorizations ranges from 455 to 636.

• Cyclicity. Around 0.2% of the discovered factorizations are cyclic (closed under permuting (U,V,W) with a
cyclic element of S3); the vast majority are noncyclic.

• Numerical stability. [10] identified two principal quantities that govern the numerical error bounds of matrix
multiplication algorithms: a prefactor Q, and a stability factor E. Lower values correspond to tighter bounds.
For the Strassen2 algorithm Q = 24 and E = 144, while for the discovered factorizations Q ∈ [23, 39] and
E ∈ [136, 1046]. In particular, AlphaTensor discovered an algorithm with Q = 23 and E = 136 without using a
reward function that would optimize for numerical stability. Finally, the growth factor [11] of the factorizations
is in the range from 220.14 to 547.26.

C Structured matrix multiplication
We apply AlphaTensor to more general operations beyond matrix multiplication. Just like standard matrix multipli-
cation, any bilinear operation can be represented by a tensor, and its low-rank decompositions correspond to efficient
algorithms. Bilinear operations encompass a large set of computational problems: structured matrix multiplication
(e.g., symmetric matrix multiplication), polynomial multiplication, or more customized bilinear operations commonly
used in machine learning models, such as graph networks [12, 13]. Here, we explore two use-cases: circulant matrix-
vector product (or equivalently, circular convolution) in finite fields, and skew-symmetric matrix-vector product.

For the former use-case, our goal is to demonstrate the generality and power of AlphaTensor by discovering the
Fourier basis, a complex and foundational transformation in mathematics, in a finite field, where arithmetic rules are
non-intuitive. For the latter, the optimal algorithm is unknown [14], and we use AlphaTensor to discover an algo-
rithm that improves over the state-of-the-art algorithm. We employ a common methodology for both use-cases: using
AlphaTensor, we compute low-rank decompositions for tensors corresponding to small instances; then, following a
human inspection, we generalize these algorithms to arbitrary-sized matrices/vectors.2

C.1 Circular matrix-vector product in finite fields
The first problem we consider is the product between a n×n circulant matrix and a vector of length n. This operation
is equivalent to computing the circular convolution between two vectors of length n: the first column of the matrix and
the input vector. A naive implementation of this operation would have bilinear complexity O(n2); in contrast, under
certain conditions, there exists an optimal algorithm that achieves bilinear complexity O(n). This optimal algorithm
consists of three steps: (i) obtaining the discrete Fourier transform (DFT) of each vector input (in a finite field, it is the
cyclotomic DFT instead), (ii) multiplying (element-wise) the results, and (iii) obtaining the inverse DFT of the result.
Here we aim at rediscovering this optimal algorithm using AlphaTensor.

The tensor Tcirc
n that represents the circular matrix-vector product has size n × n × n, and its entries are given by

Tcirc
n [i, j, k] = δ{k = (i + j) mod n} for 0 ≤ i, j, k < n, where δ{·} is the indicator function (we use zero-based

indexing here). The tensor Tcirc
n has therefore n2 nonzero elements, but its rank is n (provided the n-length DFT exists

in the corresponding ring E of interest, which is always the case if E = R).
We focus on computations in finite fields. In particular, we set E to be the finite field of order ρ, where ρ is a prime

power. This is challenging for two reasons. First, the action space becomes huge even for moderate values of n and ρ,
2Unlike standard matrix multiplication, where decompositions for fixed size tensors yield algorithms for any size, this extra human step can be

needed for other bilinear operations where recursion is not possible or is not efficient.
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e.g., for n = 8 and ρ = 17 (which are values that we consider), the action space is of the order of ρ3n ≈ 1029. Second,
multiplications and additions are performed according to the arithmetic in the finite field, and therefore interpreting the
factor and tensor entries as integers may be a poor choice (e.g., for ρ = 17, the values 1 and 16 are both 1 unit away
from 0, since 0 + 1 = 1 and 16 + 1 = 0). To account for these challenges, we adapt AlphaTensor as described next.

Methodology. We now describe the modifications of AlphaTensor that we use for this case:
• Vector-per-move. In the standard TensorGame, each move (action) corresponds to a triplet (u(t),v(t),w(t)).

Here, we modify TensorGame so that the factor triplet is split into three separate moves. The first move of
the game corresponds to u(1), the second one to v(1), the third one to w(1), the fourth one to u(2), and so on.
Consequently, the state of the game s is augmented with the vectors already written down for the next factor: for
each t ≥ 0,

s3t = (St, ()),

s3t+1 = (St, (u
(t+1))),

s3t+2 = (St, (u
(t+1),v(t+1))).

The tensor St in the state is only updated after every third move, when a w(t) vector is written down. The update
is then analogous to the standard TensorGame. Thus, the main difference of this variant is that there are three
times as many moves to reach the same residual tensor. While this has no impact on the score achieved in the
game (as long as the maximum number of moves is increased threefold), there is a computational advantage: the
move size is 3× smaller (which implies an exponential reduction in the size of the set of possible moves), even
at the expense of 3× longer games.

• Network input. To help the network learn the arithmetic in finite fields, we pre-process the input as follows. For
every input entry x, we compute all the products {x, 2x, . . . , (ρ − 1)x}. We concatenate the ρ − 1 resulting
entries, pre-process them using four additional dense blocks, and expose the result as an additional input to both
the torso and the policy head.

• Action canonicalization reward. The action canonicalization is particularly important in finite fields, where a
given rank-1 tensor can be expressed using (ρ − 1)2 equivalent triplets (λ1u, λ2v, λ3w) with λ1λ2λ1 = 1
(mod ρ); e.g., there are 256 equivalent triplets for ρ = 17. In a finite field we define the canonical form as
having the first nonzero element of u and the first nonzero element of v equal to 1. Instead of imposing the
canonicalization, we add a penalty to the reward whenever the agent outputs a factor triplet that is not in canonical
form. Specifically, the penalty is −0.5 for each individual factor (u or v) that is not in canonical form.

• Permutation symmetry reward. Two actions (u,v,w) and (u′,v′,w′) can be applied in either order due to com-
mutativity. Therefore, to reduce the number of equivalent factorizations, we use another type of canonicalization
— defined over the whole factorization instead of over each individual factor. Specifically, we define the canon-
ical representation of a factorization as the factorization in which the factors are sorted lexicographically. When
the agent fails to output a factorization in its canonical form, we add a penalty reward equal to−1/Rlimit for each
pair of consecutive actions that are not played in canonical order. This reward is added in addition to the factor
canonicalization reward. All synthetic demonstrations are also converted to their canonical form (considering
both factor canonicalization and permutation symmetry).

• Synthetic demonstrations. When generating demonstrations, we ensure that the factor entries take all the possible
values in the finite field. We set pentry(0) = 0.5 and pentry(v) =

1
ρ−1 for v = 1, . . . , ρ− 1.

• Hyper-parameters. We set Rlimit = 64 and allow all elements of E as possible factor entries: F = {0, 1, . . . , ρ−
1}. The policy head uses Nsteps = 2, Nlogits = ρ2 (i.e., 289 for ρ = 17), Nlayers = 4, and at inference time (in
MCTS) we sample Nsamples = 64 actions. The value head is an implicit quantile network (IQN) head [15] with
8 samples, and it ignores the policy embedding input z1. Signed permutations are not used; instead we inject
more diversity by setting Ncob = 300,000.

Results. We apply AlphaTensor to the tensor Tcirc
n , setting ρ = 17 and3 n = 2, 4, 8, in a single-target setting (i.e., a

separate experiment for each n). Extended Data Table 2 shows the obtained solutions. Despite the difficulty of the task
3In the finite field of order ρ = 17, the n-point discrete Fourier transform exists for vectors of the considered length (n = 2, 4, 8), as well as for

the extrapolation for n = 16. We also ran experiments on a finite field with non-prime cardinality (with ρ = 9), also recovering the Fourier basis
for n = 2, 4, 8.
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and the enormous action space, AlphaTensor finds the optimal decomposition for the considered values of n. These
decompositions correspond precisely to the Fourier basis, from which patterns can be detected through visual inspection
— we color-coded such patterns for clarity in Extended Data Table 2. From these examples, one can generalize the
solution to arbitrary n and field by setting u

(r)
k = v

(r)
k = zkr and w

(r)
k = z−kr/n, where 0 ≤ k, r < n and z is an

n-th primitive root of unity4 (see below for details on this step). That is, U and V are the (cyclotomic) DFT matrices,
while W corresponds to the inverse DFT. As the Fourier transform is known to be the optimal algorithm, this shows
the capability of AlphaTensor to discover optimal algorithms in huge algorithm spaces.

Generalizing the factorizations found by AlphaTensor. Here we exemplify the process to generalize the factoriza-
tions found by AlphaTensor on small tensors on the finite field of order 17 to any arbitrarily sized tensor and finite field,
which is the only step in the process that requires human intervention.

We start by showing an example for n = 4, but the procedure is analogous for the sizes n = 2 and n = 8. For
n = 4, the raw factorization found by AlphaTensor is:

U = V =


1 1 1 1
16 13 4 1
1 16 16 1
16 4 13 1

 , W =


13 13 13 13
4 1 16 13
13 4 4 13
4 16 1 13

 ,

where each column represents a factor, i.e., U = V = [u(1), . . . ,u(n)] and W = [w(1), . . . ,w(n)].
First, we note that the matrices above can be made symmetric by permuting the factors (i.e., columns). This leads

to the factorization5

U′ = V′ =


1 1 1 1
1 4 16 13
1 16 1 16
1 13 16 4

 , W′ = 4−1 ·


1 1 1 1
1 13 16 4
1 16 1 16
1 4 16 13

 ,

where we have additionally re-written W′ by taking out the factor 4−1 = 13 in order to make w′(1) similar to u′(1).
Second, we note that the entries in the matrices above involve only a subset of the elements in E . In particular, they

involve only the elements that are powers of 4 (since 1 = 40, 4 = 41, 16 = 42, and 13 = 43). Taking this into account,
and applying the identity 4x = 4x+4 (which holds in the finite field of order ρ = 17), we rewrite the factors in a form
that is more convenient for generalization:

U′ = V′ =


40 40 40 40

40 41 42 43

40 42 44 46

40 43 46 49

 , W′ = 4−1 ·


40 40 40 40

40 4−1 4−2 4−3

40 4−2 4−4 4−6

40 4−3 4−6 4−9

 ,

which we can express in a more compact way as u(r)
k = v

(r)
k = 4kr and w

(r)
k = 4−kr/4 for 0 ≤ k, r < n.

Following an analogous procedure for n = 2, we obtain u
(r)
k = v

(r)
k = 16kr and w

(r)
k = 16−kr/2, while for n = 8

we obtain u
(r)
k = v

(r)
k = 2kr and w

(r)
k = 2−kr/8.

Thus, we can extrapolate these results to find the general expression u
(r)
k = v

(r)
k = zkr and w

(r)
k = z−kr/n, where

z is an n-th primitive root of unity in the finite field — for example, an extrapolation for n = 16 in the same finite
field can be built using z = 3. Note that this generalization is valid not only for other values of n; it is also not limited
to ρ = 17 — it is applicable to any finite field and any n such that an n-th primitive root of unity exists in the field.
Furthermore, the generalization is also valid beyond finite fields, as it also applies for complex-valued inputs by setting
z to an n-th primitive root of unity, i.e., z = exp

{
2π

√
−1

n

}
.

C.2 Skew-symmetric matrix-vector product
Here, we describe the second use-case of structured matrix multiplication. We use AlphaTensor to discover a new
algorithm for computing the product between a n × n skew-symmetric matrix A and a vector b that outperforms the
state-of-the-art approaches.

4An n-th primitive root of unity z satisfies zn = 1 and zk ̸= 1 for any k ∈ {1, . . . , n− 1}.
5The choice of the permutation is not unique, but any such choice leads to an analogous final expression for the generalization.
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The skew-symmetric matrix-vector product is a bilinear operation that can be represented by a tensor Tskew
n of

size n(n−1)
2 × n × n. To build this tensor, we start from the general matrix-vector multiplication tensor Tn,n,1

of size n2 × n × n. We build the tensor Tskew
n as follows: first we compute an auxiliary tensor Taux

n [i, j, k] =
Tn,n,1[i, j, k] − Tn,n,1[i, k, j], and then we remove all the slices of the auxiliary tensor that are linearly dependent,
obtaining the n(n−1)

2 × n× n tensor Tskew
n . An explicit algorithm to build this tensor is presented in Algorithm C.14.

Algorithm C.14: Builds tensor representing the skew-symmetric matrix-vector multiplication of size n.
Input: n (the size of both the matrix and the vector).

1: m = n(n− 1)/2
2: Tskew = 0
3: r = 1
4: c = 1
5: for i ∈ {1, . . . ,m} do
6: c = c+ 1
7: if (c− 1) mod n = 0 then
8: r = r + 1
9: c = r + 1

10: Tskew[i, r, c] = 1
11: Tskew[i, c, r] = −1
12: return Tskew

Results. Figure 4a in the main paper shows the decompositions obtained by AlphaTensor. Similarly to the previous
use-case of structured matrix multiplication (Appendix C.1), we detect a pattern for small sizes n (color-coded in
the illustration), which we generalize and prove for arbitrary n, yielding a general algorithm for the skew-symmetric
matrix-vector product (Figure 4b in main paper).

Theorem C.4. The number of multiplications required to multiply a skew-symmetric matrix and a vector of dimension
n is at most (n− 1)(n+ 2)/2.

Proof. See Section I.3.

This algorithm is strictly better in terms of bilinear complexity compared to previously known algorithms [14]
— it uses ∼ 1

2n
2 multiplications instead of ∼ n2. We also note that this discovered algorithm is asymptotically

optimal, as 1
2n

2 matches the asymptotic lower bound obtained by counting the number of different elements in a skew-
symmetric matrix. The discovered algorithm, which improves upon state-of-the-art methods, demonstrates the viability
of AlphaTensor in discovering new and more efficient algorithms. We believe this methodology can be applied to other
bilinear operations, and yield efficient algorithms taking into account the structure of the problem.

Generalizing the factorizations found by AlphaTensor. Unlike the circulant matrix-vector case, in skew-symmetric
matrix-vector multiplication there exist many decompositions of the same rank, even when factoring out permutation
and factor symmetries. AlphaTensor indeed found many such valid decompositions that are not just the ones presented
in Figure 4a. Nevertheless, we noted that many of these decompositions presented a peculiar structure: for each factor,
either u or v is a one-hot vector. Even more interestingly, when u is a one-hot vector whose nonzero entry corre-
sponds to element (i, j) from the matrix A, then the corresponding vector v is non-zero only in the elements i and j.
Conversely, when v is a one-hot vector whose nonzero entry corresponds to the i-th element of the vector b, then the
corresponding u is non-zero only on the elements corresponding to (j, i) of matrix A for any j in {1, . . . , n} (i.e., the
elements of the matrix that get multiplied by the i-th element of the vector b). This insight led us to the hypothesis that
we can always decompose the n-skew-symmetric matrix-vector multiplication tensor by using (n+2)(n− 1)/2 terms
of the special forms described above. This is the strategy followed in the proof in Section I.3, which shows that this is
indeed the case.
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D Rapid tailored algorithm discovery
D.1 Benchmarking details
We use AlphaTensor to find provably correct matrix multiplication algorithms which are tailored to optimize the run-
ning time in a particular setting, where the setting includes hardware (e.g., a V100 GPU or TPU), matrix size (e.g.,
multiplying a pair of 8,192× 8,192 matrices), and the arithmetic precision (e.g., single precision arithmetic). In these
experiments we benchmark algorithms discovered by AlphaTensor on the fly, and use this benchmarking result for the
reward function. That is, we set r′t = rt+λbt, where rt is the rank reward described in the paper, bt is the benchmarking
reward (nonzero only at the terminal state), and λ is a user-specified coefficient.6

After every game that ends with a correct factorization of the matrix multiplication tensor, an AlphaTensor actor
sends a remote request to a benchmarking server equipped with the target hardware (e.g., a V100 GPU). The benchmark-
ing server builds the matrix multiplication algorithm defined by the incoming factorization and then applies just-in-time
(JIT) compilation using JAX [16], a Python library for high-performance machine learning research. JAX JIT analyzes
the given Python code and optimizes the code for the target hardware. For example, it can decide to fuse a matrix
multiplication followed by a matrix addition into a single CUDA GEMM call. JAX also controls the order of execution
of operations and can schedule multiple ops to run in parallel. In many cases it is possible to outperform JAX JIT by
writing custom CUDA code, but JAX JIT proved to be good enough in our experiments, with the additional benefit of
being fully automatic. This allowed us to automatically optimize and benchmark every matrix multiplication algorithm
proposed by AlphaTensor.

Learner

Actor

Actor

Actor

Actor

Benchmarking 
server (GPU)

Benchmarking 
server (GPU)

Benchmarking 
server (GPU)

Benchmarking 
server (GPU)

Benchmarking 
server (GPU)

… …
Figure D.1: Schematic illustration of the training pipeline when using benchmarking to define the reward function.
Every actor has a dedicated benchmarking server, but also occasionally uses other benchmarking servers (indicated by
dashed lines) to increase the precision for the most promising algorithms.

To implement the benchmarking, we were guided by the information in [17], as well as the Python timeit module
documentation [18]. To reduce benchmarking noise, timeit employs three tricks: it runs the function being bench-
marked many times (such that the overall running time of the loop is at least 0.2 seconds); it disables Python garbage
collection for the duration of benchmarking; and it repeats the loop three times, reporting the minimal timing (to be
more robust to spikes in the timing due to interruptions from the OS and other users of the machine).

We followed all these three practices with a single modification. When calling a JAX JIT function, it returns a future
instead of the immediate result, scheduling the computation on the GPU. As a result, running the matrix multiplication
function multiple times in a loop can potentially schedule the function multiple times and potentially run them in
parallel, which can skew the benchmarking results. We therefore opted to compute a sequence of matrix multiplications
that all depend on each other in the inner loop, namely six sequential matrix multiplications (A(A(A(A(A(AB))))))
and used the block_until_ready() method on the final output. In this way, the matrix multiplications in the inner
loop run sequentially, but the GPU is never blocked by waiting for the CPU to schedule the next multiplication, since

6While the benchmarking reward might be enough in theory, it is useful for the learning dynamics to combine benchmarking with rank reward,
to shape the reward towards more efficient algorithms.
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scheduling the next multiplication by the CPU can be done in parallel with computing the current multiplication by the
GPU.

When implementing this approach, we found that the variance of benchmarking was still large. For example, when
using this approach to benchmark an algorithm discovered by AlphaTensor, the estimated speed up against the baseline
Strassen2 algorithm varied from 4% to 11.6% (see Figure D.2). We identified the main reason of this noise to be
the GPU frequency scaling (GPU driver can change the clock frequency on the fly). We implemented two additional
techniques to improve the stability of the measurements.

First, additionally to measuring the running time of the algorithm of interest, we also measure the running time of
the baseline Strassen2 algorithm and report the ratio between the two. The idea is that since the two measurements are
done one after another, the clock frequency is likely to be similar when benchmarking the two algorithms. This makes
our rewards comparable even for two factorizations benchmarked hours apart using very different clock frequencies,
since each ratio represents the speedup with respect to the baseline computed with (almost) fixed frequency. We repeat
this process of benchmarking the target algorithm and the baseline several times (4 in the experiments) and report the
median ratio. As seen from numerical experiments, using this additional trick indeed significantly reduces the variance
of the measurements (see Figure D.2).

Second, to be even more agnostic to the state of the benchmarking server, we benchmark the most promising
algorithms on multiple benchmarking servers and report the median across those. Namely, for algorithms that are better
than 75% of the other algorithms seen so far we use the median ratio across 2 benchmarking servers, for algorithms
that are better than 90% of the algorithms seen so far we use the median across 5 servers, and for algorithms that are
better than 95% of the other algorithms we use the median across 17 servers.

When measuring the running time of an algorithm, we preload the input data (the two block matrices) into the GPU
memory and do a series of 3 warm-up runs to make sure the GPU is ready to be used for benchmarking. We do not
count the time to transfer the data to and from the GPU memory, as in most cases the GPU is used for more than one
matrix multiplication operation in a row and the data transfer time gets amortized. We also do not count the time to
split the input matrices into blocks and to construct the resulting matrix from the blocks as it is possible to implement
any of the fast matrix multiplication algorithm in C CUDA using memory addressing which would make the block
splitting and concatenating essentially free. See benchmarking pseudocode in Figure D.3.
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Figure D.2: Estimated speed up of a single algorithm with respect to the Strassen2 baseline. The histogram is computed
by repeating the same benchmark 1,000 times on 100 different GPUs (100,000 benchmarkings in total). The two plots
correspond to the two different benchmarking schemes discussed in the text: a “simple" scheme based on the Python
best practices and “with interleaving baseline" that includes the additional trick discussed above to circumvent the
frequency scaling issue. The “exact" speed up is computed as the median of all the speed ups estimated by both
methods.

In the AlphaTensor runs, we use Strassen2 as the baseline algorithm for the benchmarking. However, to report the
results, our discovered algorithms are re-benchmarked against standard matrix multiplication, where we use a higher
precision. Namely, we used the median ratio across 200 repeats. To further increase the accuracy, we fixed the GPU
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de f benchmark_single_server ( f a c t o r i z a t i o n , a , b ) :
a lgor i thm = algor i thm_from_factors ( f a c t o r i z a t i o n )
a lgor i thm = jax . j i t ( a lgor i thm )
b a s e l i n e = jax . j i t ( a lgor i thm_from_factors ( s t r a s s e n _ f a c t o r i z a t i o n ) )

# Warm- up .
f o r i in range (3 ) :

a lgor i thm ( a , b) . b lock_unti l_ready ( )
b a s e l i n e ( a , b ) . b lock_unti l_ready ( )

gc . d i s a b l e ( ) # Disab l e the garbage c o l l e c t o r .
r a t i o s = [ ]
f o r i in range (4 ) :

s t a r t = time . time ( )
c = b
f o r j in range (6 ) :

c = algor i thm ( a , c )
c . b lock_unti l_ready ( )
end = time . time ( )
alg_time = end - s t a r t

s t a r t = time . time ( )
c = b
f o r j in range (6 ) :

c = b a s e l i n e ( a , c )
c . b lock_unti l_ready ( )
end = time . time ( )
base l ine_t ime = end - s t a r t

r a t i o s . append ( base l ine_t ime / alg_time )
gc . enable ( )
r e turn np . median ( r a t i o s )

Figure D.3: Python pseudocode for benchmarking a matrix multiplication algorithm on a single benchmarking server
(as discussed in Appendix D.1, for the most promising factorizations we additionally compute the median ratio across
multiple servers).

clock frequency7 to the maximum possible value (1530 for a V100 GPU). For example, when repeatedly estimating
the speed up of Strassen2 against the standard baseline using this approach, we got estimates from 4.15% to 4.3% with
a standard deviation of 0.06 percent points.

For TPUs we follow the exact same benchmarking procedures, with only two exceptions: a) we don’t fix the clock
frequency (because on TPUs clock is always constant); b) we use matrices of data type bfloat16 (in contrast to float32
used for GPUs), as this is a more common setting among TPU users.

D.2 Experimental setup
We adapt AlphaTensor to work with benchmarking reward as follows. The immediate reward is set to r′t = rt + λbt,
where rt is the reward described in the paper, and bt is the benchmarking reward, equal to zero in all intermediate
states, and equal to

bt =
time taken to execute baseline algorithm
time taken to execute found algorithm

− γ,

for a terminal state with St = 0, where γ is a hyper-parameter. As the algorithms found initially are of high rank (and
hence not efficient), we initially set λ = 0, and activate the benchmarking reward only in late stages of the training (i.e.,
when AlphaTensor discovers sufficiently small ranks). In our experiments we used λ = 5.0, γ = 0.8 and Strassen2
as the baseline algorithm. For synthetic demonstrations, the benchmarking reward is set to 0, as such tensors do not
correspond to a matrix multiplication algorithm. Moreover, we only benchmark games played in the canonical basis,
as we did not find the use of other basis helpful.

In addition to the value head that predicts the rank of the tensor, we train an auxiliary value head and an auxiliary
reward head. The auxiliary reward head is trained to predict bt, while the auxiliary value head is trained to predict the
auxiliary return (future auxiliary reward) at any state. The value that is used in MCTS is a linear combination of the

7We only fix the GPU clock frequency for the final reporting because our internal infrastructure makes it hard to do it for live experiments at
scale.
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main value and the auxiliary value, v = vmain + λvauxiliary. We use the rewards predicted by the reward head in MCTS
simulations, as benchmarking an algorithm to compute the true environment reward bt is time consuming, and would
significantly slow down MCTS. These auxiliary heads are only trained on selfplay games, i.e. we do not train them on
demonstrations.

In addition to the usual inputs (described in Methods section) we provide an extra input to the neural network
consisting of all previous actions (factors) played to reach the current state (tensor). Unlike the residual tensor that does
not contain information about the matrix multiplication algorithm, the factors encode the algorithm and hence provide
important information to the auxiliary heads.

D.3 Additional results
We now show that by optimizing algorithms for larger sizes, one can obtain further speed-ups. Our experiments are
performed on TPU v2. We note a substantial speed-up when optimizing the algorithm for the intended size. For
example, when multiplying matrices of size 16,384, the algorithm optimized for 8,192 yields 11.2% speed-up compared
to the standard algorithm, while the AlphaTensor-discovered algorithm optimized for matrices of size 16,384 achieves
a 13.5% speed-up.
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Strassen2

AlphaTensor (8 192)
AlphaTensor (16 384)

Figure D.4: Speed-up of two algorithms found by AlphaTensor, relative to the standard (optimized) matrix multipli-
cation algorithm on TPU v2. The first algorithm (shown in blue) is optimized for multiplying matrices of size 8,192,
while the second (shown in purple) is optimized for multiplying matrices of size 16,384. The baseline Strassen2 algo-
rithm is also shown. We report the median over 1,000 runs. The standard deviation over runs is < 0.4 percent points.

E Finding border rank with AlphaTensor
AlphaTensor is a general method that supports any tensor decomposition environment and any reward function. One
example is AlphaTensor’s ability to operate in finite fields, where the factor and tensor entries live in a finite set, and
the multiplication and addition arithmetic obeys the rules in finite fields. Another example is AlphaTensor’s ability to
find efficient algorithms tailored to specific hardware.
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To demonstrate the ability of AlphaTensor to decompose tensors in different settings, we show a use-case that
departs from the standard low-rank tensor decomposition. Specifically, we aim at finding the border rank of a tensor.
The border rank of a tensor T is the minimum integer R such that the decomposition

∑R
r=1 u

(r)(ε)⊗v(r)(ε)⊗w(r)(ε)
converges to T as the scalar ε → 0 for some factors {u(r)(ε),v(r)(ε),w(r)(ε)} that depend on ε. We emphasize that
the goal of this section is to showcase the flexibility of AlphaTensor, as opposed to discovering new results.

Methodology. To find the border rank of a tensor, we modify AlphaTensor and TensorGame as follows.
• Ring. We set the ring E to be the set of Laurent polynomials in ε. Thus, the factor entries are Laurent polynomials

in the variable ε, which we constrain to be in the set F = {0,±1,±εi,±ε2i,±1±εi,±1±ε2i,±εi±ε2i,±εi±
ε−i,±εi ± ε−2i,±ε2i ± ε−2i}i=±1, i.e., there are |F | = 51 possible entries. The addition and multiplication
operations are performed according to the standard polynomial arithmetic; that is, the entries of the state tensor
St are Laurent polynomials that are not generally in the set F .

• Disallowed actions. We disallow actions (factor triplets) u(r)(ε) ⊗ v(r)(ε) ⊗ w(r)(ε) that lead to either the
all-zero tensor or a rank-one tensor whose all entries are O(ε), since these actions do not make any progress
towards finding a border rank decomposition. Moreover, for simplicity we also disallow actions that lead to a
rank-one tensor containing any Laurent polynomial with any term of degree strictly lesser than −3.

• Game end and reward. We terminate the game at step R if either all the terms of the residual tensor T −∑R
r=1 u

(r)(ε) ⊗ v(r)(ε) ⊗ w(r)(ε) are O(ε), or R = Rlimit. The reward is −1 for each step taken during the
game, plus an additional negative reward equal to the number of terms of the residual tensor that are not O(ε).

• Network input. To form the input of the network at step t, we concatenate 4 tensors obtained from St. These 4
tensors contain integer-valued entries instead of Laurent polynomials. To form them, we retain the coefficients
of St corresponding to εd for some fixed value of d. By letting the exponent d take values in {−3,−2,−1, 0},
we obtain the 4 tensors that we concatenate together (the coefficients corresponding to positive degrees d do not
have any relevance when ε→ 0, so we ignore them).

• Action canonicalization. We canonicalize the factor triplets similarly as the standard AlphaTensor. We define
the canonical form of u(ε) as the factor u′(ε) = λu(ε) (with λ ∈ {−1,+1}) such that the Laurent polynomial
corresponding to the first nonzero entry of u′(ε) has positive coefficient for the term with smallest degree (e.g.,
the first nonzero entry is ε−1 − 1 instead of −ε−1 + 1). Moreover, whenever all the entries of a factor triplet
(u(ε),v(ε),w(ε)) are polynomials with non-negative exponents of ε, we canonicalize the triplet by setting ε = 0.

• Synthetic demonstrations. To generate synthetic demonstrations, we follow the same approach as when op-
timizing the standard rank: we sample random factors (u(r)(ε),v(r)(ε),w(r)(ε)), and then create the tensor
T(ϵ) =

∑R
r=1 u

(r)(ε)⊗v(r)(ε)⊗w(r)(ε), so that the demonstration is ({(u(r)(ε),v(r)(ε),w(r)(ε))}Rr=1,T(ϵ)).
To generate each factor, we independently sample its entries. For each entry, we generate a Laurent polynomial
with either one or two non-zero coefficients, with probabilities 0.7 and 0.3, respectively (each coefficient can be
either 1 or −1 with equal probability). We assign each coefficient to a term εd of the polynomial, where d itself
is a random variable with p(d = 0) = 0.7, p(d = 1) = p(d = −1) = 0.1, and p(d = 2) = p(d = −2) = 0.05.
We reject those factor triplets that do not conform valid actions.

• Change of basis generation. We generate change of basis similarly as the standard AlphaTensor. The change
of basis matrices contain entries in {−1, 0, 1}, with probabilities pcob-entry(0) = 0.96 and pcob-entry(−1) =
pcob-entry(1) = 0.02.

• Hyper-parameters. We set Rlimit = 12. The policy head uses Nsteps = 2 and Nlogits = |F |2 = 2,601. We set
Ncob = 10,000.

Results. We apply AlphaTensor to find the border rank decomposition of three tensors: the 2 × 2 × 2 tensor Tsmall

that is zero everywhere except for Tsmall[1, 1, 2] = Tsmall[1, 2, 1] = Tsmall[2, 1, 1] = 1 (see [19]); the 4 × 4 × 4 tensor
TBini obtained from T2 after replacing one unit entry with zero, as in [20]; and the 4 × 6 × 6 matrix multiplication
tensor T2,2,3. The rank of Tsmall, TBini, and T2,2,3 is 3, 6, and 11, respectively, while the border rank is 2, 5, and 10
[19, 21, 22]. AlphaTensor successfully finds R = 2, R = 5, and R = 10 for each target respectively; in fact for
each one it discovers multiple decompositions with R factors. This demonstrates AlphaTensor’s ability to operate in a
complex environment with more general game state and actions.
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For completeness, we show next one of the border-rank-5 decompositions of TBini found by AlphaTensor:

U(ε) =


1 1 1 1 1− ε
0 1 0 0 −ε
0 0 −ε2 0 0
0 0 0 ε2 ε2

 , V(ε) =


1 0 1 0 0
0 0 0 0 ε
−1 ε−1 0 ε−2 ε−1

0 1 0 0 −ε

 ,

W(ε) =


1 ε 0 0 0

ε−2 0 −ε−2 1 0
0 1 0 −1 ε−1

0 0 ε 0 0

 ,

where the factors are stacked vertically, e.g., U(ε) = [u(1)(ε), . . . ,u(R)(ε)].
Similarly, we show next a border-rank-10 decomposition of T2,2,3 found by AlphaTensor:

U(ε) =


1 ε−2 + 1 0 1 ε−2 + 1 0 0 ε 0 ε−1 + 1
0 0 0 −1 0 0 ε 0 1 −1
0 1 1 0 0 1 ε−1 −ε−1 ε−2 + ε−1 0
0 0 0 0 1 1 0 0 ε−1 ε

 ,

V(ε) =


1 1 0 0 0 0 0 0 0 0
0 −ε2 1 0 ε2 0 0 1 0 ε
0 0 0 0 0 0 0 0 ε2 ε
1 0 0 ε−1 1 0 0 0 0 ε−1

0 0 −1 0 0 ε−1 ε−1 0 1 0
0 0 0 1 0 −1 0 0 −ε2 ε

 ,

W(ε) =


1 0 0 −ε 0 0 0 0 0 0

−ε−2 − 1 1 0 0 1 + ε2 0 0 0 0 −ε2
0 0 ε−2 0 0 0 1 ε−1 0 0
0 0 1 0 0 ε 0 0 0 0
1 −ε2 0 −1 + ε2 −1 0 0 0 0 1
0 0 0 0 ε2 −1 −1 0 1 −ε2

 .

F Ablations
Ablation Rank found

Without synthetic demonstrations 64
Without selfplay (supervised only) 60
Without change of basis 58
Without signed permutations 53
Without retraining on best games 10% of the time 52
Without QR head (using a categorical head) 52

AlphaTensor (no ablation) 49

Table 1: Results of repeating the experiment that discovered rank-49 factorizations of the general matrix multiplication
tensor T4 (over standard arithmetic), each time disabling one of the components of AlphaTensor. In the experiment
without selfplay we trained AlphaTensor on synthetic demonstrations only, and used the resulting neural network in
MCTS seeking to decompose the target tensor T4.

Apart from the components ablated in Table 1, another important feature of AlphaTensor is the ability to train a
single agent for decomposing multiple target tensors. When working over modular arithmeticZ2, an agent trained on all
matrix multiplication tensors Tn,m,p with n,m, p ≤ 5 discovers a rank-47 factorization ofT4, whereas an agent trained
solely on T4 only discovers rank-49 factorizations. We performed an analysis on one of the experiments that discovered
a rank-47 factorization of T4 and found that the agent is able to transfer knowledge between the three target tensors
T3,3,4, T3,4,4, and T4. Specifically, a new agent trained from scratch but initialized with the discovered solutions to
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both T3,3,4 and T3,4,4 in its demonstrations buffer is very quickly able to rediscover rank-47 factorizations of T4. This
is not the case when the agent is initialized with solutions to T3,3,4 only, or with solutions to T3,4,4 only.

G Hyperparameters

Hyper-parameter Value

G
am

e Move limit Rlimit 125
Factor entries F when seeking algorithms over arbitrary rings {−2,−1, 0, 1, 2}
Factor entries F when seeking algorithms over Z2 {0, 1}

M
CT

S

Number of simulations (before 50k steps) 200
Number of simulations (after 50k steps) 800
Initial value of c(s) (c1 in [23]) 1.25
Scaling of c(s) with parent visit count (c2 in [23]) 19,652

RL
pi

pe
lin

e

Maximum number of times a state is trained on 1
Replay buffer size (selfplay games) 100,000
Synthetic demonstrations 5,000,000
Best games replay buffer size 1,000
Training split (selfplay / demonstrations / best games) before 10k steps 10% / 90% / 0%
Training split (selfplay / demonstrations / best games) after 10k steps 70% / 25% / 5%

O
pt

im
iz

at
io

n

Batch size 2048
Gradient clipping by global norm 4.0
Optimizer AdamW [24]
Weight decay 10−5

Initial learning rate 10−4

Learning rate decay factor 0.1
Learning rate decay steps 500,000

Table 2: Common training hyper-parameters.

The hyper-parameters for specific sub-components are listed where those components are described: the configura-
tion of the network architecture in Appendix A.1, the synthetic demonstration generation procedure in Appendix A.2,
and the distribution and sampling of basis changes in Appendix A.3. Table 2 lists the remaining general hyper-
parameters.

H Combining smaller factorizations into bigger ones
In this section, we describe and extend the divide-and-conquer technique [25, 26] that allows one to combine factor-
izations of smaller matrix multiplication tensors into factorizations of larger matrix multiplication tensors. For exam-
ple, this technique allows us to obtain a rank-287 factorization of T5,8,10 (which improves over the previously known
rank-291 [25]) by combining a known rank-33 factorization of T2,4,5 and a rank-47 factorization of T3,4,5 found by
AlphaTensor. We refer to the supplementary data for all such decompositions.
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H.1 Illustrative example
Let us describe the divide-and-conquer approach using T9 as an illustrative example. Specifically, let us find an algo-
rithm for multiplying two 9× 9 matrices A and B,

a11 a12 a13 a14 a15 a16 a17 a18 a19
a21 a22 a23 a24 a25 a26 a27 a28 a29
a31 a32 a33 a34 a35 a36 a37 a38 a39
a41 a42 a43 a44 a45 a46 a47 a48 a49
a51 a52 a53 a54 a55 a56 a57 a58 a59
a61 a62 a63 a64 a65 a66 a67 a68 a69
a71 a72 a73 a74 a75 a76 a77 a78 a79
a81 a82 a83 a84 a85 a86 a87 a88 a89
a91 a92 a93 a94 a95 a96 a97 a98 a99


︸ ︷︷ ︸

A

·



b11 b12 b13 b14 b15 b16 b17 b18 b19
b21 b22 b23 b24 b25 b26 b27 b28 b29
b31 b32 b33 b34 b35 b36 b37 b38 b39
b41 b42 b43 b44 b45 b46 b47 b48 b49
b51 b52 b53 b54 b55 b56 b57 b58 b59
b61 b62 b63 b64 b65 b66 b67 b68 b69
b71 b72 b73 b74 b75 b76 b77 b78 b79
b81 b82 b83 b84 b85 b86 b87 b88 b89
b91 b92 b93 b94 b95 b96 b97 b98 b99


︸ ︷︷ ︸

B

.

To apply the divide-and-conquer approach, we need a high-level matrix multiplication algorithm, i.e., a factorization
of some matrix multiplication tensor. The choice of the tensor and its factorization affects the resulting number of factors
of the decomposition of T9. Hence, in practice, it is beneficial to consider all available choices (i.e., all available sizes
and algorithms), and pick the one leading to the best result. To make the exposition concrete, let us consider T2,3,3.
(This is a generalization of the scheme described in [25], which only considered factorizations of T2 as the high-level
matrix multiplication algorithm.) Consider the following high-level algorithm representing a rank-15 decomposition
of T2,3,3 (this particular decomposition is discovered by AlphaTensor):

h1 = A23 (B21 −B23 −B31)
h2 = (A22 +A23) (B21 −B23)
h3 = (A12 −A23) (B21 −B23 −B32)
h4 = (A12 +A22) (B12 +B21 −B22 −B23)
h5 = A12 (B22 +B23 −B32)
h6 = (A12 +A13)B32

h7 = (A12 +A21 +A22) (B12 +B23)
h8 = (A21 +A22)B23

h9 = (A11 +A12 +A21 +A22)B12

h10 = (A13 +A23) (B11 −B13 +B31 −B32 −B33)
h11 = (A11 −A13 −A23) (B11 −B13 −B33)
h12 = (A11 −A13 +A21 −A23) (B11 −B13)
h13 = (A11 −A13)B33

h14 = A21 (B11 −B23)
h15 = A11 (B12 +B13 +B33)
C11 = h10 + h11 + h15 + h1 + h3 + h6 + h7 − h8 − h9

C21 = h14 − h1 + h2 + h8

C12 = h5 + h6 − h7 + h8 + h9

C22 = h2 + h3 − h4 − h5 + h7 − h8

C13 = −h13 + h15 + h7 − h8 − h9

C23 = h11 − h12 + h13 + h14 + h8

We can apply the high-level algorithm for multiplying block matrices,


C11 C12 C13

C21 C22 C23

 =


A11 A12 A13

A21 A22 A23





B11 B12 B13

B21 B22 B23

B31 B32 B33


.
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Let us fill the block matrices with the elements of the original matrices A and B (by padding with zeroes to match
the sizes8). For example, one can use the following scheme:

c11 c12 c13 c14 c15 c16 c17 c18 c19
c21 c22 c23 c24 c25 c26 c27 c28 c29
c31 c32 c33 c34 c35 c36 c37 c38 c39
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
c41 c42 c43 c44 c45 c46 c47 c48 c49
c51 c52 c53 c54 c55 c56 c57 c58 c59
c61 c62 c63 c64 c65 c66 c67 c68 c69
c71 c72 c73 c74 c75 c76 c77 c78 c79
c81 c82 c83 c84 c85 c86 c87 c88 c89
c91 c92 c93 c94 c95 c96 c97 c98 c99



(3)

=



a11 a12 a13 a14 a15 a16 a17 a18 a19
a21 a22 a23 a24 a25 a26 a27 a28 a29
a31 a32 a33 a34 a35 a36 a37 a38 a39
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
a41 a42 a43 a44 a45 a46 a47 a48 a49
a51 a52 a53 a54 a55 a56 a57 a58 a59
a61 a62 a63 a64 a65 a66 a67 a68 a69
a71 a72 a73 a74 a75 a76 a77 a78 a79
a81 a82 a83 a84 a85 a86 a87 a88 a89
a91 a92 a93 a94 a95 a96 a97 a98 a99





b11 b12 b13 b14 b15 b16 b17 b18 b19
b21 b22 b23 b24 b25 b26 b27 b28 b29
b31 b32 b33 b34 b35 b36 b37 b38 b39
b41 b42 b43 b44 b45 b46 b47 b48 b49
b51 b52 b53 b54 b55 b56 b57 b58 b59
b61 b62 b63 b64 b65 b66 b67 b68 b69
b71 b72 b73 b74 b75 b76 b77 b78 b79
b81 b82 b83 b84 b85 b86 b87 b88 b89
b91 b92 b93 b94 b95 b96 b97 b98 b99


.

There are multiple ways in which the elements of A, B, and C can be placed into the block matrices above,
depending on the specific structure of the zero padding. Again, this choice affects the resulting number of factors in
the decomposition of T9, as described below. In practice, we try all combinations and pick the best one.

We now analyze the steps of the high-level algorithm when applied to the blocks of the matrices in Eq. 3. Step 1,
h1 = A23 (B21 −B23 −B31), involves multiplying a 6× 3 matrix by a 3× 3 matrix, and thus can be done by using
the algorithm T6,3,3 (which involves 40 multiplications). Steps 2, 3, and 4 are similar. However, step 5 is different:
it involves A12, which is of size 6 × 3; however half of its rows are zero, so we can use T3 (for which we have a
rank-23 decomposition) for the computations in this step. We can also see that the sparsity pattern of the block matrix
C also affects the resulting number of terms in the decomposition. For example, step 10 of the high-level algorithm
only involves dense matrix multiplications and thus one might think that it can only be done via T6,3,3. However, h10

is only used later for computing C11, whose last three rows are zero, so there is no need to compute the last three rows
of h10, and thus it can be done via T3.

Exploiting the sparsity patterns in all 15 steps, we obtain that the final rank of the decomposition is 498 (this decom-
position involves 6 factorizations of T3, and 9 factorizations of T6,3,3). We refer to the accompanying supplementary
data for all the decompositions.

H.2 General approach
For each target Tn,m,p with n,m, p ∈ {3, . . . , 12}, we try all the factorizations discovered by AlphaTensor as high-
level factorization, and all non-equivalent ways of placing the original matrix elements into the blocks of the high-level
matrices (i.e., the sparsity patterns). Since the results depend on the particular high-level factorization, we are able to
leverage the diversity of the decompositions found by AlphaTensor.

This generalized divide-and-conquer approach subsumes adding and multiplying factorizations. Indeed, by using
the trivial decomposition of T1,1,2 as the high-level algorithm, one can sum factorizations of Tn,m,p and Tn,m,p′ into

8To apply the high-level matrix multiplication algorithm to the block matrix, we need to pad every block in a matrix to have the same shape so
that we can add blocks as specified by the high-level algorithm. Note that this padding is only done as an intermediate step for constructing the
factorization; the resulting factorization of T9,9,9 (and thus the algorithm for multiplying 9× 9 matrices) does not involve padding.
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a factorization of Tn,m,p+p′ . Similarly, by dividing the original matrices A, B and C into blocks without introducing
any zero padding, one can replicate multiplication of factorizations. For all the results, we refer to Extended Data Table
1.

I Proofs
In this section, we prove the results in Theorem B.2 and Theorem B.3, which are needed to prove Theorem B.1. We
also provide a proof for Theorem C.4.

I.1 Proof of Theorem B.2
Proof. By transitivity, applying Φ to two equivalent factorizations preserves their equivalence. Therefore, the two
factorizations {(Ũr, Ṽr,W̃r)}Rr=1 and {(Ũ′

r, Ṽ
′
r,W̃

′
r)}Rr=1 with Ũr = UrV1W1, Ṽr = W−1

1 V−1
1 VrW1, W̃r =

W−1
1 Wr, and Ũ′

r = U′
rV

′
1W

′
1, Ṽ′

r = W′−1

1 V′−1

1 V′
rW

′
1, W̃′

r = W′−1

1 W′
r are also equivalent. Hence, there exist

(A,B,C, π) such that

ATπ(Ũr)B
−1 ⊗K BTπ(Ṽr)C

−1 ⊗K CTπ(W̃r)A
−1

=(A⊗K B⊗K C)(Tπ(Ũr)⊗K Tπ(Ṽr)⊗K Tπ(W̃r))(B
−1 ⊗K C−1 ⊗K A−1)

=Ũ′
r ⊗K Ṽ′

r ⊗K W̃′
r, (4)

where Tπ is the identity function when π has signature 1, and the transposition function otherwise. By construction
(Ũ1, Ṽ1,W̃1) = (I, I, I), so Tπ(Ũ1) = Tπ(Ṽ1) = Tπ(W̃1) = I , and for r = 1 Eq. 4 reduces to

AB−1 ⊗K BC−1 ⊗K CA−1 = I ⊗K I ⊗K I.

Inverting this equality, we obtain

BA−1 ⊗K CB−1 ⊗K AC−1 = I ⊗K I ⊗K I. (5)

Multiplying Eqs. 4 and 5, we obtain:

ATπ(Ũr)A
−1 ⊗K BTπ(Ṽr)B

−1 ⊗K CTπ(W̃r)C
−1

=(A⊗K B⊗K C)(Tπ(Ũr)⊗K Tπ(Ṽr)⊗K Tπ(W̃r))(A⊗K B⊗K C)−1

=Ũ′
r ⊗K Ṽ′

r ⊗K W̃′
r.

Using the invariance of the CharPoly function under similarities, we obtain

CharPoly(Tπ(Ũr)⊗K Tπ(Ṽr)⊗K Tπ(W̃r)) = CharPoly(Ũ′
r ⊗K Ṽ′

r ⊗K W̃′
r).

The eigenvalues and therefore also the characteristic polynomial of a matrix are also invariant under transposition, so
CharPoly(Tπ(Ũr)⊗K Tπ(Ṽr)⊗K Tπ(W̃r)) = CharPoly(Ũr ⊗K Ṽr ⊗K W̃r) and we conclude that

CharPoly(Ũr ⊗K Ṽr ⊗K W̃r) = CharPoly(Ũ′
r ⊗K Ṽ′

r ⊗K W̃′
r).

I.2 Proof of Theorem B.3
Before we prove Theorem B.3, we need the following two lemmas:

Lemma I.1. If {(Xp,Yp,Zp)}Rp=1
A,B,C,π∼ {(F1

r,F
2
r,F

3
r)}Rr=1 and {(X′

q,Y
′
q,Z

′
q)}Rq=1

A′,B′,C′,π′

∼ {(F1
r,F

2
r,F

3
r)}Rr=1

then {
(Xp ⊗K X′

q,Yp ⊗K Y′
q,Zp ⊗K Z′

q)
}R
p,q=1

A⊗A′,B⊗B′,C⊗C′,id∼
{(

Tπ(F
π(1)
p )⊗K Tπ′(Fπ′(1)

q ), Tπ(F
π(2)
p )⊗K Tπ′(Fπ′(2)

q ), Tπ(F
π(3)
p )⊗K Tπ′(Fπ′(3)

q )
)}R

p,q=1
.
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Proof. By assumption we have

Xp ⊗Yp ⊗ Zp = (ATπ(F
π(1)
p )B−1)⊗ (BTπ(F

π(2)
p )C−1)⊗ (CTπ(F

π(3)
p )A−1),

X′
q ⊗Y′

q ⊗ Z′
q = (A′Tπ′(Fπ′(1)

q )B′−1)⊗ (B′Tπ′(Fπ′(2)
q )C′−1)⊗ (C′Tπ′(Fπ′(3)

q )A′−1).

Multiplying these two identities, we obtain

(Xp ⊗K X′
q)⊗ (Yp ⊗K Y′

q)⊗ (Zp ⊗K Z′
q) = (Xp ⊗Yp ⊗ Zp)⊗K (X′

q ⊗Y′
q ⊗ Z′

q)

=
(
(ATπ(F

π(1)
p )B−1)⊗K (A′Tπ′(Fπ′(1)

q )B′−1)
)

⊗
(
(BTπ(F

π(2)
p )C−1)⊗K (B′Tπ′(Fπ′(2)

q )C′−1)
)

⊗
(
(CTπ(F

π(3)
p )A−1)⊗K (C′Tπ′(Fπ′(3)

q )A′−1)
)

=
(
[A⊗K A′]

[
Tπ(F

π(1)
p )⊗K Tπ′(Fπ′(1)

q )
]
[B⊗K B′]

−1
)

⊗
(
[B⊗K B′]

[
Tπ(F

π(2)
p )⊗K Tπ′(Fπ′(2)

q )
]
[C⊗K C′]

−1
)

⊗
(
[C⊗K C′]

[
Tπ(F

π(3)
p )⊗K Tπ′(Fπ′(3)

q )
]
[A⊗K A′]

−1
)
,

where we used the identities (AC)⊗K (BD) = (A⊗K B)(C⊗K D) and (B⊗K B′)−1 = (B−1 ⊗K B′−1).

Lemma I.2. Let T be a tensor with nonnegative entries and of rank R > 0, and let {(Xp⊗K X′
q,Yp⊗K Y′

q,Zp⊗K

Z′
q)}Rp,q=1 be a factorization of T⊗2. Then, there exist α, β with αβ = 1 such that both {(αXp, αYp, αZp)}Rp=1 and
{(βX′

q, βY
′
q, βZ

′
q)}Rq=1 are valid factorizations of T.

Proof. Since
{
(Xp ⊗K X′

q,Yp ⊗K Y′
q,Zp ⊗K Z′

q)
}R
p,q=1

is a factorization of T⊗2, we have:

T⊗2[i1 + ni′1, i2 + ni′2, j1 + nj′1, j2 + nj′2, k1 + nk′1, k2 + nk′2] (6)

=

R∑
p=1

R∑
q=1

(Xp ⊗K X′
q)[i1 + ni′1, i2 + ni′2](Yp ⊗K Y′

q)[j1 + nj′1, j2 + nj′2](Zp ⊗K Z′
q)[k1 + nk′1, k2 + nk′2] (7)

=

(
R∑

p=1

Xp[i1, i2]Yp[j1, j2]Zp[k1, k2]

)(
R∑

q=1

X′
q[i

′
1, i

′
2]Y

′
q[j

′
1, j

′
2]Z

′
q[k

′
1, k

′
2]

)
(8)

Hence, we obtain ∑
i′1,i

′
2,j

′
1,j

′
2,k

′
1,k

′
2

T⊗2[i1 + ni′1, i2 + ni′2, j1 + nj′1, j2 + nj′2, k1 + nk′1, k2 + nk′2] (9)

=T[i1, i2, j1, j2, k1, k2]
∑

i′1,i
′
2,j

′
1,j

′
2,k

′
1,k

′
2

T[i′1, i
′
2, j

′
1, j

′
2, k

′
1, k

′
2] (10)

=

(
R∑

p=1

Xp[i1, i2]Yp[j1, j2]Zp[k1, k2]

) ∑
i′1,i

′
2,j

′
1,j

′
2,k

′
1,k

′
2

R∑
q=1

X′
q[i

′
1, i

′
2]Y

′
q[j

′
1, j

′
2]Z

′
q[k

′
1, k

′
2]

 , (11)

from which we deduce that

α−1T[i1, i2, j1, j2, k1, k2] =

R∑
p=1

Xp[i1, i2]Yp[j1, j2]Zp[k1, k2],

where

α−1 =

∑
i′1,i

′
2,j

′
1,j

′
2,k

′
1,k

′
2
T[i′1, i

′
2, j

′
1, j

′
2, k

′
1, k

′
2]∑

i′1,i
′
2,j

′
1,j

′
2,k

′
1,k

′
2

∑R
q=1 X

′
q[i

′
1, i

′
2]Y

′
q[j

′
1, j

′
2]Z

′
q[k

′
1, k

′
2]
.
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Note that the denominator is nonzero, as otherwise the tensor T is equal to zero. Similarly, we have

β−1T[i′1, i
′
2, j

′
1, j

′
2, k

′
1, k

′
2] =

R∑
q=1

X′
q[i

′
1, i

′
2]Y

′
q[j

′
1, j

′
2]Z

′
p[k

′
1, k

′
2],

β−1 =

∑
i1,i2,j1,j2,k1,k2

T[i1, i2, j1, j2, k1, k2]∑
i1,i2,j1,j2,k1,k2

∑R
p=1 Xp[i1, i2]Yp[j1, j2]Zp[k1, k2]

.

Computing α−1β−1, we obtain

α−1β−1 =

∑
i1,i2,j1,j2,k1,k2

∑
i′1,i

′
2,j

′
1,j

′
2,k

′
1,k

′
2
T[i1, i2, j1, j2, k1, k2]T[i

′
1, i

′
2, j

′
1, j

′
2, k

′
1, k

′
2](∑

i1,i2,j1,j2,k1,k2

∑R
p=1 Xp[i1, i2]Yp[j1, j2]Zp[k1, k2]

)(∑
i′1,i

′
2,j

′
1,j

′
2,k

′
1,k

′
2

∑R
q=1 X

′
q[i

′
1, i

′
2]Y

′
q[j

′
1, j

′
2]Z

′
q[k

′
1, k

′
2]
) ,

which is equal to 1 by summing Eq. 8 over all (i, j, k, i′, j′, k′).

We now prove Theorem B.3.

Proof. We have 2 =⇒ 1. We now prove that 1 =⇒ 2. {(Xp⊗KX′
q,Yp⊗KY′

q,Zp⊗KZ′
q)}7p,q=1 is a factorization

of T4 of rank 49. Using Lemma I.2, there exists α, β such that {(αXp, αYp, αZp)}7p=1 and {(βX′
q, βY

′
q, βZ

′
q)}7q=1

are both valid factorizations of T2 of rank 7, where αβ = 1. We know that all rank 7 factorizations of T2 are equivalent
[3]; hence, we have

{(αXp, αYp, αZp)}7p=1 ∼ {(S1
p,S

2
p,S

3
p)}7p=1,

{(βX′
q, βY

′
q, βZ

′
q)}7q=1 ∼ {(S1

p,S
2
p,S

3
p)}7p=1,

where we recall that {(S1
p,S

2
p,S

3
p)}7p=1 is a Strassen factorization of T2. Using Lemma I.1, there exist permutations π

and π′ for which the following holds:{
(Xp ⊗K X′

q,Yp ⊗K Y′
q,Zp ⊗K Z′

q)
}R
p,q=1

∼
{(

Tπ(S
π(1)
p )⊗K Tπ′(Sπ′(1)

q ), Tπ(S
π(2)
p )⊗K Tπ′(Sπ′(2)

q ), Tπ(S
π(3)
p )⊗K Tπ′(Sπ′(3)

q )
)}7

p,q=1
,

where we have used the property that αβ = 1. By transitivity of the equivalence relation, we obtain that

{(Ur,Vr,Wr)}49r=1 ∼
{(

Tπ(S
π(1)
p )⊗K Tπ′(Sπ′(1)

q ), Tπ(S
π(2)
p )⊗K Tπ′(Sπ′(2)

q ), Tπ(S
π(3)
p )⊗K Tπ′(Sπ′(3)

q )
)}7

p,q=1
,

which concludes the proof.

I.3 Proof for skew-symmetric matrix-vector product
We now prove Theorem C.4. We start with a simple, but useful result:

Lemma I.3. Let Ξ be any n× n matrix, Ξ = [ξcr]
c
r. Then the following equality always holds

n∑
r=1

r∑
c=1

ξcr =

n∑
c=1

n∑
r=c

ξcr (12)

Proof. Both sides of the equation sum up the lower triangular part of the matrix {Ξc
r | 1 ≤ c ≤ r ≤ n}.

24



I.3.1 Problem formulation and the results

Consider an n × n antisymmetric matrix A = [acr]
c=1,...n
r=1,...n, acr = −arc for r = 1, . . . , n, c = 1, . . . , n. Let b be an

n-dimensional vector [b1, . . . , bn]⊺. We want to compute the following:

yr̄ :=

n∑
c=1

bca
c
r̄ for r̄ = 1, . . . , n.

What we aim to do in this proof is to re-express the previous expressions as a function of the following two kinds
of terms:

ωc̄
r̄ := ac̄r̄bc̄ + ar̄c̄br̄ for r̄ = 1, . . . , n, c̄ = 1, . . . , n,

βr̄ := br̄

n∑
r=1

ar̄r for r̄ = 1, . . . , n,

Remark 1. Each of the terms ωc̄
r̄ and βr̄ requires precisely one multiplication to compute.

Proof. The term βr̄ requires only one multiplication directly by the definition.
There holds ωc̄

r̄ = ac̄r̄bc̄ + ar̄c̄br̄ = ac̄r̄ (bc̄ − br̄) as ac̄r̄ = −ar̄c̄ for r̄ = 1, . . . , n, c̄ = 1, . . . , n, which completes the
proof.

We start with a simple observation:

Lemma I.4. For all r̄, c̄ there holds

ωc̄
r̄ = ωr̄

c̄ , (13)
ωr̄
r̄ = 0. (14)

This implies that there are onlyn(n−1)/2 different termsωc̄
r̄, which together with then terms in βr̄ maken(n+1)/2

terms, each of those requiring only one multiplication.

Lemma I.5. There holds

yr̄ =

n∑
c=1

ωc
r̄ − βr̄

Proof. By definition
n∑

c=1

ωc
r̄ =

n∑
c=1

acr̄bc + ar̄cbr̄ =

n∑
c=1

acr̄bc +

n∑
c=1

ar̄cbr̄ = yr̄ + βr̄.

The previous lemma allows us to prove that we need n(n+1)/2 scalar multiplications to multiply a skew-symmetric
matrix and a vector. In the following we will go beyond this by leaving one of these terms out, in particularωn

n−1, leading
to n(n+ 1)/2− 1 = (n+ 2)(n− 1)/2 required scalar multiplications.

Corollary I.1. There holds

yr̄ =

r̄−1∑
r=1

ωr̄
r +

n∑
c=r̄+1

ωc
r̄ − βr̄

Note that this corollary allows us to express y1, . . . yn−2 in terms of ω and β elements without using ωn
n−1.

Lemma I.6. There holds
n∑

r=1

r∑
c=1

ωc
r =

n∑
r=1

n∑
c=r

ωc
r =

n∑
r=1

βr.
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Figure I.5: Two alternative expressions for y4. We can either use blue and gray terms (Lemma I.5), or green and gray
terms (Corollary I.1).

Proof. We use the identity ωc
r = ωr

c to show the first equality

n∑
r=1

r∑
c=1

ωc
r =

n∑
r=1

r∑
c=1

ωr
c =

n∑
c=1

n∑
r=c

ωr
c︸ ︷︷ ︸

by Lemma I.3

=

n∑
r=1

n∑
c=r

ωc
r.

Now it remains to prove that
n∑

r=1

r∑
c=1

ωc
r =

n∑
r=1

βr.

n∑
r=1

r∑
c=1

ωc
r =

n∑
r=1

r∑
c=1

acrbc + arcbr =

n∑
r=1

r∑
c=1

acrbc +

n∑
r=1

r∑
c=1

arcbr =

n∑
r=1

r∑
c=1

acrbc +

n∑
c=1

n∑
r=c

arcbr =

n∑
r=1

r∑
c=1

acrbc +

n∑
r=1

n∑
c=r

acrbc =

n∑
r=1

n∑
c=1

acrbc +

n∑
r=1

arrbr.

But arr = 0 for all r = 1, . . . , n, due to antisymmetry, thus

n∑
r=1

n∑
c=r

ωc
r =

n∑
r=1

n∑
c=1

acrbc =

n∑
c=1

bc

n∑
r=1

acr =

n∑
c=1

βc.

Proposition 1. The following equalities hold

yr̄ = −
n∑

r=1,r ̸=r̄

n∑
c=r,c ̸=r̄

ωc
r +

n∑
r=1,r ̸=r̄

βr, (15)

yr̄ = −
n∑

r=1,r ̸=r̄

r∑
c=1,c ̸=r̄

ωc
r +

n∑
r=1,r ̸=r̄

βr (16)
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Proof. By Lemmas I.5 and I.6, there holds

yr̄ =

n∑
c=1

ωc
r̄ − βr̄ =

n∑
c=1

ωc
r̄ − βr̄ −

n∑
r=1

n∑
c=r

ωc
r +

n∑
r=1

βr︸ ︷︷ ︸
=0 by Lemma I.6

=

n∑
c=1

ωc
r̄ −

n∑
r=1

n∑
c=r

ωc
r +

n∑
r=1,r ̸=r̄

βr =

r̄−1∑
c=1

ωc
r̄ −

n∑
r=1,r ̸=r̄

n∑
c=r

ωc
r +

n∑
r=1,r ̸=r̄

βr =

r̄−1∑
r=1

ωr̄
r −

n∑
r=1,r ̸=r̄

n∑
c=r

ωc
n +

n∑
r=1,r ̸=r̄

βr = −
n∑

r=1,r ̸=r̄

n∑
c=r,c ̸=r̄

ωc
r +

n∑
r=1,r ̸=r̄

βr.

Analogously

yr̄ =

n∑
c=1

ωc
r̄ − βr̄ =

n∑
c=1

ωc
r̄ − βr̄ −

n∑
r=1

i∑
c=1

ωc
r +

n∑
r=1

βr︸ ︷︷ ︸
=0 by Lemma I.6

=

n∑
c=1

ωc
r̄ −

n∑
r=1

r∑
c=1

ωc
r +

n∑
r=1,r ̸=r̄

βr =

n∑
c=r̄+1

ωc
r̄ −

n∑
r=1,r ̸=r̄

r∑
c=1

ωc
r +

n∑
r=1,r ̸=r̄

βr = −
n∑

r=1,r ̸=r̄

r∑
c=1,c ̸=r̄

ωc
r +

n∑
r=1,r ̸=r̄

βr.

Corollary I.2. We have

yn−1 =−
n−2∑
r=1

n−2∑
c=r

ωc
r −

n−2∑
c=1

ωc
n +

n∑
r=1,r ̸=n−1

βr

yn =−
n−1∑
r=1

r∑
c=1

ωc
r +

n−1∑
r=1

βr

Proof. Using Proposition 1 (Eq. 15), we get

yn−1 =−
n∑

r=1,r ̸=n−1

n∑
c=r,c ̸=n−1

ωc
r +

n∑
r=1,r ̸=n−1

βr =

−
n−2∑
r=1

n−2∑
c=r

ωc
r −

n−2∑
c=1

ωc
n +

n∑
r=1,r ̸=n−1

βr

The second equality is a straigthforward application of Proposition 1 (Eq. 16) with r̄ = n.

Theorem I.5. The operation of a multiplication of a n× n antisymmetric matrix and a vector can be expressed using
n(n+1)

2 − 1 multiplications.

Proof. Recall (Remark 1), that each of the terms ωc̄
r̄ and βr̄ can be computed using one multiplication. Thanks to

Lemma I.4 we know that there are only n(n−1)
2 distinct terms ωc̄

r̄. In addition, the formulas require n values of βr̄, each
of them requiring 1 multiplication.

Note that thanks to Corollary I.1 we can compute y1 . . . yn−2 using n(n−1)
2 − 1 ( instead of n(n−1)

2 ) terms ωc̄
r̄, in

particular not incorporating ωn
n−1.

Finally, observe that the formulas in Corollary I.2 do not incorporate the termωn
n−1 either, which ends the proof.
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